INSTRUCTION MANUAL KS-19602 L1 AMPLIFIER

Manufactured for the
WESTERN ELECTRIC CO. by

MCINTOSH LABORATORY, INC.
2 Chambers Street, Binghamton, N. Y.

DESCRIPTION

The KS-19602 Ll amplifier is a general purpose program amplifier capable of providing 25 watts of power output. It has been designed to meet telephone company requirements as a line, distribution, or power amplifier. It can also be used for general monitoring and similar services to supply audio power to loudspeakers or other equipment.

SPECIFICATIONS

POWER SUPPLY:

POWER CONSUMPTION:
POWER OUTPUT:

INPUT IMPEDANCE:

MAXIMUM INPUT LEVEL:

GAIN:

FRECUENCY RESPONSE:

HARMONIC DISTORTION:

INTERMODULATION DISTORTION:

SIGNAL TO NOISE RATIO: (unweighted)

NOISE AND HUM:
(unweighted)
DAMPING FACTOR:
OUTPUT IMPEDANCES:
$117 / 12 b$ volts $50 / 60 \mathrm{cps}$.
50 to 100 watts.
25 watts continuous (+44 dbm), 20 to $20,000 \mathrm{cps}$ with less than 0.5% harmonic distortion.

150 ohms balanced or unbalanced, 600 ohms balanced or unbalanced, 10,000 ohms bridging.
+10dbm for 150 ohm or 600 ohm input, +34 cibn for bridging input.
$66 \mathrm{db} \pm 2 \mathrm{ab}$ for 150 ohm or 600 ohm inputs, $42 \mathrm{db} \pm 2 \mathrm{ab}$ for bridging input.

20 to $15,000 \mathrm{cps} \pm 0.5 \mathrm{db}$,
20 to $20,000 \mathrm{cps}+0.5 \mathrm{cb},-1.0 \mathrm{db}$
Less than 0.5\% 20 to $20,000 \mathrm{cps}$ at 25 watts output or less.

Less than 0.5% if instantaneous peak power is beiow 50 watts.

88 db or better.

At least -44 dbm .

Fbout 10.
1, 4, 8, l6, 150, 200, 600 ohms 70.7 volts may be obtained from the 200 ohm output.

SIZE:

FINISH:

WEIGHT:
TUBES:

FUSE:

19" relay rack mounting, $51 / 4^{\prime \prime}$ vertical rack space, $10^{\prime \prime}$ deep with $51 / 4^{\prime \prime}$ in front and $43 / 4^{\prime \prime}$ to the rear of mounting surface.

Light gray.
33 pounds.
1 each 6AVG, 1 each l2AU7, 1 each 12BH7, 2 each 7591.
1.5 Amperes, Slo-Blo.

INSTALLATION

LOCATION:

The KS-19602 Ll amplifier will operate satisfactory at normal ambient room temperature. Continuous operation in locations of high ambient temperature (over $100^{\circ} \mathrm{F}$) is not recommended. Care should be taken when mounting the amplifier to provide sufficient ventilation for adequate cooling.

INPUT CONNECTION:

Input connections are made to the input terminals located at the rear of the amplifier. Make connections to these terminals as follows:

INPUT IMPEDANCE
150 ohms
600 ohms
10,000 ohms bridge
Circuit Ground
Chassis Ground

CONNECT TO

```
4 and 5
3 and 4, center tap is 5
1 and 2
6
7
```

It will be noted that the amplifier circuit and chassis grounds are brought to separate terminals on the input terminal strip. This system is provided so as to allow flexibility in grounding the amplifier to avoid "ground loops" with resulting. noise and hum. The amplifier is normally supplied with terminals 6 and 7 strapped together.

OUTPUT CONNECTIONS:

Output connections are made to the output terminals located at the rear of the amplifier. Make connections to these terminals as follows:

OUTPUT IMPEDANCE		
		SONNECT TO

A "circuit ground" terminal is provided on the output terminal strip, terminal 1.

POWER CONNECTIONS:
The amplifier operates from a nominal $117 / 125$ volt $50 / 60 \mathrm{cps}$ power line. A six foot three conductor power cord (third conductor is ground) is supplied attached to the amplifier. Plug this cord into a suitable power receptical.

OPERATION
After the above installation procedure has been completed, the amplifier is placed into operation by turning on the power switch. The attenuator controls should then be adjusted to provide the required gain.

SERVICE INFORMATION

The KS-l9602 Ll has been designed for long trouble free operation. All components are of the highest quality and are conservatively operated.

For convenience in servicing the amplifier the following chart of operating voltages and resistances is offered. All voltages are measured using a standard 20,000 ohms per volt meter. Voltages are measured to circuit ground. Resistances are measured to circuit ground with the AC power off and with the input attenuator off. Resistances marked with asterisk (*) are ineasurec to circuit ground with filter capacitor Cl5A shorted to circuit ground.

TUBE	TYPE	PIN NUMBER	D. C. VOLTS	RESISTANCE
6AV6	(V1)	1	0	10K
		2	1.3	3.3K
		3	---	0
		4	---	0
		5	1.3	3. 3 K
		6	1.3	3.3K
		7	125	145K *
12AU7	(V2)	1	310	27K *
		2	125	145K *
		3	135	18 K
		4-5	---	0
		6	310	30K
		7	60 NOTE 1	2.3M *
		8	135	18K
		9	---	0
12BH7	(v3)	1	310	22K
		2	27	220K
		3	44	4.7K
		4-5	---	
		6	310	22K *
		7	27	220K
		ε	44	4.7K
		9	---	0
7591	(V4 and V5)	1	---	---
		2	---	0
		3	415	41 *
		4.	415	110 *
		5	1.2	41
		6	-16	180K
		7	---	0
		8	415	110 *

NOTE 1: USE 150 VOLT SCALE. This voltage will measure considerably different if a $20,000 \mathrm{ohm} / v o l t$ meter is not used.

ITEM NO.	RATING			REPLACEMENT DATA
Capacitors				
Cl	100mf		12V	Sprague, Type 31D
C2	680pf	, 10\%		RMC, Type JL
C3	. 22 mf	E, 20%	\%, 400V	Sprague, Type 109P
C4	. 047 m	m, 10\%	, 600V	Sprague, Type 109P
C5	. 047 m	ff, 10\%,	\%, 600V	Sprague, Type 109P
C6	. 22mf	, 20\%,	, 600V	Sprague, Type 160P
C7	. 22 mf	, 20\%	\%, 600V	Sprague, Type 160P
C8	. 47 mf	f, 20%	\%, 200V	Sprague, Type 109P
CS	. 47 mf	, 20\%,	, 200V	Sprague, Type 109P
Cl0	. 01 mf	, 20\%,	, 600V	Sprague, Type 109P
Cll	. 01 mf	, 20\%,	, 600V	Sprague, Type 109P
Cl2	150 mf		250 V	CD, Type UPE
Cl3	150 mf		250 V	CD, Type UPE-T
Cl4	. 47 mf	f, 20%,	, 200V	Sprague, Type 109P
C15	80-20	mf.	450 V	CD, Type UP
C16	10 mf ,		50 V	CD, Type BBR
Cl7	22pf,	10\%		RMC, Type C
C18	150pf	, 20%		RMC, Type B
Resistors				
R1	4.7K	5\% 1	1/2W	$A B$
R2	4.7K	5\%	1/2W	AB
R3	1.5K	5\%	1/2w	$A B$
R4	120K	5\%	$1 / 2 w$	AB
R5	82K	5\%	1/2W	$A B$
R6	4.3K	5\%	1/2W	AB
R7	3.9K	5\%	1/2W	AB
R8	3.9K	5\%	1/2W	$A B$
RS	3.9K	5\%	1/2W	$A B$
R10	3.9 K	5\%	1/2W	$A B$
R11	3.6K	5\%	1/2W	AB
R12	3.6K	5\%	1/2W	$A B$
R13	3.6K	5\%	1/2W	$A B$
R14	3.3K	5\%	1/2W	$A B$
R15	1K	5\%	1/2W	$A B$
R16	750	5\%	1/2W	$A B$
R17	1.3K	5\%	1/2W	$A B$
R18	2.4K	5\%	1/2W	$A B$
R19	4.3K	5\%	1/2W	AB
R20	7.5K	5\%	1/2W	$A B$
R21	13K	5\%	1/2W	$A B$
R22	24K	5\%	1/2W	$A B$
R23	43K	5\%	1/2W	AB
R24	10K	10\%	1/2W	AB
R25	3.3K	10\%	1/2W	$A B$

Resistors
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R50
R5I
R52
R53
R54

Miscellaneous

Fl
Ll

PILOT
Sl
S2
S3
T1
T2

T3
V1
V2
V3
V4
V5

$1.8 K$	5%	$1 / 2 W$	$A B$
47	5%	$1 / 2 W$	$A B$
100 K	10%	$1 / 2 W$	$A B$
$2.2 M$	10%	$1 / 2 W$	$A B$
18 K	10%	$1 / 2 W$	$A B$
27 K	5%	$1 / 2 W$	$A B$
30 K	5%	$1 / 2 W$	$A B$
$2.2 M$	10%	$1 / 2 W$	$A B$
$2.2 M$	10%	$1 / 2 W$	$A B$
220 K	10%	$1 / 2 W$	$A B$
220 K	10%	$1 / 2 W$	$A B$
$4.7 K$	10%	$1 / 2 W$	$A B$
$56 K$	10%	$1 / 2 W$	$A B$
100 K	10%	$1 / 2 W$	$A B$
100 K	10%	$1 / 2 W$	$A B$
$56 K$	10%	$1 / 2 W$	$A B$
22 K	5%	$1 W$	$A B$
$4.7 K$	5%	$1 / 2 W$	$A B$
$4.7 K$	5%	$1 / 2 W$	$A B$
22 K	5%	$1 W$	$A B$
68	5%	$1 / 2 W$	$A B$
68	5%	$1 / 2 W$	$A B$
$36 K$	5%	$1 / 2 W$	$A B$
$33 K$	10%	$1 / 2 W$	$A B$
$100 K$	10%	$1 W$	$A B$
$82 K$	10%	$1 / 2 W$	$A B$
$22 K$	5%	$1 / 2 W$	$A B$
100	10%	$1 / 2 W$	$A B$
100	10%	$1 / 2 W$	$A B$

1.5 Ampere Slo-B10 Bussman, MDL

Filter Choke
Pilot Lamp Assembly
Rotary Switch
Rotary Switch
Slide Switch
Input Transformer
Output Transformer
McIntosh Lab.. 122-
022
AMP, 380614-2
McIntosh Lab., 14606c
McIntosh Lab., 146-
069
Carling, S60-A
McIntosh Lab.. 159051
McIntosh Lab., 159-
Power Transformer 050
McIntosh Lab., 159-
Tube, 6AV6
Tube, $12 A U 7$
Tube, l2BH7
Tube, 7591
Tube, 7591

Sprague	Sprague Electric Company, North Adams, Massachusetts
RMC	Radio Materials Division, P. R. Mallory Company, 4242 West Bryn Avenue, Chicago, Illinois
$C D$	Cornell-Dubilier Electronics, 50 Paris Street, Newark, New Jersey
AB	Allen-Bradley Company, 136 West Greenfield Avenue, Milwaukee, Wisconsin
Bussman	Bussman Manufacturing Division, McGrawEdison Company, 2536 West University Street St. Louis, Missouri
McIntosh Lab.	McIntosh Laboratory, Incorporated, 2 Chambers Street, Binghamton, New York
AMP	AMP, Incorporated, Harrisburg, Pennsylvania
Carling	Carling Electric, Ircorporated, 505 New Park Avenue, West Hartford, Connecticut

