Western Electric Company, Inc. Central Regional Services Technical Training Section

For Training Purposes Only

#### Lesson No. 1

#### FUNDAMENTALS OF TELEPHONY

This Lesson covers the basic theory of the Telephone and Telephone Switching, together with the general features of the various Switching Systems. Comparisons are drawn between the various Dial Systems and the Manual Switching System to assist in understanding the various Switching Machines.

Information contained herein is to be used only for training purposes.

|            | CONTENTS                                       | Page            |
|------------|------------------------------------------------|-----------------|
| Section 1  | Principles of Telephone Switching              | 2               |
| Section 2  | Early Developments in Dial Switching Systems   | 7adu2           |
| Section 3  | General Comparison of Switching Systems        | 22 <b>000</b> 1 |
| Section 4  | Subscriber Station Equipment                   | 28              |
| Section 5  | Outside Plant Equipment                        | 35              |
| Section 6  | Central Office Distributing Frames and Cabling | 39.101          |
| Section 7  | Central Office Power Plant                     | 45.101          |
| Section 8  | The Manual Switching System                    | 89. maM         |
| Section 9  | The Step by Step Dial Switching System         | 112[6]0         |
| Section 10 | The Panel Dial Switching System                | 1310110         |
| Section 11 | The Crossbar Dial Switching Systems            | 160             |

Issued March, 1962 Reissued July, 1964

### Bibliography

Bell System Publications

- 1 -

Western Electric Company, Inc. Central Regional Services Engineering Personnel Development

For Training Purposes Only

# Lesson No. 1

# FUNDAMENTALS OF TELEPHONY

# Section 1

# Principles of Telephone Switching

| CONTENTS                                     | Page |
|----------------------------------------------|------|
| Function of a Telephone Switching System     | 3    |
| Subscriber Line                              | 3    |
| Trunk                                        | 3    |
| Requirements of a Telephone Switching System | 4    |
| Tandem Office                                | 4    |
| Toll Office                                  | 4    |
| Telephone Switching Systems                  | 5    |
| Manual Switching System                      | 5    |
| Dial Switching Systems                       | 5    |
| Direct Dial Control Switching System         | 5    |
| Common Control Switching System              | 6    |

#### PRINCIPLES OF TELEPHONE SWITCHING

<u>Function</u> - The function of any Telephone Switching System is to connect together temporarily the Lines of any two Subscribers so they may talk.



<u>Subscriber Line</u> - A 2-wire <u>Path</u> between a <u>Subset</u> (Telephone) and the <u>Switching Equipment</u> in the Central Office.







### Requirements of a Telephone Switching System

1) <u>Originating Calls</u> - <u>Each Subscriber Line</u> must have <u>access</u> through the Switching Equipment to all other <u>Subscriber Lines</u> terminating in that Central Office, as well as to <u>all Outgoing Trunks</u> to other Central <u>Offices</u>.



<u>Toll Office</u> - A Central Office for completing Calls to destinations outside the Local Service Area of the Calling Station. Telephone Switching Systems

- 1) Manual
  - 2) Dial
    - a) Direct Dial Control
    - b) Common Control

### Manual Switching System

- 1) Subscriber Lines are cabled to Jacks mounted on a Switchboard.
- 2) Operators connect Subscriber Lines together <u>manually</u> by inserting <u>Plugs</u> on the ends of Cords into Jacks.



### Dial Switching Systems

- 1) Subscriber Lines cable to electro-mechanical switches, instead of Jacks.
- 2) The Calling Subscriber operates a <u>Dial</u>, which <u>transmits electrically</u> the <u>Called Telephone Number</u> to the Switching Equipment in the Central Office.
- 3) <u>Direct Dial Control</u> Switches respond <u>directly</u> to <u>Dial Pulses</u> as the Calling Subscriber dials the digits of the Called Telephone Number.



4) The Step-by-Step Dial Switching System is a Direct Dial Control System.

- 5) <u>Common Control Switching Systems</u> The <u>dialed digits</u> of the Called Telephone Number are <u>registered</u> in the <u>Common Control Equipment</u>, which uses the <u>stored information</u> to:
  - 1) <u>Select an Idle Talking Path</u>, through the <u>Switching Frames</u>, between the Calling and Called Subscribers.
  - 2) Close through the Talking Path.
  - 3) Then the Common Control Equipment <u>releases</u>, to be used in setting up other Calls.



Western Electric Company, Inc. Central Regional Services Engineering Personnel Development

For Training Purposes Only

### Lesson No. 1

# FUNDAMENTALS OF TELEPHONY

# Section 2

Early Developments in Dial Switching Systems

| CONTENTS                                                       | Page |
|----------------------------------------------------------------|------|
| List of United States Patents Issued - 1879-1900               | 8    |
| Step by Step Dial                                              | 9    |
| Early Subscriber Dials                                         | 11   |
| The Keith Line Switch                                          | 12   |
| The Line Finder Switch                                         | 13   |
| Comparison of the Keith Line Switch and the Line Finder Switch | 14   |
| The R. Callender Switching System                              | 15   |
| The J. W. McDonough Switching System                           | 16   |
| The Moise Freudenberg Switching System                         | 17   |
| The Western Electric Rotary Switching System                   | 18   |

# +Table 1 — List of United States Patents on Automatic Telephone Exchanges Issued During the Years 1879-1900, Inclusive.\*

| Humber          | Date Issued            | Patentee             | Application    | N. 1               |                 |                                                   | Application    |
|-----------------|------------------------|----------------------|----------------|--------------------|-----------------|---------------------------------------------------|----------------|
| 222 450         | 0.00 0 1070            | Concello & M. Y. I   | pare           | Number             | Date Issued     | Patentee                                          | Date           |
| 222,400         | Dec. 7, 1877           | Connolly & Mclighe   | Sept. 10, 1079 | 528,591            | Nov. 6,1894     | Childs, W.                                        | May 27,1890    |
| 223,201         | Dec. 30, 1879          | westinghouse, G. Jr. | Oct. 11, 1879  | 530,324            | Dec. 4, 1894    | Callender, R.                                     | Dec. 18, 1893  |
| 223,202         | Dec. 30, 1879          | Westinghouse, G. Jr. | Oct. 13, 1879  | 533, <b>893</b>    | Feb. 12,1895    | Hey & Parsons                                     | Mar. 30, 1893  |
| 424,000         | reb. 17, 1880          | Westinghouse, G. Jr. | Oct. 27, 1879  | 535,806            | Mar. 12, 1895   | Nissl, F.                                         | Feb. 17,1894   |
| 231,222         | reb. 1,1881            | Westinghouse, G. Jr. | Feb. 7, 1880   | 537,603            | Apr. 16,1895    | Decker, W.                                        | May 14, 1894   |
| 248,138         | Ucf. 11, 1881          | Buell, C. E.         | June 15, 1881  | 538,975            | May 7, 1895     | McDonough, J. W.                                  | May 21, 1891   |
| 200,/00         | Apr. 4,1882            | Buell,C. E.          | Dec. 12, 1881  | 540,168            | May 28, 1895    | Keith, Lundquist & Erickson                       | Nov. 7, 1894   |
| 202,040         | Aug. 15, 1882          | Connolly & McTighe   | Aug. 29,1881   | 543,160            | July 23, 1895   | Shibata, W. Y.                                    | Oct. 11, 1894  |
| 202,640         | Aug. 15,1882           | Connolly, M. D.      | Nov. 29, 1881  | 543,708            | July 30, 1895   | Shibata, W. Y.                                    | Nov. 24, 1893  |
| 202,647         | Aug. 15,1882           | Connolly, M. D.      | Nov. 8,1881    | 546,725            | Sept. 24, 1895  | tBerditschewsky et al.                            | Mar. 27, 1895  |
| 263,862         | Sept. 5, 1882          | Connolly, M. D.      | Oct. 29, 1881  | 547,755            | Oct. 8, 1895    | Hutchins, G. K.                                   | May 6, 1893    |
| 269,130         | Dec. 12, 1882          | Snell, F. H.         | Sept. 6, 1882  | 550.728            | Dec. 3, 1895    | Smith, J. G.                                      | Feb. 18, 1893  |
| 281,613         | July 17, 1883          | Cardwell, G. A.      | July 7, 1882   | 550,729            | Dec. 3, 1895    | Smith, J. G.                                      | Feb. 20, 1893  |
| 282,791         | Aug. 7,1883            | Snell, F. H.         | feb. 28,1883   | 551,391            | Dec. 17, 1895   | Lounsbury, W. F.                                  | Apr. 23 1895   |
| 283,806         | Aug. 28,1883           | O'Donel, I. M.       | June 5,1880    | 554,125            | Feh. 4, 1896    | Houts, W. A.                                      | Dec 24 1894    |
| 290,730         | Dec. 25, 1883          | Bastelous, J. V. M.  | June 15, 1882  | 556.007            | Mar. 10, 1896   | Freudenberg, M.                                   | lan 10 1896    |
| 295,356         | Mar, 18,1884           | Connolly, T. A.      | Apr. 10,1883   | 561.377            | lupe 2, 1896    | Dean, G. O. & I. Ir.                              | Aun 3 1895     |
| 310,282         | Jan. 6, 1885           | Jackson & Cole       | Mar. 5,1884    | 562.064            | June 16, 1896   | tS. Berditschewsky                                | Mar. 23, 1896  |
| 335,708         | Feb. 9,1886            | Łockwood, T. D.      | Sept. 26, 1885 | 570,840            | Nov. 3, 1896    | Brooks, M                                         | lan 26 1895    |
| 349;975         | Sept. 28, 18 <b>86</b> | Bickford, J. H.      | Nov. 25, 1885  | 573,859            | Dec. 29, 1896   | Callender, R                                      | Mar 19 1896    |
| 349,976         | Sept. 28, 188 <b>6</b> | Bickford, J. H.      | Jan. 18, 1886  | 573.884            | Dec. 29, 1896   | Keith & E                                         | Sent 16 1893   |
| 367,219         | July 26, 1887          | McCoy, J. A.         | Jan. 29, 1887  | 574.245            | Dec. 29, 1896   | Houts & Nilson                                    | Aug 25 1896    |
| 372,378         | Nov. 1, 1887           | Lockwood, T. D.      | Apr. 11, 1887  | 574.707            | Jan 5, 1897     | Bowman I G                                        | huly 18 1896   |
| 381,938         | May 1,1888             | McCoy, J. A.         | July 6,1887    | 582 578            | May 11 1897     | Clark Ellacott & Johnson                          | Sent 28 1893   |
| 408,327         | Aug. 6,1889            | Smith, J. R.         | Feb. 16,1888   | 584 384            | lune 15 1897    | Macklin & B                                       | λun 7 1996     |
| 435,295         | Aug. 26,1890           | Ford, W. H.          | Dec. 31, 1889  | 596 520            | July 13 1897    | Davie W W                                         | Sont 5 1906    |
| 442,734         | Dec. 16, 1890          | Smith & Childs       | Sept. 27, 1889 | 597 425            | λμη 3 1907      | Fraudanhard M                                     | 0.+ 22 1004    |
| 447,918         | Mar. 10,1891           | Strowger, A. B.      | Mar. 12, 1889  | 599 511            | Aug. 5, 1077    | Van Waganan I                                     | dn= 20 1006    |
| 457 <b>,477</b> | Aug. 11, 1891          | Hayes & Sears        | Feb. 3, 1891   | 500,311<br>KgQ 70A | Cont 7 1007     | Strowger & Kotth                                  | Aps. 30, 1070  |
| 486,90 <b>9</b> | Nov. 29, 1892          | Strowger, A. B.      | Feb. 19, 1892  | 501 201            | Δεέ Γ, 1077     | Strowger a Kella<br>Strowger Lundaulat & Erickeen | 100. 17, 1070  |
| 498,236         | May 30, 1893           | Clark, E. A.         | Apr. 5, 1892   | 507 040            | $1_{1}$ 11 1000 | Kotth & Estakoon                                  | July 17, 1090  |
| 498,2 <b>89</b> | May 30, 1893           | McCaskey, A. S.      | July 29, 1892  | 201 279            | Man 2/ 1000     |                                                   | AUY. 20, 1870  |
| 498,291         | May 30,1893            | McCaskey, A. S.      | Aug. 25, 1892  | 616, PUO           | May 24, 1070    | Decker, W.                                        | Mar. 20, 1870  |
| 499,748         | June 20, 1893          | McClaren, A. E.      | June 13, 1892  | 004,434            | 144 C 1000      |                                                   | NOY. (U, 1896  |
| 510,1 <b>95</b> | Dec. 5,1893            | Serdinko, J.         | Apr. 22, 1893  | 000,/04            | July 3, 1878    | LUROQUIST, F. A.                                  | May 19, 1897   |
| 511,873         | Jan. 2, 1894           | Callender, R.        | Apr. 24, 1893  | 611,974            | 067. 4, 1898    | Nilson, L. G.                                     | Mar. 9,1896    |
| 511,874         | Jan. 2, 1894           | Callender, R.        | May 12, 1893   | 612,681            | Oct. 13, 1898   | Sлоw, H. P.                                       | Nov. 1,1897    |
| 511,875         | Jan. 2, 1894           | Callender, R.        | Aug. 13, 1892  | 616,714            | Dec. 27,1898    | Lundquist & Erickson                              | Mar. 28, 1893  |
| 515,108         | Feb. 20. 1894          | Callender, R.        | Noy. 2. 1893   | 624,666            | May 9,1899      | Lundquist, F. A.                                  | Sept. 20, 1897 |
| 515,109         | Feb. 20. 1894          | Callender, R.        | Nov. 2. 1893   | 626,983            | June 13,1899    | Decker, W.                                        | Áug. 3,1896    |
| 515,110         | Feb. 20, 1894          | Callender, R.        | Nov. 2, 1893   | 632,759            | Sept. 12, 1899  | Slater, J. C.                                     | May 23, 1898   |
| 520.246         | May 22. 1894           | Simoneau, L. E.      | July 11, 1893  | 638,249            | Dec. 5. 1899    | Keith & Erickson                                  | Dec. 16. 1895  |
| 528,590         | Nov. 6, 1894           | Childs, W.           | May 12, 1891   | 639,186            | Dec. 12, 1899   | Seligmann-Lui, G.                                 | May 27, 1898   |
|                 |                        |                      | ,              |                    |                 |                                                   |                |

\* Excludes village, house and factory systems. † Called "Apostoloff." Note:-No automatic telephone exchange patents were issued during the year 1900.

+ Taken from the Bell Laboratories Record January, 1953.

#### THE FIRST PRACTICAL AUTOMATIC TELEPHONE SWITCHING SYSTEM

#### STEP BY STEP DIAL



During the Jesse James Era, Almon B. Strowger of Kansas City found the undertaking business rather slow. Upon investigation, he discovered the local telephone operator was his competitor's daughter; therefore he developed the Step by Step Dial Switching System so that he might enjoy a more equitable share of that business.

One day in 1889, during his spare time, Mr. Strowger sat at his desk carefully placing pins around the edge of a collar box. He had an idea that, by arranging a metal finger or wiper on a centrally

located shaft and rotating it with an electromagnet, he could develop a mechanism which could complete telephone connections without human aid.



An Experimental Strwoger Switch - 1891

Mr. Strowger came to Chicago with his idea and an experimental switch. A company was formed known as the, "Strowger Automatic Telephone Exchange;" later reorganized as the Automatic Electric Company.



To call No. 315, the Calling Subscriber depressed the "Hundreds" Pushbutton (G!) three (3) times, lifting the Shaft and Wiper three (3) notches, and bringing the Wiper opposite the third horizontal row of terminals. He then depressed the "Tens" Pushbutton (H<sup>1</sup>) once, which caused the "Tens" Ratchet and Pawl Assembly to step the Wiper horizontally to Terminal or Contact No. 310. Depressing the "Units" Pushbutton (I') five (5) times forced the Pawl into the 100-tooth Ratchet five (5) times, moving the Wiper to Contact No. 315. The Calling Subscriber next cranked his Magneto, applying Ringing Current to the Called Subscriber Line to signal the Called Subscriber. After the conversation was completed, the Calling Subscriber depressed the Release Pushbutton (P<sup>1</sup>), energizing the Release Magnets and thereby restoring the Switch Shaft and Wiper to normal.

### The First Strowger Automatic Telephone Exchange

Installed at La Porte, Indiana. Cutover November 3, 1892.

5 Line Wires. Pushbuttons for "Dialing" and Release. Hand-Cranked Magneto for Ringing. About 75 Subscribers. Flat Rubber Disc Type Switch, with <u>Rotary movement only</u>, and one circular Row of Terminals.



### The "Finger-Wheel" Dial Replaces the "Pushbuttons"



Finger-Wheel Dial Developed by Strowger Engineers: A. E. Keith, John Erickson, Charles J. Erickson Patent #597,062, issued August 20, 1896. Finger Slots replaced by Finger Holes in Later Subscriber Dials.

Push-Button Dialing resulted in a high percentage of dialing errors and "Wrong Numbers," which made Subscribers very unhappy and unnecessarily wore out the Equipment.

----

Western Electric Company Meets the Competition by Developing its Own Version of the Dial

#### Makeup of Dial

100 Holes drilled in an Iron Ring. Any one Subscriber in the group of 100 could be selected by a single "pull" of the Dial. Dialing was done by means of a Spring-Loaded Crank.

#### To Dial Subscriber #89

Insert the Peg on the end of the Chain in hole No. 89.

- Pull the Dial Crank around to rest against the Peg and then release.
- As the Dial Crank restores to normal, 89 pulses control the switching equipment in the Central Office to cut through to Subscriber No. 89.
- A Pushbutton was furnished for Ringing the Called Station.



This type of Subscriber Dial was abandoned as the number of Telephone Subscribers increased over 100.



\* RELEASE

VERTICAL MAGNET

PLUG

ROTARY MAGNET

SLEEVE BANK

UPPER - LINE BANK

LOWER - LINE BANK

3

-

STAND

TEST JACK

- CARD HOLDER -COMMUTATOR

WIPER CORDS

The Line Finder Switch, serving 200 Lines, was developed, using the standard switch mechanism (the same as used in Selector and Connector Switches), to replace the Keith Line Switch required for each Line.

1927 - Line Finder Switches first installed in Brazil. Ind. RELAYS

SWITCH FRAME SHAFT RELAY MOUNTING LOWER COVER WIPER PLATE COLLAR

A Line Finder Unit, normally 20 Line Finder Switches, serves a Line Group of 200 Lines. Three (3) Units mount one above the other on a Line Finder Frame.



Below - Rear View of Line Finder Unit. Note Local Cable and Multiple to Switch Banks.



BANK ROD



1 44 t

### THE R. CALLENDER SWITCHING SYSTEM



### Operation:

- 1) Subscriber No. 1 wishes to Call Subscriber No. 2. He transmits two (2) impulses to the Central Office.
- <u>Rotary Magnet RM</u> steps <u>Switch Track 1</u> into alignment with <u>inclined Runway</u> <u>R2</u>.
- 3) <u>Switching Magnet SW1</u> operates to depress Gate G2. The Path is now prepared for the desired connection.
- 4) <u>Release Magnet Rel</u> operates, releasing <u>two steel balls B and B</u> from <u>Storage Track 2</u>
- 5) The two steel balls <u>B and B'</u> roll down <u>Storage Track 2</u>, out onto <u>Switching</u> <u>Track 1</u>, to <u>Runway R2</u> (See No. 2), to depressed Gate G2 (See No. 3).
- 6) The two balls <u>B and B</u> roll down <u>Gate G2</u> and come to rest on the contacts of <u>Cross-Connecting Plate P2</u> (Note detail of Cross-Connecting Plate for G5 two pairs of contact members bridged by the two steel balls.), thereby establishing a Talking Path between the two Subscriber Lines. Nos. 1 and 2.
- 7) When the Subscribers finish talking, the Calling Subscriber "rings off," operating <u>Magnet Al</u>:
  - a) Tilting Contact Plate P2 so that
  - b) The two steel balls <u>B</u> and <u>B</u><sup>\*</sup> drop onto <u>Return Runway R3</u> and roll down to <u>Elevator Belt 4</u>.
  - c) <u>Elevator Belt 4 returns the two balls B and B'</u> to <u>Storage Track 2</u>, ready for establishing other connections.
- 8) A <u>Storage Track</u> is associated with <u>each Runway R1, R2</u>, etc., onto which the two balls may be deflected (Only Storage Track S1 has been shown.) if the Called Subscriber Line is busy:
  - a) If Subscriber No. 1 is busy and another call originates for his line, <u>Deflecting Gate D1</u>, operated by <u>Magnet 5</u>, will deflect the two balls released for the second call to <u>Track S1</u>, where they will be held as long as Subscriber No. 1 Line is busy.
  - b) When Subscriber No. 1 Line becomes Idle:
    - 1\*) Magnet 6 operates
    - 2') The two balls released from <u>Track S1</u> roll out onto <u>Runway R1</u> to set up the <u>second Talking Path</u> to Subscriber No. 1 Line.



10 Gates of each "C" Switch wired to 10 Subscriber Lines (Total 1,000 Subscriber Lines).

### Operation:

- A) Phonographic announcements inform the Calling Subscriber as to the progress of his call. This arrangement corresponds to the <u>Revertive Pulsing</u> used in the <u>Panel</u> and <u>No. 1 Crossbar</u> Dial Systems.
- B) Subscriber No. 103 Calls Subscriber No. 549:
  - 1) Subscriber No. 103 removes his Handset and listens to the signals, "101, 102, etc."

- 2) When the Calling Subscriber hears his own number, "103," he depresses a Pushbutton which stops the Carriage of his "C" Switch, connecting his Line to a pair of Rings on Switch "Bl."
- 3) As the "B1" Switch Carriages rotate, signals "10, 11, 12, etc.," are transmitted.
- 4) Upon hearing "10," the Calling Subscriber again depresses his Pushbutton, stopping the "Bl" Switch Carriages, and connecting his Line to an "A" Switch Gate (Vertical).
- 5) As the "A" Switch operates, the Subscriber hears the numbers of the Gates past which the Carriages move. Upon hearing "5," he depresses his Pushbutton, stopping Switch "A" Carriages, and cutting his Line through to a "B5" Switch Gate.
- 6) As Switch "B5" operates, the Calling Subscriber hears, "50, 51, 52, 53, etc.," and upon hearing "54," he again depresses his Pushbutton, causing the "B5" Switch Carriages to stop and cut through to a "C54" Switch Gate.
- 7) As Switch "C54" operates, the Subscriber hears, "540, 541, 542, 543, etc." When he hears "549," he depresses his Pushbutton once more, stopping Switch "C54" and cutting through to the Called Subscriber Line wired to "C54" Switch Gate No. 549.





- A) <u>General System Features</u>: The Central Office Equipment of this system resembles a large railroad terminal freight yard. The cars required to switch the calls would be about the size of those for a O-gauge timplate toy electric train.
  - 1) A metal Car or Wagon (Al, A2, A3, etc.), operating on an insulated metal Track, is required for each Subscriber Line.
  - 2) Beneath the Tracks (Cl, C2, etc.), and at right angles to them, is a number of metal Beams (Bl, B2, B3, etc.).

- 3) Each Beam (B1, B2, B3, etc.) is wired to the <u>movable</u> Contact Member (D1, D2, D3, etc.) of an "X-Y" Coordinate Plate Switch (P1, P2, etc.).
- 4) Corresponding <u>stationary</u> Terminals of each Plate Switch are multipled together. A Subscriber Line is wired to each Multiple.
- 5) Each Plate Switch has an Fl ("X") Carriage driven horizontally along a Track, plus a second El ("Y") Carriage, moving at right angles to the first.
- 6) Contact Member D1 of Plate Switch P1 (also D2, D3, etc. of other Plate Switches) is supported by the El Carriage.
- 7) Links and Magnets M1 (horizontal or "X" drive) and N1 (vertical or "Y" drive) drive D1 over the entire Contact Field of P1 Plate Switch. A visible Register at the Calling Substation records the progress of the D1 Contact Member over the coordinate Contact Field.
- B) Operation: Subscriber No. 3 Calls Subscriber No. 22:
  - 1) Car or Wagon A3 is released electrically by the Calling Subscriber, No. 3, to hunt for an Idle B Beam.
  - 2) A Projection X3 on the underside of Wagon A3 hits the first Idle B Beam (Bl in the diagram), and makes an electrical connection with it, swinging the Bl Beam downward, out of reach of any other Subscriber Wagon.
  - 3) Plate Switch Pl is now connected to the Calling Subscriber, No. 3.
  - 4) This initiates the operation of Plate Switch Pl. Magnets Ml and Nl sweep the movable Contact Member Dl horizontally and vertically over the Contact Field.
  - 5) The number of each Terminal ("1, 2, 3, 4, 5, etc.") over which the D1 movable Contact Member sweeps is recorded on the Calling Substation Register R3.
  - 6) As soon as the desired Subscriber Number, "22," appears on Register R3, the Calling Subscriber releases a Pushbutton, which stops the D1 movable Contact Member on Terminal No. 22 of Plate Switch Pl.
  - 7) The Talking Circuit set up extends from Ground, through Subset No. 3, Wires 1 and 2, Track C3, Projection X3, Beam B1, Wire 3, Contact Member D1, Terminal No. 22 Plate Switch P1, Wire 4, through Subset No. 22 to Ground.

THE WESTERN ELECTRIC ROTARY SWITCHING SYSTEM Developed About 1905 Dial Pulses Control Selections Indirectly Used Only In Europe System Capacity - 10,000 Subscriber Lines

- A) Rotary Switching System Features:
  - Power-Driven Equipment Horizontal and Vertical Driveshafts provide power for operating the Switches - A 2 H.P. Electric Motor is required for a 10,000-Line installation.
  - 2) <u>Switches</u> have <u>Rotary Motion</u> only.
  - 3) <u>Switch Banks</u> (To which Lines or Trunks are cabled) Semi-Circular in shape 200 Sets of Terminals, 20 Sets per Level, 10 Levels.
  - 4) 10 Sets of <u>Brushes</u> per Switch Only 1-Set "tripped" to "wipe" over the Terminals of 1-Level.
  - 5) Selections controlled by Register Switches, positioned by pulses received from the Subscriber Dial. As the Selector or Final Brushes "wipe" over one Terminal after another, a Pulse is sent back (Revertive Pulsing) to the Register Switch for each Terminal contacted. When the Register Switch reaches normal, the Circuit is opened and the Brushes stop on the last set of Terminals.

- 6) Switches Used:
  - a) Line Switch "Finds" the Calling Subscriber Line.
  - b) <u>Selector Switch</u> Finds an Idle Trunk, under control of the Register Switch, from the Line Switch to the Final Switch
  - c) <u>Final Switch</u> Under control of the Register Switch, finds the Called Subscriber Line.
  - d) Register Switch:
    - 1') Stores the Digits dialed by the Calling Subscriber.
      - 2') "Translates" or Converts the Dial Pulses received on a Decimal Basis (1-out-of-10) to a series of Pulses necessary to make Selections on the basis of 1 out of 20 (20 Sets of Terminals per Level).
      - 3') Controls the operation of the Selector and Final Switches on a "Revertive Pulsing" basis.





#### The Rotary System SELECTOR SWITCH



The Register controls Selector and Final Switch operation (On a Revertive Pulse basis) as it restores to normal, after being advanced by Dial Pulses to the position representing the Digit Dialed. As the Sequence Switch rotates only in one direction, it always opens and closes the circuits wired to its contacts in the same order or "sequence." Western Electric Company, Inc. Central Regional Services Engineering Personnel Development

For Training Purposes Only

# Lesson No. 1

### FUNDAMENTALS OF TELEPHONY

# Section 3

# General Comparison of Switching Systems

| CONTENTS                                                                      | Page |
|-------------------------------------------------------------------------------|------|
| Subscriber Lines Cable to:                                                    | 23   |
| A Connection is Made in Manual, Step by Step, Panel and Crossbar:             | 24   |
| Method of Making a Connection in Manual, Step by Step, Panel and<br>Crossbar: | 25   |

9



B) A CONNECTION is MADE in a:



- C) Method of MAKING A CONNECTION in a:
- 1) <u>MANUAL System</u> The <u>Operator</u> picks up an Idle Cord and <u>inserts</u> the Plug of that Cord <u>into</u> a Jack.



2) <u>STEP BY STEP Dial System</u> - The <u>Operator's Hand and Arm Movements</u> (1') are <u>replaced by a Stepping Magnet</u> (2') <u>thrusting a Pawl</u> (3') <u>into a Ratchet Tooth</u> (4'), <u>stepping the Shaft and Wipers</u> (5'), <u>first Vertically</u> (6'), then <u>Horizontally</u> (7') or in a Rotary Direction <u>to the desired Set of Switch Bank</u> Terminals (8'). <u>Each Step</u> is <u>held by a Dog</u> (9'). (2') <u>Double-Spool Magnet</u>.



C) Method of MAKING A CONNECTION in a:



C) Method of MAKING A CONNECTION in a:



.

Western Electric Company, Inc. Central Regional Services Engineering Personnel Development

For Training Purposes Only

### Lesson No. 1

# FUNDAMENTALS OF TELEPHONY

### Section 4

# Subscriber Station Equipment

|                      | <u>CONTENTS</u> Page |
|----------------------|----------------------|
| Substation           | 29                   |
| Substation Equipment | 29                   |
| Subset               | 29                   |
| Substation Protector | 34                   |

### SUBSCRIBER STATION EQUIPMENT

- <u>Subscriber Station or "Substation</u>" A Subset (Subscriber Set) installed and in service for telephone communication.
- <u>Substation Equipment 1</u>) <u>Subscriber Set or "Subset" An instrument</u> designed for originating and receiving Telephone Calls.
  - 2) Substation Protector Mounts:
    - a) <u>Protector Blocks</u> (Lightning Arresters) -High voltage protection.
    - b) <u>Fuses</u> (7 Ampere, Tubular) or Lead Spacers -Excess current protection.

1) SUBSET



500-TYPE SUBSET Front View





1) SUBSET



- 32 -

### 1) SUBSET - COMPONENTS



### 2) SUBSTATION PROTECTOR



Western Electric Company, Inc. For Training Purposes Only Central Regional Services Engineering Personnel Development Lesson No. 1 FUNDAMENTALS OF TELEPHONY Section 5 Outside Plant Equipment CONTENTS Page Outside Plant Equipment Required Between the Central Office and a Substation 36 Exchange Cable 37 Central Office Cable Vault, Conduit, Typical Manhole 38

OUTSIDE PLANT EQUIPMENT



Outside Plant Equipment Required between the Central Office and a Substation

OUTSIDE PLANT EQUIPMENT 36 1

ł

### CUTSIDE PLANT FOULTMENT



OUTSIDE PLANT EQUIPMENT



: 38 :

OUTSIDE PLANT EQUIPMENT

Western Electric Company, Inc. Central Regional Services Engineering Personnel Development

### Lesson No. 1

# FUNDAMENTALS OF TELEPHONY

# Section 6

# Central Office Distributing Frames and Cabling

| CONTENTS                                               | Page |
|--------------------------------------------------------|------|
| Photograph of Central Office Distributing Frames       | 40   |
| VMDF Equipment                                         | 41   |
| Schematic of Line Circuit                              | 42   |
| Other Distributing Frame Equipment                     | 43   |
| Central Office Cabling - Manual and Panel Dial Systems | 44   |







- 42 -

### OTHER DISTRIBUTING FRAME EQUIPMENT



