Western Electric Company, Inc. Central Regional Services
 Technical Training Section

Lesson No. 1

FUNDAMENTALS OF TELEPHONY

This Lesson covers the basic theory of the Telephone and Telephone Switching, together with the general features of the various Switching Systems. Comparisons are drawn between the various Dial Systems and the Manual Switching System to assist in understanding the various 3witching Machines.

Information contained herein is to be used only for training purposes.
CONTENTS Page
Section 1 Principles of Telephone Switching 2
Section 2 Early Developments in Dial Switching Systems 7
Section 3 General Comparison of Switching Systems 22
Section 4 Subscriber Station Equipment 28
Section 5 Outside Plant Equipment 35
Section 6 Central Office Distributing Frames and Cabling 39
Section 7 Central Office Power Plant 45
Section 8 The Manual Switching System 89
Section 9 The Step by Step Dial Switching System 112
Section 10 The Panel Dial Switching System 131
Section 11 The Crossbar Dial Switching Systems 160
Issued liarch, 1962Reissued July, 1964

Bibliography
Bell System Publications
Western Electric Company, Inc. Central Regional Services Engineering Personnel Development
Lesson No. 1
FUNDAMENTALS OF TELEPHONY
Section 1
Principles of Telephone Switching
CONTENTS Page
Function of a Telephone Switching System 3
Subscriber Line 3
Trunk 3
Requirements of a Telephone Switching System 4
Tandem Office 4
Toll Office 4
Telephone Switching Systems 5
Manual Switching System 5
Dial Switching Systems 5
Direct Dial Control Switching System 5
Common Control Switching System 6

PRINCIPLES OF TELEPHONE SWITCHING

Function - The function of any Telephone Switching System is to connect together temporarily the Lines of any two Subscribers so they may talk.

Subsoriber Line - A 2-wire Path between a Subset (Telephone) and the Switching Equipment in the Central Office.

Trunk - A 2-wire Path (T, R) between two Central Offices.

1) Originating Calls - Each Subscriber Line must have access through the Switching Equipment to all other Subscriber Lines terminating in that Central office, as well as to all Outgoing Trunks to other Central Offices.

Tandem Office - A Central Office used as an intermediate Switching Point for traffic between other Central Offices.
Toll Office - A Central Office for completing Calls to destinations outside the Local Service Area of the Calling Station.

Telephone Switching Systems

1) Manual
2) Dial
a) Direct Dial Control
b) Common Control

Manual Switching System

1) Subscriber Ifnes are cabled to Jacks mounted on a Switchboard.
2) Operators connect Subscriber Ifines together manually by inserting Plugs on the ends of Cords into Jacks.

Dial Switohing Systems

1) Subscriber Iines cable to electromechanical switches, instead of Jacks.
2) The Calling Subscriber operates a Dial, which transmits electrically the Called Telephone Number to the Switching Equipment in the Central Office.
3) Direct Dial Control - Switches respond directly to Dial Pulses as the Calling Subscriber dials the digits of the Called Telephone Number.

4) The Step-by-Step Dial Switching System is a Direct Dial Control System.
5) Common Control Switching Systems - The dialed digits of the Called Telephone Number are registered in the Common Control Equipment, which uses the stored information to:
6) Select an Idle Talking Path, through the Switching Frames, between the Calling and Called Subscribers.
7) Close through the Talking Path.
8) Then the Comon Control Equipment releases, to be used in setting up other Calls.

A) Dialing Channel - Between the Calling Subset and the

Originating Register - made up of:

1) Line Iink,
2) Junctor,
3) Trunk Link.
B) Originating Channel - Between the Calling Subset and) the Intraoffice Trunk- made up of:)
4) Line Iink,
5) Junctor,
6) Trunk İink.
C) Terminating Channel
7) Common Control Switching Systems:
a) Panel Dial
b) No. 1 Crossbar Dial

Between the Intraoffice Trunk - Talking Path
c) No. 5 Crossbar Dial
d) Croasbar Tandem
e) Crossbar Toll.
Western Electric Compan-- , Inc.Central Regional ServicesFor Training Purposes OnlyEngineering Personnel Development
Lesson No. 1
FUNDAMENTALS OF TELEPHONY
Section 2
Early Developments in Dial Switching Systems
CONTENTS Page
List of United States Patents Issued - 1879-1900 8
Step by Step Dial 9
Early Subscriber Dials 11
The Keith Line Switch 12
The Line Finder Switch 13
Comparison of the Keith Line Switch and the Line Finder Switch 14
The R. Callender Switching System 15
The J. W. McDonough Switching Systern 16
The Moise Freudenberg Switching System 17
The Western Electric Rotary Switching System 18

+Table 1 - List of United States Patents on Automatic Telephone Exchanges Issued During the Years 1879-1900, Inclusive.*

Humber	Date Issued	Patentee	Application Bafe	Humber	Date lssued	Patentee	$\begin{aligned} & \text { Application } \\ & \text { Dafe } \end{aligned}$
222,458	Dec. 9, 1879	Connolly \& McTighe	Sept. 10, 1879	528,591	Nov. 6, 1894	Childs, W.	May 27, 1890
223,201	Dec. 30, 1879	Westinghouse, G. Jr.	Oct. 11, 1879	530,324	Dec. 4,1894	Callendes, R.	Dec. 18, 1893
223,202	Dec. 30, 1879	Westinghouse, G. Jr.	Oct. 13, 1879	533,893	Feb. 12, 1895	Hey \& Parsons	Mar. 30,1893
224,565	Feb. 17, 1880	Westinghouse, G. Jr.	Oct. 27, 1879	535,806	Mar. 12, 1895	Nissl, F.	Feb. 17, 1894
237.222	Feb. 1, 1881	Westinghouse, G. It.	Feb. 1,1880	537,603	Apr. 16, 1895	Decker, W.	May 14,1894
249,138	Oct. 11, 1881	Buell, C. E.	June 15, 1881	538,975	May 7,1895	McDonough, J. W.	May 21, 1991
255,768	Apr. 4, 1882	Buell, C. E.	Dec. 12, 1881	540,168	May 29, 1895	Keith, Lundquist \& Erickson	Nov. 7,1894
262,645 262,646	Aug. 15, 1882	Connolly \& McTighe	Aug. 29, 1881	543,160	July 23, 1895	Shibata, W. Y.	Oct. 11, 1894
262,646	Aug. 15, 1882	Connolly, M. D.	Nov. 29, 1881	543,708	July 30, 1895	Shibata, W. Y.	Nov. 24, 1893
262,647 263,862	Aug. 15, 1882	Connolly, M. D.	Nor. 8, 1881	546,725	Sept. 24, 1895	\dagger Berditschewsky et al.	Mar. 27, 1895
263,862 269,130	Sept. Dec. 12,1882 12, 1882	Connolity, M. D. Snell, F. H.	Oct. 29, 1881	547,755	0ct. 8, 1895	Huthins, G. K.	May 6,1893
281,613	Dec. 12,1882	Snell, F. H.	Sept. 6, 1882	550,728	Dec. 3, 1895	Smith, J. G.	Feb. 18, 1893
282,791	Aug. 7, 1983	Snell, f. H.	July 7,1882	550,729	Dec. 3, 1895	Smith, J. G.	Feb. 20, 1893
283,806	Aug. 28, 1883	O'Donel, I. M.	June 5, 1880	551,391	Dec. 17, 1895	Lounstury, W. F.	Apr. 23, 1895
290,730	Dec. 25,1883	Bartelous, J. V. M.	June June 15,1882	554,125	Feb. 4, 1896	Houts, W. A.	Dec. 24, 1894
295,356	Mar. 18, 1884	Connolly, I. A.	Apr. 10, 1883	556,077	Mar. June 2, 2, d	Freudenberg, M. Dean, G. Q. \& J. Jr.	$\begin{array}{ll} \text { lan. } & 10,1896 \\ \text { Aug. } & 3,1895 \end{array}$
310,282	Jan. 6, 1885	Jackson \& Cole	Mar. 5, 1884	562,064	June 16,1896	+S. Berditschewsky	Mar. 23, 1896
335,708	Feh. 9, 1886	lockrood, I. D.	Sept. 26, 1885	570,840	Nov. 3,1896	Brooks, M.	Jan. 26, 1895
349:975	Sept. 28, 1886	Bickford, J. H.	Nov. 25, 1885	573,859	Dec. 29,1896	Callender, R .	Mar. 19, 1896
349,976	Sept. 28, 1886	Bickford, J. H.	Jan. 18, 1886	573,884	Dec. 29, 1896	Keith, A. E.	Sept. 16, 1893
367,219	July 26, 1887	McCoy, J. A.	Jan. 29, 1887	574,245	Dec. 29, 1896	Houts \& Nilson	Aug. 25, 1896
372,378 381938	Noy. 1,1887	Lockwood, T. D.	Apr. 11,1887	574,707	נ\%n. 5, 1897	Bowman, L. G.	July 18, 1896
381,938	May 1,1888	McCoy, J. A.	July 6, 1887	582,578	May 11, 1897	Clark, Ellacoit \& Sohnson	Sept. 28, 1893
408,327 435,295	Aug. $\quad 6,1889$ Aug. 26,1890	Smith, J. R.	Feb. 16, 1888	584,384.	June 15, 1897	Macklin, A. B.	Aug. 7,1896
435,295 442,734	Aug. 26, 1890 Dec. 16,1890	Ford, W. B.	Dec. 31, 1889	586,529	July 13,1897	Davis, W. W.	Sept. 5, 1896
442,734 447,918	Dec. 16, 1890 Mar. 10, 1891	Smith \& Childs Strower, A. B.	Sept. 27, 1889 Mar. 12, 1889	587,435	Aug. 3, 1897	Freudenberg, M.	Oct. 22, 1996
457,477	Aug. 11, 1891	Hayes \& Sears	Mar. Feb, 12, 3, 1889	588,511	Aug. 17, 1897	Yan Wagenen, A.	Aps. 30, 1896
486,909	Nor. 29, 1892	Strowger, A. B.	Feb. 19, 1892	589,798	Sept. 7, 1897	Strowger \& Keith	Feb. 19, 1896
498,236	May 30, 1893	Clark, E. A.	Apr. 5, 1892	591,201	Oct. 5, 1897	Strowger, Lundquist \& Erickson	July 17, 1895
498,289	May 30, 1893	McCaskey, A. S.	July 29, 1892	604,373	May 24, 1898	Deckes, 4	Aug. Marer 25, 2 18986
498,291	May 30, 1893	McCaskey, A. S.	Aug. 25, 1892	604,434	May 24, 1898	Stillwell \& Barneck	Nor. 10, 1896
499,748	June 20, 1893	McClaren, A. E.	June 13, 1892	606,764	July 5, 1898	Lundquist, F. A.	May 19, 1897
510,195	Dec. 5, 1893	Serdinko, J.	Apr. 22, 1893	611,974	Oct. 4, 1898	Nilison, L. G.	Mar. 9, 1896
511,873 511,874	$\begin{array}{ll}\text { Jan. } & 2,1894 \\ \text { Jan } & 2,1894\end{array}$	Callender, R.	Apr. 24, 1893 May 12 2	612,681	Oct. 13, 1898	Snow, H. P.	Nov: 1, 1897
511,875	Jan. 2, 1894	Callender, R.	Aug. 13, 1892	616,714	Dec. 27, 1898	Lundquist \& Erickson	Mar. 28, 1893
515,108	Feb. 20, 1894	Callender, R.	Noy. 2, 1893	624,666	May 9, 1899	Lundquist, F. A.	Sept. 28, 1897
515,109	Feb. 20, 1894	Collender, R.	Nov. 2, 1893	626,983	June 13, 1899	Decker, \%.	Aug. 3, 1896
515,110	Feb. 20, 1894	Callender, R.	Noy. 2,1893	632,759	Sept. 12, 1899	Slater, I. C.	May 23, 1898
520,246	May 22, 1894	Stmoneau, L. E.	July 11, 1893	638,249	Dec. 5, 1899	Keith \& Erickson	Dec. 16, 1895
528,590	Nov. 6, 1894	Childs, w.	May 12, 1891	639,186	Dec. 12, 1899	Seligmann-Lui, G.	May 27, 1898

[^0][^1]

During the Jesse James Era, Almon B. Strowger of Kansas City found the undertaking business rather slow. Upon investigation, he discovered the local telephone operator was his competitor's daughter; therefore he developed the Step by Step Dial Switching System so that he might enjoy a more equitable share of that business.

One day in 1889, during his spare time, Mr . Strowger sat at his desk carefully placing pins around the edge of a collar box. He had an idea that, by arranging a metal finger or wiper on a centrally located shaft and rotating it with an electromagnet, he could develop a mechanism which could complete telephone connections without human aid.

An Experimental Strwoger Switch - 1891
Mr. Strowger came to Chicago with his idea and an experimental switch. A company was formed known as the, "Strowger Automatic Telephone Exchange;" later reorganized as the Automatic Electric Company.

Switch Cylinder Talking Wires connected to Cylinder Contacts according to Telephone or Directory Numbers. 1000 Contacts 100/Horizontal Row
10 Rows, one above the other.
To call No. 315, the Calling Subscriber depressed the "Hundreds" Pushbutton (G1) three (3) times, lifting the Shaft and Wiper three (3) notches, and bringing the wiper opposite the third horizontal row of terminals. He then depressed the "Pens" Pushbuttion (H') once, which caused the "Tens" Ratchet and Pawl Assembly to step the Wiper horizontaily to Terminal or Contact No. 310. Depressing the "Units" Pushbutton (I') five (5) tirnes forced the Pawl into the 100-tooth Ratchet five (5) times, moving the Wiper to Contact No. 315. The Calling Subscriber next cranked his Magneto, applying Ringing Current to the Called Subscriber Line to signal the Called Subsoriber. After the conversation was completed, the Calling Subscriber depressed the Release Pushbutton (P^{\prime}), energizing the Release Magnets and thereby restoring the Switch Shaft and Wiper to normal.

The First Strowger
Automatic Telephone Exchange
Installed at La Porte, Indiana. Cutover November 3, 1892.

5 Inne Wires.
Pushbuttons for "Dialing" and Release.

Hand-Cranked Magneto for Ringing.

About 75 Subscribers. Flat Rubber Disc Type Switch, with Rotary movement only, and one circular Row of Terminals.

> Finger-Wheel Dial Developed by Strowger Engineers: A. E. Keith, John Erickson, Charles J. Erickson Patent $\nmid 597,062$, issued August 20, I896. Finger Slots replaced
> by Finger Holes in
> Later Subscriber Dials.

Push-Button Dialing resulted in a high percentage of dialing errors and "Wrong Numbers," which made Subscribers very unhappy and unnecessarily wore out the Equipment.

> | Western Electric Company Meets the |
| :---: |
| Competition by Developing its |
| Own Version of the Dial |

Makeup of Dial

100 Holes drilled in an Iron Ring. Any one Subscriber in the group of 100 could be selected by a single "pull" of the Dial. Dialing was done by means of a Spring-Loaded Crank.

To Dial Subscriber \#89
Insert the Peg on the end of the Chain in hole No. 89.
Puil the Dial Crank around to rest against the Peg and then release.
As the Dial Crank restores to normal, 89 pulses control the switching equipment in the Central Office to cut through to Subscriber No. 89.
A Pushbutton was furnished for Ringing the Called Station.

This type of Subsariber Dial was abandoned as the number of Telephone Subscribers inoreased over 100.

SU日SCRIBER I has placed call using line switch I and selector NO. 5. MASTER SWITCH HAS MOVED PLUNGER OF LINE SWITCH NO. 2 OPPOSITE NO. I SET OF BANK TERMINALS WHEN SUBSCRIBER 2 REMOVES handset line switch no. 2 plunges into no. 1 terminals AND CALL IS EXTȨNDED TO SELECTOR NO. I.

The Line Finder Switch, serving 200 Lines, was developed, using the standard switch mechanism (the same as used: in Selector and Connector Switches), to replace the Keith Line Switch required for each line.
1927 - Line Finder Switches first installed in Brazil, Ind.

A Sine Finder Unit, normally 20 Line Finder Switches, serves a jine Group of 200 Lines. Three (3) Units mount one above the other on a Line Finder Frame.

Below - Rear View of Line Finder Unit. Note Local Cable and Multiple to Switch Banks.

KEITH LINE SGITCH

1 Switch for Each Subscriber Line
The Keith Ifne Switch connects the Calling Subscriber Line to an Idle First Selector.

LINE FINDER SWITCH
Normally 20 Switches for a Line Group of 200 Lines (198 Subscriber \& 2 Test Iines)
The Line Finder Switch "finds" the Calling Subscriber Iine, wired to a set of Iine Bank Terminals (T, R). Switch Wipers (T, R, S) cabled to a First Selector Switch.

Selector Switches, under control of the Dial, "select" an Idle Path from the Calling Line Finder to the Called Subscriber Connector. The Connector Switch, under control of the Dial, "finds" the Called Subscriber Ifine.

Patent \#511, 874
Issued Jan. 2, 1894
Never Used Commercially
System Capacity - 10 Subscriber Lines

Operation:

1) Subscriber No. 1 wishes to Call Subscriber No. 2. He transmits two (2) impulses to the Central Office.
2) Rotary Magnet RM steps Switch Track l into alignment with inclined Runway R2.
3) Switching Magnet SWI operates to depress Gate G2. The Path is now prepared for the desired connection.
4) Release Magnet Rel operates, releasing two steel balls B and B' from Storage Track 2
5) The two steel balls B and B^{\prime} roll down Storage Track 2, out onto Switching Track 1, to Runway R2 (See No. 2), to depressed Gate G2 (See No. 3).
6) The two ball B and B, roll down Gate $G 2$ and come to rest on the contacts of Cross-Connecting Plate P2 (Note detail of Cross-Connecting Plate for G5 two pairs of contact members bridged by the two steel balls.), thereby establishing a Talking Path between the two Subscriber Lines, Nos. 1 and 2.
7) When the Subscribers finish talking, the Calling Subscriber "rings off," operating Magnet Al:
a) Tilting contact Plate P2 so that
b) The two steel balls B and B' drop onto Return Runway R3 and roll down to Elevator Belt 4.
c) Elevator Belt 4 returns the two balls B and B' to Storage Track 2, ready for establishing other connections.
8) A Storage Track is associated with each Runway R1, R2, etc., onto which the two balls may be deflected (Only Storage Track SI has been shown.) if the Called Subscriber Line is busy:
a) If Subscriber No. 1 is busy and another call originates for his line, Deflecting Gate Dl, operated by Magnet 5, will deflect the two balls released for the second call to Track Sl, where they will be held as long as Subscriber No. 1 Line is busy.
b) When Subscriber No. 1 Line becomes Idle:

1') Magnet 6 operates
2') The two balls released from Track Sl roll out onto Runway R1 to set up the second Talking Path to Subscriber No. 1 Line.

Patent \#538,975
Issued May 7, 1895
Never Used Commercially
System Capacity - 1,000 Subscribex Lines

System Makeup:

1 Central Switch "A"
10 Group Switches "B"
100 Terminating Switches "C"
Switch Makeup: 10 Pairs of Rings (horizontal) per Switch. One Ring of each pair bears a Phonographic Recording.
1 Contact Carriage per pair of Rings (10 Carriages per Switch) equipped with a Magnet, Levers, Catches and a Phonographic Transmitter. Carriage Contacts slide over outer surfaces of Rings.
1 Shaft per Switch mounted at the switch axis and rotated continuously by an electric motor.
10 Radial Arms per Switch (1 Arm per pair of Rings) to push the Carriage Assemblies around.
100 Gates or Vertical Bars (10 Groups of) (Carriage Contacts "make" 10 each) for each "A" and "B" Switch) - (with the Gates as the
10 Gates for each "C" Switch (Radial Arms push the (Carriages around.
Inter-Switch Wiring:
10 Gates of each "A" Switch Group (Total 100 Gates) wired to 10 pairs of Rings on each of the 10 " B^{\prime} Switches.
10 Gates of each "B" Switch Group (10 Groups per "B" Switch, 10 "B" Switches, Total 1,000 Gates) wired to the 10 pairs of Rings on a "C" Switch (Total $100{ }^{\prime \prime} \mathrm{C}^{\prime}$ Switches.).
10 Gates of each "C" Switch wired to 10 Subscriber Lines (Total 1,000 Subscriber Lines).

Operation:

A) Phonographic announcements inform the Calling Subscriber as to the progress of his call. This arrangement corresponds to the Revertive Pulsing used in the Panel and No. 1 Crossbar Dial Systems.
B) Subscriber No. 103 Calls Subscriber No. 549a

1) Subscriber No. 103 removes his Handset and listens to the signals, "101, 102, etc."
2) When the Calling Subscriber hears his own number, "103," he depresses a Pushbutton which stops the Carriage of his "C" Switch, connecting his Line to a pair of Rings on Switch "Bl."
3) As the "Bl" Switch Carriages rotate, signals " $10,11,12$, etc.," are transmitted.
4) Upon hearing "10," the Calling Subscriber again depresses his Pushbutton, stopping the "Bl" Switch Carriages, and connecting his Line to an "A" Switch Gate (Vertical).
5) As the "A" Switch operates, the Subscriber hears the numbers of the Gates past which the Carriages move. Upon hearing " 5 ," he depresses his Pushbutton, stopping Switch "A" Carriages, and cutting his Line through to a "B5" Switch Gate.
6) As Switch "B5" operates, the Calling Subscriber hears, " $50,51,52,53$, etc.," and upon hearing "54," he again depresses his Pushbutton, causing the "B5" Switch Carriages to stop and cut through to a "C54" Switch Gate.
7) As Switch "C54" operates, the Subscriber hears, " $540,541,542,543$, etc." When he hears "549," he depresses his Pushbutton once more, stopping Switch "C54" and cutting through to the Called Subscriber Line wired to "C54" Switch Gate No. 549.

THE MOISE FREUDENBERG SWITCHING SYSTEM
 Patent \#556,007
 Issued March 10, 1896
 Never Used Comnercially
 System Capacity - 200 Subscriber Line

A) General System Features: The Central Office Equipment of this system resembles a large railroad terminal freight yard. The cars required to switch the calls would be about the size of those for a 0-gauge tinplate toy electric train.

1) A metal Car or Wagon (A1, A2, A3, etc.), operating on an insulated metal Track, is required for each Subscriber Line.
2) Beneath the Tracks ($\mathrm{Cl}, \mathrm{C} 2$, etc.), and at right angles to them, is a number of metal Beams (B1, B2, B3, etc.).
3) Each Beam (B1, B2, B3, etc.) is wired to the movable Contact Member (D1, D2, D3, etc.) of an "X-Y" Coordinate Plate Switch (P1, P2, etc.).
4) Corresponding stationary Terminals of each Plate Switch are multipled together. A Subscriber Line is wired to each Multiple.
5) Each Plate Switch has an F1 ("X") Carriage driven horizontally along a Track, plus a second El ("Y") Carriage, moving at right angles to the first.
6) Contact Member D1 of Plate Switch P1 (also D2, D3, etc. of other Plate Switches) is supported by the El Carriage.
7) Links and Magnets M1 (horizontal or "X" drive) and N1 (vertical or "ry" drive) drive Dl over the entire Contact Field of Pl Plate Switch. A visible Register at the Calling Substation records the progress of the D1 Contact Member over the coordinate Contact Field.
B) Operation: Subscriber No. 3 Calls Subscriber No. 22:
8) Car or Wagon A3 is released electrically by the Calling Subscriber, No. 3, to hunt for an Idie B Beam.
9) A Projection X3 on the undexside of Wagon A3 hits the first Idle B Beam (BI in the diagram), and makes an electrical connection with it, swinging the Bl Beam downward, out of reach of any other Subscriber Wagon.
10) Plate Switch Pl is now connected to the Calling Subscriber, No. 3.
11) This initiates the operation of Plate Switch Pl. Magnets M1 and N1 sweep the movable Contact Member Dl horizontally and vertically over the Contact Field.
12) The number of each Terminal (" $1,2,3,4,5$, etc.") over which the D1 movable Contact Member sweeps is recorded on the Calling Substation Register R3.
13) As soon as the desired Subscriber Number, "22," appears on Register R3, the Calling Subscriber releases a Pushbutton, which stops the Dl movable Contact Member on Terminal No. 22 of Plate Switch Pl.
14) The Talking Circuit set up extends from Ground, through Subset No. 3, Wires 1 and 2, Track C3, Projection X3, Beam B1, Wire 3, Contact Member Dl, Terminal No. 22 Plate Switch Pl, Wire 4, through Subset No. 22 to Ground.

THE WESTERN ELECTR IC ROTARY SWITCHING SYSTEM Developed About 1905
Dial Pulses Control Selections Indirectly Used Only In Europe
System Capacity - 10,000 Subscriber Lines

A) Rotary Switching System Features:

1) Power-Driven Equipment - Horizontal and Vertical Driveshafts provide power for operating the Switches - A $2 \mathrm{H} . \mathrm{P}$. Electric Motor is required for a 10,000-Line installation.
2) Switches have Rotary Motion only.
3) Switch Banks (To which Lines or Trunks are cabled) - Semi~Circular in shape -200 Sets of Terminals, 20 Sets per Level, 10 Levels.
4) 10 Sets of Brushes per Switch - Only l-Set "tripped" to "wipe" over the Terminals of l-Level.
5) Selections controlled by Register Switches, positioned by pulses received from the Subscriber Dial. As the Selector or Final Brushes "wipe" over one Terminal after another, a Pulse is sent back (Revertive Pulsing) to the Register Switch for each Terminal contacted. When the Register Switch reaches normal, the Circuit is opened and the Brushes stop on the last set of Terminals.
6) Switches Used:
a) Line Switch - "Finds" the Calling Subscriber Lina。
b) Selector Switch - Finds an Idle Trunk, under control of the Register Switch, from the Line Switch to the Final Switch serving the Called Subscriber Line.
c) Final Switch - Under control of the Register Switch, finds the Called Subscriber Line.
d) Register Switch

1') Stores the Digits dialed by the Calling Subscriber.
2") "Translates" or Converts the Dial Pulses received on a Decimal Basis (1-out-of-10) to a series of Pulses necessary to make Selections on the basis of 1 out of 20 (20 Sets of Terminals per Level).
3') Controls the operation of the Selector and Final Switches on a "Revertive Pulsing" basis.

Register Switch

1) Registers Dialed Digits.
2) Controls Selector \& Final Switch

The Register controls Selector and Final Switch operation (On a Revertive Pulse basis) as it restores to normalg after being advanced by Dial Pulses to the position representing the Digit Dialed.

As the Sequence Switch rotates only in one direction, it always opens and closes the circuits wired to its contacts in the same order or "sequence."

Lesson No. 1

FUNDAMENTALS OF TELEPHONY

Section 3

General Comparison of Switching Systems

CONTENTS
 Page

Subscriber Lines Cable to: 23
A Connection is Made in Manual, Step by Step, Panel and Crossbar: 24
Method of Making a Connection in Manual, Step by Step, Panel and Crossbar:

GENERAL COMPAR ISON OF SWITCHING SYSTEMS

A) Subscriber Lines Cable to:

2) A SET OF SWITCH BANK TERMINALS in the STEP BY STEP Dial System

3) A SET OF MULTIPLE BANK STRIPS in the PANEL Dial System

4) A CROSSBAR SWITCH VERT ICAL in a CROSSBAR Dial System

B) A CONNECTION is MADE in a:

1) MANUAL System - By a PLUG on the end of a CCRD.

2) STEP BY STEP Dial System - By the SWITCH WIPERS.

3) PANEL Dial System - By the MULTIPLE BRUSH SHOES.

4) CROSSBAR Dial System - By CROSSPOINI Closures.

C) Method of MAKING A CONNECTION in a:
5) MANUAL System - The Operator picks up an Idle Cord and inserts the Plug of that Cord into a Jack.

6) STEP BY STEP Dial System - The Operatox's Hand and Arm Movements (1') are replaced by a Stepping Magnet (2^{\prime}) thrusting a Pawl (3^{\prime})

C) Method of MAKING A CONNECTION in a:
7) PANEL Dial System:
A^{\prime}) The Common Control Equipment ($1^{\prime \prime \prime}$), which replaces the Manual Operator:
1") Registers the Digits Dialed, and
2^{\prime}) Sets Up the Connection ($2^{\prime \prime}$) to the Called Subscriber Line.

B') The Operator's Hand and Arm Movements are replaced by:
$\left.1^{\prime}\right)$ An Electrically-Operated Clutch ($3^{\prime \prime}$), which
2^{\prime}) Forces a Rack ($4^{\prime \prime}$) against a Rotating Cork Roll ($5^{\prime \prime}$).
$\left.3^{\circ}\right)$ Friction drives the Multiple Brush Rod (6") Vertically.
4") The Shoes (7") of a "Tripped" Multiple Brush (8") "wipo" over Multiple Bank Terminals (9").
5^{1}) The Clutch is released by the Comnon Control Equipment when the Multiple Brush Shoes make contact with the desired Set of Multiple Bank Terminals.
$6^{\prime \prime}$) A Pawl (10') dxops into a Rack Slot (11") to hold the Multiple Brush Rod in position.
71) The Multiple Brush Shoes in contact with the Multiple Bank Terminals correspond to the plug inserted in a Jack of the Manual System.

C) Method of MAKING A CONNEGIION in a:
4) CROSSBAR Dial System (Method of Switching a No. I Crossbar Call shown below.):
$\left.A^{\prime}\right)$ SWITCHING FRAMES, on which the Ialking Path is built up, replace the Manual SWITCHBOARDS.
B') COMMON CONTROL FRAMES, which replace the Manual OPERATORS:
1') Register the Digits Dialed.
2°) Set up a Ialking Path (1") to the Called Subscriber Line. Only Line Link and District Link
C') In Handling a Call, the COMMON CONIROL EQUIPMENT:
1') Selects an Idle combination of Paths through the various Switching Frames. $a^{\prime \prime}$ A Path between two Crossbar Switches on the same Frame is a IINK ($2^{\prime \prime \prime}$).
bi) A Path between two Crossbar Switches on different Frames is a JUNCTOR ($3^{\prime \prime}$)。
2') Closes the necessary Crossbar Switch CROSSPOINTS (4") on the various Switchine Frames to cut through a Talking Path between the Calling and Called Subscribers.

Western Electric Company, Inc. Central Reginnal sorvices

Lesson No. 1

FUNDAMENTALS OF TELEPHONY

Section 4

Subscriber Station Equipment
CONTENTS Page
Substation 29
Substation Equipment 29
Subset 29
Substation Protector 34

SUBSCRIBER STATION EQUIPMENI

Subscriber Station or "Substation" o A Subset (Subscriber Set) installed
and in service for telephone conmunio
cation

1) SUBSET

500-TYPE SUBSET
 Front View

1) SUBSET

1) SUBSET

1) SUBSET

1) SUBSET - COMPONENTS

("A," "D2," "F3," etc., refer to Photo and Schematic on preceding pages.)
A) Switchhook - 1) Turns ON the Subset when the Subscriber removes the Handset from the Cradle.
2) Turns OFF the Subset when the Subscriber replaces Handset in the Cradle.
B) Subscriber Dial - Opens ("breaks") and closes ("makes") the Subscriber
 Loop (Line) to the Central Office 10 or more times per second to direct the Switching Equipment in setting up a Call. An apparatus blank mounts in place of the Subscriber Dial for Manual Service.
C) Ringer - Operated by $20-C y c l e$ A-C Ringing Current from the Central Office Ringing Machine to signal the Called Subscriber.
D) Network - Made up of:

D1) Induction Coil - A Telephone Transformer to strengthen the voice currents.

D2) Sidetone Balance Coil - Maintains a constant balance (flat response) over the voice-frequency range. Sidetone - The reproduction by the Receiver of voice sounds and room noises actuating the Transmitter of the same Subset.
D3) Capacitors - A Capacitor is a device (two conductors \perp separated by a Dielectric or insulator) which blocks d.c. (such as Talking Battery Supply), but transmits a.c. (20-Cycle Ringing Current).

D4) Resistors - A Resistor is a device for controlling the rate of - current flow in a circuit

D5) Filter - A 50-Ohm Resistor in series with a 0.1 mf . Capacitor and M- the Induction Coil Windings to suppress radio receiver irterference resulting from "breaks" and "makes" of the Dialing Contacts.
E) Handset - Includes the Transmitter and Receiver Units:
 pressure variations) of sound waves into electrical energy (varying electrical current - Talking Current.).
E2) Receiver - A device which converts electrical energy into the mechanical energy of reproduced sound waves.
F) Equalizer - A device for controlling reproduced voice volume or level, with variations in Subscriber Loop length, and with different Talking Battery Supplies.
F1) Ballast Lamp - A Current Regulator with a tungsten Filament, connected in series with the Transmitter Unit. The Filament resistance increases rapidly as temperature rises, to maintain a constant current.
F2) A Thermistor - A temperature-sensitive Resistor bridged around (shunting) the Receiver Unit, and connected in series with a losslimiting Resistor. The Thermistor is heated by the Ballast Lamp Filament to introduce loss automatically, thereby avoiding excessive voice level on short Subscriber Loops.
F3) A Varistor - A variable Resistor (Resistance decreases as impressed Voltage increases), shunting the Ballast Filament to limit current flow through it.

2) SUBSTATION PROTECTOR

The Substation Protector is made up of:
a) Protector Block Assembly (Lightning Arresters) - One per Subscriber Line Wire - Operated by high-voltage on Subscriber Line.
b) Fuse - 7-Ampere Cartridge Type; Lead Alloy Spacers on 111A - One per Subscriber Line Wire - Operated by excess current flow through the Subscriber Line.

98A SUBSTATION PROTECTCR

106A SUBSTATION PROTECTOR

Lesson No. 1

FUNDAMENTALS OF TELEPHONY

Section 5

Outside Plant Equipment
Outside Plant Equipment Required Between the Central Office and
a Substation 36
Exchange Cable 37
Central Office Cable Vault, Conduit, Typical Manhole 38

Outside Plant Equipment Required between the Central Office and a Substation

OUTSIDE PLANT EQUIPMENT

MDF - Main Distributing

(and $\frac{\text { Vertical }}{\text { Columns of }}$

Tile Conduit
Concrete Conduit also used.

Typical Manhole
($6^{\prime} \times 4^{\prime}$ Wide $\times 5^{\prime} \mathrm{High}$)

Flameproof Insulated Cables extend Lines and Trunks to Main Distributinc Frame -

Pothead Splices
Method of Laying Conduit End of Underground Cable

Rubber Duct Plugs Used in Manholes and Cable Vault to Seal Out Water and Gas.

Pothead Splice

Cable
vault in Basement

Cable Pins support
Cables
Western Electric Company, Inc. Central ilegional Services For Training Purposes Only Engineering Personnel Development

Lesson No. 1

FUNDAMENTALS OF TELEPHONY

Section 6

Central Office Distributing Frames and Cabling

CONTENTS
 Page

Photograph of Central Office Distributing Frames 40
VMDF Equipment 41
Schematic of Line Circuit 42
Other Distributing Frame Equipment 43
Central Office Cabling - Manual and Panel Dial Systems 44

VMDF EQUIPMENT CSOA: CENTRAL OFFICE PROTECTOR

Protector Blocks and Heat Colls

Cross-Section of a Protector Block

All of the above Terminal Strips are assembled by hand.
Newer Type Terminal Strips have the Punchings cast in a Resin Compound block, which is attached to a Wood Fanning Strip by means of self-tapping screws.
Many new Terminal Strips are arranged for Gun-Wrap Wiring

Distributing Rings
Mount on Verticals of Distributing Frames. The Rings are finished with a viterous enamel

[^0]: *Excludes village, house and factory systems. \{ Called "Apostoloff." Note:-No automatic telephone exchange patents were issued during the year 1900.

[^1]: + Taken from the Bell Laboratories Record January, 1953.

