Y
%
\

301-925 ISS. 1

=
0
D
Ll
=
O
7]
2

\

s 8
|

\’

"
/L

“‘ N._,_,U b

»-—_——’ |

Trademark of Bell Labaratories

UNIX System
User’s Manual

Release 5.0

June 1982

Not for use or disclosure outside the
Bell System except under written agreement.

UNIX is a trademark of Bell Laboratories

Copyright © 1982 Bell Laboratories, Inc.

This manual was set on an AUTOLOGIC, Inc.
APS-5 phototypesetter driven by the TROFF
Jormatter operating under the UNIX system.

INTRODUCTION

This manual describes the features of UNIX. It provides neither a general overview
of UNIX (for that, see ‘““The UNIX Time-Sharing System,” BS7J, Vol. 57, No. 6,
Part 2, pp. 1905-29, by D. M. Ritchie and K. Thompson), nor details of the imple-
mentation of the system (see ‘“UNIX Implementation,” BSTJ, same issue,
pp. 1931-46).

Not all commands, features, and facilities described in this manual are available in
every UNIX system. The entries not applicable for a particular hardware line will
have an appropriate caveat stamped in the center of the mast of an entry. Also,
programs or facilities being phased out will be marked as ‘‘Obsolescent’ on the top
of the entry. When in doubt, consult your system’s administrator.

This manual is divided into six sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.
1C. Communications Commands.
1G. Graphics Commands.

2. System Calls.

3. Subroutines:
3C. C and Assembler Library Routines.
3F. FORTRAN Library Routines.
3M. Mathematical Library Routines.
3S. Standard I/O Library Routines.
3X. Miscellaneous Routines.

4. File Formats.

5. Miscellaneous Facilities.

6. Games.

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also
reside in /usr/bin, to save space in /bin. These directories are searched automati-
cally by the command interpreter called the shell. Sub-class 1C contains communi-
cation programs such as cu, send, uucp, etc. These entries may not apply from sys-
tem to system depending upon the hardware included on your processor. Some
UNIX systems may have a directory called /usr/lbin, containing local commands.

Section 2 (System Calls) describes the entries into the UNIX kernel, including the C
language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories /lib and /usr/lib. See intro(3)
for descriptions of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out(4). Excluded
are files used by only one command (for example, the assembler’s intermediate
files). In general, the C language struct declarations corresponding to these for-
mats can be found in the directories /usr/include and /usr/include/sys.

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

Section 6 (Games) describes the games and educational programs that, as a rule,
reside in the directory /usr/games.

On—HZ—

oOn+HZ—

Introduction

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each
section are alphabetized, with the exception of the introductory entry that begins
each section. The page numbers of each entry start at 1. Some entries may
describe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its ‘“major’’ name.

All entries are based on a common format, not all of whose parts always appear:
The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A
few conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and pro-
gram names found elsewhere in the manual (they are underlined in the
typed version of the entries).

Square brackets [] around an argument prototype indicate that the argu-
ment is optional. When an argument prototype is given as ‘‘name’ or
““file’’, it always refers to a file name.

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument
beginning with a minus —, plus +, or equal sign = is often taken to be
some sort of flag argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files whose names
begin with —, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be pro-
duced. Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

A table of contents and a permuted index derived from that table precede Sec-
tion 1. On each index line, the title of the entry to which that line refers is fol-
lowed by the appropriate section number in parentheses. This is important because
there is considerable duplication of names among the sections, arising principally
from commands that exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man(1) command, q.v.

HOW TO GET STARTED

This discussion provides the basic information you need to get started on UNIX:
how to log in and log out, how to communicate through your terminal, and how to
run a program. (See the UNLX User’s Guide for a more complete introduction to
the system.)

Logging in. You must dial up UNIX from an appropriate terminal. UNIX supports
full-duplex ASCII terminals. You must also have a valid user name, which may be
obtained (together with the telephone number(s) of your UNIX system) from the
administrator of your system. Common terminal speeds are 10, 15, 30, and 120
characters per second (110, 150, 300, and 1,200 baud); occasionally, speeds of 240,
480, and 960 characters per second (2,400, 4,800, and 9,600 baud) are also avail-
able. On some UNIX systems, there are separate telephone numbers for each avail-
able terminal speed, while on other systems several speeds may be served by a sin-
gle telephone number. In the latter case, there is one “‘preferred” speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of
meaningless characters (the login: message at the wrong speed). Keep hitting the
“break” or “attention’’ key until the login: message appears. Hard-wired termi-
nals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and
a half-/full-duplex switch that should be set to full-duplex. When a connection (at
the speed of the terminal) has been established, the system types login: and you
then type your user name followed by the “‘return’” key. If you have a password
(and you should!), the system asks for it, but does not print (‘“‘echo’’) it on the
terminal. After you have logged in, the “‘return’, ‘‘new-line’’, and ‘‘line-feed’’
keys will give exactly the same result.

It is important that you type your login name in lower case if possible; if you type
upper-case letters, UNIX will assume that your terminal cannot generate lower-case
letters and that you mean all subsequent upper-case input to be treated as lower
case. When you have logged in successfully, the shell will type a $ to you. (The
shell is described below under How to run a program.)

For more information, consult Jogin(1), which discuss the login sequence in more
detail, and sty(1), which tells you how to describe the characteristics of your termi-
nal to the system (profile(4) explains how to accomplish this last task automatically
every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.

2. You can log out by typing an end-of-file indication (ASCII EOT character,
usually typed as ‘“‘control-d’’) to the shell. The shell will terminate and the
login: message will appear again.

How to communicate through your terminal. When you type to UNIX, a gnome
deep in the system is gathering your characters and saving them. These characters
will not be given to a program until you type a ‘‘return’” (or ‘‘new-line’’), as
described above in Logging in.

UNIX terminal input/output is full-duplex. It has full read-ahead, which means
that you can type at any time, even while a program is typing at you. Of course, if
you type during output, the output will have interspersed in it the input characters.
However, whatever you type will be saved and interpreted in the correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be
exceeded unless the system is in trouble. When the read-ahead limit is exceeded,
the system throws away all the saved characters.

OoOn—HZ—

o—AH2Z—

How To Get Started

On an input line from a terminal, the character @ ‘‘kills”’ all the characters typed
before it. The character # erases the last character typed. Successive uses of #
will erase characters back to, but not beyond, the beginning of the line; @ and #
can be typed as themselves by preceding them with \ (thus, to erase a \, you need
two #s). These default erase and kill characters can be changed; see stty(1).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is
useful with CRT terminals to prevent output from disappearing before it can be
read. Output is resumed when a DC1 (control-q) or a second DC3 (or any other
character, for that matter) is typed. The DC1 and DC3 characters are not passed to
any other program when used in this manner.

The ASCII DEL (a.k.a. “‘rubout’’) character is not passed to programs, but instead
generates an interrupt signal, just like the “‘break’’, ‘‘interrupt’’, or ‘‘attention’ sig-
nal. This signal generally causes whatever program you are running to terminate.
It is typically used to stop a long printout that you don’t want. However, programs
can arrange either to ignore this signal altogether, or to be notified when it happens
(instead of being terminated). The editor ed(1), for example, catches interrupts
and stops what it is doing, instead of terminating, so that an interrupt can be used
to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also generates a file with the ‘‘core image’’ of
the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent as to
whether you have a terminal with the ‘““new-line”’ function, or whether it must be
simulated with a “‘carriage-return” and “‘line-feed”’ pair. In the latter case, all
input ‘‘carriage-return’’ characters are changed to “‘line-feed’”” characters (the stan-
dard line delimiter), and a “‘carriage-return’ and “‘line-feed” pair is echoed to the
terminal. If you get into the wrong mode, the stty(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not
have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the sty (1) command will
set or reset this mode. The system assumes that tabs are set every eight character
positions. The tabs(1) command will set tab stops on your terminal, if that is pos-
sible.

How to rum a program. When you have successfully logged into UNIX, a program
called the shell is listening to your terminal. The shell reads the lines you type,
splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in
your current directory (see The curremt directory below) for a program with the
given name, and if none is there, then in system directories. There is nothing spe-
cial about system-provided commands except that they are kept in directories where
the shell can find them. You can also keep commands in your own directories and
arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command
and its arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a § at
you to indicate that it is ready for another command. The shell has many other
capabilities, which are described in detail in sh(1).

The current directory. UNIX has a file system arranged in a hierarchy of direc-
tories. When the system administrator gave you a user name, he or she also
created a directory for you (ordinarily with the same name as your user name, and
known as your login or home directory). When you log in, that directory becomes
your current or working directory, and any file name you type is by default assumed

-6 -

How To Get Started

to be in that directory. Because you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. Permissions to have your
will with other directories and files will have been granted or denied to you by their
respective owners, or by the system administrator. To change the current directory
use cd(1).

Path names. To refer to files not in the current directory, you must use a path
name. Full path names begin with /, which is the name of the roor directory of the
whole file system. After the slash comes the name of each directory containing the
next sub-directory (followed by a /), until finally the file name is reached (e.g.,
[usr/ae/filex refers to file filex in directory ae, while ae is itself a subdirectory of
usr; usr springs directly from the root directory). See intro(2) for a formal
definition of path name.

If your current directory contains subdirectories, the path names of files therein
begin with the name of the corresponding subdirectory (without a prefixed /).
Without important exception, a path name may be used anywhere a file name is
required.

Important commands that modify the contents of files are ¢p(1), mv, and rm(1),
which respectively copy, move (i.e., rename), and remove files. To find out the
status of files or directories, use Is(1). Use mkdir(1) for making directories and
rmdir(1) for destroying them.

For a fuller discussion of the file system, see the references cited at the beginning
of the INTRODUCTION above. It may also be useful to glance through Section 2 of
this manual, which discusses system calls, even if you don’t intend to deal with the
system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use
ed(1). The principal languages available under UNIX are C (see cc(1)), Fortran
(see f77(1)), and assembly language (see as(1)). After the program text has been
entered with the editor and written into a file (whose name has the appropriate
suffix), you can give the name of that file to the appropriate language processor as
an argument. Normally, the output of the language processor will be left in a file
in the current directory named a.out (if that output is precious, use mv(1) to give it
a less vulnerable name). If the program is written in assembly language, you will
probably need to load with it library subroutines (see /d(1)). Fortran and C call the
loader automatically.

When you have finally gone through this entire process without provoking any
diagnostics, the resulting program can be run by giving its name to the shell in
response to the $ prompt.

If any execution (run-time) errors occur, you will need sdb(1) to examine the
remains of your program.

Your programs can receive arguments from the command line just as system pro-
grams do; see exec(2).

Text processing. Almost all text is entered through the editor ed(1). The com-
mands most often used to write text on a terminal are cat(1), pr(1), and nrof.
The cat(1) command simply dumps ASCII text on the terminal, with no processing
at all. The pr(1) command paginates the text, supplies headings, and has a facility
for multi-column output. Nroff is an elaborate text formatting program, and
requires careful forethought in entering both the text and the formatting commands
into the input file; it produces output on a typewriter-like terminal. Troff(1) is very
similar to nroff, but produces its output on a phototypesetter (it was used to typeset
this manual). There are several ““macro’ packages (especially the so-called mm
package) that significantly ease the effort required to use nroff and troff(1); Sec-
tion 5 entries for these packages indicate where you can find their detailed

-7-

oXn—HZ—

on—+H2—

How To Get Started

descriptions.

Surprises. Certain commands provide inter-user communication. Even if you do
not plan to use them, it would be well to learn something about them, because
someone else may aim them at you. To communicate with another user currently
logged in, write(1) is used; mail(1) will leave a message whose presence will be
announced to another user when he or she next logs in. The corresponding entries

in this manual also suggest how to respond to these two commands if you are their
target.

When you log in, a message-of-the-day may greet you before the first $.

TABLE OF CONTENTS

1. Commands and Application Programs

intro introduction to commands and application programs
300 handle special functions of DASI 300 and 300s terminals
4014 e e e paginator for the Tektronix 4014 terminal
450handle special functions of the DASI 450 terminal
aCCtCOM & v v v v 4 h e e . . search and print process accounting file(s)
adb . . L L e e e e e e e e e e e e e absolute debugger
admin L0 L0 e e e, create and administer SCCS files
) S archive and library maintainer for portable archives
arpdp . . . e s e e e e e e e e e e e archive and library maintainer
arcv convert archive files from PDP-11 to common archive format
B8 4 4 s e e e e e e et et e e e e e e e e common assembler
aspdp e e e e e e e e e e e e e e e assembler for PDP-11
T interpret ASA carriage control characters
awk . ..o s e e e e pattern scanning and processing language
banner . . . L i . i e e e e e e e e e e e e e e e e make posters
basenameo 0 .00 .. e deliver portions of path names
be arbitrary-precision arithmetic language
bdiff . . . L e e e e e e e e e e e big diff
bfs . L e e e e e e e e e e big file scanner
bs 0 0 a compiler/interpreter for modest-sized programs
| print calendar
calendar L L L s e e e e e e e e e e reminder service
[concatenate and print files
D i e i e e e e e e e e e e e e e e e e C program beautifier
€ v ¢« v v v v t s s v s s e s s e s e s e e s oCcompiler
ed o e e e e e e e e e e e e e e .. change working directory
L change the delta commentary of an SCCS delta
cflow . . . e e e e e e e e e e e e e e generate C flow graph
¢chmod. o oo change mode
chown ¢ . i i i it e e e e e e change owner or group
CMP « o ¢« v v o o o o o o o s s o o o o s s o v o s o compare two files
L filter reverse line-feeds
comb e e e e e e combine SCCS deltas
COMM .« « « « o o o s o & « select or reject lines common to two sorted files
convert convert object and archive files to common formats
L copy, link or move files
L copy file archives in and out
CPP -+ ¢ ¢ vt ot e et e e e e e e e the C language preprocessor
CPIS ¢ ¢ o v o o o o v o 8 s s o e b e e e compress an IS25 object file
CIYPL « & v o v e v e e v e e s s o o o o o s ot e e encode/decode
] 1 context split
L spawn getty to a remote terminal
[e e e e « « « . call another UNIX system
CUt v v v e v e e e e e e e e cut out selected fields of each line of a file
CW 4 e i e e v v e e e e e e e e prepare constant-width text for troff
cexref e e e e e e e e e . generate C program cross reference
date s e e e e e e e e e e e e e e e e e e print and set the date
e v v et e e e e e e e e e e e e e e e e e desk calculator
dd .. e e e e e e e e e e e e e e e convert and copy a file
defta make a delta (change) to an SCCS file
deroff remove nroff/troff, tbl, and eqn constructs
diff s e e e e e e e differential file comparator
diff3 0000000 3-way differential file comparison

n—HZmM—-HZ00

nw—=HZmM—Z00

Table of Contents

difmk . . . v v 0 0 v i v i e e e e e e mark differences between files
dirCmp « + ¢ ¢ v h e e e e e e e e e e e e e e directory comparison
IS v v e v v v e v e s e e e e a e e s s s+ +3B20S disassembler
dpd00 HONEYWELL sending daemon, line printer daemon
4 R off-line print
U . e e s e e e e e e e e e e e e e e s summarize disk usage
dump . . . ¢ . 0 o e e e e e e e e dump selected parts of an object file
€Cho & v & i i e e i e e e e e e e e e e e e e e e e echo arguments
= R L text editor
i Extended Fortran Language
enablet . e o e e e e e e e e e enable/disable LP printers
€NV ¢ o ¢ o s s o o s v e o set environment for command execution
= |« format mathematical text for nroff or troff
EXPT « « + t o v e e e e e e e e e e evaluate arguments as an expression
o Fortran 77 compiler
FACEOT v & v v ¢ et o 6 st s et e s e e e e e e s factor a number
fget . . v v v v v e e e e retrieve files from the HONEYWELL 6000
file o v v v v e e e e e e e e e e e e e e e e e e s determine file type
111 find files
fsend 0o e e send files to the HONEYWELL 6000
fsplit . o & & ¢ v 0 v e e e e e e e e e e split £77, ratfor, or efl files
geat . . ¢ o 0 v .o send phototypesetter output to the HONEYWELL 6000
geosmail « . . . 0 v e et e e e e e e e e e send mail to HIS user
gdev .« v o v e e e e e e e e e graphical device routines and filters
1 R T graphical editor
BEL 4 v v ot e e e e e e e e s e e e get a version of an SCCS file
BELOPt o o ¢ 4 v s e e e b e s e e e e e e e e e parse command options
e Y Y 1 O T I T R draw a graph
graphics ¢ ¢ ¢ 0 ¢ 00 0 access graphical and numerical commands
- - select terminal filter
BIED « ¢ 4 ae s e e e e e e s e e e e e search a file for a pattern
gutil « . . v v o 000 0o e e e e e e e e e e graphical utilities
help . . . v i e e e e e e e e e e e e e e ask for help
hp handle special functions of HP 2640 and 2621-series terminals
hpio . . . « v v o v v il e e e HP 2645A terminal tape file archiver
hyphen & v v v v v i b e e e e e find hyphenated words
T print user and group IDs and names
iperm remove a message queue, semaphore set or shared memory id
IPCS « v v o v 0 e o e o e report inter-process communication facilities status
5 Y T relational database operator
kasb.assembler/un-assembler for the KMC11B microprocessor
<1 | terminate a process
link editor for common object files
pdp o « v v v e v e e e e e e e e e e e e e e e e e e e link editor
IeX v v v o v v e e e e e s e generate programs for simple lexical tasks
Hne o ¢ v v o v o ettt e e e e e e e e e e e e e e read one line
HOt o ¢ 6 v v e e 6t e e s s e e e e e e e e e a C program checker
list « o« ¢ v v v v o v 0o e produce C source listing from 3B20S object file
1Y -1 O I sign on
logname o . v e e h b e e e e e s e e e e e get login name
lorder . . . ¢« . v v v v 0o v v o find ordering relation for an object library
1, J send/cancel requests to an LP line printer
1) line printer spooler
Ipstat & ¢« & v 0 o e e e e e e e e e e e print LP status information
IS @ o v e e s e e e e e e e e e e e e s list contents of directories
11 + « « . MAaCro processor
machid. provide truth value about your processor type

-2-

Table of Contents

mal....................sendmailto users or read mail
makemaintain, update, and regenerate groups of programs
makekeygenerate encryption key
MAN . & o 4 4 ¢ ¢ s s s + o s« s« o s« + o« oprint entries in this manual
MESE . « = o v = s o v o s oo s s o« o« . . .permitordeny messages
mkdirmakea directory
mmprnt/check documents formatted with the MM macros
mmttypeset documents, view graphs, and slides
net.cxecuteacommand onthe PCL network
newformchange the format of a text file
DEWEIP « - « « v v e v o o e v e v s v v s s+« .logintoanew group
NEWS & o ¢ v v o o s o v o s « 4+ e 4« e s e s s+ s . .print news items
mce0.e......runacommand atlow priority
nlline numbering filter
amprint name list of common object file
nmpdp.tprint name list
nohuprunacommand immune to hangups and quits
aroff e e e .. . format text
nsestatquerythe operation status of the NSC network
nsctorjere-route jobs from the NSC network to RJE
nusendsend files to another UNIX on the NSC network
od et .octal dump
packcompressand expand files
passwd¢..v changelogin password
paste merge same lines of several files or subsequent lines of one file
2 T 3 v 11 381)
profdisplay profile data
PIS = « « o ¢ s ¢« i st s v s s e e v s e oo . printanSCCS fie
PS « « st v 4 4 e i 4 e 4 e e e uu e e e .. s . .rTEpOrt process status
PIX &« ¢ ¢ s i v i i et i et e e e a e s« . permuted index
pwdworking directory name
matforrational Fortran dialect
TEGCIP . « « v ¢ « ¢+ o s s o « « » « « « o «regular expression compile
festatRIEstatus report and interactive status console
TM ¢ . v v s s s s s o o o s s o s« o o remove files or directories
rmdelremoveadelta from an SCCS file
sact.printcurrent SCCS file editing activity
sadp . . ¢ . . o i . et v e v e e u e e . .disk access profiler
SAZ « ¢ v v o . e 4 s e et e 4w s e e e ssystem activity graph
SAT . . 4w o ¢ v o s 4 s e s e e e s s .. 4. . . .System activity reporter
scatconcatenate and print files on synchronous printer
SCC . v e ¢ s v s s v v v u s s e« o Ccompiler for stand-alone programs
scesdifcomparetwo versions of an SCCS file
sdb. o oo symbolic debugger
sdif, sideby-side difference program
8€ + + « t st s 4 e e s e s e s e . «screen editor for video terminals
s€d i i i it e i e e e e e e estream editor
sendgatherfilesand/or submit RJE jobs
shshell, the standard/restricted command programming language
sizeprintsection sizes of common object files
sizepdpprintsizes of object files
sleepsuspend execution for an interval
SO . « v 4 ¢ s ¢ s s s s s s s s e e e« - SNOBOL interpreter
S0rtt i et e e . .sortand/or merge files
spell « Lo Lofind spelling errors
spline.interpolate smooth curve
split00splita file into pieces

-3-

mn—=HZm—HZ0o0

n—HZM—-HZ00

Table of Contents

stat +statistical network useful with graphical commands
StIogin . . « « « « « 4 s s o« « o+ o« o .signon tosynchronous terminal
strip . . strip symbol and line number information from a common object file
strippdp - «+ + ¢« « « <+« o+«remove symbols and relocation bits
ststat + « « o o . o .report synchronous terminal facilities status
SEY « « « o o+« s s s s+« s o« s s+ o «Sctthe options for a terminal
SU + o o « + s s s s s s s o s s s« s »become super-user or another user
SUM « o+ « « + « « « « « « « « »print checksum and block count of a file
SYNC + o « « o o s s o s ¢ o o s s o o s+ o+ »update the super block
£ADS « 4 4 4+ o e s o 4 e s e e e s s s e s e s . oSettabson aterminal
tail o v« v e e v e e e e e e s s e s e« «deliver the last part of a file
BAT « « o o o s o« o o o s s s e s e s s s u s o« o tapefilearchiver
thl . + « v 4 4 s s e s e e e e e e« »formattables for nroff or troff
£ + 4 ¢ + o s o e e s e s e s s s s s s+ o« .phototypesetter simulator
£EE + « « o 4 o s s 4 e e s e s e e e s e e s e e s e s o .pipefitting
LSt « + = ¢ ¢ 4 4 s s o e o« o+« « » o «condition evaluation command
CHNE w4 4 e e e s e e e e e e s s s e s e s s« s . . timeacommand
timextimea command; report process data and system activity
£OC + o 4 = + o « o+ o « + « « « o« .graphical table of contents routines
touch. . . «.....updateaccess and modification times of a file
IOt v v« v vt 4w s e s e s s e e s s e e e« . - . . graphics filters
I+ & e o 4 o o o s o s s oo s s s s s e+« « . .translate characters
troff .+« v e e e e e e e e i e e e e s e e e s e e« .« s otypeset text
trouble « « « « 4 4 ¢« st e s s e s s e s s s e« ologatrouble report
fFUC « + o o o o o« o = o « a s s a o o o s o o s« o «provide truth values
BSOTt « « v o « « o o o o« s o o s o s s = o o o « » + « «topological sort
Y « « o « o o o s « s+ e s e s o s e o« o oo o «getthe terminal’s name
UMASK + ¢ v « o v v o o o s s « « o o+« » «setfile-creation mode mask
UNAME . « « o « « =« + + « + « + « o «print name of current UNIX system
Unget « « « « « o s+« « o+ « .+« o .undoaprevious get of an SCCS file
UNIQ « « « = + « o « = = s« s « « o+« o« o «report repeated lines in a file
UNItS « « o v o o o + o o o o o s s o o s+ o o + « » . CONVErsion program
UUCP + « « ¢ « o v e s o o s o s s s o o o o+« « + ounix to unix copy
VUSEAL o+ o « « + v o o « o o o« « o o+ oUUCP Starus inquiry and job control
VULO .+ « v « o o o o o o o s o s o« + - «public UNIX-to-UNIX file copy
UUX « o « « s o o « o « s s o « o s « «» o unix to unix command execution
Val . v v st e e e e e e e e e s e s e evalidate SCCS file
VC v o « o o e t o s s e e st s e s e s e e e+« . .version control
VDT ¢ « o ¢ « « e e s o s s s o s s s s o« .« Versatec printer spooler
WAL + « « o « ¢ o« s+ « o o s o s o s o s« « .await completion of process
WC v v v e s o o e s e s e s e e s e ve oo o owordcount
What o« v v v o e e o o e e s o s s s s s oo oo« oidentify SCCS files
Who . v v ¢« v e v v v e et s s e s oo sw .. .whoison the system
WIHLE « « o o « o « o o « o o o s a s o o o« = « « « . write to another user
XargS . .« « + + + » « « o «cONstruct argument list(s) and execute command
YACC = = « o o s « o+ o s 4 s s s« o« » »yetanother compiler-compiler

2. System Calls

introintroduction to system calls and error numbers
BCCESS +» « « » o s o = s« « s s s « o « o «determine accessibility of a file
ACCL + « = « « « o s = « « s+ » « « .cnable or disable process accounting
alarm« « .« c o e s s e s s s s o . .setaprocess’s alarm clock
BIK « ¢ « v ¢ ¢« ¢« s e o s oo+« . «change data segment space allocation
chdir+« e« e v e e oo+« .change working directory
chmod. . . . v v ¢ v v e v e e s es o+ .change mode of file
chOWn . « + « « « v ¢« o o o« « « + « « «Change owner and group of a file

-4 -

Table of Contents

chrootchangeroot directory
close........................closeaﬁledescriptor
ceréat . . + o . o s . .+ o . . .Create a new file or rewrite an existing one
dupduplicate an open file descriptor
EXEC . &« 4 4 4 4 4 4 s s s s s s s e s s s s e s s e e« . .executeafile
eXit i ...ttt eterminate process
featl e e s e filecontrol
fork,createa new process
getpidgetprocess, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
joctlcontrol device
kilsendasignal toa process or a group of processes
ink0.0.000000cc.ie.e....linktoafie
lseek.moveread/write file pointer
mausmultiple-access-user-space (shared memory) operations
mknodmakea directory, or a special or ordinary file
MOURt . & + ¢ v ¢ v ¢ v ¢ s v s o v oo o .. mounta file system
msgetlmessagecontrol operations
msgget 0 i e e e e e eget message queue
MSZOP + + 4 v ¢ o o ¢ s s o s = = o o s o s+« .« . .Nessage operations
mcechangepriority of a process
OPEM . . . ¢ . v+ e ¢« - s s v s« s s+« . .open for reading or writing
pausesuspendprocess until signal
PiPE e .. u v v e create an interprocess channel
plocklockprocess, text, or data in memory
proflexecutiontime profile
PITacCe s s 4 s 4 4 4 e e 4 e eprocess trace
read et i et e e e . oread from file
semctlsemaphore control operations
semget 0 v . e e v epgetset of semaphores
SEMOP « « + ¢« v+ « ¢+ s + o s s s s o+ o+semaphore operations
SCLPEIP + « « ¢ ¢t 4 s s e 4 e s e e s e vsetprocess group ID
setuidsetuserandgroup IDs
shmet!shared memory control operations
shmget.getshared memory segment
shmop.shared memory operations
signalspec1fy what to do upon receipt of a signal
stat e e e s e e e e e s s e . . . get file status
stime.............................settime
SYNC . . & . & v 4+ s s s 4 s s 4 s s e s . .« . . .update super-block
sys3b o e v e v v v u . . . 3B20S specific system calls
HIME & . o e e et e e e e e e e e e e e e e e e e e e . get time
timesgetprocessand child process times
ulimit,getand set user limits
umasksetand get file creation mask
umount e, .unmount a file system
uname 40 .. s+ o+getname of current UNIX system
unlinkremovedirectory entry
ustat « 0 0 0 0 e e v e e v e o v getfile system statistics
utimesetfieaccess and modification times
waitwaitfor child process to stop or terminate
WIEE o & v 4 v o v e v 4t e s s e s s et e e e e . . .write on a file

C
O
N
T
E
N
T
S

3. Subroutines

introintroduction to subroutines and libraries
a64lconvert between long integer and base-64 ASCII string

-5.

nHZm—-4Z00

Table of Contents

2l;gg e e e e e e e e e e e e e e e .'generateanIOTfault
avort e et e e e e e e e e e e e e .terml‘nateFortranprogram
avs - - t e s e s e s 4 e e e e e e s s« . .return integer absolute value
abs - e e e e s e e s e e e e e e e .F(.)rtrqna.bsgluteva'lue
. e e e e e e .F. . ..Foryran arccosine intrinsic function
aimag - «««++Fortran imaginary part ofcqmp.lcx. argument
amt . - e « e s s s s s s s s« o« oFortran integer part intrinsic function
asin - - e e e s s e e v s e e« o Fortran arcsine intrinsic function
assert . .. e e e e e e e e e e e e e e e .verlfyprogfarpassenion
atam - e e « « s o s s s s s« . «Fortran arctangent }ntr}nsgc functgon
atan e e+ 4 s s s s s s s« s« oFortran arctangent intrinsic function
bessel'.... e v« e « .« .+« . .convert ASCII string to floating-point number
bess:....Besselfunctions
bool .- - - e e e s e s e e s« o oFortran bitwise boolegn functions
Snear ..-........................blnafysearch
o e e e e e e .F. e e e e e ..rcpor‘tC?U.tlmeu§ed
conig . - e e+« Fortran complex conjugate intrinsic function
conv‘.trgnslgte.characters
cos - e e e e e e e e F .o .Fortra_n cosine intrinsic funct%on
ot « « v e+ o+« o Fortran hyperbolic cosine intrinsic function
et L e e e s s s e s s s e s e s « .« . .generate DESencrypt.ion
cermid - - e e e e s e o s s s o s« . .generate file name.for terml_nal
i e e e e e e e e e e e e e .convertdateandt_lmetostrmg
chype v - e et s s s e e e e e e e .'.clasmfycharacters
cuserid - - e e e e e e .b.l_.h.get chargcter logl‘n name of the user
ek e e e e e s .t. est.af is an.ou.t-gomg terminal line connection
drar . « « « « « .generate uniformly dlstrlbutec} pseut'io-random numbers
o '. e e e e e e« e s e« convert floating-point npmbgr to string
end - e e e e e e e e e e e e .f. IR . last locations in program
o .. &« e+ « e+« . «error function and complemc.nta.ry error function
LI B I Fo!'tran exponential intrinsic function
o - .+ . «cxponential, logarithm, power, square root functions
ose . et e e s e e s e e e e e e e .closeorﬂush?strggm
forer s .. [.ﬂ(.)o. . :1_. R ., stream status 1nqu1.rles
oo e e e r, ceiling, remainder, absolute value functions
fopen . . - - e et e e e e e e e e eOpERNastream
o ..) .l. e e e .bmaryxpput/output
foxp - e + s « s« « . . . manipulate pe_lr‘ts_ of ﬂoatmg-pmpt numbers
ok - .' W e 4 e s v « s 4 e+« e . «reposition a file pointer in a stream
fie IR R .walkaﬁlet}'ee
AT + + « + e«explicit Fortran type conversion
getarg..'.....................loggarr‘lmafunctlon
Boate &« « o« + « « o+« oreturn Fortran command-line argument
B | e e e e e e e e« o s s o+ .pgetcharacter or word 'from'stream
B oy e v e s &« e o o« . .getpath-name of current wqumg directory
e .. e e e s e e e s s s s s« . «return value for environment name
B orent &« « « e e e s+ o oreturn Fortran environment variable
e . e e e e s e e s e e e e e e e e .getgroupﬁleentry
e:.......getloglnname
e W e e e+ e« « .« o «getoption letter from argument vector
getpw..........................readapassword
P ventgetnamefromUID
gopent e e e s e e e e e e e e e .getp.asswordﬁleentry
B s e e e s e s e e e e e+« . getastring from astream
otut '. G e e e e e e s s e s e s« . . .access utmp file entry
byt © e e e e s+ eManage ha§h search tables

6t t « e s e e s e e e e ee e Euclidean distance function

-6 -

Table of Contents

indexreturn location of Fortran substring
Btolconvertbetween 3-byte integers and long integers
ldahread read the archive header of a member of an archive file
ldelose. closeacommon object file
Idfhreadread the file header of a common object file
Idiread . . . manipulate line number entries of a common object file function
ldlseek . . . seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
ldopenopenacommon object file for reading
ldrseekseek to relocation entries of a section of a common object file
ldshread . . . read an indexed/named section header of a common object file
ldsseekseek to an indexed/named section of a common object file
ldtbmdex . compute the index of a symbol table entry of a common object file
ldtbread read an indexed symbol table entry of a common object file
Idtbseekseek to the symbol table of a common object file
len « « « « . . . return length of Fortran string
log. Fortran natural logarithm intrinsic function
logloFortran common logarithm intrinsic function
lognamereturn login name of user
Isearch linear search and update
mallocmain memory allocator
matherr error-handlmg function
MAX ¢ ¢ v v v s o o s s o o o s o o W Fonran maximum-value functions
melock,........return Fortran time accounting
MEMOTY « o « & & v v v s s o s o « o « o « + o« .. .memory operations
mn . .. 0.0 h e e e .. Fortran minimum-value functions
mktemp.makea unique file name
modFortran remaindering intrinsic functions
monitor « e « s s+ e+«prepare execution profile
nlist s e e e .getentriesfromnamelist
PEITOT . . & . & 4 ¢ v e 4 v v o v v 4 o+ oSystem error messages
plotgraphics interface subroutines
popeninitate pipe to/from a process
printfprint formatted output

putc L e e e s e e e e put character or word on a stream
putpwentwrite password file entry
putsputastringonastream

SOt « . v . . v e s e i e e i e e e e e e s equicker sort
randsimple random-number generator
randFortran uniform random-number generator
regempcompileand execute regular expression
roundFortran nearest integer functions

scanf ¢« s+ « « .+« o .convert formatted input
setbufassign buffering to a stream
Seimpnon-local goto

signFortran transfer-of-51gn intrinsic function
signalspecify Fortran action on receipt of a system signal
sin.............4.......Fortran sine intrinsic function
sinth Fortran hyperbolic sine intrinsic function
sinhhyperbolic functions
sleep.suspend execution for interval
sputlaccess long numeric data in a machine independent fashion.
sqrt+Fortran square root intrinsic function
ssignalsoftware signals
stdio.standard buffered input/output package
stdipcstandard interprocess communication package
string © e s e e e e s e s s e s s e s 4 e+ estring operations

N=HZmM—=HZ00

n—HZm—AZ00

Table of Contents

strtol e ot econvertstring to integer
SWAb it et i e et e e e e e e s s e e s e s s« «Swap bytes
SYSteM . « « v s « + s+ « 4+ « + o o+ oissuea shell command from Fortran
SYSEEM & v v 4 b e e e e e e e e e e . « . .issue a shell command
t4n + . . 4 e« s o o+ s . . Fortran tangent intrinsic function
tanhFortran hyperbolic tangent intrinsic function
tmpfile¢ ecreateatemporary file
tmpnam e « + o+« « «create a name for a temporary file
g « v v ¢ 4 v e s 4 s e e e v s e s s s« . .trigonometric functions
tsearch+ ¢ ¢+ 44«4 .manage binary search trees
ttyname «. s eeues......findname ofa terminal
ttyslot « « « « .+ ofind the slot in the utmp file of the current user
UNgetC. « « + « « « + s+ « « « « + » «push character back into input stream
x25alnk ¢ 4. sattach orinstall a BX.25 link
x25clnk . . . 0 0 e 0 e e e e e e e « « + « + «change over a BX.25 link
x25hInk« ¢ . ¢ ¢ v ¢ e 4 e e s« . ,haltordetach a BX.25 link
X25ipVC + ¢ « 4 4 4 s ¢+ ¢+ o+ » « . oinstall or remove a PVC on a link

4. File Formats

intro « .+ v + v ¢« v e s e e s e oo .. .introduction to file formats
a0Ut .+ .+ ¢ ¢+ 4.+« s o . .common assembler and link editor output
aoutpdpPDP-11 assembler and link editor output
ACCL . « v « « s 4 « « o« s « « s o o « » o per-process accounting file format
AT © 4 v v ¢ s s o s s s s s s s s e e+ . common archive file format
8 O+ | + archive file format
checklistlistof filc systems processed by fsck
COTE o+ « « = o o + s o« o s o s s o« s s s « o « »format of core image file
CPIO v v ¢ o 4 et e e e e e e e e e s e e e s . format of cpio archive
dir ¢t i ettt et e e e e« o formatof directories
erefileecrror-log file format
filehdr 000 . . file header for common object files
fs ¢ . vt i e v it et e e e s e e .format of system volume
fspec . v ¢ ¢ ¢ v v ¢ s 4« s s s s« . «format specification in text files
gettydefsspeedand terminal settings used by getty
8PS < + « « « « o « « o+ o graphical primitive string, format of graphical files
BTOUD ¢ ¢ ¢ + o o o o o o s o s o s s a s s s o s o o o o« » ogroup file
inittab ¢ e 4 e e s+ . . .scriptfor the init process
inode.ttt . .formatofaninode
ISSUE & ¢« ¢ v 4 ¢ ¢ e s 4 s e s s« s e« s« . . .issueidentification file
Idfen.common object file access routines
linenumline number entries in a common object file
masterdecmaster device information table
masterudbmaster device information table
mattab00l e e e e e . . . mounted file system table
passwd 4 i e v et et s e e . «password file
Plot . . ¢ ¢ . ¢« 4 v et 4 4 s e e s e s e s o s« o »graphics interface
pnch s ¢ s v v s e e e e . . . fileformat for card images
profilesettingup an environment at login time
reloc « .« o ¢« ¢+ s . . .relocation information for a common object file
scesfile. e oo .. . format of SCCS file
scnhdr.section header for a common object file
SYMS <+ « o o o s o s« » « « .« -common object file symbol table format
SyStém +« o o+ 4 « « « . . »format of 3B20S system description file
ULMP « o ¢ ¢ o « s s o s o o o o s » s o » - utmp and wtmp entry formats

Table of Contents

5. Miscellaneous Facilities

115 . introduction to miscellany
aseii vmapof ASCH character set
environ 4 4 444 e euserenvironment
eqncharspecial character definitions for eqn and neqn
fentl0fiecontrol options
greekpgraphics for the extended TTY-37 type-box
manmacros for formatting entries in this manual
mmthe MM macro package for formatting documents
mosdthe OSDD adapter macro package for formatting documents
‘mptxthe macro package for formatting a permuted index
mvatroff macro package for typesetting view graphs and slides
regexpregular expression compile and match routines
statdatareturned by stat system call
termconventional names for terminals
types«primitive system data types

6. Games

intro.introduction to games
arithmeticprovide drill in number facts
backthe game of backgammon
bj. oo . .thegame of black jack
chessttt . . thegame of chess
CTAPS « ¢ = & ¢ v v ¢ 4o v ¢t 4 e s e s e o s 4. . .thegame of craps
hangman.guesstheword
jotto..........................secretwordgame
MAZE . .« o 4 v ¢« s 4 o s s ¢ o s s o s s o s o+« . .generate a maze
MO0 & ¢ ¢ & v v o v o v v v st s s o v o o v s o+ .. .guessing game
quiz.........................testyourknowledge
TEVEISie « o « v v v v v v v v v v o o« . . .agame of dramatic reversals
skyobtain ephemerides
Wt . . . e e e i s e e e e e e e e e e e e e e e .. . tictac-toe
WUMD s« v+ o v oothegame of hunt-the-wumpus

N—H4ZmMm—H4Z200

PERMUTED INDEX

/functions of HP 2640 and

handle special functions of HP
archiver. hpio; HP

functions of DASI 300 and/
/special functions of DASI

of DASI 300 and 300s/ 300,
functions of DASI 300 and
dis:

produce C source listing from
sys3b:

system: format of

13tol, itol3: convert between
comparison. diff3;

Tektronix 4014 terminal.
paginator for the Tektronix
of the DASI 450 terminal.
special functions of the DASI
files from the HONEYWELL
send files to the HONEYWELL
output to the HONEYWELL
f77: Fortran

long integer and base-64/

program.

Fortran absolute value.
value.

adb:

abs: return integer

dabs, cabs, zabs: Fortran
/floor, ceiling, remainder,

of a file. touch: update
utime: set file

accessibility of a file.
commands. graphics:
machine/ sputl, sgetl:

sadp: disk

Idfcn: common object file
/setutent, endutent, utmpname:
access: determine

enable or disable process
acct: per-process

search and print process
mclock: return Fortran time
process accounting.

file format.

process accounting file(s).
sin, cos, tan, asin,

intrinsic function.

sag: system

sar: system

current SCCS file editing
report process data and system
formatting/ mosd: the OSDD

SCCS files.

admin: create and
imaginary part of complex/
part intrinsic function.
alarm: set a process’s
clock.

change data segment space

2621-series terminals., . . . hp(l)

2640 and 2621-series/ hp: hp(1)

2645A terminal tape file hpio(1)

300, 300s: handle special 300(1)

300 and 300s terminals. 300(1)

300s: handle special functions 300(1)

300s terminals. /special 300(1)

3B20S disassembler. dis(1)

3B20S object file. list: list(1)

3B20S specific system calls. sys3b(2)

3B20S system description file. system(4)

3-byte integers and long/ 13t0l(3C)

3-way differential file diff3(1) |
4014: paginator for the 4014(1) B‘
4014 terminal. 4014: 4014(1) E
450: handle special functions 450(1) X
450 terminal. 450; handle 450(1)

6000. /fget.demon: retrieve fget(1C)

6000. fsend:

...... .

. fsend(1C)

6000. /send phototypesetter geat(1C)
77 compiler. f717(1)
a64l, 164a: convert between a64l1(3C)
abort: generate an IOT fault. . abort(3C)
abort: terminate Fortran abort(3F)
abs, iabs, dabs, cabs, zabs: abs(3F)
abs: return integer absolute abs(3C)
absolute debugger. adb(1)
absolute value. abs(3C)
absolute value. abs,iabs, abs(3F)
absolute value functions. floor(3M)
access and modification times . . touch(l)
access and modification times. . . utime(2)
access: determine« .« access(2)
access graphical and numerical . . , . graphics(1G)
access long numeric dataina sputl(3X)
access profiler. sadp(l)
access routines. 4 4040« . . ldfcn(4)
access utmp fileentry. getut(3C)
accessibility ofafile. access(2)
accounting. acct: acct(2)
accounting file format. acct(4)
accounting file(s). acctcom: acctcom(1)
accounting. 4 . 440 .. mclock(3F)
acct: enable or disable acct(2)
acct: per-process accounting acct(4)
acctcom: searchand print acctcom(1)
acos, atan, atan2:/« trig(3M)
acos, dacos: Fortran arccosine acos(3F)
activity graph. 52g(1G)
activity reporter. e« . . sar(l)
activity. sact: print« . . sact(l)
activity. /time a command; timex(1)
adapter macro package for mosd(5)
adb: absolute debugger. adb(1)
admin: create and administer admin(l)
administer SCCS files. admin(1)
aimag, dimag: Fortran aimag(3F)
aint, dint: Fortran integer aint(3F)
alarmclock. alarm(2)
alarm: set a process’s alarm ., alarm(2)
allocation. brk,sbrk: brk(2)

-1-

xXmoZ—

Permuted Index

realloc, calloc: main memory
natural logarithm/ log,
logarithm intrinsic/ loglO,
Fortran/ max, maxo,

max, max0, amax0, max],
Fortran/ min, min0,

min, min0, amin0, minl,
remaindering intrinsic/ mod,
rshift: Fortran bitwise/

sort: sort

send, gath: gather files
Fortran nearest integer/

link editor output.

link editor output.
introduction to commands and
maintainer.

maintainer for portable/

format.

language. bc:

acos, dacos: Fortran
maintainer. ar:

for portable archives. ar:

cpio: format of cpio

ar: common

ar:

header of a member of an
common archive/ arcv: convert
convert: convert object and
files from PDP-11 to common
an archive/ ldahread: read the
HP 2645A terminal tape file
tar: tape file

maintainer for portable

cpio: copy file

asin, dasin: Fortran

atan2, datan2: Fortran

atan, datan: Fortran

from PDP-11 to common archive/
imaginary part of complex
return Fortran command-line
command. xargs: construct
getopt: get option letter from
expr: evaluate

echo: echo

bc: arbitrary-precision

number facts.

expr: evaluate arguments

characters. asa: interpret
control characters.

ascii: map of

set.

long integer and base-64
number. atof: convert

and/ ctime, localtime, gmtime,
trigonometric/ sin, cos, tan,
intrinsic function.

help:

output. a.out: common
output. a.out: PDP-11

as: common

as:

allocator. malloc, free,
alog, dlog, clog: Fortran
alogl0, dlogl0: Fortran common . .

malloc(3C)
log(3F)

. loglO(3F)

amax0, max], amaxl, dmax1: . max(3F)
amaxl, dmaxl1: Fortran/ max(3F)
amin0, minl, aminl, dminl: . min(3F)
aminl, dminl: Fortran/ min(3F)
amod, dmod: Fortran mod(3F)
and, or, xor, not, Ishift, + + « « « bool(3F)
and/or mergefiles. sort(1)
and/or submit RJE jobs. send(1C)
anint, dnint, nint, idnint: round(3F)
a.out: common assembler and . a.out(4)

a.out: PDP-11 assembler and

. a.out.pdp(4)

application programs. intro: intro(1)
ar: archive and library ar.pdp(1)
ar; archive and library ar(l)

ar: archive file format. ar.pdp(4)
ar: common archive file ar(4)
arbitrary-precision arithmetic . be(l)
arccosine intrinsic function. acos(3F)
archive and library ar.pdp(1)
archive and library maintainer ar(1)
archive. . . . « ¢« ¢ o v v v o0 e cpio(4)
archive file format. ar(4)
archive file format. ar.pdp(4)
archive file. /the archive ldahread(3X)
archive files from PDP-11 to . arcv(l)
archive files to common/ convert(1)
archive format. farchive arcv(l)
archive header of a member of . ldahread(3X)
archiver. hpio:, . .. hpio(1)
archiver. ¢ v v v v ... tar(1)
archives. /archive and library . . ar(l)
archivesinandout. cpio(1)
arcsine intrinsic function. asin(3F)
arctangent intrinsic function. atan2(3F)
arctangent intrinsic function. . . . atan(3F)
arcv: convert archive files arcv(l)
argument. /dimag: Fortran aimag(3F)
argument. getarg: getarg(3F)
argument list(s) and execute . xargs(1)
argument Vector. + « « + « o 4 4 o o getopt(3C)
arguments as an eXpression. expr(1)
arguments. 0 4 . e s oo oo . echo(l)
arithmetic language. be(1)
arithmetic: provide drillin arithmetic(6)
asan expression. ¢ o .. expr(1)
as: assembler for PDP-11. as.pdp(1)
as: common assembler. as(1)

ASA carriage control asa(l)

asa: interpret ASA carriage asa(l)
ASCII characterset. ascii(5)
ascii: map of ASCII character . ascii(5)
ASCII string. /convert between . a641(3C)
ASCII string to floating-point . atof(3C)
asctime, tzset: convert date ctime(3C)
asin, acos, atan, atan2: trig(3M)
asin, dasin: Fortran arcsine asin(3F)
askforhelp. help(1)
assembler and link editor a.out(4)
assembler and link editor a.out.pdp(4)
assembler. C e e e e e e e as(1)
assembler for PDP-11. as.pdp(1)

-2-

KMC11B/ kasb, kunb:
assertion.

assert: verify program
setbuf:

sin, cos, tan, asin, acos,
arctangent intrinsic/
arctangent intrinsic/
cos, tan, asin, acos, atan,
floating-point number.
integer. strtol, atol,
integer. strtol,

link. x25alnk, x25ilnk:
wait:

processing language.
ungetc: push character

back: the game of

between long integer and
portions of path names.
arithmetic language.

cb: C program
jO, j1, jn, yO, y1, yn:

fread, fwrite:

bsearch:

tdelete, twalk: manage

remove symbols and relocation
/not, Ishift, rshift: Fortran

bj: the game of

sum: print checksum and
sync: update the super
rshift: Fortran bitwise
space allocation.
modest-sized programs.

stdio: standard

setbuf: assign

x25ilnk: attach or install a
x25cInk: change over a
x25dlnk: halt or detach a
swab: swap

cc, pec:

programs. scc:

cflow: generate

cpp: the

cb:

lint: a

cxref: generate

object file. list: produce
value. abs, iabs, dabs,

dc: desk
cal: print

cu:
data returned by stat system
malloc, free, realloc,

intro: introduction to system
sys3b: 3B20S specific system
to an LP line printer. Ip,
pnch: file format for

assembler/un-assembler for the
assert: verify program
assertion.

assign buffering to a stream. . .
atan, atan2: trigonometric/ . .

atan, datan: Fortran

atan2, datan2; Fortran

atan2: trigonometric/ sin,
atof: convert ASCII string to
atoi: convert string to

atol, atoi: convert string to . .

attach or install a BX.25
await completion of process.
awk: pattern scanning and
back into input stream.
back: the game of backgammon.
backgammon.

banner: make posters.

base-64 ASCII string. /convert

basename, dirname: deliver . .

bc: arbitrary-precision
bdiff: big diff.
beautifier.
Bessel functions.
bfs: big file scanner.
binary input/output.
binary search.

bits. strip: . .

bitwise boolean functions. . . .

block count of a file.
block. . .
boolean functions. /Ishift,
brk, sbrk: change data segment
bs: a compiler/interpreter for

bsearch: binary search.
buffered input/output package.

buffering to a stream.

BX.25 link. x25alnk,
BX.25 link.
BX.25 link. x25hink,
bytes.
C compiler.
C compiler for stand-alone
C flow graph.
C language preprocessor.
C program beautifier.
C program checker.

C program cross reference.

C source listing from 3B20S . .

cabs, zabs: Fortran absolute
cal: print calendar.
calculator.
calendar.

calendar: reminder service.

call. stat:

calloc: main memory allocator. . .

calls and error numbers.
calls.
cancel: send/cancel requests
card images.

-3-

.......

e .

binary search trees. tsearch,

......
..........

.............
..........
o« o .
. s .
......
......
“« . o
. v .
« s .
.......
...........
...........
e o .

call another UNIX system.

...........

Permuted Index

. kasb(1)
assert(3X)
assert(3X)
setbuf(3S)
trig(3M)
atan(3F)
atan2(3F)
trig(3M)

. atof(3C)
strtol(3C)
strtol(3C)
x25alnk(3C)
wait(1)
awk(1)
ungetc(3S)
. back(6)
back(6)
banner(1)

. . a641(3C)
basename(1)

xXmMoZ—

cb(1)
bessel(3M)
bfs(1)
fread(3S)
bsearch(3C)
tsearch(3C)
strip.pdp(1)
bool(3F)
bj(6)

bj(6)
sum(1)
sync(1)
bool(3F)
.« brk(2)

. bs(1)
bsearch(3C)
. . stdio(3S)

. . setbuf(3S)

.« » x25alnk(3C)
.« x25clnk(3C)
x25hInk(3C)
. . swab(3C)

. .oce(l)

. . cal(1)

. . calendar(1)
. cu(1C)

. . stat(5)

. « malloc(3C)
. . intro(2)

. . 8ys3b(2)

xXmMoZ-—

Permuted Index

asa: interpret ASA
files.

function. cos, dcos,

commentary of an SCCS delta.
ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,
intrinsic/ exp, dexp,

delta: make a delta

pipe: create an interprocess
/dble, cmplx, demplx, ichar,
stream. ungetc: push

and neqn. eqnchar: special
user. cuserid: get

/getchar, fgetc, getw: get
/putchar, fputc, putw: put
ascii: map of ASCII
interpret ASA carriage control
_tolower, toascii: translate
iscntrl, isascii: classify

tr: translate

directory.

constant-width text for/ cw,
text for nroff or/ eqn, neqn,
lint: a C program

systems processed by fsck.
formatted with the/ mm, osdd,
file. sum: print

chess: the game of

chown,
times: get process and
terminate. wait: wait for

of a file.
group.

isgraph, iscntrl, isascii:
status/ ferror, feof,
alarm: set a process’s alarm

logarithm/ log, alog, dlog,
Idclose, ldaclose:

close:

descriptor.

fclose, flush:

/real, float, sngl, dble,
line-feeds.

comb:

common to two sorted files.
nice: run a

env: set environment for
uux: unix to unix

system: issue a shell

quits. nohup: run a

net: execute a

getopt: parse

/shell, the standard/restricted

carriage control characters. asa(l)
cat: concatenate and print cat(1)

cb: C program beautifier. cb(1)

cc, pec: C compiler. o eeeoce(l)
ccos: Fortran cosine intrinsic . cos(3F)
cd: change working directory. . cd(1)

cdc: change thedelta cde(1)
ceil, fmod, fabs: floor, floor(3M)
ceiling, remainder, absolute/ . floor(3M)
cexp: Fortran exponential exp(3F)
cflow: generate C flow graph. . cflow(1)
(change) toan SCCSfile. delta(1)
channel,00 pipe(2)
char: explicit Fortran type/ ftype(3F)
character back into input ungetc(3S)
character definitions foreqn eqnchar(5)
character login name of the cuserid(3S)
character or word from stream. . getc(3S)
character or word on a stream. . . . putc(3S)
characterset.« v, ascii(5)
characters. asa: asa(l)
characters. /_toupper, conv(3C)
characters. /isprint, isgraph, ctype(3C)
characters. . « « + « ¢« v ¢ 4 4 0 o tr(1)
chdir: change working chdir(2)
checkcw: prepare cw(l)
checkeq: format mathematical . eqn(l)
checker. v ¢« v v 4 o0 0 lint(1)
checklist: listof file checklist(4)
checkmm: print/check documents . . mm(1)
checksum and block count of a . sum(1)
chess. . . . v v v v it e e chess(6)
chess: the game of chess. chess(6)
chgrp: change owner or group. chown(1)
child process times. times(2)
child process to stopor wait(2)
chmod: change mode. chmod(l)
chmod: change mode of file. chmod(2)
chown: change owner and group . . . chown(2)
chown, chgrp: change owner or . . . chown(l)
chroot: change root directory. . . chroot(2)
classify characters. /isprint, ctype(3C)
clearerr, fileno: stream ferror(3S)
clock. .« v . . o0t i i e e e alarm(2)

clock: report CPU time used. . . .

. clock(3C)

clog: Fortran natural log(3F)
close a common object file. ldclose(3X)
close a file descriptor. close(2)
close:closeafile close(2)
close or flush a stream. fclose(3S)
cmp: compare two files. cmp(1)
cmplx, demplx, ichar, char:/ ftype(3F)
col: filterreverse col(1)
comb: combine SCCS deltas. comb(l)
combine SCCS deltas. comb(1)
comm: select or reject lines comm(1)
command at low priority. nice(1)
command execution. env(l)
command execution. uux(1C)
command from Fortran. system(3F)
command immune to hangups and . . nohup(l)
command on the PCL network. . net(1C)
command options. e« o o« . . . getopt(l)
command programming language. . . sh(l)

-4-

and system/ timex: time a
system: issue a shell

test: condition evaluation
time: time a

argument list(s) and execute
getarg: return Fortran

intro: introduction to

access graphical and numerical
network useful with graphical
cdc: change the delta

ar:

Jarchive files from PDP-11 to
editor output. a.out:

as:

object and archive files to
logl0, alogl0, dlogl0: Fortran
routines. ldfcn:

Idopen, ldaopen: open a
/line number entries of a
ldclose, ldaclose: close a

read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a
/section header of a

an indexed/named section of a
of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

nm: print name list of
relocation information for a
scnhdr: section header for a
line number information from a
table format. syms:

filehdr: file header for

1d: link editor for

size: print section sizes of
comm: select or reject lines
ipcs: report inter-process
stdipc: standard interprocess
diff: differential file

cmp:

SCCS file. scesdiff:

diff3: 3-way differential file
dircmp: directory

expression. regemp, regex:
regexp: regular expression
regcmp: regular expression
cc, pec: C

77: Fortran 77

programs. scc: C

yacc: yet another
modest-sized programs. bs: a
erf, erfc: error function and
wait: await

Fortran imaginary part of
conjg, dconjg: Fortran

cprs:

pack, pcat, unpack:

table entry of a/ Idtbindex:
cat:

synchronous printer. scat:
test:

command; report process data
command.

command.
command.

Permuted Index

command-line argument.

commands and application/
commands. graphics: .
commands. stat: statistical

commentary of an SCCS delta. . . .

common archive file

common archive format.
common assembler and link

common assembler.

format.

D

common formats. /convert

common logarithm intrinsic/ . . .
common object file access
common object file for/

common object file function.

common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.
common object file.

common object file symbol

common object files.
common object files.
common object files.

Idfhread: . .
/number . . .
[seekto . . .

.

.

[seekto . . .
/the index
Jindexed . . .
ldtbseek:
linenum: .

. timex(1)

system(3S)
test(1)

... . time(l)
command. xargs: construct

xargs(1)
getarg(3F)
intro(1)

. graphics(1G)

stat(1G)
cde(1)

. ar(4)
. arcv(l)
. a.out(4)

as(1)
convert(l)

. loglO(3F)

1dfen(4)

. ldopen(3X)

Idiread(3X)
ldclose(3X)
Idfhread(3X)

. . 1diseek(3X)

Idohseek(3X)
Idrseek(3X)

. ldshread(3X)

Idsseek(3X)

. . ldtbindex(3X)
. ldtbread(3X)

ldtbseek(3X)

. . linenum(4)

. . filehdr(4)

........ nm(1)
reloc .« « . . reloc(4)
e e s o+« . scnhdr(4)
Jand strip(1)
s o s« « Syms(4)

common to two sorted files.

communication facilities/

communication package.

comparator.
compare two files.

compare two versions ofan

comparison.
comparison.
compile and execute

compile and match routines.

compile. . .
compiler.
compiler.

compiler for stand-alone

compiler-compiler.
compiler/interpreter

L N I R

.........

regular

.....

e o o & o 2 s o .

for « « v v o v

complementary error function.

completion of process.
complex argument. /dimag:
complex conjugate intrinsic/

.....

.....

compress an IS25 object file.

compress and expand files.

compute the index of a symbol . . .

concatenate and print files.
concatenate and print files on

condition evaluation

-5.

command. . . .

(1)

. size(1)

comm(1)
ipcs(1)
stdipc(3C)
diff (1)
cmp(1)
scesdiff(1)
diff3(1)
dircmp(1)
regemp(3X)

. regexp(5)

regemp(1)
cc(l)

.. 7700

scc(1)
yace(1)
bs(1)
erf(3M)
wait(1)
aimag(3F)
conjg(3F)
cprs(l)

. pack(l)

Idtbindex(3X)

. cat(1l)
. scat(l)

test(1)

xXmoZ—

xXmoZ-—

Permuted Index

conjugate intrinsic function.
conjg, dconjg: Fortran complex
an out-going terminal line
report and interactive status
cw, checkcw: prepare
execute command. xargs:
nroff/troff, tbl, and eqn

Is: list

toc: graphical table of

csplit:

asa: interpret ASA carriage
ioctl:

fentl: file

msgetl: message

semctl: semaphore

shmctl: shared memory
fentl: file

uucp status inquiry and job
vc: version

terminals. term:

char: explicit Fortran type
units:

dd:

PDP-11 to common/ arcv:
floating-point number. atof:
integers and/ 13tol, 1tol3:
and base-64 ASCII/ a64l, 164a:
archive files to common/
/gmtime, asctime, tzset:

to string. ecvt, fcvt, gevt:
scanf, fscanf, sscanf:

files to common/ convert:
strtol, atol, atoi:

dd: convert and

cpio:

cp, In, mv:

uulog, uuname: unix to unix
public UNIX-to-UNIX file
file.

core: format of

cosine intrinsic function.
atan2: trigonometric/ sin,
hyperbolic cosine intrinsic/
functions. sinh,

cos, dcos, ccos: Fortran
/dcosh: Fortran hyperbolic
sum: print checksum and block
wc: word

files.

cpio: format of

and out.

preprocessor.

file.

clock: report
craps: the game of

rewrite an existing one.
file. tmpnam, tempnam:
an existing one. creat:
fork:

tmpfile:

channel. pipe:

files. admin:

conjg, dconjg: Fortran complex

. conjg(3F)

conjugate intrinsic function. conjg(3F)
connection. dial: establish dial(3C)
console. rjestat: RJE status rjestat(1C)
constant-width text for troff. . cw(l)
construct argument list(s) and . xargs(1)
constructs. deroff: remove deroff(1)
contents of directories. Is(1)
contents routines. . . . e e e toc(1G)
contextsplit. csplit(1)
control characters. asa(l)
control device. ioctl(2)
control. fentl(2)
control operations. msgetl(2)
control operations. semctl(2)
control operations. shmectl(2)
control options. fentl(5)
control. uustat:, uustat(1C)
control. ve(l)
conventional names for term(5)
conversion. /demplx, ichar, ftype(3F)
CONVErsion Program. . . « « « + « units(1)
convert and copyafile. dd(l)
convert archive files from arcv(l)
convert ASCIH stringto atof(3C)
convert between 3-byte 13tol(3C)
convert between long integer . a641(3C)
convert: convert objectand convert(l)
convert date and timeto/ ctime(3C)
convert floating-point number . ecvt(3C)
convert formatted input. scanf(3S)
convert object and archive convert(1)
convert string to integer. strtol(3C)
copyafile. dd(1)
copy file archives in and out. . cpio(1)
copy, link or move files. cp(l)
COPY. UUCP, &+ o « o o « » o o &« » » Uucp(1C)
copy. uuto, uupick: uuto(1C)
core: format of core image core(4)
coreimagefile. core(4)
cos, dcos, ccos: Fortran cos(3F)
cos, tan, asin, acos, atan, trig(3M)
cosh, dcosh: Fortran cosh(3F)
cosh, tanh: hyperbolic sinh(3M)
cosine intrinsic function. cos(3F)
cosine intrinsic function. cosh(3F)
countofafile. sum(1)
COUNL. & v ¢ v v 4 o o o o s o s o o wc(l)

¢p, In, mv: copy, link or move cp(1)
cpioarchive. cpio(4)
cpio: copy file archivesin cpio(l)
cpio: format of cpio archive. cpio(4)
cpp: the Clanguage cpp(1)
cprs: compress an IS25 object . cprs(1)
CPU timeused. clock(3C)
CIAPS. '« v o 4 o ¢ ¢ v o o o o o & & craps(6)
craps: the game of craps. craps(6)
creat: create a new fileor creat(2)
create a name for a temporary . . tmpnam(3S)
create a new file or rewrite creat(2)
creatc a NEW Process. .+ . « « « + . . fork(2)
create a temporary file. tmpfile(3S)
create an interprocess pipe(2)
create and administer SCCS admin(1)

-6-

umask: set and get file
cxref: generate C program

generate DES encryption.
function. sin, dsin,

intrinsic/ sqrt, dsqrt,
terminal.

fzr terminal.

asctime, tzset: convert date/

ttt,

activity. sact: print

uname: print name of
uname: get name of

slot in the utmp file of the
getcwd: get path-name of
spline: interpolate smooth
name of the user.

of each line of a file.

each line of a file. cut:
constant-width text for/
cross reference.

absolute value. abs, iabs,
intrinsic function. acos,
sending daemon, line printer
dpd, lIpd: HONEYWELL sending
/handle special functions of
special functions of the
intrinsic function. asin,
/time a command; report process
/sgetl: access long numeric
plock: lock process, text, or
prof: display profile

call. stat:

brk, sbrk: change

types: primitive system
join: relational

intrinsic function. atan,
intrinsic function. atan2,
/asctime, tzset: convert
date: print and set the

/idint, real, float, sngl,

/float, sngl, dble, cmplx,
conjugate intrinsic/ conjg,
intrinsic function. cos,
cosine intrinsic/ cosh,

adb: absolute

sdb: symbolic

eqnchar: special character
names. basename, dirname:
file. tail:

delta commentary of an SCCS
file. delta: make a

delta. cdc: change the
rmdel: remove a

to an SCCS file.

comb: combine SCCS

mesg: permit or

tbl, and eqn constructs.
setkey, encrypt: generate

Permuted Index

creationmask. umask(2)
cross reference. cxref(1)
crypt: encode/decode. crypt(1)
crypt, setkey, encrypt: o crypt(3C)
csin: Fortran sine intrinsic sin(3F)
csplit: context split. csplit(1)
csqrt: Fortran squareroot sqrt(3F)
ct: spawn getty to a remote ct(1C)
ctermid: generate file name ctermid(3S)
ctime, localtime, gmtime, ctime(3C)
cu: call another UNIX system. . . cu(1C)
cubic: tic-tac-toe. ttt(6)
current SCCS file editing sact(1)
current UNIX system. uname(1)
current UNIX system. uname(2)
current user. /findthe ttyslot(3C)
current working directory. getcwd (3C)
CUTVE. « o o o s o s o o + o » » « « Spline(1G)
cuserid: get character login cuserid(3S)
cut: cut out selected fields cut(1)

cut out selected fieldsof cut(1)

cw, checkcw: prepare cw(l)
cxref: generate C program cxref(1)
dabs, cabs, zabs: Fortran abs(3F)
dacos: Fortran arccosine acos(3F)
daemon. dpd, Ipd: HONEYWELL . dpd(1C)
daemon, line printer daemon. . dpd(1C)
DASI 300 and 300s terminals. . 300(1)
DASI 450 terminal. /handle 450(1)
dasin: Fortran arcsine asin(3F)
data and system activity. timex(1)
data in a machine independent/ . sputl(3X)
data in memory. plock(2)
data. . .. u e e e e e e e e prof(1)
data returned by stat system stat(5)
data segment space allocation. . . . brk(2)
datatypes. . . .« . . o000 . types(5)
database operator. join(1)
datan: Fortran arctangent atan(3F)
datan2: Fortran arctangent atan2(3F)
date and time to string. ctime(3C)
date. e v e e e e e e date(1)
date: print and set the date. date(1)
dble, cmplx, demplx, ichar,/ . ftype(3F)
dc: desk calculator. de(1)
demplx, ichar, char: explicit/ . . ftype(3F)
dconjg: Fortran complex conjg(3F)
dcos, ccos: Fortran cosine cos(3F)
dcosh: Fortran hyperbolic cosh(3F)
dd: convert and copy a file. dd(1)
debugger.+ . adb(l)
debugger. sdb(1)
definitions for eqn and neqn. . . . eqnchar(5)
deliver portions of path basename(1)
deliver the last partofa tail(1)
delta. cdc: changethe cde(1)
delta (change) toan SCCS delta(l)
delta commentary of an SCCS ede(l)
delta from an SCCS file. rmdel(1)
delta: make a delta (change) delta(1)
deltas. . o ¢ ¢ v v v v e e e e comb(l)
deny messages. 0 .4 o. . mesg(l)
deroff: remove nroff/troff, deroff(1)
DES encryption. crypt, crypt(3C)

-7-

xmMoZ—

Permuted Index

system: format of 3B20S system
close: close a file

dup: duplicate an open file
de:

x25hink, x25dInk: halt or
file. access:

file:

master: master

master: master

ioctl: control

/tekset, td: graphical
exponential intrinsic/ exp,
terminal line connection.
ratfor: rational Fortran
bdiff: big

comparator.

comparison.

sdiff: side-by-side

diffmk: mark

diff:

diff3: 3-way

between files.

of complex argument. aimag,
intrinsic function. aint,

dir: format of

Is: list contents of

rm, rmdir: remove files or
cd: change working

chdir: change working
chroot: change root

dircmp:

unlink: remove

path-name of current working
mkdir: make a

pwd: working

ordinary file. mknod: make a
path names. basename,

printers. enable,

acct: enable or

dis: 3B20S

sadp:

du: summarize

prof:

hypot: Euclidean

/lcongd8: generate uniformly
logarithm/ log, alog,

logarithm/ logl0, alogl0,

max, max0, amax0, max1, amax1,
min, min0, amin0, minl, aminl,
intrinsic/ mod, amod,

nearest integer/ anint,

mm, osdd, checkmm: print/check
macro package for formatting
macro package for formatting
slides. mmt, mvt: typeset
daemon, line printer daemon.

reversi: a game of

nrand48, mrand48, jrand48,/
graph:

arithmetic: provide

description file. system(4)
descriptor. close(2)
descriptor. dup(2)

desk calculator. de(l)
detacha BX.25link. x25hlnk(3C)
determine accessibility ofa access(2)
determine filetype. file(1)
device information table. master.dec(4)
device information table. master.u3b(4)
device. 0o i 0. ioctl(2)
device routines and filters. gdev(1G)
dexp, cexp: Fortran exp(3F)
dial: establish an out-going dial(3C)
dialect. ratfor(1)

s bdiff(1)

diff: differential file diff (1)

diff3: 3-way differential file diff3(1)
difference program. sdiff(1)
differences between files. diffmk(1)
differential file comparator. diff(1)
differential file comparison. diff3(1)
diffmk: mark differences diffmk(1)
dimag: Fortran imaginary part . aimag(3F)
dint: Fortran integer part aint(3F)

dir: format of directories. dir(4)
dircmp: directory comparison. . dircmp(1)
directories. dir(4)
directories. Is(1)
directories. rm(1)
directory.00 ... cd(1)
directory. 0.0 .. chdir(2)
directory. chroot(2)
directory comparison. dircmp(1)
directoryentry. unlink(2)
directory. getcwd: get getewd(3C)
directory. .« « .+ 4 v v v 000w . mkdir(1)
directory name. pwd(1)
directory, or a specialor mknod(2)
dirname: deliver portions of basename(1)
dis: 3B20S disassembler. dis(1)
disable: enable/disable LP enable(1)
disable process accounting. acct(2)
disassembler. dis(1)

disk access profiler. sadp(1)
diskusage. du(1)
display profiledata. prof(1)
distance function. hypot(3M)
distributed pseudo-random/ drand48(3C)
dlog, clog: Fortran natural log(3F)
dlogl0: Fortran common loglO(3F)
dmax1: Fortran maximum-value/ . . max(3F)
dminl: Fortran minimum-value/ . . . min(3F)
dmod: Fortran remaindering . mod(3F)
dnint, nint, idnint: Fortran round(3F)
documents formatted with the/ . mm(1)
documents. mm:the MM mm(5)
documents. /the OSDD adapter . mosd(5)
documents, view graphs, and . . mmt(l)
dpd, lpd: HONEYWELL sending . . dpd(1C)
dpr: off-line print. . , dpr(1C)
dramatic reversals. reversi(6)
drand48, erand48, Irand48, drand48(3C)
drawagraph. graph(1G)
drill in number facts. arithmetic(6)

-8-

transfer-of-sign/ sign, isign,
intrinsic function. sin,
intrinsic function. sinh,
root intrinsic/ sqrt,
intrinsic function. tan,
tangent intrinsic/ tanh,

an object file.

od: octal

object file. dump:
descriptor.
descriptor. dup:
echo:

floating-point number to/

program. end, etext,

sact: print current SCCS file
ed, red: text

files. 1d: link

se: screen

ged: graphical

Id: link

common assembler and link
PDP-11 assembler and link
sed: stream

[user, real group, and

and/ /getegid: get real user,
Language.

fsplit: split {77, ratfor, or

for a pattern. grep,
enable/disable LP printers.
accounting. acct:

enable, disable:

crypt:

encryption. crypt, setkey,
setkey, encrypt: generate DES
makekey: generate

locations in program.
/getgrgid, getgrnam, setgrent,
/getpwuid, getpwnam, setpwent,
utmp/ /pututline, setutent,
nlist: get

file. linenum: line number
man, manprog: print

man: macros for formatting
file/ /manipulate line number
common/ /seek to line number
/ldnrseek: seek to relocation
utmp, wtmp: utmp and wtmp
endgrent: get group file
endpwent: get password file
utmpname: access utmp file
/the index of a symbol table
/read an indexed symbol table
putpwent: write password file
unlink: remove directory
command execution.

profile: setting up an
environ: user
execution. env: set
getenv: return value for
getenv: return Fortran

Permuted Index

dsign: Fortran sign(3F)
dsin, csin: Fortran sine sin(3F)
dsinh: Fortran hyperbolic sine . sinh(3F)
dsqrt, csqrt: Fortran square sqrt(3F)
dtan: Fortran tangent tan(3F)
dtanh: Fortran hyperbolic tanh(3F)

du: summarize disk usage. du(l)

dump: dump selected parts of . dump(1)
dump. od(1)

dump selected parts ofan dump(1)
dup: duplicate an openfile dup(2)
duplicate an openfile dup(2)
echoarguments. echo(l)
echo: echo arguments. echo(1)

ecvt, fovt, gevt:convert ecvt(3C)

ed, red: texteditor. ed(1) |
edata: last locationsin end(3C) N
editing activity. sact(l) E
editor. « ¢« v 4 e e e et e e ed(1) X
editor for common object 1d(1)

editor for video terminals. se(l)

editor.o . h e 0. ged(1G)
editor. v e e v h e e e e 1d.pdp(1)
editor output. aout: a.out(4)
editor output. aout: a.out.pdp(4)
editor. . . v 0 b o e e . sed(1)
effective groupIDs. getuid(2)
effective user, real group, getuid(2)

efl: Extended Fortran efl(1)
eflfiles. . .. o v o0 v v v v v fsplit(1)
egrep, fgrep: searchafile grep(1)
enable, disable: . ., ., enable(l)
enable or disable process acct(2)
enable/disable LP printers. enable(1)
encode/decode. crypt(1)
encrypt: generate DES crypt(3C)
encryption. crypt, crypt(3C)
encryptionkey. makekey(1)
end, etext, edata:last end(3C)
endgrent: get group file/ getgrent(3C)
endpwent: get password file/ . « . getpwent(3C)
endutent, utmpname: access getut(3C)
entries from name list. nlist(3C)
entries in a common object linenum(4)
entries in this manuval. man(1)
entries in this manual. man(5)
entries of a common object Idlread(3X)
entries of a sectionofa ldlseek(3X)
entries of a section ofa/ ldrseek(3X)
entry formats. e e e utmp(4)
entry. /getgrnam, setgrent, getgrent(3C)
entry. /getpwnam, setpwent, getpwent(3C)
entry. /setutent, endutent, getut(3C)

entry of a common object file.
entry of a common object file.

. ldtbindex(3X)
. Idtbread(3X)

ENELY. o ¢ o 2« e e a e e e e e putpwent(3C)
ENIY. « « v v 4 o e e e e e s e e unlink(2)
env: set environment for env(l)
environ: user environment. environ(5)
environment at login time. profile(4)
environment. b environ(5)
environment for command env(l)
environment name. getenv(3C)

environment variable.

-9-

. getenv(3F)

xXmoZ—

Permuted Index

sky: obtain

character definitions for
remove nroff/troff, tbl, and
mathematical text for nroff/
definitions for eqn and neqn.
mrand48, jrand48,/ drand48,
graphical device/ hpd,
complementary error function.
complementary error/ erf,
format.

system error/ perror,
complementary/ erf, erfc:
function and complementary
sys_errlist, sys_nerr: system
to system calls and

matherr:

errfile:

hashcheck: find spelling
terminal line/ dial:

in program. end,

hypot:

expression. expr:

test: condition

execlp, execvp: execute a/
execvp: execute/ execl, execv,
execl, execv, execle, execve,
network. net:

execve, execlp, execvp:
construct argument list(s) and
regemp, regex: compile and
set environment for command
sleep: suspend

sleep: suspend

monitor: prepare

profil:

uux: unix to unix command
execvp: execute a/ execl,
execute/ execl, execv, execle,
/execv, execle, execve, execlp,
a new file or rewrite an
process.

exit,

exponential intrinsic/
exponential, logarithm,/

pecat, unpack: compress and
cmplx, demplx, ichar, char:
exp, dexp, cexp: Fortran

exp, log, logl0, pow, sqrt:
expression.

routines. regexp: regular
regcmp: regular

expr: evaluate arguments as an
compile and execute regular
efl:

greek: graphics for the

fsplit: split
remainder,/ floor, ceil, fmod,
factor:

true,

data in a machine independent
abort: generate an IOT

a stream.

ephemerides. sky(6)

eqn and neqn. /special eqnchar(5)
eqn constructs. deroff:, .. deroff(1)
eqn, neqn, checkeq: format eqn(l)
eqnchar: special character eqnchar(5)
erand48, Irand48, nrand48, drand48(3C)
erase, hardcopy, tekset, td: gdev(1G)
erf, erfc: error functionand erf(3M)
erfc: error functionand erf(3M)
errfile: error-logfile errfile(4)
errno, sys_errlist, sys_nerr: perror(3C)
error functionand erf(3M)
error function. /erfc: error erf(3M)
error messages. Jerrno, perror(3C)
error numbers. /introduction . intro(2)
error-handling function. matherr(3M)
error-log file format. errfile(4)
errors. /hashmake, spellin, spell(1)
establish an out-going dial(3C)
etext, edata: last locations end(3C)
Euclidean distance function. hypot(3M)
evaluate argumentsasan expr(1)
evaluation command. test(l)
execl, execv, execle, execve, . exec(2)
execle, execve, execlp, exec(2)
execlp, execvp: executea/ exec(2)
execute a command on the PCL . net(1C)
execute a file. fexecle, exec(2)
execute command. xargs: xargs(1)
execute regular expression. regemp(3X)
execution. env: env(l)
execution for an interval. sleep(1)
execution for interval, sleep(3C)
executionprofile. monitor(3C)
execution time profile. profil(2)
execution. 4 4. 040 .. . uux(1C)
execv, execle, execve, execlp, exec(2)
execve, execlp, execvp: exec(2)
execvp: executea file. exec(2)
existing one. creat: create creat(2)
exit, _exit: terminate exit(2)
_exit: terminate process. exit(2)
exp, dexp, cexp: Fortran exp(3F)
exp, log, logl0, pow, sqrt: exp(3M)
expand files. pack, « + « .« pack(l)
explicit Fortran type/ /dble, ftype(3F)
exponential intrinsic/ exp(3F)
exponential, logarithm, power,/ . exp(3M)
expr: evaluate arguments as an . expr(l)

expression compile and match
expression compile. .

. regexp(5)
¢ e e o s o o o regemp(l)

EXPIESSION. . v ¢ . v 4 4w 4. .. expr(1)
expression. regemp, regex: regemp(3X)
Extended Fortran Language. . . efi(l)
extended TTY-37 type-box. greek(S)
f77: Fortran 77 compiler. f77(1)
£77, ratfor, oreft files. fsplit(1)
fabs: floor, ceiling, floor(3M)
factora number. factor(1)
factor: factor a number. factor(1)
false: provide truth values. true(1)
fashion.. /access long numeric sputl(3X)
fault. abort(3C)
fclose, fiush: closeor flush fclose(3S)

-10 -

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,
fileno: stream status/

stream. fclose,

files from the HONEYWELL/
word from/ getc, getchar,
from the HONEYWELL/ fget,
stream. gets,

pattern. grep, egrep,

times. utime: set

Idfen: common object
determine accessibility of a
hpio: HP 2645A terminal tape
tar: tape

cpio: copy

chmod: change mode of
change owner and group of a
diff: differential

diff3: 3-way differential

fentl:

fontl:

uupick: public UNIX-to-UNIX
core: format of core image
cprs: compress an IS25 object
umask: set and get

fields of each line of a

dd: convert and copy a

a delta (change) to an SCCS
close: close a

dup: duplicate an open

selected parts of an object

sact: print current SCCS
setgrent, endgrent: get group
endpwent: get password
utmpname: access utmp
putpwent: write password
execlp, execvp: execute a

grep, egrep, fgrep: search a
Idaopen: open a common object
acct: per-process accounting

ar: common archive

ar: archive

errfile: error-log

pnch:

intro: introduction to

entries of a common object
get: get a version of an SCCS
group: group

- files. filehdr:

file. ldfhread: read the
ldohseek: seek to the optional
split: split a

issue: issue identification

of a member of an archive
close a common object

file header of a common object
a section of a common object
file header of a common object
a section of a common object
header of a common object

fentl: file coatrol.

fcvt, gevt: convert
fdopen: open a stream.
feof, clearerr, fileno: stream . .
ferror, feof, clearerr,

flush: close or flush a
fget, fget.demon: retrieve . . .
fgetc, getw: get character or . .
fget.demon: retrieve files . . .
fgets: get a string from a
fgrep: search a file fora
file access and modification
file access routines.
file. access: .+ . ¢ . 0 0. oo

Permuted Index

.+ o fentl(2)
fentl: file control options.

. . fentl(5)

. . ecvt(3C)
. . fopen(3S)
. . ferror(3S)
. . ferror(3S)
. . fclose(3S)
. . fget(1C)
. . getc(3S)
. . fget(1C)
. . gets(3S)
. . grep(1)

. . utime(2)
. . ldfen(4)
. . access(2)

filearchiver. ¢« . ¢ hpio(1)
file archiver. e e o s .. tar(l)

file archivesinand out. cpio(l)
file. . .00 « « « «» chmod(2)
fle.chown: chown(2)
file comparator. v .o diff(1)

file comparison. diff3(1)
filecontrol. .+ .+ .+ v« s o . o fontl(2)
file control options. . . + fentl(5)
file copy. uuto, uuto(1C)
filee. s e e e e e . core(4)
filee. e e e e e cprs(1)
file creation mask. umask(2)
file. cut: cut out selected cut(l)

file e e e e e e e . dd(1)

file. delta:make delta(l)
file descriptor. 0. oo close(2)
file descriptor. dup(2)
file: determine file type. file(1)

file. dump:dump dump(1)
file editing activity. sact(1)

file entry. /getgrnam, getgrent(3C)
file entry. /setpwent, getpwent(3C)
file entry. /endutent, getut(3C)
fileentry. c e e e e e . putpwent(3C)
file. /execv, execle, execve, exec(2)
fileforapattern. grep(1)
file for reading. ldopen, Idopen(3X)
file format. e e e e e acct(4)

file format. e o s o s o ar(4)
fileformat. ar.pdp(4)
file format. errfile(4)
file format for card images. pnch(4)
fileformats. « « + ¢« « ¢ ¢ s o 0 4 intro(4)
file function. /line number . . ldlread(3X)
file. o v o ¢ ¢ o 0 oo v 0o get(l)
file. & v ¢ ¢« v o e o e e e e e group(4)

file header for common object . . .

file header of a common object
file header of a common object/

fileinto pieces.
file.¢.... e e e

file. /read the archive header

file. ldclose, ldaclose:

file. ldfhread: read the
file. /line number entries of . .
file. /seek to the optional

file. /relocation entriesof
« + « ldshread(3X)

file. /indexed/named section

- 11 -

. filehdr(4)

. « ldfhread(3X)
. . ldohseek(3X)
. . split(1)

. . issue(4)

. . Idahread(3X)
. . ldclose(3X)
. . ldfhread(3X)
. . ldlseek(3X)
. . ldohseek(3X)
. . ldrseek(3X)

xMoZ—

xmMoZz—

Permuted Index

section of a common object
table entry of a common object
table entry of a common object
table of a common object
entries in a common object
link: link to a

listing from 3B20S object

or a special or ordinary
ctermid: generate

mktemp: make a unique
change the format of a text
name list of common object
/find the slot in the utmp
one. creat: create a new
passwd: password

or subsequent lines of one
/rewind, ftell: reposition a
Iseck: move read/write

prs: print an SCCS

read: read from

for a common object

remove a delta from an SCCS
bfs: big

two versions of an SCCS
scesfile: format of SCCS
header for a common object
stat, fstat: get

from a common object
checksum and block count of a
syms: common object
volume.

mount: mount a

ustat: get

mnttab: mounted

umount: unmount a

of 3B20S system description
fsck. checklist: list of

deliver the last part of a
tmpfile: create a temporary
create a name for a temporary
and modification times of a
ftw: walk a

file: determine

undo a previous get of an SCCS
report repeated lines in a

val: validate SCCS

write: write on a

umask: set

common object files.

ferror, feof, clearerr,

and print process accounting
create and administer SCCS
send, gath: gather

cat: concatenate and print
cmp: compare two

lines common to two sorted
¢p, In, mv: copy, link or move
mark differences between

file header for common object
find: find

archive/ arcv: convert archive
fget, fget.demon: retrieve
format specification in text
split 77, ratfor, or efl

file. /to an indexed/named Idsseek(3X)
file. /the index of a symbol Idtbindex (3X)
file. /read an indexed symbol . ldtbread(3X)
file. /seek to the symbol ldtbseek(3X)
file. linenum: line number linenum(4)
file.00 0000, link(2)

file. list: produce C source list(1)

file. /make a directory, mknod(2)
file name for terminal. ctermid(3S)
filename. mktemp(3C)
file. newform: newform(1)
file. nm:print nm(1)

file of the current user. ttyslot(3C)
file or rewrite an existing creat(2)
file. 00000, passwd(4)
file. /lines of several files paste(1)

file pointer in a stream., .. fseek(3S)
file pointer. Iseek(2)

file.0... prs(1)

file.00c0.c0... read(2)

file. /relocation information reloc(4)
file rmdel: rmdel(1)
file scanner. « v« . bfs(l)

file. sccsdiff: compare scesdiff(1)
file.¢.cc..... sccsfile(4)
file. scnhdr: section scnhdr(4)
filestatus. stat(2)

file. /line number information strip(1)

file. sum:print sum(1)

file symbol table format., .. syms(4)

file system: format of system fs(4)
filesystem. mount(2)
file system statistics. ustat(2)

file system table. mnttab(4)
filesystem. umount(2)
file. system: format system(4)
file systems processed by checklist(4)
file. tail: tail(1)

file. « ..., tmpfile(3S)
file. tmpnam, tempnam: tmpnam(3S)
file. touch: update access touch(1)
filetree. .+ . o« v v v v oo v ... ftw(3C)
filetype. file(1)

file. unget: unget(1l)
file. uniq: uniq(1)

file., val(1)

file. 00000, write(2)
file-creation mode mask. umask(1)
filehdr: file headerfor filehdr(4)
fileno: stream status/ ferror(3S)
file(s). acctcom: search acctcom(1)
files. admin: admin(1)
files and/or submit RJE jobs . send(1C)
files. cat(1)

files.000 000, cmp(1)

files. comm: select or reject comm(1)
files. 0., cp(1)

files. diffmk: diffmk(1)
files. filehdr: filehdr(4)
files. find(1)

files from PDP-11 to common arcv(l)
files from the HONEYWELL 6000. . fget(1C)
files. fspec: fspec(4)
files. fsplit: fsplit(1)

-12-

string, format of graphical
link editor for common object
scat: concatenate and print
rm, rmdir: remove

/merge same lines of several
unpack: compress and expand
pr: print

section sizes of common object
size: print sizes of object

sort: sort and/or merge

NSC network. nusend: send
/convert object and archive
fsend: send

what: identify SCCS

greek: select terminal

nl: line numbering

col:

graphical device routines and
tplot: graphics

find:

hyphen:

ttyname, isatty:

object library. lorder:
hashmake, spellin, hashcheck:
of the current user. ttyslot:
tee: pipe

int, ifix, idint, real,

atof: convert ASCII string to
ecvt, fcvt, gevt: convert
/modf: manipulate parts of
floor, ceiling, remainder,/
floor, ceil, fmod, fabs:
cflow: generate C

fclose, lush: close or
remainder,/ floor, ceil,
stream.

per-process accounting file

ar: common archive file

from PDP-11 to common archive
ar: archive file

errfile: error-log file

pnch: file

nroff or/ eqn, neqn, checkeq:
description file. system:
newform: change the

inode:

core:

cpio:

dir:

/graphical primitive string,
sccsfile:

file system:

files. fspec:

object file symbol table

troff. tbl:

nroff:

and archive files to common
intro: introduction to file
wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert
fprintf, sprintf: print
/checkmm: print/check documents

Permuted Index

files. /graphical primitive gps(4)

files. Id: . . . o v v o v oo e 1d(1)

files on synchronous printer. scat(1)

files or directories. rm(1)

files or subsequent lines of/ paste(1)
files. pack, pcat, pack(1)
files. .+ v v v v v v et e e pr(1)

files. size:print size(1)
files. + ¢« ¢ v v s v v o s o e oo o sizepdp(l)
files. & ¢ 4 v 0 v v e e e e e sort(1)

files to another UNIX on the . nusend(1C)
files to common formats. convert(1)
files to the HONEYWELL 6000. . fsend(1C)
files. e e e e e e e e e e e e what(1)
filter. . . . ¢ v v v v v oo e greek(1)
filter. e e e h e e e e e e s nl(1) |
filter reverse line-feeds. col(1) B
filters. /tekset, td: gdev(1G) E
filters. « v v v ¢ ¢« + o b e 0 e 0 s tplot(1G) X
findfiles.4+ oo find(1)
find: find files. find(1)

find hyphenated words. hyphen(1)
find name of a terminal. ttyname(3C)
find ordering relation foran lorder(1)
find spelling errors. spell, spell(1)
find the slot in the utmp file ttyslot(3C)
fitting, .+ ¢ ¢ v ot 0 v e v e e e tee(1)

float, sngl, dble, cmpix,/ ftype(3F)
floating-point number. atof(3C)
floating-point number to/ ecvt(3C)
floating-point numbers. frexp(3C)
floor, ceil, fmod, fabs: floor(3M)
floor, ceiling, remainder,/ floor(3M)
flowgraph. cflow(1)
flushastream. fclose(3S)
fmod, fabs: floor, ceiling, floor(3M)
fopen, freopen, fdopen: opena . . . fopen(3S)
fork: create a new process. fork(2)
format. acct: . .« « . ¢ acct(4)
format. . « + ¢« ¢ ¢ 4 0t 0 b e e ar(4)
format. /convert archive files . arcv(l)
format. . . . ¢ 00 00000 ar.pdp(4)
format. . . v ¢ 4 ¢ ¢« ¢« 0« 0 s 0 4 errfile(4)
format for card images. pnch(4)
format mathematical text for . eqn(l)
format of 3B20S system system(4)
format of atextfile. newform(1)
formatof aninode. inode(4)
format of core image fite. core(4)
format of cpio archive. cpio(4)
format of directories. dir(4)
format of graphical files. gps(4)
format of SCCSfile. scesfile(4)
format of system volume. fs(4)
format specification in text fspec(4)
format. syms: common syms(4)
format tables for nroffor tbl(1)
formattext. . « ¢« + & « ¢ ¢ ¢ o o W nroff(1)
formats. /convert object convert(1l)
formats. « « ¢« ¢« « 4 o v e 0w . intro(4)
formats. utmp, utmp(4)
formattedjnput. scanf(3S)
formatted output. printf, printf(3S)
formatted with the MM macros. . mm(1)

13-

xmoZ—

Permuted Index

mptx: the macro package for
mm: the MM macro package for
OSDD adapter macro package for
manual. man: macros for
£77:

abs, iabs, dabs, cabs, zabs:
system/ signal: specify
function. acos, dacos:
function. asin, dasin:
function. atan2, datan2:
function. atan, datan:

or, xor, not, Ishift, rshift:
getarg: return

log10, alogl0, dlogl0:
intrinsic/ conjg, dconjg:
function. cos, dcos, ccos:
ratfor: rational

getenv: return

function. exp, dexp, cexp:
intrinsic/ cosh, dcosh:
intrinsic/ sinh, dsinh:
intrinsic/ tanh, dtanh:
complex/ aimag, dimag:
function. aint, dint:

efl: Extended

amax0, max1l, amax]l, dmaxl:
amin0, minl, aminl, dminl:
log, alog, dlog, clog:

anint, dnint, nint, idnint:
abort: terminate

functions. mod, amod, dmod:
function. sin, dsin, csin:
function. sqrt, dsqrt, csqrt:
len: return length of

index: return location of
issue a shell command from
function. tan, dtan:

mclock: return

intrinsic/ sign, isign, dsign:
/dcmplx, ichar, char: explicit
generator. srand, rand:
formatted output. printf,
word on a/ putc, putchar,
stream. puts,

input/output.

memory allocator. malloc,
stream. fopen,

parts of floating-point/

list: produce C source listing
/and line number information
gets, fgets: get a string
rmdel: remove a delta
getopt: get option letter
read: read

system: issue a shell command
nlist: get entries

arcv: convert archive files
getw: get character or word
/fget.demon: retrieve files
nsctorje: re-route jobs
getpw: get name

formatted input. scanf,

of file systems processed by
reposition a file pointer in/

formatting a permuted index. mptx(5)
formatting documents. mm(5)
formatting documents. /the mosd(5)
formatting entries inthis man(5)
Fortran 77 compiler. f77(1)
Fortran absolute value. abs(3F)
Fortran action on receipt of a . signal(3F)
Fortran arccosine intrinsic acos(3F)
Fortran arcsine intrinsic asin(3F)
Fortran arctangent intrinsic atan2(3F)
Fortran arctangent intrinsic atan(3F)
Fortran bitwise boolean/ and, . bool(3F)

Fortran command-line argument.
Fortran common logarithm/
Fortran complex conjugate
Fortran cosine intrinsic

Fortran dialect.
Fortran environment variable. . . .

. getarg(3F)

logl0(3F)

. conjg(3F)
. cos(3F)

. ratfor(1)

. getenv(3F)

Fortran exponential intrinsic exp(3F)
Fortran hyperbolic cosine cosh(3F)
Fortran hyperbolic sine sinh(3F)
Fortran hyperbolic tangent tanh(3F)
Fortran imaginary partof aimag(3F)
Fortran integer part intrinsic aint(3F)
Fortran Language. efi(1)
Fortran maximum-value/ /max0, . max(3F)
Fortran minimum-value/ /min0, . min(3F)
Fortran natural logarithm/ log(3F)

Fortran nearest integer/

. round(3F)

Fortran program. abort(3F)
Fortran remaindering intrinsic mod(3F)
Fortran sine intrinsic sin(3F)
Fortran square root intrinsic sqrt(3F)
Fortranstring. len(3F)
Fortran substring. index(3F)
Fortran. system: system(3F)
Fortran tangent intrinsic tan(3F)
Fortran time accounting. mclock(3F)
Fortran transfer-of-sign sign(3F)
Fortran type conversion. ftype(3F)
Fortran uniform random-number . rand(3F)
fprintf, sprintf: print printf(3S)
fputc, putw: put characteror putc(3S)
fputs: put a stringona puts(3S)
fread, fwrite: binary fread(3S)

free, realloc, calloc: main
freopen, fdopen: opena
frexp, ldexp, modf: manipulate

. malloc(3C)
. fopen(38S)
. frexp(3C)

from 3B20S object file. list(1)
from a common object file. strip(1)
fromastream. gets(3S)
from an SCCSfile. rmdel(l)
from argument vector. getopt(3C)
fromfile. read(2)
from Fortran. system(3F)
from pamelist. nlist3C)
from PDP-11 to common archive/ . . arcv(l)
from stream. /getchar, fgetc, .« . gete(3S)
from the HONEYWELL 6000. fget(1C)
from the NSC network to RJE. . . . nsctorje(1C)
fomUID. getpw(3C)
fscanf, sscanf: convert scanf(3S)
fsck. checklist: list checklist(4)
fseek, rewind, ftell: fseek(3S)

- 14 -

HONEYWELL 6000.

text files.

efl files.

stat,

pointer in a/ fseek, rewind,

Fortran arccosine intrinsic
Fortran integer part intrinsic
error/ erf, erfc: error
Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
complex conjugate intrinsic
ccos: Fortran cosine intrinsic
hyperbolic cosine intrinsic
and complementary error
Fortran exponential intrinsic
gamma: log gagmma

hypot: Euclidean distance

of a common object file
common logarithm intrinsic
natural logarithm intrinsic
matherr; error-handling
transfer-of-sign intrinsic
csin: Fortran sine intrinsic
hyperbolic sine intrinsic
Fortran square root intrinsic
Fortran tangent intrinsic
hyperbolic tangent intrinsic
jO, j1, jn, y0, y1, yn: Bessel
Fortran bitwise boolean
logarithm, power, square root
remainder, absolute value
dmax1: Fortran maximum-value
dminl: Fortran minimum-value
Fortran remaindering intrinsic
300, 300s: handle special

hp: handle special

terminal. 450: handle special
Fortran nearest integer

sinh, cosh, tanh: hyperbolic
atan, atan2: trigonometric
fread,

jotto: secret word

moo: guessing

back: the

bj: the

chess: the

craps: the

reversi: a

wump: the

intro: introduction to
gamma: log

submit RJE jobs. send,

jobs. send, gath:

output to the HONEYWELL 6000.
user.

number to string. ecvt, fcvt,

maze:
abort:
cflow:
reference. cxref:

fsend: send files to the
fspec: format specification in
fsplit: split f77, ratfor, or
fstat: get file status.
ftell: repositiona file

-15 -

Permuted Index

fsend(1C)
fspec(4)
fsplit(1)
stat(2)

. fseek(3S)

ftw: walkafiletree. ftw(3C)
function. acos, dacos: acos(3F)
function. aint, dint: aint(3F)
function and complementary . erf(3M)
function. asin, dasin: asin(3F)
function. atan2, datan2: atan2(3F)
function.- atan, datan: atan(3F)
function. /dconjg: Fortran conjg(3F)
function. cos, dcos, cos(3F)
function. /dcosh: Fortran cosh(3F)
function. /error function erf(3M)
function. exp, dexp,cexp: exp(3F)
function. « « ¢ « ¢« ¢« + o o o+ o « gamma(3M)
function. « « « « « hypot(3M)
function. /line number entries ldlread(3X)
function. /dloglQ: Fortran logl0(3F)
function. /dlog, clog: Fortran . . log(3F)
function. e e e e e matherr(3M)
function. /dsign: Fortran sign(3F)
function. sin, dsin, sin(3F)
function. /dsinh: Fortran sinh(3F)
function. sqrt, dsqrt, csqrt: . sqrt(3F)
function. tan,dtan: tan(3F)
function. /dtanh: Fortran . . tanh(3F)
functions. ¢ ¢« ¢« ¢ o0 . .. bessel(3M)
functions. /lshift, rshift: bool(3F)
functions. [sqrt: exponential, . . exp(3M)
functions. /floor, ceiling, floor(3M)
functions. /max1, amaxl, max(3F)
functions. /minl, aminl, min(3F)
functions. mod, amod, dmod: mod(3F)
functions of DASI 300 and 300s/ . 300(1)
functions of HP 2640 and/ hp(1)
functions of the DASI450 450(1)
functions. /nint, idnint: round(3F)
functions. . . . « « « « « » sinh(3M)
functions. /tan, asin, acos, trig(3M)
fwrite: binary input/output. . . fread(3S)
game. e e e e e e e . jotto(6)
game. et e e e moo(6)
game of backgammon. back(6)
game of blackjack. bj(6)

game of chess. v « o « « « Chess(6)
game of Craps. . . . « .+ « « o o o . Craps(6)
game of dramatic reversals. reversi(6)
game of hunt-the-wumpus. . . wump(6)
games. e e e e s e e . . intro(6)
gamma function. gamma(3M)
gamma: log gamma function. gamma(3M)
gath: gather files and/or send(1C)
gather files and/or submit RJE . . . send(1C)
gcat: send phototypesetter geat(1C)
gcosmail: send mailto HIS gcosmail(1C)
gevt: convert floating-point ecvt(3C)
ged: graphical editor. ged(1G)
generateamaze. maze(6)
generate an IOT fault. abort(3C)
generate C flow graph. cflow(l)
generate C program cross cxref(1)

xmoZ—

xXmoZ—

Permuted Index

crypt, setkey, encrypt:
makekey:

terminal. ctermid:

lexical tasks. lex:

/srand48, seed48, Icong48:
srand: simple random-number
Fortran uniform random-number
gets, fgets:

get:

ulimit:

the user. cuserid:

getc, getchar, fgetc, getw:
nlist:

umask: set and

stat, fstat:

ustat:

file.

/getgrnam, setgrent, endgrent:
getlogin:

logname:

msgget:

getpw:

system. uname:

unget: undo a previous
argument vector. getopt:
/getpwnam, setpwent, endpwent:
working directory. getcwd:
times. times:

and/ getpid, getpgrp, getppid:
/geteuid, getgid, getegid:
semget:

shmget:

tty:

time:

command-line argument.

get character or word from/
character or word from/ getc,
current working directory.
getuid, geteuid, getgid,
environment variable.
environment name.

real user, effective/ getuid,
user,/ getuid, geteuid,
setgrent, endgrent: get group/
endgrent: get group/ getgrent,
get group/ getgrent, getgrgid,

argument vector.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getpgrp,

setpwent, endpwent: get/
get/ getpwent, getpwuid,
endpwent: get/ getpwent,

a stream.

and terminal settings used by
ct: spawn

settings used by getty.
getegid: get real user,/
pututline, setutent,/

setutent, endutent,/ getutent,

generate DES encryption.
generate encryption key.

generate file namefor
generate programs for simple
generate uniformly distributed/

crypt(3C)
makekey(1)
ctermid(3S)
lex(1)

. drand48(3C)

generator. rand, rand(3C)
generator. srand, rand: rand(3F)
get a string from a stream. gets(3S)
get a version of an SCCS file. .. get(l)

get and set user limits. o ulimit(2)
get character login name of cuserid(3S)
get character or word from/ getc(3S)
get entries from namelist. nlist(3C)
get file creation mask. umask(2)
get file status. stat(2)

get file system statistics. ustat(2)
get: get a version of an SCCS . get(l)
getgroup fileentry. getgrent(3C)
get login name. getlogin(3C)
get login name. logname(1)
get message queue. oo o0 . msgget(2)
get name from UID. getpw(3C)
get name of current UNIX uname(2)
getofan SCCSfile. unget(1)
get option letter from getopt(3C)
get password fileentry. getpwent(3C)
get path-name of current getcwd(3C)
get process and child process . times(2)
get process, process group, getpid(2)
get real user, effective user,/ getuid(2)
get set of semaphores. semget(2)
get shared memory segment. shmget(2)
get the terminal’s name. tty(1)
gettime. 000 . time(2)
getarg: return Fortran getarg(3F)
getc, getchar, fgetc, getw: getc(3S)
getchar, fgetc, getw:get getc(3S)
getcwd: get path-nameof getewd(3C)
getegid: get real user,/ getuid(2)
getenv: return Fortran getenv(3F)
getenv: return value for getenv(3C)
geteuid, getgid, getegid: get getuid(2)
getgid, getegid: getreal getuid(2)

getgrent, getgrgid, getgrnam,
getgrgid, getgrnam, setgrent, . . .
getgrnam, setgrent, endgrent: . . .
getlogin: get login name.
getopt: get option letter from . . .
getopt: parse command options.

. . getgrent(3C)
. getgrent(3C)
. getgrent(3C)

getlogin(3C)

. getopt(3C)
. getopt(1)

getpass: read a password. getpass(3C)
getpgrp, getppid: get process, . getpid(2)
getpid, getpgrp, getppid: get getpid(2)
getppid: get process, process getpid(2)
getpw: get name from UID. getpw(3C)

getpwent, getpwuid, getpwnam,
getpwnam, setpwent, endpwent:
getpwuid, getpwnam, setpwent,

. . getpwent(3C)
. . getpwent(3C)
. getpwent(3C)

gets, fgets: get a string from gets(3S)
getty. gettydefs:speed gettydefs(4)
getty to a remote terminal. ct(1C)
gettydefs: speed and terminal . gettydefs(4)
getuid, geteuid, getgid, getuid(2)
getutent, getutid, getutline, getut(3C)
getutid, getutline, pututline, getut(3C)

- 16 -

setutent,/ getutent, getutid,
from/ getc, getchar, fgetc,
convert/ ctime, localtime,
setjmp, longjmp: non-local
string, format of graphical/
cflow: generate C flow

graph: draw a

sag: system activity
commands. graphics: access
/network useful with
/erase, hardcopy, tekset, td:
ged:

primitive string, format of
format of graphical/ gps:
routines. toc:

gutil:

numerical commands.

tplot:

TTY-37 type-box. greek:
plot:

subroutines. plot:

mvt: typeset documents, view
package for typesetting view
extended TTY-37 type-box.

file for a pattern.

[user, effective user, real
/getppid: get process, process
chown, chgrp: change owner or
setgrent, endgrent: get

group:

setpgrp: set process

id: print user and

real group, and effective
setuid, setgid: set user and
newgrp: log in to a new
chown: change owner and
a signal to a process or a
update, and regenerate
ssignal,

hangman:

moo:

x25hink, x25dInk:

DASI 300 and 300s/ 300, 300s:
2640 and 2621-series/ hp:

the DASI 450 terminal. 450:

nohup: run a command immune to
graphical device/ hpd, erase,
hcreate, hdestroy: manage

spell, hashmake, spellin,

find spelling errors. spell,

search tables. hsearch,

" tables. hsearch, hcreate,

file. scnhdr: section

files. filehdr: file

file. ldfhread: read the file

/seek to the optional file

/read an indexed/named section
ldahread: read the archive

Permuted Index

getutline, pututline,

. getut(3C)

getw: get character orword getc(3S)
gmtime, asctime, tzset: ctime(3C)
BOMO. & v v ¢ttt e e e . « setimp(3C)
gps: graphical primitive gps(4)
graph. cflow(1)
graph: drawa graph. graph(1G)
graph. « . . ¢ 4 et e s e e e e graph(1G)
graph. . . . v v v e v e e e e e e sag(1G)
graphical and numerical graphics(1G)
graphical commands. stat(1G)
graphical device routines and/ gdev(1G)
graphical editor. ged(1G)
graphical files. /graphical gps(4)
graphical primitive string, gps(4)
graphical table of contents toc(1G)
graphical utilities. gutil(1G)
graphics: access graphical and graphics(1G)
graphics filters. tplot(1G)
graphics for the extended greek(S)
graphics interface. plot(4)
graphics interface plot(3X)
graphs, and slides. mmt, mmt(1)
graphs and slides, /macro mv(5)
greek: graphics forthe greek(5)
greek: select terminal filter. greek(1)
grep, egrep, fgrep: searcha grep(l)
group, and effective group/ getuid(2)
group, and parent process IDs. getpid(2)
BIOUP. « » « ¢ o o o o o s s o o chown(1)
group file entry. /getgrnam, getgrent(3C)
groupfile.« » . group(4)
group: group file. group(4)
gooupID. 0. . . setpgrp(2)
group IDs and names. id(1)

group IDs. /effective user, getuid(2)
goupIDs. 000 . . setuid(2)
group. + « . newgrp(1l)
groupofafile. chown(2)
group of processes. fsend kill(2)
groups of programs. /maintain, . . . make(l)
gsignal: software signals. ssignal(3C)
guess theword. « « + « « hangman(6)
guessinggame. . .« « + + s « + » . . Moo(6)
gutil: graphical utilities. gutil(1G)
halt or detach a BX.25 link. . « « X25hink(3C)
handle special functionsof 300(1)
handle special functions of HP hp(1l)
handle special functionsof 450(1)
hangman: guess the word. hangman(6)
hangups and quits. nohup(1)
hardcopy, tekset, td: gdev(lG)
hash search tables. hsearch, hsearch(3C)
hashcheck: find spelling/ spell(1)
hashmake, spellin, hashcheck: spell(1)
hcreate, hdestroy: manage hash . . hsearch(3C)
hdestroy: manage hash search hsearch(3C)
header for a common object scnhdr(4)
header for common object filehdr(4)
header of a common object ldfhread(3X)
header of a common object/ ldohseek(3X)
header of a common object/ ldshread(3X)
header of a member of an/ ldahread(3X)
help: ask forhelp. » help(1)

-17 -

xmoZ—

Permuted Index

help: ask for

retrieve files from the

fsend: send files to the
phototypesetter output to the
printer daemon. dpd, lpd:
handle special functions of
archiver. hpio:

of HP 2640 and 2621-series/
td: graphical device routines/
file archiver.

manage hash search tables.
wump: the game of

cosh, dcosh: Fortran

sinh, cosh, tanh:

sinh, dsinh: Fortran

tanh, dtanh: Fortran

hyphen: find

function.

Fortran absolute value. abs,
/sngl, dble, cmplx, demplx,
semaphore set or shared memory
and names.

setpgrp: set process group
issue: issue

what:

dble, cmplx,/ int, ifix,
integer/ anint, dnint, nint,
id: print user and group
group, and parent process
group, and effective group
setgid: set user and group
sngl, dble, cmplx,/ int,

core: format of core

pnch: file format for card
aimag, dimag: Fortran
nohup: run a command

long numeric data in a machine
for formatting a permuted
of a/ ldtbindex: compute the
ptx: permuted

Fortran substring.

a common/ ldtbread: read an
ldshread, ldnshread: read an
Idsseek, ldnsseek: seek to an
inittab: script for the
process. popen, pclose:
process.

inode: format of an

sscanf: convert formatted
push character back into
fread, fwrite: binary

stdio: standard buffered
fileno: stream status

uustat: uucp status

x25alnk, x25ilnk: attach or
link. x2Sipve, x25rpve:
sngl, dble, cmplx, demplx,/
abs: return

/164a: convert between long
nint, idnint: Fortran nearest
function. aint, dint: Fortran
atol, atoi: convert string to

help. 000 oL help(1)
HONEYWELL 6000. /fget.demon: . . fget(1C)
HONEYWELL 6000. fsend(1C)
HONEYWELL 6000. gcat: send . geat(1C)
HONEYWELL sending daemon, line . dpd(1C)
HP 2640 and 2621-series/ hp: hp(1)

HP 2645A terminal tape file hpio(1)
hp: handle special functions hp(1)

hpd, erase, hardcopy, tekset,
hpio: HP 2645A terminal tape

- . - hpio(1)

hsearch, hcreate, hdestroy: hsearch(3C)
hunt-the-wumpus. wump(6)
hyperbolic cosine intrinsic/ cosh(3F)
hyperbolic functions. sinh(3M)
hyperbolic sine intrinsic/ sinh(3F)
hyperbolic tangent intrinsic/ tanh(3F)
hyphen: find hyphenated words. . . hyphen(1)
hyphenated words. hyphen(1)
hypot: Euclidean distance hypot(3M)
iabs, dabs, cabs, zabs: abs(3F)
ichar, char: explicit Fortran/ ftype(3F)
id. /remove a message queue, ipcrm(1)
id: print user and groupIDs id(1)

ID. 0o setpgrp(2)
identification file. issue(4)
identify SCCSfiles. what(1)
idint, real, float, sngl, ftype(3F)
idnint; Fortran nearest round(3F)
IDsand names. id(1)

IDs. /get process, process getpid(2)
IDs. /effective user,real getuid(2)
IDs. setuid, setuid(2)
ifix, idint, real, float, ftype(3F)
imagefile. core(4)
iMages. + v v v ¢ v v ¢ o v o v o s pnch(4)
imaginary part of complex/ aimag(3F)
immune to hangups and quits. . nohup(1)

independent fashion.. /access

. . sputl(3X)

index. /the macro package mptx(5)
index of a symbol table entry . ldtbindex(3X)
index. 0000 ptx(1)

index: return locationof index(3F)

indexed symbol table entry of . . .
indexed/named section header/
indexed/named section of a/

. ldtbread(3X)
. ldshread(3X)
. ldsseek(3X)

INit Process. .« o « v o v 4 o o o 4 inittab(4)
initiate pipe to/froma popen(3S)
inittab: script for the init inittab(4)
inode: format of an inode. inode(4)
inode. 0.0 inode(4)
input. scanf, fscanf, scanf(3S)
input stream. ungetc: ungetc(3S)
inputfoutput. fread(3S)
input/output package. stdio(3S)
inquiries. [feof, clearerr, ferror(3S)
inquiry and jobcontrol. uustat(1C)
installa BX.25link. x25alnk(3C)
install or remove a PVCona . x25ipve(3C)
int, ifix, idint, real, float, ftype(3F)
integer absolute value. abs(3C)
integer and base-64 ASCII/ a641(3C)
integer functions. /dnint, round(3F)
integer part intrinsic aint(3F)
integer. strtol, strtol(3C)

-18 -

/1tol3: convert between 3-byte
3-byte integers and long
rjestat: RJE status report and
plot: graphics

plot: graphics

spline:

characters. asa:

sno: SNOBOL

pipe: create an

facilities/ ipcs: report
package. stdipc: standard
suspend execution for an
sleep: suspend execution for
acos, dacos: Fortran arccosine
dint: Fortran integer part
asin, dasin: Fortran arcsine
datan2: Fortran arctangent
datan: Fortran arctangent
Fortran complex conjugate
dcos, ccos: Fortran cosine
Fortran hyperbolic cosine
cexp: Fortran exponential
Fortran common logarithm
Fortran natural logarithm
Fortran transfer-of-sign

sin, dsin, csin: Fortran sine
dsinh: Fortran hyperbolic sine
csqrt: Fortran square root
tan, dtan: Fortran tangent
Fortran hyperbolic tangent
dmod: Fortran remaindering
commands and application/
formats.

miscellany.

subroutines and libraries.
calls and error numbers.
application programs. intro:
intro:

intro:

intro:

and libraries. intro:

and error numbers. intro:

abort: generate an
semaphore set or shared/
communication facilities/
Cprs: compress an
/islower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,/
/isprint, isgraph, iscntrl,
terminal. ttyname,
/ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,
transfer-of-sign/ sign,
isalnum,/ isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
[isdigit, isxdigit, isalnum,
Fortran. system:

system:

issue:

file.

integers and long integers. . .
integers. /convert between . .
interactive status console. . . .
interface.

- e s . e o s e e

interface subroutines.

interpolate smooth curve. . . .
interpret ASA carriage control .
interpreter.
interprocess channel.
inter-process communication .
interprocess communication . .
interval. sleep:
interval.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function,
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function. /dtanh: . . .
intrinsic functions. /amod, . .
intro: introductionto
intro: introduction to file . . .
intro: introduction to games. .
intro: introductionto
intro: introduction to
intro: introduction to system .
introduction to commands and

L T S T T T S

e e s s s e

atan2, . ..
atan,
/dconjg: . .
COS,
/dcosh: . . .
Jdexp, . ..
/dlogl0: . .
[clog: . . .
/dsign: . . .
sinh,
/dsqrt, . . .

e e e e .

introduction to file formats. . . .

introduction to games.
introduction to miscellany. . .
introduction to subroutines. . .
introduction to system calls . .
ioctl: control device.
IOTfault.
ipcrm: remove a message queue,
ipcs: report inter-process . . .
IS25 object file.
isalnum, isspace, ispunct,/ . .

D

isalpha, isupper, islower,

isascii: classify characters. . . .
isatty: find name ofa
iscntrl, isascii: classify/

isdigit, isxdigit, isalnum,/

isgraph, iscntrl, isascii:z/
isign, dsign: Fortran
islower, isdigit, isxdigit,
isprint, isgraph, iscntrl,/ . . .
ispunct, isprint, isgraph,/ . . .
isspace, ispunct, isprint,/ . . .
issue a shell command from . .
issue a shell command.
issue identification file.
issue: issue identification . . .

-19-

aint,

Permuted Index

. . 13t01(3C)
. . 13tol(3C)
. . rjestat(1C)
. . plot(4)

. plot(3X)
. . spline(1G)
. . asa(l)

. . sno(l)

. . pipe(2)

. . ipes(l)

... stdipe(3C)

. . sleep(1)
. . sleep(3C)
. . acos(3F)
. . aint(3F)
. . asin(3F)
. . atan2(3F)
. . atan(3F)
. . conjg(3F)
. . cos(3F)

. « cosh(3F)
. . exp(3F)
. . loglo(3F)
. .« log(3F)

. . sign(3F)
. . sin(3F)

. . sinh(3F)
. . sqrt(3F)
. . tan(3F)

. . tanh(3F)
. . mod(3F)
. . intro(1)
. . intro(4)
. . intro(6)
. . intro(5)
. . intro(3)
. . intro(2)
. . intro(1)
. . intro(4)
. . intro(6)
. . intro(5)
. . intro(3)
. . intro(2)
ioctl(2)

. . abort(3C)
. .« iperm(1)
. . ipes(1)
cprs(1)

. . ctype(3C)
. . ctype(3C)
ctype(3C)
. . ttyname(3C)
. . ctype(3C)
. ctype(3C)
. . ctype(3C)
. . sign(3F)
. .« ctype(3C)
. . ctype(3C)
ctype(3C)
ctype(3C)
system(3F)
system(3S)
issue(4)
. issue(4)

xmoZ—

xmoZ-—

Permuted Index

isxdigit, isalnum,/ isalpha,
/isupper, islower, isdigit,
news: print news
functions.

functions. j0,

bj: the game of black
functions. jO, ji,

operator.

/lrand48, nrand48, mrand48,
assembler/un-assembler for/
makekey: generate encryption

process or a group of/

/assembler/un-assembler for the
quiz: test your

for the KMCI11B/ kasb,
3-byte integers and long/
integer and base-64/ a64l,
scanning and processing
arbitrary-precision arithmetic
efl: Extended Fortran

cpp: the C

command programming
/irand48, srand48, seed48,
object files.

object file. ldclose,

header of a member of an/
file for reading. ldopen,
common object file.

of floating-point/ frexp,
access routines.

of a common object file.

line number entries/ ldlread,
number/ ldlread, ldlinit,
manipulate line number/
number entries of a section/
entries of a section/ ldrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,
file header of a common/
object file for reading.
relocation entries of a/
indexed/named section header/
indexed/named section of a/
of a symbol table entry of a/
symbol table entry of a/
table of a common object/
string.

len: return

getopt: get option

simple lexical tasks.

generate programs for simple
to subroutines and

relation for an object

ar: archive and

portable/ ar: archive and
ulimit: get and set user

an out-going terminal

line: read one

common object file. linenum:
/idlinit, 1dlitem: manipulate
Idlseek,ldnlseek: seek to

isupper, islower, isdigit, ctype(3C)
isxdigit, isalnum, isspace,/ ctype(3C)
fems. o ¢ v e e e e e e news(1)

j0, 31, jn, yO, y1, yn: Bessel bessel(3M)
jl, jn, y0, yl, yn: Bessel bessel(3M)
jack. 4o v e e e e e e bj(6)

jn, yO, yl, yn: Bessel bessel(3M)
join: relational database join(1)

jotto: secret word game. Jjotto(6)
jrand48, srand48, seed48,/ drand48(3C)
kasb, kunb: kasb(1)

key. .« o v e e e e e e makekey(1)
kill: send a signaltoa kill(2)

kill: terminate a process. kill(1)
KMCI11B microprocessor. kasb(1)
knowledge. quiz(6)
kunb: assembler/un-assembler kasb(l)
13tol, 1tol3: convert between 13tol(3C)
164a: convert betweenlong a641(3C)
language. awk: pattern awk(1)
language. be:o .. be(l)
Language.« . . efl(1)
language preprocessor. cpp(1)
language. /standard/restricted . » sh(l)
Icong48: generate uniformly/ . drand48(3C)
Id: link editor for common 1d(1)

Id: link editor. 1d.pdp(1)
Idaclose: close a common ldclose(3X)
Idahread: read the archive ldahread(3X)
Idaopen: open a common object . ldopen(3X)
Idclose, ldaclose: closea ldclose(3X)
Idexp, modf: manipulate parts . frexp(3C)
Idfcn: common object file ldfen(4)
Idfhread: read the file header . ldfhread(3X)
Idlinit, ldlitem: manipulate Idlread(3X)
Idlitem: manipulate line Idlread(3X)
Idiread, 1dlinit, ldlitem: Idlread(3X)
IdIseek,ldnlseek: seek to line . ldiseek(3X)
Idnrseek: seek to relocation Idrseek(3X)
Idnshread:readan ldshread(3X)
ldnsseek: seektoan ldsseek(3X)
Idohseek: seek to the optional ldohseek(3X)
Idopen, ldaopen: open a common . . ldopen(3X)
Idrseek, ldnrseek: seekto ldrseek(3X)
Idshread, ldnshread: readan ldshread(3X)

ldsseek, ldnsseek: seek to an
Idtbindex: compute the index

. . ldsseek(3X)
. ldtbindex(3X)

Idtbread: read an indexed ldtbread(3X)
Idtbseek: seek to the symbol . . ldtbseek(3X)
len: return length of Fortran . len(3F)
length of Fortran string. len(3F)
letter from argument vector. . getopt(3C)
lex: generate programs for lex(1)
lexical tasks. lex: . « « « « o 4o « & lex(1)
libraries. /introduction intro(3)
library. /find ordering lorder(l)
library maintainer. ar.pdp(1)
library maintainer for ar(1)

limits. .« « . v o v v v o v 0. ulimit(2)
line connection. /establish dial(3C)
line. ¢ i v v i i line(1)

line number entriesina linenum(4)
line number entries ofa/ Idlread (3X)
line number entriesofa/ Idlseek(3X)

-20-

strip: strip symbol and
nl:
out selected fields of each

Ipd: HONEYWELL sending daemon,

send/cancel requests to an LP
lpr:

Isearch:

col: filter reverse

in a common object file.

files. comm: select or reject
uniq: report repeated

of several files or subsequent
subsequent/ paste: merge same
files. 1d:

1d:

a.out: common assembler and
a.out: PDP-11 assembler and

¢p, In, mv: copy,

link:

attach or install a BX.25
x25cInk: change over a BX.25
halt or detach a BX.25

install or remove a PVC on a

Is:

nlist: get entries from name
nm: print name

nm: print name

by fsck. checklist:

from 3B20S object file.

file. list: produce C source
xargs: construct argument
files. cp,

tzset: convert date/ ctime,
index: return

end, etext, edata: last
memory. plock:

trouble:

natural logarithm intrinsic/
gamma:

newgrp:

exponential, logarithm,/ exp,
common logarithm intrinsic/
logarithm, power,/ exp, log,
/alogl0, dlogl0: Fortran common
/dlog, clog: Fortran natural
/logl0, pow, sqrt: exponential,
getlogin: get

logname: get

cuserid: get character
logname: return

passwd: change

setting up an environment at

user.

a64l, 164a: convert between
between 3-byte integers and
sputl, sgetl: access

setjmp,

for an object library.

nice: run a command at

Permuted Index

line number information froma/ . . strip(1)

line numbering filter. nl(1)

line of a file. cuticut cut(1)

line printer daemon. dpd, dpd(1C)
line printer. lp, cancel: ., Ip(1)

line printer spooler. lpr(1)

line: read oneline. line(1)
linear search and update. . . ., ., , Isearch(3C)
linefeeds. col(1)
linenum: line number entries linenum(4)
lines common to two sorted comm(1)
linesinafile. uniq(1)
lines of one file. /same lines paste(l)
lines of several filesor paste(1)
link editor for common object 1d(1)

link editor. 1d.pdp(1)
link editor output. a.out(4)
link editor output. a.out.pdp(4)
link: link toa file. link(2)

link or move files. cp(1)
linktoafile. link(2)

link. x25alnk, x25ilnk:, . . x25alnk(3C)
link. x25clnk(3C)
link. x25hlnk, x25dlnk: x25hInk(3C)
link. x25ipve, x25rpve: . 0 . v . . x25ipve(3C)
lint: a C program checker. lint(1)

list contents of directories. Is(1)

list. .« o o0 0. nlist(3C)
list.000000.... nm.pdp(1)
list of common object file. nm(1)

list of file systems processed checklist(4)
list: produce C source listing list(1)
listing from 3B20S object list(1)
list(s) and execute command. xargs(l)

In, mv: copy, link or move cp(1)
localtime, gmtime, asctime, ctime(3C)
location of Fortran substring. index(3F)
locations in program. end(3C)
lock process, text, ordatain plock(2)
log a trouble report. trouble(1)
log, alog, dlog, clog: Fortran log(3F)

log gamma function. gamma(3M)
logintoa new group. newgrp(1)
log, logl0, pow,sqrt: exp(3M)

logl0, alogl0, dlogl0: Fortran logl0(3F)
logl0, pow, sqrt: exponential, exp(3M)
logarithm intrinsic function. loglO(3F)

logarithm intrinsic function. log(3F)
logarithm, power, square root/ . . . exp(3M)
loginpame. getlogin(3C)
loginname. logname(1)
login name of the user. cuserid(3S)
login name of user. logname(3X)
login password. passwd(1)
login: signon. login(l)
login time. profile: profile(4)
logname: get login name. logname(1)

logname: return login name of logname(3X)
long integer and base-64 ASCIl/ . . . a64l(3C)
long integers. /ltol3: convert 13tol(3C)
long numeric data in a machine/ . . . sputl(3X)

longjmp: non-local goto. setjmp(3C)
lorder: find ordering relation lorder(l)
lowpriority. nice(1)

-21-

xXmoZ—

xmoZ—

Permuted Index

requests to an LP line/
send/cancel requests to an
disable: enable/disable
Ipstat: print

line printer daemon. dpd,

information.

jrand48,/ drand48, erand48,
directories.

update.

pointer.

bitwise/ and, or, xor, not,
integers and long/ 13tol,

/access long numeric data in a
permuted index. mptx: the
documents. mm: the MM
mosd: the OSDD adapter
view graphs and/ mv: a troff
m4:

in this manual. man:
formatted with the MM

send mail to users or read
users or read mail.

geosmail: send

mail, rmail: send

malloc, free, realloc, calloc:
regenerate groups of/ make:
ar: archive and library

ar: archive and library

SCCS file. delta:

mkdir:

or ordinary file. mknod:
mktemp:

regenerate groups of/
banner:

key.

main memory allocator.
entries in this manual.

this manual.

tsearch, tdeiete, twalk:
hsearch, hcreate, hdestroy:
of/ Idlread, ldlinit, ldlitem:
frexp, ldexp, modf:

manual. man,

manprog: print entries in this
for formatting entries in this
ascii:

files. diffmk:

umask: set file-creation mode
set and get file creation

table. master:

table. master:

information table.
information table.

regular expression compile and
eqn, neqn, checkeq: format
function.
multiple-access-user-space/
dmax1: Fortran maximum-value/
dmax1: Fortran/ max,

max, max0, amax0,

/max1, amaxl, dmax1: Fortran

Ip, cancel: send/cancel Ip(1)

LP line printer. Ip, cancel: Ip(1)

LP printers. enable, enable(1)
LP status information. Ipstat(l)

Ipd: HONEYWELL sending daemon, . dpd(1C)

Ipr: line printer spooler. Ipr(1)

Ipstat: print LPstatus Ipstat(1)
Irand48, nrand48, mrand48, drand48(3C)
Is: list contentsof 1s(1)

Isearch: linear searchand Isearch(3C)
Iseek: move read/write file Iseek(2)
Ishift, rshift: Fortran bool(3F)
1tol3: convert between 3-byte . 13tol(3C)
m4: Macro processor. . . . « .+ . . . m4(1)
machine independent fashion.. sputl(3X)
macro package for formatting a . . mptx(5)
macro package for formatting . mm(5)
macro package for formatting/ mosd(5)
macro package for typesetting . mv(5)
MAacro Processor. . « « « « « o« + o o m4(1)
macros for formatting entries « « . man(5)
macros. /print/check documents . . . mm(l)

mail. mail, rmail: mail(1)
mail, rmail: send mailto mail(1)
mailto HISuser. geosmail(1C)
mail to users or read mail. mail(1)
main memory allocator. malloc(3C)
maintain, update,and make(1)
maintainer. o. 0. ar.pdp(1)
maintainer for portable/ ar(1)

make a delta (change) toan delta(1)
make a directory. mkdir(l)
make a directory, or a special . mknod(2)
make a unique file pame. mktemp(3C)
make: maintain, update, and . make(1)
make posters. 0 .. . banner(1)
makekey: generate encryption . makekey(1)
malloc, free, realloc, calloc: malloc(3C)
man; macros for formatting man(5)
man, manprog: print entriesin man(l)
manage binary search trees. tsearch(3C)
manage hash search tables. hsearch(3C)
manipulate line number entries . ldiread(3X)
manipulate partsof/ frexp(3C)
manprog: print entries in this . man(1)
manual. man, .+ . .+, man(l)
manual. man: macros man(5)

map of ASCII characterset. ascii(5)
mark differences between diffmk(1)
mask. . . ¢ . 0 b b e e e e . umask(1)
mask. umask: umask(2)
master device information master.dec(4)
master device information master.u3b(4)
master: master device master.dec(4)
master: master device master.u3b(4)
match routines. regexp: regexp(5)
mathematical text for nroff or/ . eqn(l)
matherr: error-handling matherr(3M)
MAUS: o o o ¢ o « o s o o o s s s maus(2)
max, max0, amax0, max1l, amaxl, . . max(3F)
max{, amax0, maxl, amaxl, . . max(3F)
maxl, amax1, dmax1: Fortran/ . max(3F)
maximum-value functions. max(3F)
maze: generate a maze. maze(6)

-22.

maze: generate a

accounting.

memcpy, memset: memory/
memset: memory/ memccpy,
operations. memccpy, memchr,
memccpy, memchr, memcmp,
free, realloc, calloc: main
shmctl: shared

queue, semaphore set or shared
/(shared

mememp, memcpy, memset:
shmop: shared

lock process, text, or data in
shmget: get shared

/memchr, memcmp, memcpy,
sort: sort and/or

files or subsequent/ paste:

msgetl:

msgop:

msgget: get

or shared/ ipcrm: remove a
mesg: permit or deny
Sys_nerr: system error

/for the KMC11B

dminl: Fortran minimum-value/
dminl: Fortran/ min,

min, min0, amin0,

/minl, aminl, dminl: Fortran

special or ordinary file.

name.

formatting documents. mm: the
documents formatted with the
documents formatted with the/
formatting documents.

view graphs, and slides.

table.

remaindering intrinsic/

chmod: change

umask: set file-creation

chmod: change

bs: a compiler/interpreter for
floating-point/ frexp, ldexp,
touch: update access and
utime: set file access and
profile.

package for formatting/
mount:

mnttab:

cp, In, mv: copy, link or
Iseek:

formatting a permuted index.
/erand48, Irand48, nrand48,
operations.

(shared memory)/ maus:
typesetting view graphs and/
cp, In,

graphs, and slides. mmt,
log, alog, dlog, clog: Fortran

maze.

...............

mclock: return Fortran time . . .

memccpy, memchr, memcmp,

memchr, memcmp, memcpy,

memcmp, memcpy, memset: memory

memcpy, memset: memory/
memory allocator. malloc,

memory control operations.
memory id. /remove a message
memory) operations.
memory operations. /memchr,
memory operations.

memory. plock:

memory segment.
memset: memory operations.
merge files.
merge same lines of several
mesg: permit or deny messages.

message control operations.

message operations.
message queue.
message queue, semaphore set
messages.
messages. /errno, sys_errlist,
microprocessor.

min, min0, amin0, minl, aminl, . . .

min0, amin0, minl, aminl,

minl, aminl, dmin1: Fortran/ . . .

minimum-value functions.
mkdir: make a directory.

mknod: make a directory, ora

mktemp: make a unique file . .
MM macro package for

Permuted Index

maze(6)

. . mclock(3F)
memory(3C)
. memory(3C)
memory(3C)
memory(3C)
.+ malloc(3C)
shmctl(2)

. iperm(1)
maus(2)

. memory(3C)
shmop(2)

. plock(2)
shmget(2)

. memory(3C)
sort(1)
paste(1)

. mesg(1)

. msgetl(2)
msgop(2)
msgget(2)

. iperm(1)
mesg(1)

. « perror(3C)

. kasb(1)
min(3F)
min(3F)

. min(3F)
min(3F)
mkdir(1)
mknod(2)

. mktemp(3C)
mm(5)

MM macros. /print/check mm(l)
mm, osdd, checkmm: print/check . mm(1)
mm: the MM macro package for . . . mm(5)
mmt, mvt: typeset documents, . mmt(1)
mnttab: mounted file system . » . mnttab(4)
mod, amod, dmod: Fortran mod(3F)
mode. o e e e chmod(1)
modemask. v umask(1)
modeoffile. chmod(2)
modest-sized programs. bs(1)
modf: manipulate partsof frexp(3C)
modification times ofa file. touch(1)
modification times. . . ., utime(2)
monitor: prepare execution monitor(3C)
moo: guessing game. moo(6)
mosd: the OSDD adapter macro . mosd(5)
mount a file system. mount(2)
mount: mount a file system. mount(2)
mounted file system table. . « . . mnttab(4)
movefiles. e e ecp(l)
move read/write file pointer, .« . Iseek(2)
mptx: the macro package for . « . mptx(5)
mrand48, jrand48, srand48,/ . « . drand48(3C)
msgetl: message control msgetl(2)
msgget: get message queue. msgget(2)
msgop: message operations. msgop(2)
multiple-access-user-space maus(2)
mv: a troff macro package for .« . mv(5)
mv: copy, link or move files. . . cp(1)
mvt: typeset documents, view . mmt(1)

natural logarithm intrinsic/

-23-

... log(3F)

XxXmMoZ—

XxXmMOoZ-—

Permuted Index

/dnint, nint, idnint: Fortran
mathematical text for/ eqn,
definitions for eqn and

PCL network.

execute a command on the PCL
operation status of the NSC

to another UNIX on the NSC
re-route jobs from the NSC
commands. stat: statistical

a text file.

news: print

process.
priority.
integer/ anint, dnint,

list.

object file.

hangups and quits.

setjmp, longjmp:

bitwise boolean/ and, or, xor,
drand48, erand48, lrand48,

format mathematical text for
tbl: format tables for
constructs. deroff: remove

the operation status of the

files to another UNIX on the
re-route jobs from the

status of the NSC network.

the NSC network to RJE.

nl: line

sputl, sgetl: access long
graphics: access graphical and
UNIX on the NSC network.
common/ convert: convert
ldfcn: common

cprs: compress an IS25

dump selected parts of an
ldopen, 1daopen: open a common
number entries of a common
Idaclose: close a common

the file header of a common
of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of a common
the symbol table of a common
number entries in a common
C source listing from 3B20S
nm: print name list of common
information for a common
section header for a common
information from a common
format. syms: common

file header for common

1d: link editor for common
print section sizes of common
size: print sizes of

nearest integer functions.
neqn, checkeq: format
neqn. /special character
net: execute a command on the . . .
network. met:0 0. 00 e
network. nscstat: query the e e e

. round(3F)
. eqn(l)
. eqnchar(S)

net(1C)
net(1C)
nscstat(1C)

network. nusend: send files nusend(1C)
network to RJE. nsctorje: nsctorje(1C)
network useful with graphical stat(1G)
newform: change the format of . . . newform(1)
newgrp: log in to a new group. newgrp(l)
newsitems. . . « « + o o « o . o o News(l)
news: print news items. news(1)
nice: change priorityofa nice(2)
nice: run a command at low nice(l)
nint, idnint: Fortran nearest round(3F)
al: line numbering filter. nl1)

nlist: get entries from name nlist(3C)
nm: print name list. nm.pdp(1)
nm: print name list of common . nm(1)
nohup: run a command immune to . nohup(l)
non-localgoto. « ¢« « o .. setjmp(3C)
not, Ishift, rshift: Fortran bool(3F)
nrand48, mrand48, Jrand48/ . . drand48(3C)
nroff: formattext. nroff(l)
nroff or troff. /checkeq: eqn(l)
nroffortroff.o tbl(1)
nroff/troff, tbl, andeqn deroff(1)
NSC network. nscstat: query nscstat(1C)
NSC network. nusend: send nusend(1C)
NSC network to RJE. nsctorje: . nsctorje(1C)
nscstat: query the operation nscstat(1C)

nsctorje: re-route jobs from
numbering filter. .
numeric data in a machine/
numerical commands.
nusend: send files to another
object and archive filesto
object file access routines.
object file.
object file. dump:
object file for reading.
object file function. /line
object file. Idclose, o . .

object file. ldfhread: read
object file. /number entries
object file. /to the optional
object file. jentries
object file. /indexed/named

object file. /indexed/named
object file. /the index ofa

object file. /read an indexed
object file. /seek to .
object file. linenum: line
object file. list: produce
objectfile.
object file.
object file. scnhdr:
object file. /and line number . . .
object file symbol table
object files. filehdr:
object files. e et e e e e e e
object files. size:
object files.

/relocation

-24.

. nsctorje(1C)
. ni(1)

sputl(3X)
graphics(1G)
nusend(1C)
convert(1)
ldfcn(4)
cprs(1)

. dump(1)

Idopen(3X)

. 1dlread(3X)

Idclose(3X)
ldfhread(3X)
Idlseek(3X)
ldohseek(3X)
Idrseek(3X)

. ldshread(3X)

Idsseek(3X)

.ldtbindex(3X)

ldtbread (3X)
ldtbseek(3X)
linenum(4)
list(1)

. nm(1)

reloc(4)

. . scnhdr(4)
. strip(1)

syms(4)
filehdr(4)
1d(1)

. size(1)

size.pdp(1)

find ordering relation for an
sky:
od:

dpr:

reading. Idopen, ldaopen:
fopen, freopen, fdopen:

dup: duplicate an

open:

writing.

network. nscstat: query the
/(shared memory)

mememp, memcpy, memset: memory
msgctl: message control

msgop: message

semctl: semaphore control
semop: semaphore

shmectl: shared memory control
shmop: shared memory

strespn, strtok: string

join: relational database

vector. getopt: get

common/ Idohseek: seek to the
fentl: file control

stty: set the

getopt: parse command

Fortran bitwise boolean/ and,
object library. lorder: find

a directory, or a special or
formatting/ mosd: the
documents formatted with/ mm,
dial: establish an

assembler and link editor
assembler and link editor
sprintf: print formatted

gcat: send phototypesetter
chown: change

chown, chgrp: change

and expand files.

permuted/ mptx: the macro
documents. mm: the MM macro
mosd: the OSDD adapter macro
graphs and/ mv: a troff macro
standard buffered input/output
interprocess communication
4014 terminal. 4014:

process, process group, and
getopt:

/setpwent, endpwent: get
putpwent: write

passwd:

getpass: read a

passwd: change login
several files or subsequent/
dirname: deliver portions of
directory. getcwd: get
fgrep: search a file for a
processing language. awk:
signal.

expand files. pack,

cc,

net:-execute a command on the

Permuted Index

object library. lorder: lorder(1)
obtain ephemerides. sky(6)
octaldump. od(1)

od: octal dump. » od(1)
off-lineprint. dpr(1C)

open a common object file for ldopen(3X)
openastream. . . + « « . fopen(3S)
open file descriptor. dup(2)

open for reading or writing. open(2)
open: open for readingor open(2)
operation status of the NSC nscstat(1C)
OPErations. + + 4 « = « « o & » . . maus(2)
operations. memccpy, memchr, . memory(3C)
operations. msgetl(2)
operations. msgop(2)
Operations. . . . + . 4 4 4 0 4. . semctl(2) I!l
operations. semop(2) D
operations. shmctl(2) E
operations., shmop(2) X
operations. /strpbrk, strspn, string(3C)
operator. 4 v . 44 e ... join(1)
option letter from argument getopt(3C)
optional file headerofa Idohseek(3X)
options. fentl(5)
options for a terminal. stty(1)
OPHOMS. '+ ¢ 4 v o 4 4 v o v v 4 o W getopt(1)
or, xor, not, Ishift, rshift: bool(3F)
ordering relation foran lorder(1)
ordinary file. mknod: make mknod(2)
OSDD adapter macro package for . . mosd(5)
osdd, checkmm: print/check mm(1)
out-going terminal line/ dial(3C)
output. a.out: common a.out(4)
output. a.out: PDP-11 a.ocutpdp(4)
output. printf, fprintf, printf(3S)
output to the HONEYWELL 6000. . . gcat(1C)
owner and group of a file. chown(2)
OWNET OF ErOUP. .« « & « & »+ & « » « chown(1)
pack, pcat, unpack: compress « « « pack(l)
package for formattinga mptx(5)
package for formatting mm(5)
package for formatting/ mosd(5)
package for typesetting view mv(5)
package. stdio: stdio(3S)
package. stdipc: standard stdipc(3C)
paginator for the Tektronix 4014(1)
parent process IDs. /get getpid(2)
parse command options. getopt(l)
passwd: change login password. . . . passwd(1)
passwd: password file. passwd(4)
password file entry. getpwent(3C)
password fileentry. putpwent(3C)
passwordfile., passwd(4) -
password. getpass(3C)
password., passwd(1)
paste: merge same linesof paste(1)

path names. basename, basename(l)
path-name of current working getewd(3C)
pattern. grep, egrep, . . . < grep(1)
pattern scanningand awk(1)
pause: suspend process until pause(2)
peat, unpack: compressand pack(1)

pec: Ccompiler. ce(1)
PCLnetwork. . « v ¢« v v v v o v net(1C)

-25 -

xmMoZ-—

Permuted Index

a process. popen,
as: assembler for

editor output. a.out:

/convert archive files from
truth value about your/

mesg:

macro package for formatting a
ptx:

format. acct:

sys_nerr: system error/
HONEYWELL 6000. gcat: send
te:

split: split a file into

channel.

tee:

popen, pclose: initiate

data in memory.

subroutines.

images.

ftell: reposition a file

Iseek: move read/write file
to/from a process.

and library maintainer for
basename, dirname: deliver
banner: make

logarithm,/ exp, log, logl0,
/sart: exponential, logarithm,

for troff. cw, checkcw:
monitor:

cpp: the C language

unget: undo a

graphical/ gps: graphical
types:

pIS:

date:

cal:

of a file. sum:

editing activity. sact:

dpr: off-line

man, manprog:

cat: concatenate and

scat: concatenate and

pr:

printf, fprintf, sprintf:
Ipstat:

nm:

object file. nm:

system. uname:

news:

file(s). acctcom: search and
object files. size:

size:

names. id:

formatted/ mm, osdd, checkmm:
HONEYWELL sending daemon, line
requests to an LP line

and print files on synchronous
lpr: line

vpr: Versatec

disable: enable/disable LP
print formatted output.
nice: run a command at low

pclose: initiate pipe to/from e e e
PDP-11.
PDP-11 assembler and lmk
PDP-11 to common archive/
pdpll, u3b, u3bs, vax: provide . . .
permit or deny messages.
permuted index. mptx: the
permuted index.
per-process accounting ﬁle e e
perror, errno, sys_errlist,
phototypesetter output to the . . .
phototypesetter simulator.
PleCes. .+ ¢ v v v e e e e a e
pipe: create an interprocess
pipe fitting. . . .
pipe to/from a process.
plock: lock process, text,or

. popen(3S)
. as.pdp(1)

a.out.pdp(4)
arcv(l)
machid(1)
mesg(1)
mptx(5)
ptx(1)

. acct(4)
. perror(3C)
. geat(1C)

tc(1)

. split(1)
. pipe(2)

tee(l)

. popen(3S)
. plock(2)

plot: graphics interface. plot(4)
plot: graphics interface plot(3X)
pnch: file format forcard pnch(4)
pointer in a stream. /rewind, fseek(3S)
pointer. . . . ¢ « 4 o . o . . . Iseek(2)
popen, pclose: initiate pipe popen(3S)
portable archives. /archive ar(l)
portions of path names. basename(l)
posters. . . . e s« s o+« o banner(l)
pow, sqrt: exponentxal e v o e . . exp(3M)
power, square root functions. exp(3M)
pr:printfiles. pr(1)
prepare constant-width text cw(l)
prepare execution profile. monitor(3C)
preprocessor. cpp(1)
previous get of an SCCS ﬁle « « + o unget(l)
primitive string, formatof gps(4)
primitive system data types. types(5)
printan SCCSfile. prs(l)
print and set the date. date(l)
printcalendar. call)
print checksum and block count . . sum(1)
print current SCCS file sact(l)
PNt .+ 4 ¢ v s v v v s oo o v .« dpr(1C)
print entries in this manval. man(l)
printfiles. cat(l)
print files on synchronous/ scat(1)
printfiles. pr(1)
print formatted output. « « « . printf(3S)
print LP status information. .« » o lpstat(l)
print name list. nmpdp(l)
print name list of common nm(l)
print name of current UNIX uname(l)
print newsitems. news(l)
print process accounting acctcom(1)
print section sizes of common size(1)
print sizes of object files. size.pdp(1)
print user and group IDs and . o . id(1)
print/check documents mm(l)
printer daemon. dpd, lpd: dpd(1C)
printer. /cancel: send/cancel Ip(1)
printer. scat: concatenate scat(l)
printer spooler. « .« Ipr(1)
printer spooler. vpr(l)
printers. enable, enable(l)
printf, fprintf, sprintf: printf(3S)
priofity. + « « ¢ ¢ ¢ 0 o o . nice(1)

226 -

nice: change

acct: enable or disable
acctcom: search and print
times. times: get

timex: time a command; report
exit, _exit: terminate

fork: create a new

/getpgrp, getppid: get process,
setpgrp: set

process group, and parent
inittab: script for the init

kill: terminate a

nice: change priority of a

kill: send a signal to a

initiate pipe to/from a

getpid, getpgrp, getppid: get
ps: report

memory. plock: lock

times: get process and child
wait: wait for child

ptrace:

pause: suspend

wait: await completion of

list of file systems

to a process or a group of
awk: pattern scanning and
m4: macro

provide truth value about your
alarm: set a

3B20S object file. list:

profile.

prof: display

monitor: prepare execution
profil: execution time
environment at login time.
sadp: disk access
standard/restricted command
arithmetic:

pdpl1, u3b, u3bs, vax:

true, false:

/generate uniformly distributed

stream. ungetc:

put character or word on a/
character or word on a/ putc,
entry.

stream.

getutent, getutid, getutline,
a/ putc, putchar, fputc,
Xx25rpvc: install or remove a

the NSC network. nscstat:

msgget: get message

ipcrm: remove a message

gsort:

command immune to hangups and

random-number/ srand,
random-number generator.

priority of a process.
process accounting.

process accounting file(s).
process and child process

process data and system/

process.

Process. . . . v v v o . 4 0. .

process group, and parent/
process group ID.

process IDs. /get process,

process.
process.
process.
process or a group of/
process. popen, pclose:
process, process group, and/

process status.
process, text, or data in
process times.
process to stop or terminate.
process trace.

process until signal.

process.

processed by fsck checkhst. . e
processes. /send a signal

processing language.
PrOCESSOr. « « v v ¢ & o &« o
processor type. /u3b5, vax:

process’s alarm clock.

produce C source listing from
prof: display profile data. .
profil: execution time

profiledata.
profile.
profile.

profile: setting up an
profiler.

programming language. /the . .

provide drill in number facts.
provide truth value about your/
provide truth values.
prs: print an SCCS file.
ps: report process status.
pseudo-random numbers.
ptrace: process trace.
ptx: permuted index.

push character back into input

putc, putchar, fputc, putw:
putchar, fputc, putw: put

putpwent: write password file . . .

puts, fputs: put a string on a
pututline, setutent, endutent,/ .
putw: put character or word on

PVC on a link. x25ipve,
pwd: working directory name.
gsort: quicker sort.
query the operation status of
queue. . . .
queue, semaphore set or shared/
quicker sort.
quits. nohup: run a

quiz: test your knowledge.

rand: Fortran uniform
rand, srand: simple

-27-

.......

.....

.........

......

.« s e

« e e

« e o

.......

.....

Permuted Index

. .« nice(2)

. . acct(2)

. . acctcom(1)
. . times(2)
. . timex(1)
. . exit(2)

. . fork(2)

. . getpid(2)
. . setpgrp(2)
. . getpid(2)
. . inittab(4)
. . kill(1)

e v s e e s e e e e s ., nice(2)

. . kill(2)
. popen(3S)

- .. getpid(2)

. . ps(1)
. . plock(2)
. . times(2)
. wait(2)
. . ptrace(2)
. . pause(2)
. . wait(l)
. .« checklist(4)
.« kill(2)
. . awk(1)
. . m4(1)
. . machid(1l)
. . alarm(2)
. o list(1)
. . prof(1)
. . profil(2)
. . prof(1)
. . monitor(3C)
. . profil(2)
. . profile(4)
. .+ sadp(1)
. .« sh(1)
. . arithmetic(6)
. . machid(1)
« o true(l)
. . prs(1)
. . ps(l)
. . drand48(3C)
. . ptrace(2)
. . ptx(1)
ungetc(3S)
. . putc(3S)
. . putc(3S)
. putpwent(3C)
. . puts(3S)
. getut(3C)
. putc(3S)
. . x25ipve(3C)
. . pwd(l)
. . gsort(3C)
. nscstat(1C)
. . msgget(2)
. ipcrm(1)
. . gsort(3C)
. . nohup(1)
. . quiz(6)
. . rand(3F)
. . rand(3C)

xmoZ—

Permuted Index

rand, srand: simple

srand, rand: Fortran uniform
fsplit: split 77,

dialect,

ratfor:

getpass:

entry of a common/ ldtbread:
header/ ldshread, ldnshread:
read:

rmail: send mail to users or
line:

member of an/ Idahread:
common object file. 1dfhread:
open a common object file for
open: open for

Iseek: move

cmplx,/ int, ifix, idint,
allocator. malloc, free,
specify what to do upon
/specify Fortran action on
ed,

generate C program cross
execute regular expression.
compile.

make: maintain, update, and
regular expression. regemp,
compile and match routines.
match routines. regexp:
regcmp:

regex: compile and execute
sorted files. comm: select or
lorder: find ordering

join:

for a common object file.
strip: remove symbols and
ldrseek, ldnrseek: seek to
common object file. reloc:
/fmod, fabs: floor, ceiling,
mod, amod, dmod: Fortran
calendar:

ct: spawn getty to a

file. rmdel:

semaphore set or/ ipcrm:
x25ipvce, x25rpvc: install or
unlink:

rm, rmdir:

eqn constructs. deroff:

bits. strip:

uniq: report

console. rjestat: RJE status
clock:

communication/ ipcs:
timex: time a command;

ps:

file. uniq:

facilities status. ststat:
trouble: log a trouble

sar: system activity

stream. fseek, rewind, ftell:
Ip, cancel: send/cancel
network to RJE. nsctorje:
HONEYWELL/ fget, fget.demon:
argument. getarg:

random-number generator.
random-number generator.
ratfor, orefl files.
ratfor: rational Fortran
rational Fortran dialect.
readapassword. ¢

read an indexed symbol table
read an indexed/named section

rand(3C)
rand(3F)
fsplit(1)

. ratfor(1)
. ratfor(1)

getpass(3C)

. . ldtbread(3X)
. ldshread(3X)

read fromfile. read(2)

read mail. mail, mail(1l)
readoneline. line(1)

read: read from file. read(2)

read the archive headerofa Idahread(3X)
read the file headerofa Idfhread(3X)
reading. ldopen, ldaopen: ldopen(3X)
reading or writing.” open(2)
read/write file pointer. Iseek(2)
real, float, sngl, dble, ftype(3F)
realloc, calloc: main memory . malloc(3C)
receipt of a signal. signal: signal(2)
receipt of a system signal. signal(3F)
red: texteditor. ed(1)
reference. cxref: « « o o cxref(l)
regemp, regex: compileand regemp(3X)
regcmp: regular expression regemp(1)
regenerate groups of programs. . make(1)
regex: compile and execute regemp(3X)
regexp: regular expression regexp(s)

regular expression compile and

. . regexp(5)

regular expression compile. regemp(l)
regular expression. regcmp, regemp(3X)
reject lines common to two comm(1)
relation for an object/ lorder(1)
relational database operator. join(1)
reloc: relocation information reloc(4)
relocation bits. o000 . strip.pdp(1)
relocation entries ofa/ ldrseek(3X)
relocation information fora reloc(4)
remainder, absolute value/ floor(3M)
remaindering intrinsic/ mod(3F)
reminder service. « « calendar(l)
remote terminal. ct(1C)
remove a delta from an SCCS . . rmdel(1)
remove a message quele,+ o+ o ipcrm(1)
removea PVConalink. x25ipve(3C)
remove directory entry. « .« unlink(2)
remove files or directories. rm(1)
remove nroff/troff, tbl,and deroff(1)
remove symbols and relocation . strip.pdp(1)
repeated linesinafile. uniq(1)
report and interactive status ., rjestat(1C)
report CPU time used. clock(3C)
report inter-process . « « ¢ o ¢ . o . ipes(1)
report process data and system/ . timex(1)
report process status. ps(1)
report repeated linesina uniq(1)
report synchronous terminal ststat(l)
TEPOTL. « o ¢ o o o o o 4 s 0 b oo trouble(1)
TEPOTLEr. ¢ o o o « « o o o ¢ « o & sar(1)
reposition a file pointerina fseek(3S)
requests toan LP line/ Ip(1)
re-route jobs from the NSC nsctorje(1C)
retrieve files fromthe fget(1C)

return Fortran command-line

- 28 -

. getarg(3F)

variable. getenv:
accounting. mclock:

abs:

string. len:

substring. index:

logname:

name. getenv:

stat: data

reversi: a game of dramatic
col: filter

reversals.

file pointer in a/ fseek,
creat: create a new file or
gather files and/or submit
jobs from the NSC network to
interactive status/ rjestat:
interactive status console.
directories.

read mail. mail,

SCCS file.

directories. rm,

chroot: change

logarithm, power, square
/dsqrt, csqrt: Fortran square
/tekset, td: graphical device
common object file access
expression compile and match
graphical table of contents
standard/restricted/ sh,
and, or, xor, not, Ishift,
nice:

hangups and quits. nohup:
editing activity.

space allocation. brk,.

formatted input.

bfs: big file

language. awk: pattern

files on synchronous printer.
stand-alone programs.

the delta commentary of an
comb: combine

make a delta (change) to an
sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
scesfile: format of

undo a previous get of an
val: validate

admin: create and administer
what: identify

of an SCCS file.

common object file.
terminals. se:
inittab:

program.
terminals.
grep, egrep, fgrep:

Permuted Index

return Fortran environment, . getenv(3F)
return Fortrantime mclock(3F)
return integer absolute value. . abs(3C)
return length of Fortran len(3F)
return location of Fortran index(3F)
return login name of user. logname(3X)
return value for environment . . getenv(3C)
returned by stat systemcall. stat(5)
reversals. reversi(6)
reverse line-feeds., . col(1)
reversi: a game of dramatic reversi(6)
rewind, ftell: repositiona fseek(3S)
rewrite an existingone. creat(2)
RJE jobs. send, gath: send(1C)
RIJE. nsctorje: re-route asctorje(1C)
RIJE status reportand, . rjestat(1C)
rjestat: RJE status report and . rjestat(1C)
rm, rmdir: remove filessor, . rm(1)
rmail: send mail to usersor mail(1)
rmdel: remove a delta froman . . . rmdel(1)
rmdir: remove filesor rm(1)
root directory. chroot(2)
root functions. /exponential, . . exp(3M)
root intrinsic function., . . sqrt(3F)
routines and filters. gdev(1G)
routines. Idfen: ldfcn(4)
routines. regexp: regular regexp(5)
routines. toc: toc(1G)
rsh: shell, the, ... sh(1)
rshift: Fortran bitwise/ bool(3F)
run 2 command at low priority. . . nice(l)
run 2 command immuneto nohup(1)
sact: print current SCCS file sact(1)
sadp: disk access profiler. sadp(1)
sag: system activity graph. . . ., . . . sag(1G)
sar: system activity reporter. sar(1)
sbrk: change data segment brk(2)
scanf, fscanf, sscanf: convert . scanf(3S)
SCAMMET. + & & v v o 4 v o o v o 4 & bfs(1)
scanning and processing awk(1)
scat: concatenate and print . ., . ., scat(1)
scc: Ccompilerfor sec(1)
SCCS delta. cdc: change cde(1)
SCCSdeltas. comb(l)
SCCS file. delta: delta(1)
SCCS file editing activity. sact(l)
SCCSfile. get(1)
SCCSfile. prs(1)
SCCSfile. rmdel(1)
SCCS file. scesdiff: scesdiff (1)
SCCSfile. sccsfile(4)
SCCS file. unget: unget(1)
SCCSfile. val(1)
SCCSfiles. admin(1)
SCCSfiles. what(1)

scesdiff: compare two versions
scesfile: format of SCCS file.
scnhdr: section header for a
screen editor for video
script for the init process.
sdb: symbolic debugger.
sdiff: side-by-side difference
se: screen editor for video

search a file for a pattern.

.....
......

-29.

. . scesdiff(1)
. sccsfile(4)

scnhdr(4)
se(1)

xmoZ—

xmoZ—

Permuted Index

accounting file(s). acctcom:
Isearch: linear

bsearch: binary

hereate, hdestroy: manage hash
tdelete, twalk: manage binary
jotto:

object file. scnhdr:

object/ /read an indexed/named
/to line number entries of a
/to relocation entries of a
/seek to an indexed/named
files. size: print

/mrand48, jrand48, srand48,
section of/ ldsseek, ldnsseek:

a section/ ldlseek,ldniseek:

a section/ ldrseek, ldnrseek:
header of 2 common/ Idohseek:
common object file. ldtbseek:
shmget: get shared memory
brk, sbrk: change data

to two sorted files. comm:
greek:

of a file. cut: cut out
file. dump: dump
semctl:

semop:

ipcrm: remove a message queue,
semget: get set of
operations.

a group of processes. kill:

the NSC network. nusend:
6000. fsend:

and/or submit RJE jobs.
geosmail:

mail. mail, rmail:

the HONEYWELL 6000. geat:
line printer. lp, cancel:
daemon. dpd, Ipd: HONEYWELL
stream.

IDs. setuid,

getgrent, getgrgid, getgrnam,
goto.

encryption. crypt,

getpwent, getpwuid, getpwnam,
login time. profile:

gettydefs: speed and terminal
group IDs.

/getutid, getutline, pututline,
data in a machine/ sputl,
standard/restricted command/
operations. shmctl:

queue, semaphore set or
/multiple-access-user-space
shmop:

shmget: get

system: issue a

system: issue a

command programming/ sh, rsh:
operations.

segment.

search and print process acctcom(1)
search and update. Isearch(3C)
search. . « v ¢ v v 4 e e e e w bsearch(3C)
search tables. hsearch, hsearch(3C)
search trees. tsearch, tsearch(3C)
secret word game. jotto(6)
section header for a common . . scnhdr(4)

section header of a common ldshread(3X)
section of a common object/ ldlseek(3X)
section of a common object/ . ldrseek(3X)
section of a common object/ . . ldsseek(3X)

section sizes of common object . . . size(1)

sed: stream editor. sed(1)
seed48, lcongd8: generate/ drand48(3C)
seek to an indexed/named Idsseek(3X)
seek to line number entries of ldlseek(3X)
seek to relocation entriesof ldrseek(3X)
seek to the optional file ldohseek(3X)
seek to the symbol table of a . . . ldtbseek(3X)
SEGMENt. « o + o o ¢ 4 0 0 e 0 4. shmget(2)
segment space allocation. brk(2)

select or reject lines common . « . comm(l)
select terminal filter. greek(l)
selected fields of each line cut(1)
selected parts of an object dump(1)
semaphore control operations. . semctl(2)
semaphore operations. semop(2)

semaphore set or shared memory/ . . ipcrm(l)

semaphores. semget(2)
semctl: semaphore control semctl(2)
semget: get set of semaphores. semget(2)
semop: semaphore operations. . . semop(2)
send a signal to a processor kill(2)

send files to another UNIX on . . .
send files to the HONEYWELL

. nusend(1C)
. . fsend(1C)

send, gath: gatherfiles send(1C)
send mail to HISuser. geosmail(1C)
send mail to usersorread mail(1)

send phototypesetter output to geat(1C)
send/cancel requests to an LP . Ip(1)
sending daemon, line printer . . . dpd(1C)
setbuf: assign bufferingtoa setbuf(3S)
setgid: set user and group setuid(2)
setgrent, endgrent: get group/ . . . getgrent(3C)
setjmp, longjmp: non-local setjmp(3C)
setkey, encrypt: generate DES . . crypt(3C)
setpgrp: set process group ID. . . . setpgrp(2)
setpwent, endpwent: get/ getpwent(3C)
setting up an environment at . . . profile(4)
settings used by getty. gettydefs(4)
setuid, setgid: setuserand setuid(2)
setutent, endutent, utmpname:/ . . . getut(3C)
sgetl: access long numeric sputl(3X)
sh, rsh:shell, the sh(1)

shared memory control shinctl(2)
shared memory id. /a message . iperm(1)
(shared memory) operations. . . . maus(2)
shared memory operations. shmop(2)
shared memory segment. shmget(2)
shell command from Fortran. . . . system(3F)
shell command. system(3S)
shell, the standard/restricted . . sh(l)
shmctl: shared memory control . . . shmctl(2)
shmget: get shared memory shmget(2)

-130-

operations.

program. sdiff:
transfer-of-sign intrinsic/
login:

terminal. stlogin:

pause: suspend process until
what to do upon receipt of a
action on receipt of a system
on receipt of a system/
upon receipt of a signal.

of processes. kill: send a
ssignal, gsignal: software
lex: generate programs for
generator. rand, srand:

tc: phototypesetter

atan, atan2: trigonometric/
intrinsic function.

sin, dsin, csin: Fortran
/dsinh: Fortran hyperbolic
functions.

hyperbolic sine intrinsic/
common object files.

files.

size: print section

size: print

an interval.

interval.

documents, view graphs, and
typesetting view graphs and
current/ ttyslot: find the
spline: interpolate

int, ifix, idint, real, float,

sno:

ssignal, gsignal:
sort:

qsort: quicker

tsort: topological

or reject lines common to two
object file. list: produce C
brk, sbrk: change data segment
terminal. ct:

sys3b: 3B20S

fspec: format

receipt of a system/ signal:
receipt of a signal. signal:
used by getty. gettydefs:
hashcheck: find spelling/
spelling/ spell, hashmake,
spellin, hashcheck: find
curve.

split:

csplit: context

files. fsplit:

pieces.

Ipr: line printer

vpr: Versatec printer

output. printf, fprintf,
numeric data in a machine/
square root intrinsic/

power,/ exp, log, logl0, pow,
exponential, logarithm, power,

Permuted Index

shmop: shared memory shmop(2)
side-by-side difference sdiff (1)
sign, isign, dsign: Fortran , . sign(3F)
signon. .+ login(l)
sign on to synchronous stlogin(1)
signal. L L0, pause(2)
signal. signal: specify signal(2)
signal. /specify Fortran signal(3F)
signal: specify Fortran action . signal(3F)
signal: specify whattodo signal(2)
signal to a process or a group . kill(2)
signals. 0. ..., ssignal(3C)
simple lexical tasks. lex(1)
simple random-number rand(3C)
simulator. te(l)

sin, cos, tan, asin, acos, trig(3M)
sin, dsin, csin: Fortransine sin(3F)
sine intrinsic function. sin(3F)
sine intrinsic function. sinh(3F)
sinh, cosh, tanh: hyperbolic sinh(3M)

sinh, dsinh: Fortran

. . sinh(3F)

size: print section sizesof size(1)
size: print sizes of object size.pdp(1)
sizes of common object files. . size(l)
sizes of object files. size.pdp(1)
sky: obtain ephemerides. sky(6)
sleep: suspend execution for sleep(1)
sleep: suspend execution for sleep(3C)
slides. mmt, mvt: typeset mmt(l)
slides. /macro packagefor mv(5)
slot in the utmp file of the ttyslot(3C)
smoothcurve. spline(1G)
sngl, dble, cmplx, demplx,/ ftype(3F)
sno: SNOBOL interpreter. sno(l)
SNOBOL interpreter. sno(1)
software signals. ssignal(3C)
sort and/or merge files. sort(1)

1 o gsort(3C)
sort: sort and/or merge files. . sort(1)
SOTL. v v vt et e e e e e e tsort(1)
sorted files. comm: select comm(1)
source listing from 3B20S . . ., . . . list(1)
space allocation., brk(2)
spawn gettytoaremote ct(1C)
specific systemcalls. sys3b(2)
specification in text files. fspec(4)
specify Fortran actionon . ., signal(3F)
specify what to doupon signal(2)
speed and terminal settings gettydefs(4)
spell, hashmake, spellin, spell(1)
spellin, hashcheck: find spell(1)
spelling errors. /hashmake, spell(1)
spline: interpolate smooth spline(1G)
split a file into pieces. split(1)
split. C e e e e et e e e e csplit(1)
split f77, ratfor,orefl fsplit(1)
split: splita fileinto split(1)
spooler. Ipr(1)
spooler. « o o ovpr(l)
sprintf: print formatted printf(3S)
sputl, sgetl: accesslong sputl(3X)
sqrt, dsqrt, csqrt: Fortran sqrt(3F)
sqrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)

-31-

xmUuZ—

xmoZ-—

Permuted Index

sqrt, dsqrt, csqrt: Fortran
random-number generator.
generator. rand,
/nrand48, mrand48, jrand48,
input. scanf, fscanf,
signals.

scc: C compiler for
package. stdio:
communication/ stdipc:
sh, rsh: shell, the

system call.

useful with graphical/

stat: data returned by

with graphical/ stat:

ustat: get file system

status report and interactive
Ipstat: print LP

feof, clearerr, fileno: stream
control. uustat: uucp
communication facilities
nscstat: query the operation
ps: report process

status console. rjestat: RJE
stat, fstat: get file

terminal facilities
input/output package.
communication package.

synchronous terminal.

wait for child process to
strncmp, strcpy, strncpy,/
/strepy, strncpy, strlen,
strncpy,/ strcat, strncat,
/strncat, stremp, strncmp,
/strrchr, strpbrk, strspn,

sed:

fllush: close or flush a

fopen, freopen, fdopen: open a
reposition a file pointer in a
get character or word from
fgets: get a string from a

put character or word on a
puts, fputs: put a string on a
setbuf: assign buffering to a
/feof, clearerr, fileno:

push character back into input
long integer and base-64 ASCII
convert date and time to
floating-point number to

gps: graphical primitive

gets, fgets: geta

len: return length of Fortran
puts, fputs: put a

strspn, strcspn, strtok:
number. atof: convert ASCII
strtol, atol, atoi: convert
relocation bits.

number information from a/
information from a/ strip:
/strncmp, strepy, stracpy,
strcpy, strncpy,/ strcat,
strcat, strncat, strcmp,
/strcmp, strncmp, strepy,

square root intrinsic/ sqrt(3F)
srand, rand: Fortran uniform . rand(3F)
srand: simple random-number rand(3C)
srand48, seed48, lcongd8:/ drand48(3C)
sscanf: convert formatted scanf(3S)
ssignal, gsignal: software ssignal(3C)
stand-alone programs. scc(1)
standard buffered mput/output .+ . stdio(38S)
standard interprocess stdipe(3C)
standard/restricted command/ . . sh(1)

stat: data returned bystat stat(5)
stat, fstat: get file status. stat(2)
stat: statistical network stat(1G)
statsystemecall. stat(5)
statistical network useful stat(1G)
statistics. « o ¢ ¢ 4 v 0 b e 0. . ustat(2)
status console. rjestat: RIE rjestat(1C)
status information. Ipstat(1)
status inquiries. ferror, ferror(3S)
status inquiryandjob uustat(1C)
status. /report inter-process ipes(1)
status of the NSC network. nscstat(1C)
StALUS., & ¢ o e e 0 b e e e e e ps(l)
status report and interactive rjestat(1C)
StAtUS. 4+ 4 o 0 0 e b e e e e e e e stat(2)
status. /report synchronous ststat(l)
stdio: standard buffered stdio(3S)
stdipc: standard interprocess stdipc(3C)
stime: settime. ¢« . . ¢ o . stime(2)
stlogin: signonto stlogin(1)
stop or terminate. wait: wait(2)
strcat, strncat, stremp, string(3C)
stechr, strrchr, strpbrk,/ string(3C)
strcmp, strncmp, Strcpy, . - . . o . string(3C)
strepy, strncpy, sitlen,/ string(3C)
strcspn, strtok: string/ string(3C)
streameditor. 0. .. sed(1)
stream. fclose, « + « « ¢« 4 « 4 . . . fclose(3S)
SHIEAM. + « o o o o ¢ o o o o o . . fopen(3S)
stream. fseek rewind, ftell: fseek(3S)
stream. /getchar, fgetc, getw: . . getc(3S)
stream. gets, gets(3S)
stream. /putchar, fputc, putw: . . putc(3S)
SErEamM. .« « o « s o o o 8 o 0 0 o 0. puts(3S)
stream. . « C e e e e e e setbuf(3S)
stream status inquiries. ferror(3S)
stream. ungetc: ungete(3S)
string. /164a: convert between . a641(3C)
string. /asctime, tzset: ctime(3C)
string. /fcvt, gevt: convert ecvt(3C)
string, format of graphical/ gps(4)
string from a stream. gets(3S)
string. . . . e e e e e e e len(3F)
string on a stream puts(3S)
string operations. /strpbrk, string(3C)
string to floating-point atof(3C)
string to integer. strtol(3C)
strip: remove symbolsand strip.pdp(1)
strip: strip symbol and line strip(1)
strip symbol and line number strip(1)
strlen, strchr, sterchr,/ string(3C)
strncat, strcmp, strncmp, string(3C)
strnecmp, strepy, strnepy,/ o o string(3C)
strnepy, strlen, strchr,/ string(3C)

-32-

/strlen, strchr, strrchr,
/strncpy, strlen, strchr,
/strchr, strrchr, strpbrk,
/strpbrk, strspn, strcspn,
string to integer.
terminal facilities status.
terminal.

another user.

gath: gather files and/or
intro: introduction to
plot: graphics interface
/same lines of several files or
return location of Fortran
count of a file.

du:

sync: update the

sync: update

su: become

interval. sleep:

interval. sleep:

pause:

swab:

information from/ strip: strip
object/ /compute the index of a
Idtbread: read an indexed

syms: common object file
object/ Idtbseek: seek to the
sdb:

strip: remove

symbol table format.

concatenate and print files on
facilities/ ststat: report
stlogin: sign on to

calls.

error/ perror, errno,

perror, errno, sys_ertlist,
/compute the index of a symbol
file. /read an indexed symbol
common object file symbol
master device information
master device information
mnttab: mounted file system
Idtbseek: seek to the symbol
toc: graphical

tbl: format

hdestroy: manage hash search
tabs: set

a file.

trigonometric/ sin, cos,
intrinsic function.

tan, dtan: Fortran

/dtanh: Fortran hyperbolic
hyperbolic tangent intrinsic/
sinh, cosh,

hpio: HP 2645A terminal
tar:

programs for simple lexical
deroff: remove nroff/troff,
or troff.

Permuted Index

strpbrk, strspn, strespn,/ string(3C)
strrchr, strpbrk, strspn,/ string(3C)
strspn, strcspn, strtok:/ string(3C)
strtok: string operations. string(3C)
strtol, atol, atoi: convert strtol(3C)
ststat: report synchronous ststat(1)
stty: set the options fora stty(1)

su: become super-useror su(1)
submit RJE jobs. send, send(1C)
subroutines and libraries. intro(3)
subroutines. plot(3X)
subsequent lines of one file. paste(l)
substring. index: index(3F)
sum: print checksum and block . sum(1)
summarize disk usage. du(l)
superblock. sync(l)
super-block.« sync(2)
super-user or another user. su(l)
suspend execution foran, . sleep(l)
suspend execution for, . sleep(3C)
suspend process until signal. pause(2)
swab: swap bytes.« . swab(3C)
swap bytes. e s e e e e .. . swWab(30)
symbol and line number strip(1)
symbol table entry of a common . . . Idtbindex(3X)
symbol table entry of a common/ . . ldtbread(3X)
symbol table format. syms(4)
symbol table of a common ldtbseek(3X)
symbolic debugger. sdb(1)
symbols and relocation bits. strip.pdp(1)
syms: common objectfile syms(4)
sync: update super-block. sync(2)
sync: update the super block. sync(l)
synchronous printer. scat: scat(1)
synchronous terminal ststat(1)
synchronous terminal. stlogin(l)
sys3b: 3B20S specific system sys3b(2)
sys_errlist, sys_nerr: system perror(3C)
sys_nerr: system error/ perror(3C)

table entry of a common object/

. ldtbindex(3X)

table entry of a common object . . . ldtbread(3X)
table format. syms: syms(4)
table. master: master.dec(4)
table. master: masteru3b(4)
table.00.... mnttab(4)
table of a common object file. . ldtbseek(3X)
table of contents routines. toc(1G)
tables for nroff ortroff. tbl(1)
tables. hsearch, hcreate, hsearch(3C)
tabsonaterminal. tabs(1)

tabs: set tabs on a terminal. tabs(1)

tail: deliver the last partof . ., . . . tail(1)

tan, asin, acos, atan, atan2; trig(3M)
tan, dtan: Fortran tangent tan(3F)
tangent intrinsic function. tan(3F)
tangent intrinsic function. tanh(3F)
tanh, dtanh: Fortran tanh(3F)
tanh: hyperbolic functions. sinh(3M)
tape file archiver. hpio(1)
tape file archiver. tar(l)

tar: tape file archiver. tar(1)

tasks. lex: generate lex(1)

tbl, and eqn constructs. deroff(1)
tbl: format tables for nrof tbl(1)

-33.

xXmMOoZ—

Permuted Index

hpd, erase, hardcopy, tekset,
search trees. tsearch,

hpd, erase, hardcopy,

4014: paginator for the
temporary file. tmpnam,
tmpfile: create a

tempram: create a name for a
terminals.

for the Tektronix 4014
functions of the DASI 450
ct: spawn getty to a remote
generate file name for
ststat: report synchronous
greek: select

dial: establish an out-going
getty. gettydefs: speed and
sign on to synchronous

stty: set the options for a
tabs: set tabs on a

hpio: HP 2645A

isatty: find name of a
functions of DASI 300 and 300s
of HP 2640 and 2621-series
tty: get the

se: screen editor for video
term: conventional names for
kill:

abort:

exit, _exit:

for child process to stop or
command.

quiz:

ed, red:

change the format of a
fspec: format specification in
/checkeq: format mathematical
prepare constant-width
nroff: format

plock: lock process,

troff: typeset

ttt, cubic:

data and system/ timex:
time:

mclock: return Fortran

profil: execution
up an environment at login
stime: set

time: get

tzset: convert date and

clock: report CPU

process times.

update access and modification
get process and child process
file access and modification
process data and system/

file.

for a temporary file.
/tolower, _toupper, _tolower,
contents routines.

popen, pclose: initiate pipe

tc: phototypesetter simulator. tc(1)

td: graphical device routines/ . . gdev(1G)
tdelete, twalk: manage binary . tsearch(3C)
tee: pipe fitting. tee(1)
tekset, td: graphical device/ gdev(1G)
Tektronix 4014 terminal. 4014(1)
tempnam: create a name for a . tmpnam(3S)
temporary file. tmpfile(3S)
temporary file. tmpnam, tmpnam(3S)
term: conventional names for . term(5)
terminal. 4014: paginator 4014(1)
terminal. 450: handle special 450(1)
terminal. ct(1C)
terminal. ctermid: ctermid(3S)
terminal facilities status. ststat(1)
terminal filter. greek(1)
terminal line connection. dial(3C)
terminal settings used by gettydefs(4)
terminal. stlogin: stlogin(1)
terminal. 00000 . stty(1)
terminal. 0000 tabs(1)
terminal tape file archiver. hpio(1)
terminal. ttyname, ttyname(3C)
terminals. /handle special 300(1)
terminals. /special functions hp(1)
terminal’s name. tty(1)
terminals. se(1)
terminals. term(5)
terminate a process. . .« .« kill(1)
terminate Fortran program. abort(3F)
terminate Process. . .« . . . o o o . exit(2)
terminate. wait: wait wait(2)
test: condition evaluation test(1)

test your knowledge. quiz(6)
texteditor,. ed(1)

text file. newform: newform(1)
textfiles. 0000 fspec(4)
text for nroffor troff. eqn(1)

text for troff. cw, checkew: cw(1)

text. C e e e e e e e e nroff(1)
text, or data in memory. plock(2)
teXt. v e e e e e e e e e e troff(1)
tC-taC-t0€. « ¢ ¢« ¢+t v 4 4 v v e ttt(6)

time a command; report process . . . timex(l)
time a command. v e e s . . time(l)
time accounting. mclock(3F)
time: gettime. v .. . time(2)
timeprofile. profil(2)
time. profile: setting « . profile(4)
time. . v ¢ ¢ ¢« v o0 o v a . . . stime(2)
time: time a command. time(l)
tME. o v ¢ o o o s o o b 0 e time(2)
time to string. /asctime, ctime(3C)
timeused. . . ¢ v v v 0 b e 00 a clock(3C)
times: get process and child times(2)
times of 4 file. touch: touch(1)
times. times: e e e e e e . times(2)
times. utime:set utime(2)
timex: time a command; report . . . timex(1)
tmpfile: create a temporary tmpfile(3S)
tmpnam, tempnam: create 2 name . tmpnam(3S)
toascii: translate characters. conv(3C)
toc: graphical tableof toc(1G)
to/fromaprocess. popen(3S)

-34-

toupper, tolower, _toupper,
toascii: translate/ toupper,
tsort:

modification times of a file.
translate/ toupper, tolower,
_tolower, toascii: translate/

ptrace: process

sign, isign, dsign: Fortran
/_toupper, _tolower, toascii:
tr:

ftw: walk a file

twalk: manage binary search
tan, asin, acos, atan, atan2:
constant-width text for
mathematical text for nroff or
typesetting view graphs/ mv: a
format tables for nroff or

trouble: log a

values.

pdpl1, u3b, u3bs, vax: provide
true, false: provide

manage binary search trees.

graphics for the extended

a terminal.

utmp file of the current/
trees. tsearch, tdelete,

ichar, char: explicit Fortran
file: determine file

value about your processor
for the extended TTY-37
types.

types: primitive system data
graphs, and slides. mmt, mvt;
troff:

mv: a troff macro package for
[localtime, gmtime, asctime,
value about your/ pdpll1,
about your/ pdpll, u3b,
getpw: get name from

limits.

creation mask.

mask.

UNIX system.

UNIX system.

file. unget:

an SCCS file.

into input stream.

srand, rand: Fortran
/seed48, lcong48: generate
a file.

mktemp: make a

uuto, uupick: public
entry.

umount:

files. pack, pcat,

Permuted Index

_tolower, toascii: translate/ conv(3C)
tolower, _toupper, _tolower, conv(3C)
topological sort. tsort(1)
touch: update accessand touch(1)
_toupper, _tolower, toascii: conv(3C)
toupper, tolower, _toupper, conv(3C)
tplot: graphics filters. tplot(1G)
tr: translate characters. tr(1)
trace. e e s« o o« . ptrace(?)
transfer-of-sign mtrmsw/ sign(3F)
translate characters. conv(3C)
translate characters. tr(1)
tree. . .. e e e e e e ftw(3C)

trees. tsearch, tdelete, e e e e e

. tsearch(3C)

trigonometric functions. /cos, . trig(3M)
troff. cw, checkew: prepare cw(1)
troff. /neqn, checkeq: format . eqn(l)
troff macro packagefor mv(5)
troff. tbl: tbl(1)
troff: typeset text P i (1 i ()]

trouble: log a trouble report . ..

. trouble(1)

troublereport. trouble(1)
true, false: provide truth true(l)
truth value about your/ machid(1)
truth values. . . . e v e v s e o true(l)
tsearch, tdelete, twalk tsearch(3C)
tsort: topologicalsort. tsort(1)
ttt, cubic: tic-tac-toe. ttt(6)

tty: get the terminal’s name. tty(1)
TTY-37 type-box. greek: greek(5)
ttyname, isatty: find name of . ttyname(3C)
ttyslot: find the slotinthe ttyslot(3C)
twalk: manage binary search tsearch(3C)
type conversion. /dcmplx, ftype(3F)
37 - file(1)

type. /vax: provxde truth machid(1)
type-box. greek: graphics greek(5)
types: primitive system data types(S)
types. e s e e e e s s types(S)
typeset documents, view mmt(1)
typesettext. troff(1)
typesetting view graphs and/ mv(5)

tzset: convert date and time/ . . .

. ctime(3C)

u3b, u3bs, vax: provide truth machid(1)
u3b5, vax: provide truth value machid(1)
UD. ve.... getpw(3C)
ulimit: getand setuser ulimit(2)
umask: setand getfile umask(2)
umask: set file-creation mode . umask(1)
umount: unmount a file system. . . . umount(2)
uname: get name of current uname(2)
uname: print name of current . uname(l)
undo a previous get of an SCCS . . . unget(1)
unget: undo a previous getof unget(l)
ungetc: push character back ungetc(3S)
uniform random-number/ rand(3F)
uniformly distributed/ drand48(3C)
uniq: report repeated linesin unig(1)
unique file name. mktemp(3C)
units: conversion program. units(l)
UNIX-to-UNIX filecopy. uuto(1C)
unlink: remove directory unlink(2)
unmount a file system. umount(2)
unpack: compress and expand . pack(l)

-35.

XxXmMoZ—

xmoZ—

Permuted Index

times of a file. touch:

of programs. make: maintain,
Isearch: linear search and
sync:

sync:

du: summarize disk

stat: statistical network

id: print

setuid, setgid: set

character login name of the
/getgid, getegid: get real
environ:

geosmail: send mail to HIS
ulimit: get and set

logname: return login name of
/get real user, effective
become super-user or another
the utmp file of the current
write: write to another

mail, rmail: send mail to
statistics.

gutil: graphical

modification times.

utmp, wtmp:

endutent, utmpname: access
ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,
control. uustat:

unix copy.

copy. uucp,

uucp, uulog,

file copy. uuto,

and job control.
UNIX-to-UNIX file copy.
execution.

val:

Ju3b, u3b5, vax: provide truth
abs: return integer absolute
cabs, zabs: Fortran absolute
getenv: return

ceiling, remainder, absolute
true, false: provide truth
return Fortran environment
your/ pdpll, u3b, u3bs,

option letter from argument
assert:

vpr:

ve

get: get a

scesdiff: compare two

se: screen editor for

mmt, mvt: typeset documents,
macro package for typesetting
file system: format of system

process.
or terminate. wait:
to stop or terminate.
ftw:

update access and modification . . . touch(l)
update, and regenerate groups make(l)
update.0 0. ... Isearch(3C)
update super-block. sync(2)
update the super block. sync(l)
USABE. o o s o o « » o o e e e e . du(l)
useful with graphical/ stat(1G)
user and group IDs and names. . . . id(l)
userand groupIDs. setuid(2)
user. cuserid:get cuserid(3S)
user, effective user, real/ getuid(2)
user environment. environ(5)
USET. & o o o o s s o« o s o o o o o geosmail(1C)
user limits. ulimit(2)
USET. & v o o o s o o s » « o « o . logname(3X)
user, real group,and/ getuid(2)
USET. SUI o o« « s o « s o o o o o o su(l)

user. /find theslotin ttyslot(3C)
USET. & o o « o s « » o o s o o » o Write(l)
usersorreadmail. mail(1)
ustat: get file system ustat(2)
utilities. .« . . ¢« v v ¢ o v 0 gutil(1G)
utime: set fileaccessand utime(2)
utmp and wtmp entry formats. utmp(4)
utmp file entry. /setutent, getut(3C)

utmp file of the current user.

. ttyslot(3C)

utmp, wtmp: utmp and wtmp . . utmp(4)
utmpname: access utmp file/ getut(3C)
uucp status inquiry and job . . uustat(1C)

uucp, uulog, vuname: unix to
uulog, uuname: unix to unix

e o s e » »
.
.

. « uucp(1C)
. uucp(1C)

uuname: unix to unix copy. uucp(1C)
uupick: public UNIX-to-UNIX uuto(1C)
uustat: uucp status inquiry uustat(1C)
uuto, uupick: public uuto(1C)
Uux: unix to unix command uux(1C)
val: validate SCCSfile. val(1)
validate SCCSfile. val(1)
value about your processor/ machid(1)
value. . v ¢ 4 s s i e e e e e e abs(3C)
value. abs, iabs,dabs, abs(3F)
value for environment name. getenv(3C)
value functions. /fabs: floor, . floor(3M)
values. . . . ¢ o v v e e e e e e true(1)
variable. getenv: getenv(3F)
vax: provide truth value about machid(l)
ve:versioncontrol. ve(l)
vector. getopt: get getopt(3C)
verify program assertion. assert(3X)
Versatec printer spooler. vpr(l)
versioncontrol. . . . s . 0 . 0 .. vE(l)
version of an SCCSfile. get(1)
versions of an SCCS file. scesdiff (1)
video terminals. se(1)

view graphs, and slides. » mmt(l)
view graphs and slides. /troff mv(5)
volume. 0. 0. .. f5(4)
vpr: Versatec printer spooler. vpr(l)
wait: await completionof wait(1)
wait for child process tostop wait(2)
wait: wait for child process wait(2)
walkafiletreee. ftw(3C)
we:wordcount. 0. . we(l)
what: identify SCCS files. what(1)

-36 -

signal. signal: specify
who:

cd: change

chdir: change

get path-name of current
pwd:

write:

putpwent:

write:

open: open for reading or
utmp, wtmp: utmp and
formats. utmp,
hunt-the-wumpus.

install a BX.25 link.

link.

BX.25 link. x25hlnk,
detach a BX.25 link.
BX.25 link. x25alnk,
remove a PVC on a link.
PVC on a link. x25ipvc,
list(s) and execute command.
Fortran bitwise/ and, or,
j0, i1, jm,

j0, j1, jn, y0,
compiler-compiler.

j0, j1, jn, y0, y1,

abs, iabs, dabs, cabs,

what to do upon receipt of a
who is on the system. . . .
who: who is on the system.
working directory.
working directory.
working directory. getcwd:
working directory name. .
write on a file.
write password file entry. .
write to another user. . . .
write: writeon a file. . . .
write: write to another user.
writing.
wtmp entry formats.
wtmp: utmp and wtmp entry
wump: the game of . .
x25alnk, x25ilnk: attach or
x25cInk: change over a BX.25
x25dInk: halt or detacha .

. .

x25hink, x25dink: haltor . . .

x25ilnk: attach or installa .
x25ipve, x25rpve: install or

x25rpvc: install or removea . . .

xargs: construct argument .
xor, not, Ishift, rshift:
y0, y1, yn: Bessel functions.
yl, yn: Bessel functions. .
yacc: yet another
yn: Bessel functions.
zabs: Fortran absolute value.

-37-

L S)

Permuted Index

signal(2)
who(1)

cd(l)
chdir(2)
getcwd(3C)

. pwd(1)

write(2)

. putpwent(3C)

write(1)
write(2)
write(1)
open(2)
utmp(4)

. utmp(4)
. wump(6)

x25alnk(3C)

. x25cIlnk(3C)

x25hInk(3C)
x25hInk(3C)
x25alnk(3C)
x25ipvc(3C)
x25ipvc(3C)
xargs(1)
bool(3F)
bessel(3M)
bessel(3M)
yace(1)
bessel(3M)
abs(3F)

xmoZ—

INTRO(1) INTRO(1)

NAME
intro — introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:

1) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.
COMMAND SYNTAX -

Unless otherwise noted, commands described in this section accept options

and other arguments according to the following syntax:

name loption(5)] [cmdarg(s)]

where:
name The name of an executable file.
aption — noargletter(s) or,
— argletter <>optarg
where <> is optional white space.
noargletter A single letter representing an option without an argument. 1
argletter A single letter representing an option requiring an argument.
optarg Argument (character string) satisfying preceding argletter.
cmdarg Path name (or other command argument) not beginning with
— or, — by itself indicating the standard input.
SEE ALSO

getopt(1), getopt(3C).
Section 6 of this volume for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
“normal” termination) one supplied by the program (see wait(2) and
exit(2)). The former byte is 0 for normal termination; the latter is cus-
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to cope
with the task at hand. It is called variously ‘“‘exit code’, ‘‘exit status’’, or
“return code’”, and is described only where special conventions are
involved. ‘

BUGS
Regretfully, many commands do not adhere to the aforementioned syntax.

300(1) 300(1)

NAME
300, 300s — handle special functions of DASI 300 and 300s terminals

SYNOPSIS
30 { +12) [—n 1 [—dt,lc]

300s [+12] [—n] [—dtlc]

DESCRIPTION

300 supports special functions and optimizes the use of the DASI 300 (GSI
300 or DTC 300) terminal; 300s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, half-
line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text. It-also reduces printing time 5 to 70%.
300 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals
normally allow only two combinations: 10-pitch, 6 lines/inch, or
12-pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch
combination, the user should turn the PITCH switch to 12, and
use the +12 option. »

—n controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a 10-pitch line-feed requires 8 incre-
ments, while a 12-pitch line-feed needs only 6. The first digit of
n overrides the default value, thus allowing for individual taste in
the appearance of subscripts and superscripts. For example, nroff
half-lines could be made to act as quarter-lines by using —2. The
user could also obtain appropriate half-lines for 12-pitch, 8
lines/inch mode by using the option —3 alone, having set the
PITCH switch to 12-pitch.

—dt,l,c controls delay factors. The default setting is —d3,90,30. DASI
300 terminals sometimes produce peculiar output when faced
with very long lines, too many tab characters, or long strings of
blankless, non-identical characters. One null (delay) character is
inserted in a line for every set of ¢ tabs, and for every contiguous
string of ¢ non-blank, non-tab characters. If a line is longer than
I bytes, 1+ (total length)/20 nulls are inserted at the end of that
line. Items can be omitted from the end of the list, implying use
of the default values. Also, a value of zero for ¢ (c) results in
two null bytes per tab (character). The former may be needed
for C programs, the latter for files like /etc/passwd. Because ter-
minal behavior varies according to the specific characters printed
and the load on a system, the user may have to experiment with
these values to get correct output. The —d option exists only as
a last resort for those few cases that do not otherwise print prop-
erly. For example, the file /etc/passwd may be printed using
—d3,30,5. The value —d0,1 is a good one to use for C programs
that have many levels of indentation.

300(1) 300(1)

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The suy(1) modes nl0 cr2
or nl0 cr3 are recommended for most uses.

300 can be used with the nrofff —s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff —T300 files ... and nroff files ... | 300
nroff —T300—12 files ... and nroff files ...]300 +12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza-
tion of 300 may produce better-aligned output.

The neqgn names of, and resulting output for, the Greek and special charac-
ters supported by 300 are shown in greek(5).

SEE ALSO
450(1), eqn(l), graph(1G), mesg(l), nroff(1), stty(1), tabs(l), tbi(1),
tplot(1G), greek(5).

BUGS

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line-feeds.

4014(1) 4014(1)

NAME

4014 — paginator for the Tektronix 4014 terminal
SYNOPSIS

4014 [—t]1 [—n][—eN1[—pL][file]
DESCRIPTION

The output of 4014 is intended for a Tektronix 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N
columns, and contributes an eight-space page offset in the (default) single-
column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE® Model 37 half- and reverse-line sequences are inter-
preted and plotted. At the end of each page, 4014 waits for a new-line
(empty line) from the keyboard before continuing on to the next page. In
this wait state, the command !cmd will send the cmd to the shell.

The command line options are:
—t Don’t wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the
screen.

—cN Divide the screen into N columns and wait after the last column.

—pL Set page length to L; L accepts the scale factors i (inches) and 1
(lines); default is lines.
SEE ALSO
pr{1), tc(1), troff(1).

450(1) 450(1)

NAME
450 — handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450
terminal, or any terminal that is functionally identical, such as the DIABLO
1620 or XEROX 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as
300(1). 450 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

450 can be used with the nroff —s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of
one of the following:

nroff —T450 files ...
or
nroff —T450—12 files ...

The use of 450 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza-
tion of 450 may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special charac-
ters supported by 450 are shown in greek (5).

SEE ALSO
300(1), eqn(l), graph(1G), mesg(l), nroff(1), stty(l), tabs(l), tbl(l),
tplot(1G), greek(S).

BUGS
Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line-feeds.

ACCTCOM(1) ACCTCOM(1)

NAME

acctcom — search and print process accounting file(s)
SYNOPSIS

acctcom [[options][file]] . . .
DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct(4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork /exec flag: 1
for fork without exec) and STAT (the system exit status).

The command name is prepended with a # if it was executed with super-
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a termi-
nal or /dev/null (as is the case when using & in the shell), /usr/adm/pacct
is read, otherwise the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by process
completion time. The file /usr/adm/pacct is usually the current file to be
examined; a busy system may need several such files of which all but the
current file are found in /usr/adm/pacct?. The options are:

—b Read backwards, showing latest commands first.

—f Print the fork /exec flag and system exit status columns in the
output.

—h Instead of mean memory size, show the fraction of total avail-

able CPU time consumed by the process during its execution.
This “hog factor’’ is computed as:
(total CPU time)/(elapsed time).

—i Print columns containing the 1/O counts in the output.

—k Instead of memory size, show total kcore-minutes.

—m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

—t Show separate system and user CPU times. '

—-v Exclude column headings from the output.

—1 line Show only processes belonging to terminal /dev /line.

—u user Show only processes belonging to user that may be specified

by: a user ID, a login name that is then converted to a user ID,
a # which designates only those processes executed with
super-user privileges, or ? which designates only those
processes associated with unknown user IDs.

—g group Show only processes belonging to growp. The group may be
designated by either the group ID or group name.

—d mm/dd Any time arguments following this flag are assumed to occur
on the given month mm and the day dd rather than during last
24 hours. This is needed for looking at old files.

—S time Select processes existing at or after fime, given in the format
hr[:min[:secl].
—e lime Select processes existing at or before time .

=S time Select processes starting at or after time.

—E time Select processes ending at or before time.

—n pattern Show only commands matching pattern that may be a regular
expression as in ed(1) except that + means one or more
occurrences.

ACCTCOM(1) ACCTCOM(1)

FILES

—o ofile Copy selected process records in the input data format to ofile;
supress standard output printing.

—H factor Show only processes that exceed factor, where factor is the
‘“hog factor” as explained in option —h above.

—O0 sec Show only processes with CPU system time exceeding sec
seconds.
—C sec Show only processes with total CPU time, system plus user,

exceeding sec seconds.
Listing options together has the effect of a logical and.

Jetc/passwd
Jusr/adm/pacct
/etc/group

SEE ALSO

BUGS

ps(1), su(1), acct(2), acct(4), utmp(4).

acct(1IM), acctems(1M), acctcon(IM), acctmerg(lM), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M) in the UNIX System Administrator’s
Manual.

Acctcom only reports on processes that have terminated; use ps(1) for
active processes. If time exceeds the present time and option —d is not
used, then time is interpreted as occurring on the previous day.

ADB(1) (DEC only) ADB(1)

NAME
adb — absolute debugger

SYNOPSIS
adb [—w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine
files and to provide a controlled environment for the execution of UNIX
programs.

Objfil is normally an executable program file, preferably containing a sym-
bol table; if not then the symbolic features of adb cannot be used although
the file can still be examined. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing objfil; the default
for corfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the —w flag is present then both objfil and corfil are
created if necessary and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the
next adb command.

In general requests to adb are of the form
[address} [, count] [command] [;}

If address is present then dot is set to address. Initially dot is set to 0. For
most commands count specifies how many times the command will be exe-
cuted. The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged then addresses are interpreted in the usual
way in the address space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.
' The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number
if preceded by #; otherwise a decimal number.

integer .fraction
A 32 bit floating point number.

‘ccce’ The ASCII value of up to 4 characters. \ may be used to escape a .

< name
The value of name, which is either a variable name or a register
name. Adb maintains a number of variables (see VARIABLES)
named by single letters or digits. If name is a register name then
the value of the register is obtained from the system header in
corfil. The register names are r0 ... r5 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores
or digits, not starting with a digit. The value of the symbol is taken
from the symbol table in objfil. An initial _ or ~ will be prefixed to
symbol if needed.

— symbol
In C, the ““true name’ of an external symbol begins with _. It may

-1-

ADB(1) (DEC only) ADB(1)

be necessary to utter this name to distinguish it from internal or
hidden variables of a program.

routine .name
The address of the variable name in the specified C routine. Both
routine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding
to routine.

(exp) The value of the expression exp.

Monadic operators:
#exp - The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer negation.
~exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic
operators.

el +e2 Integer addition.

el —e2 Integer subtraction.

el=e2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

el|e2 Bitwise disjunction.

el #e2 EI rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands ? and / may
be followed by *; see ADDRESSES for further details.)

i Locations starting at address in objfil are printed according to the
format f. dot is incremented by the sum of the increments for
each format letter (g.v.).

If Locations starting at address in corfil are printed according to the
format f and dot is incremented as for ?.

=f The value of address itself is printed in the styles indicated by the
format f. (For i format ? is printed for the parts of the instruction
that reference subsequent words.)

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format dot is
incremented by the amount given for each format letter. If no format is
given then the last format is used. The format letters available are as fol-
lows:

Print 2 bytes in octal. All octal numbers cutput by adb are
preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

oROo® O
BRBRNAE N

ADB(1)

A0 T b m

- el w

+

new-line

e -
rY-X-1

— e = OO B BN BN

(=]

(DEC only) ADB(1)

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following escape
convention. Character values 000 to 040 are printed as @
followed by the corresponding character in the range 0100
to 0140. The character @ is printed as @@.

Print the addressed characters until a zero character is
reached.

Print a string using the @ escape convention. » is the
length of the string including its zero terminator.

Print 4 bytes in date format (see ctime (3C)).

Print as PDP-11 instructions. n is the number of bytes
occupied by the instruction. This style of printing causes
variables 1 and 2 to be set to the offset parts of the source
and destination respectively.

Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as
indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.

When preceded by an integer tabs to the next appropriate
tab stop. For example, 8t moves to the next 8-space tab
stop.

Print a space.

Print a new-line.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is
printed.

Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[2/1 value mask
Words starting at dot are masked with mask and compared with
value until a match is found. If L is used then the match is for 4
bytes at a time instead of 2. If no match is found then dor. is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then —1 is used.

[2/1w value ...

Write the 2-byte value into the addressed location. If the command
is W, write 4 bytes. Odd addresses are not allowed when writing to
the subprocess address space.

[?2/1m b1 el f1[2/}
New values for (b1, el, fI) are recorded. If less than three expres-
sions are given then the remaining map parameters are left

-3-

ADB(1) (DEC only) ADB(1)

unchanged. If the ? or / is followed by # then the second segment
(b2,e2,f2) of the mapping is changed. If the list is terminated by
? or / then the file (objfil or corfil respectively) is used for subse-
quent requests. (So that, for example, /m? will cause / to refer to

objfil.)
>name
Dot is assigned to the variable or register named.
! A shell is called to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file £, which is created if it does not

exist.

T Print the general registers and the instruction addressed by
pe. Dot is set to pe.

f Print the floating registers in single or double length. If the

floating point status of ps is set to double (0200 bit) then
double length is used anyway.

b Print all breakpoints and their associated counts and com-
mands.
a ALGOL 68 stack backtrace. If address is given then it is

taken to be the address of the current frame (instead of
rd). If count is given then only the first count frames are
printed.
c C stack backtrace. If address is given then it is taken as the
address of the current frame (instead of r5). If C is used
then the names and (16 bit) values of all automatic and
static variables are printed for each active function. If count
is given then only the first count frames are printed.
The names and values of external variables are printed.
Set the page width for output to address (default 80).
Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.
Reset integer input as described in EXPRESSIONS.
Exit from adb.
Print all non zero variables in octal.
Print the address map.

geseacwgeo

:modifier
Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The breakpoint is executed
count—1 times before causing a stop. Each time the break-
point is encountered the command ¢ is executed. If this
command sets dot to zero then the breakpoint causes a
stop.

d Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly
then the program is entered at this point; otherwise the
program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be supplied on
the same line as the command. An argument starting with
<< or > causes the standard input or output to be esta-
blished for the command. All signals are turned on on

-4-

ADB(1) (DEC only) ADB(1)

entry to the subprocess.

cs The subprocess is continued with signal s (see signal(2)).
If address is given then the subprocess is continued at this
address. If no signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for ¢ except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as
a subprocess as for r. In this case no signal can be sent;
the remainder of the line is treated as arguments to the
subprocess.

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a number of variables. Named variables are set initially by
adb but are not used subsequently. Numbered variables are reserved for
communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil
does not appear to be a core file then these values are set from objfil.

The base address of the data segment.

The data segment size.

The entry point.

The “magic’’ number (0405, 0407, 0410 or 0411).
The stack segment size.

The text segment size.

~uogoeoaw

ADDRESSES i

FILES

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri-
ples (bl, el, f1) and (b2, e2, f2) and the file address corresponding to a
written address is calculated as follows:

bl <address<<el => file address=address +f1—bl
otherwise

b2 <address<e2 => file address=address+f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for pro-
grams with separated I and D space) the two segments for a file may over-
lap. If a ? or / is followed by an # then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, bl is set to
0, el is set to the maximum file size and f7 is set to 0; in this way the
whole file can be examined with no address translation.

In order for adb to be used on large files all appropriate values are kept as
signed 32 bit integers.

/dev/mem
/dev/swap
a.out

core

ADB(1) (DEC only) ADB(1)

SEE ALSO
ptrace(2), a.out(4), core(4).

DIAGNOSTICS
““Adb” when there is no current command or format. Comments about
inaccessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on initial entry to the
program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul
up the accessing of the external.

ADMIN(1) ADMIN(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [—n] [—ilname]l]l [—rrell [—tlname]]l [—fAaglflag-val]]
[[—dilla[g[ﬂa]g-val]] {—alogin] [—elogin] [—mImrlist]] [—ylcomment]]
—h] [—1z] files

DESCRIPTION

Admin is used to create new SCCS files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with —, and named files (note that SCCS
file names must begin with the characters s.). If a named file doesn’t exist,
it is created, and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a2 named file does exist, parameters correspond-
ing to specified keyletter arguments are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be
created\.
—ilname] The name of a file from which the text for a new

SCCS file is to be taken. The text constitutes the first
delta of the file (see —r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more SCCS files
require that they be created empty (no —i keyletter).
Note that the —i keyletter implies the —n keyletter.

—rrel The release into which the initial delta is inserted.
This keyletter may be used only if the —i keyletter is
also used. If the —r keyletter is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial deltas are
named 1.1).

—tlnamel The name of a file from which descriptive text for the
SCCS file is to be taken. If the —t keyletter is used
and admin is creating a new SCCS file (the —n and/or
—i keyletters also used), the descriptive text file
name must also be supplied. In the case of existing
SCCS files: (1) a —t keyletter without a file name
causes removal of descriptive text (if any) currently
in the SCCS file, and (2) a —t keyletter with a file

-1-

ADMIN(1)

—fflag

cceil

ffloor

dsip

Hist

qtext

mmod

ADMIN(1)

name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the —b keyletter on a ger(1) command
to create branch deltas.

The highest release (i.e., “‘ceiling’’), a number less
than or equal to 9999, which may be retrieved by a
get(1) command for editing. The default value for
an unspecified ¢ flag is 9999.

The lowest release (i.e., *““floor’’), a number greater
than O but less than 9999, which may be retrieved by
a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SID) to be used by a
get(1) command.

Causes the "No id keywords (ge6)" message issued by
get(1) or delta(l) to be treated as a fatal error. In
the absence of this flag, the message is only a warn-
ing. The message is issued if no SCCS identification
keywords (see get(1)) are found in the text retrieved
or stored in the SCCS file.

Allows concurrent ger(1) commands for editing on
the same SID of an SCCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

A list of releases to which deltas can no longer be
made (get —e against one of these ‘‘locked’’ releases
fails). The list has the following syntax:

<list> 1= <range> | <list> , <range>
<range> ::= RELFASE NUMBER | a

The character a in the list is equivalent to specifying
all releases for the named SCCS file.

Causes delta(1) to create a ‘“‘null” delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as ‘‘anchor points’® so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
SCCs file preventing branch deltas from being created
from them in the future.

User definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(1).

Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by ger(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the

-2.

ADMIN(1)

tiype

vlpgm]

—dflag

Mist

—alogin

—elogin

—ylcomment]

—m[mrlist]

ADMIN(1)

leading s. removed.

Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text
retrieved by get(1).

Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR
number validity checking program (see delta(1)). (If
this flag is set when creating an SCCS file, the m
keyletter must also be used even if its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The —d keyletter may be specified only
when processing existing SCCS files. Several —d
keyletters may be supplied on a single admin com-
mand. See the —f keyletter for allowable flag names.

A list of releases to be ‘‘unlocked’’. See the —f
keyletter for a description of the I flag and the syntax
of a list.

A login name, or numerical UNIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a keyletters may be used on a single
admin command line. As many Jogins, or numerical
group IDs, as desired may be on the list simultane-
ously. If the list of users is empty, then anyone may
add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(1). Omission of the —y keyletter results
in a default comment line being inserted in the form:

date and time created YY/MM /DD HH:MM:SS by login

The —y keyletter is valid only if the —i and/or —n
keyletters are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(1).
The v flag must be set and the MR numbers are vali-
dated if the v flag has a value¢ (the name of an MR
number validation program). Diagnostics will occur
if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see sccsfile(5)), and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum

-3-

ADMIN(1) -ADMIN(1)

that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

-z The SCCS file check-sum is recomputed and stored in
the first line of the SCCS file (see —h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

FILES

The last component of all SCCS file names must be of the form s.file-name.
New SCCS files are given mode 444 (see chmod(1)). Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file, called x.file-name, (see get(1)),
created with mode 444 if the admin command is creating a new SCCS file,
or with the same mode as the SCCS file if it exists. After successful execu-
tion of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that changes are
made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and

that SCCS files themselves be mode 444. The mode of the directories.,
allows only the owner to modify SCCS files contained in the directories.

The mode of the SCCS files prevents any modification at all except by SCCS

commands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(1). Care must be
taken! The edited file should always be processed by an admin —h to check
for corruption followed by an admin —z to generate a proper check-sum.
Another admin —h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultaneous updates to the SCCS file by different users.
See get(1) for further information.

SEE ALSO

delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(4).

Source Code Control System User’s Guide in the UNIX System User’s Guide .
DIAGNOSTICS

Use help(1) for explanations.

AR(1) (not on PDP-11) AR(1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main
use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described
in detail in ar(4). The archive symbol table (described in ar(4)) is used by
the link editor (ld(1)) to effect multiple passes over libraries of object files
in an efficient manner. Whenever the ar(1) command is used to create or
update the contents of an archive, the symbol table is rebuilt. The symbol
table can be forced to be rebuilt by the s option described below.

Key is one character from the set drqtpmx, optionally concatenated with
one or more of vuaibels. Afile is the archive file. The names are consti-
tuent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with modified dates later than
the archive files are replaced. If an optional positioning character
from the set abi is used, then the posmame argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. Use-
ful only to avoid quadratic behavior when creating a large archive
piece-by-piece.

t Print a table of contents of the archive file. If no names are given,

all files in the archive are tabled. If names are given, only those
files are tabled.

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file descrip-
tion of the making of a new archive file from the old archive and
the constituent files. When used with t, it gives a long listing of all
information about the files. When used with x, it precedes each file
with a name. '

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile
is created.

1 Local. Normally ar places its temporary files in the directory /tmp.

This option causes them to be placed in the local directory.

AR(1) (not on PDP-11) AR(1)

s Symbol table creation. Force the regeneration of the archive sym-
bol table even if ar(1) is not invoked with a command which will
modify the archive contents. This command is useful to restore the
archive symbol table after the strip(1) command has been used on
the archive.

FILES

Jtmp/ar+ temporaries
SEE ALSO

arcv(1), 1d(1), lorder(1), a.out(4), ar(4).
BUGS

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

AR(1) (PDP-11 only) AR(1)

NAME
ar — archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main
use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose.

When ar creates an archive, it always creates the header in the format of
the local system. A conversion program exists to convert PDP-11 archives
to pre-UNIX 5.0 VAX-11/780 archive format (see arcv(l)). Another
conversion program, convert(l), exists on the VAX and 3B20S to convert
archives from the pre-UNIX 5.0 format to the "common" archive format
described in ar(4). Individual files are inserted without conversion into the
archive file.

Key is one character from the set drqtpmx, optionally concatenated with
one or more of vuaibel. Afile is the archive file. The names are consti-
tuent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with modified dates later than
the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. Use-
ful only to avoid quadratic behavior when creating a large archive
piece-by-piece.

t Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.
\J Verbose. Under the verbose option, ar gives a file-by-file descrip-

tion of the making of a new archive file from the old arckive and
the constituent files. When used with t, it gives a long listing of all
information about the files. When used with x, it precedes each file
with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile
is created.

1 Local. Normally ar places its temporary files in the directory /tmp.

This option causes them to be placed in the local directory.

AR(1) (PDP-11 only) AR(1)

FILES

/tmp/vx temporaries
SEE ALSO

arcv(1), 1d(1), lorder(1), ar(4).
BUGS

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

ARCV(1) ARCV(1)

NAME
arcv — convert archive files from PDP-11 to common archive format

SYNOPSIS
arcv infile outfile

DESCRIPTION
Arcv converts source archive files from the PDP-11 format to the UNIX 5.0
portable archive format. The input archive file infile is converted to an
equivalent output archive file outfile . Note that there is no conversion of
the members of the input archive file.

FILES
/tmp/arcv#

SEE ALSO
ar(1), convert(l), ar(4).

AS(1) (not on PDP-11) AS(1)

NAME
as — common assembler

SYNOPSIS
as [—o objfile] [~n] [—m] [—R] [—r] [—[bwl]] [—V] file-name

DESCRIPTION
The as command assembles the named file. The following flags may be
specified in any order:

—o objfile Output of assembly is put in objfile. By default, the output file
name is formed by removing the .s suffix, if there is one, from
the input file name and appending a .o suffix.

—n Turns off long/short address optimization. By default, address
optimization takes place.

—m Runs the m4 macro pre-processor on the input to the assembler.

—R Instructs the assembler to delete (unlink) the input file after
assembly is completed. This option is off by default.

-r For the VAX version of the common assembler only. This
option instructs the assembler to place all assembled data (nor-
mally placed in the .data section) into the .text section. This
option effectively disables the .data pseudo operation. This
option is off by default.

—[bwl] For the VAX version of the common assembler only. This
option instructs the assembler to create byte (b) , halfword (w)
or long (1) displacements for undefined symbols. The default
value for this option is long (1) displacements.

-V Causes the version number of the assembler being run to be
written on standard error.

FILES
/usr/tmp/as[1-6]XXXXXX temporary files

SEE ALSO
1d(1), m4(1), nm(1), strip(1), a.out(4).

DIAGNOSTICS

If the input file cannot be read, the assembly will terminate with the mes-
sage "Unable to open input file". If assembly errors are detected the follow-
ing information is written to standard error: the input file name, line
number where the error occurred in the assembly code, a (hopefully)
descriptive message of the problem, and, if the input file was produced by
the C compiler (see cc(1)) the line number in the C program that gen-
erated the erroneous code.

CAVEATS
Those running the assembler explicitly should take note of some possible
pitfalls:

— If the —m (m4 macro pre-processor invocation) option is used, key-
words for m4 (see m4(1)) cannot be used as symbols (variables, func-
tions, labels) in the input file since m4 cannot determine which are
assembler symbols and which are real m4 macros.

BUGS .
The .align assembler directive is not guaranteed to work in the .text sec-
tion when optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per
expression.

AS(1) (PDP-11 only) AS(1)

NAME

as — assembler for PDP-11
SYNOPSIS

as [— 1 [—o objfile] file ...
DESCRIPTION

As assembles the concatenation of the named files. If the optional first

argument — is used, all undefined symbols in the assembly are treated as
global.

The output of the assembly is left on the file objfile; if that is omitted,
a.out is used. It is executable if no errors occurred during the assembly,
and if there were no unresolved external references.

FILES
/lib/as2 pass 2 of the assembler
/tmp/atm[1-3]? temporary
a.out object

SEE ALSO

adb(1), 1d(1), nm(1), a.out(4).
UNIX Assembler Manual by D. M. Ritchie.

DIAGNOSTICS

If the name chosen for the output file is of the form *?.[cs], the assembler
issues an appropriate complaint and quits. When an input file cannot be
read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is
typed out together with the line number and the file name in which it
occurred. Errors in pass 1 cause cancellation of pass 2. The possible errors
are:

Parentheses error

Parentheses error

String not terminated properly
Indirection used illegally

Illegal assignment to .

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (f or b) type symbol
Garbage (unknown) character

End of file inside an .if
Multiply-defined symbol as label

Word quantity assembled at odd address
. different in pass 1 and 2

Relocation error

Undefined symbol

Syntax error

L3 Nt

gg-!-gos—-m-noa'ﬂ'

BUGS
Syntax errors can cause incorrect line numbers in subsequent diagnostics.

ASA(1) ASA(1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage
control characters. It processes either the files whose names are given as
arguments or the standa:d input if no file names are supplied. The first
character of each line is assumed to be a control character; their meanings

are:
r (blank) single new line before printing
0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with * “. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This pro-
gram forces the first line of each input file to start on a new page.

To correctly view the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter thusly:

a.out |asa | lpr

and the output, properly formatted and pagenated, would be directed to the
line printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
efl(1), £77(1), fsplit(l), ratfor(1).

AWK(1) AWK(1)

NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—Fc] [prog] [parameters] [files]
DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated
action that will be performed when a line of a file matches the pattern. The
set of patterns may appear literally as prog, or in a file specified as —f file.
The prog string should be enclosed in single quotes (‘) to protect it from
the shell.

Parameters, in the form x==... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The
file name — means the standard input. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS, see below). The fields are denoted $1, $2, ...;
$0 refers to the entire line,

A pattern-action statement has the form:
pattern { action }

A missing action means print the line¢; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol-
lowing:

if (conditional) statement [else statement]
while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement } ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] { >expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +,

+, /, %, and concatenation (indicated by a blank). The C operators ++,

——, +=, —=, =, /=_and %= are also available in expressions. Vari-
ables may be scalars array elements (denoted x[il) or fields. Variables are
initialized to the null string. Array subscripts may be any string, not neces-
sarily numeric; this allows for a form of associative memory. String con-
stants are quoted (").

The print statement prints its argaments on the standard output (or on a
file if >expr is present), separated by the current output field separator,
and terminated by the output record separator. The printf statement for-
mats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in func-
tions exp, log, sqrt, and int. The last truncates its argument to an integer;

-1-

AWK(1) AWK(1)

substr(s, m, n) returns the n-character substring of s that begins at position
m. The function sprintf(fimt, expr, expr,...) formats the expressions
according to the printf(3S) format given by fmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of
regular expressions and relational expressions. Regular expressions must
be surrounded by slashes and are as in egrep (see grep(1)). Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either = (for contains) or !™ (for does not contain). A conditional is an arith-
metic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pat-
tern, END the last.

A single character ¢ may be used to separate the fields by starting the pro-
gram with:

BEGIN { FS = ¢ }
or by using the —Fc option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separa-
tor (default blank); ORS, the output record separator (default new-line);
and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{fs += 81}
END { print "sum is", s,

average is", s/NR }
Print fields in reverse order:
{ for (i = NF; i > 0; ——i) print $i }
Print all lines between start/stop pairs:
/start/, [stop/
Print all lines whose first field is different from previous one:
$1 !'= prev { print; prev = $1 }
Print file, filling in page numbers starting at 5:

AWK(1) AWK(1)

/Page/ { $2 = n++; }
{ print }
command line: awk —f program n=:5 input
SEE ALSO
grep(1), lex(1), sed(1).
Awk— A Pattern Scanning and Processing Language by A. V. Aho, B. W.
Kernighan, and P. J. Weinberger.
BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force

an expression to be treated as a number add O to it; to force it to be treated
as a string concatenate the null string (**) to it.

BANNER(1) BANNER(1)

NAME

banner — make posters
SYNOPSIS

banner strings
DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in large letters
on the standard output.

SEE ALSO
echo(1).

BASENAME(1) BASENAME(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally
used inside substitution marks (" *) within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c,
compiles the named file and moves the output to a file named cat in the
current directory:

cc sl - -
mv a.out basename $1 .c

The following example will set the shell variable NAME to /usr/src/cmd:
NAME="dirname /usr/src/cmd,/cat.c’

SEE ALSO
sh(1).

BUGS
The basename of / is null and is considered an error.

BC(1) BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be[—e]l[—-111fie..]
DESCRIPTION

Bc is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The —1 argument stands for the name of an arbi-
trary precision math library. The syntax for bc programs is as follows; L
means letter a—z, E means expression, S means statement.

Comments
are enclosed in /¢ and »/.

Names
simple variables: L
array elements: L [E]

LR T 3

The words “‘ibase’’, ‘“‘obase’’, and ‘‘scale”

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ — */ %" (% is remainder; ~ is power)
++ —— (prefix and postfix; apply to names)

while (E) S
for(E;E;E)S
null statement
break
quit

Function definitions
define L (L.,..,L){

autoL, ..., L
S; .S
return (E)
}
Functions in —1 math library
s(x) sine

c(x) cosine

e(x) exponential
I(x) log

a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

BC(1)

BC(1)

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(1). Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. ‘“‘Auto” variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables empty square brackets
must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically,
unless the —c¢ (compile only) option is present. In this case the dc input is
sent to the standard output instead.

EXAMPLE

FILES

scale = 20
define e(x){
autoa, b, c,i,s

a=1
b=1
s=1
for(i=1; 1==1; i+ +){
a = asx
b= b
c=a/b
if(c == 0) return(s)
| s =s+c

}

defines a function to compute an approximate value of the exponential
function and

for(i=1; i<=10; i+ +) e(i)

prints approximate values of the exponential function of the first ten
integers.

/usr/lib/lib.b mathematical library
Jusr/bin/dc desk calculator proper

SEE ALSO

BUGS

dc(1).
BC—An _Arbitrary Precision Desk-Calculator Language by L. L. Cherry and
R. Morris.

No &&, || yet.
For statement must have all three E’s.
Quit is interpreted when read, not when executed.

BDIFF(1) BDIFF(1)

NAME

bdiff — big diff

SYNOPSIS

bdiff filel file2 [n] [—s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to 4iff(1) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow
processing of files which are too large for diff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into n-line
segments, and invokes diff upon corresponding segments. The value of n
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in those cases in
which 3500-line segments are too large for diff, causing it to fail. If filel
(file2) is —, the standard input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note, however, that
this does not suppress possible exclamations by diff. If both optional argu-
ments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

SEE ALSO

diff(1).

DIAGNOSTICS

Use help(1) for explanations.

BFS(1) BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

Bfs is (almost) like ed(1) except that it is read-only and processes much
larger files. Files can be up to 1024K bytes (the maximum possible size)
and 32K lines, with up to 255 characters per line. Bfs is usually more
efficient than ed for scanning a file, since the file is not copied to a buffer.
It is most useful for identifying sections of a large file where csplit(1) can
be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional — suppresses printing of
sizes. Input is prompted with # if P and a carriage return are typed as in
ed. Prompting can be turned off again by inputting another P and carriage
return. Note that messages are given in response to errors if prompting is
turned on.

All address expressions described under ed are supported. In addition, reg-
ular expressions may be surrounded with two symbols besides / and ?: >
indicates downward search without wrap-around, and < indicates upward
search without wrap-around. Since bfs uses a different regular expression-
matching routine from ed, the regular expressions accepted are slightly
wider in scope (see regemp(3X)). There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are
remembered.

The e, g v, k, n, p, q, w, =, ! and null commands operate as described
under ed. Commands such as ———, +++—, +++=, —12, and +4p
are accepted. Note that 1,10p and 1,10 will both print the first ten lines.
The f command only prints the name of the file being scanned; there is no
remembered file name. The w command is independent of output diver-
sion, truncation, or crunching (see the xe, xt and x¢ commands, below).
The following additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received or an error
occurs, reading resumes with the file containing the xf. Xf com-
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is
missing, output is diverted to the standard output. Note that
each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label
are ignored. This command may also be used to insert com-
ments into a command file, since labels need not be referenced.

(., .)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:

BFS(1)

BFS(1)

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression doesn’t match at least one
line in the specified range, including the first and last
lines.

On success, . is set to the line matched and a jump is made to
label. This command is the only one that doesn’t issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number

Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xvldigit] [spaces] [value]

The variable name is the specified digit following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable 5.
Xv61,100p assigns the value 1,100p to the variable 6. To refer-
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables § and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \
must precede it.

g/" A\%lcdsl/p

could be used to match and list lines containing printf of charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of out-
put from a UNIX command can be stored into a variable. The
only requirement is that the first character of value be an !. For
example:

.w junk
xvS5icat junk
'rm junk
lecho "%5"
xv6lexpr %6 + 1
would put the current line into variable 5, print it, and incre-

ment the variable 6 by one. To escape the special meaning of !
as the first character of value, precede it with a \.

BFS(1) BFS(1)

xv7\!date
stores the value !date into variable 7.
xbz label

xbn label
These two commands will test the last saved return code from
the execution of a UNIX command (!command) or nonzero
value, respectively, to the specified label. The two examples

below both search for the next five lines containing the string
size.

xvS$5
|
[size/

xvSlexpr %5 — 1
1if 0%5 !'= 0 exit 2
xbn |

xv45

:1

/size/

xv4lexpr %4 — 1
1if 0%4 = 0 exit 2
xbz |

xc [switch]
If switch is 1, output from the p and null commands is
crunched; if switch is 0 it isn’t. Without an argument, xc¢ rev-
erses switch. Initially switch is set for no crunching. Crunched
output has strings of tabs and blanks reduced to one blank and
blank lines suppressed.

SEE ALSO
csplit(1), ed(1), regemp(3X).
DIAGNOSTICS

? for errors in commands, if prompting is turned off. Self-explanatory
error messages when prompting is on.

BS(1) BS(1)

NAME
bs — a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION

Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program develop-
ment time is as important as the resulting speed of execution. Formalities
of data declaration and file/process manipulation are minimized. Line-at-
a-time debugging, the trace and dump statements, and useful run-time error
messages all simplify program testing. Furthermore, incomplete programs
can be debugged; inner functions can be tested before outer functions have
been written and vice versa.

If the command line file argument is provided, the file is used for input
before the console is read. By default, statements read from the file argu-
ment are compiled for later execution. Likewise, statements enteréd from
the console are normally executed immediately (see compile and execute
below). Unless the final operation is assignment, the result of an immedi-
ate expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a
\, the line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable
can have the same name.

A bs statement is either an expression or a keyword followed by zero or
more expressions. Some keywords (clear, compile, !, execute, include,
ibase, obase, and run) are always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment or
function call). The details of expressions follow the description of state-
ment types below.

break
Break exits from the inner-most for/while loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name
for further input. A clear is associated with this latter case. Compile is
executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dump [name]
The name and current value of every non-local variable is printed.
Optionally, only the named variable is reported. After an error or inter-
rupt, the number of the last statement and (possibly) the user-function
trace are displayed.

BS(1)

BS(1)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).

This statement does not cause stored statements to execute (see run
below).

for name = expression expression statement
for name = expression expression

next

for expression , expression , expression statement
for expression , expression , expression

next

The for statement repetitively executes a statement (first form) or a
group of statements (second form) under control of a named variable.
The variable takes on the value of the first expression, then is incre-
mented by one on each loop, not to exceed the value of the second
expression. The third and fourth forms require three expressions
separated by commas. The first of these is the initialization, the second
is the test (true to continue), and the third is the loop-continuation
action (normally an increment).

fun f([a,...1) [v,...]

nuf
Fun defines the function name, arguments, and local variables for a
user-written function. Up to ten arguments and local variables are
allowed. Such names cannot be arrays, nor can they be I/O associated.
Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interroga-
tion operator (?) below. If interrogation is not present, freturn merely
returns zero. When interrogation is active, freturn transfers to that
expression (possibly by-passing intermediate function returns).

goto name

Control is passed to the internally stored statement with the matching
label.

ibase N
Ibase sets the input base (radix) to N. The only supported values for N
are 8, 10 (the default), and 16. Hexadecimal values 10—15 are entered
as a—f. A leading digit is required (i.e., f0a must be entered as 0f0a).
Ibase (and obase, below) are executed immediately.

if expression statement
if expression
[else
.
The statement (first form) or group of statements (second form) is exe-
cuted if the expression evaluates to non-zero. The strings 0 and ™
(null) evaluate as zero. In the second form, an optional else allows for

a group of statements to be executed when the first group is not. The
only statement permitted on the same line with an else is an if; only

fi

-2-

BS(1)

BS(1)

other fi’s can be on the same line with a fi. The elision of else and if
into an elif is supported. Only a single fi is required to close an if ... elif
[else...] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. Such statements become part of the program being
compiled. Include statements may not be nested.

obase N
Obase sets the output base to N (see ibase above).

onintr label

onintr
The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe-
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause
bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of
a function call. If no expression is given, zero is returned. :

run
The random number generator is reset. Control is passed to the first
internal statement. If the run statement is contained in a file, it should
be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate
mode.

trace [expression]
The trace statement controls function tracing. If the expression is null
(or evaluates to zero), tracing is turned off. Otherwise, a record of
user-function calls/returns will be printed. Each return decrements the
trace expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for
loop-continuation is given.

! shell command
An immediate escape to the Shell.

This statement is ignored. It is used to interject commentary in a pro-
gram.
Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared
in fun statements, all names are global to the program. Names can take
on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open() below).

BS(1)

BS(1)

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
below), the name must be defined with a fin statement. Arguments to
functions are passed by value.

name [expression [, expression] ... |
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer
and used as a specifier for the name. The resulting array reference is
syntactically identical to a name; a[1,2] is the same as a[1][2]. The trun-
cated expressions are restricted to valus between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, and possi-
bly a scale factor consisting of an e followed by a possibly signed
exponent.

string
Character strings are delimited by " characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), back-
space (\b), and tab (\t) characters to appear in a string. Otherwise, \
stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a comma-
separated expression from the parenthesized list. List elements are
numbered from the left, starting at zero. The expression:

(False, True)[a == b}
has the value True if the comparison is true.

? expression

The interrogation operator tests for the success of the expression rather
than its value. At the moment, it is useful for testing end-of-file (see
examples in the Programming Tips section below), the result of the eval
built-in function, and for checking the return from user-written func-
tions (see freturn). An interrogation ‘‘trap’ (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping
assignment statements or intervening function levels.

— expression
The result is the negation of the expression.

+ <+ name

Increments the value of the variable (or array reference). The result is
the new value.

—— name
Decrements the value of the variable. The result is the new value.
! expression
The logical negation of the expression. Watch out for the shell escape
command.
expression operator expression
Common functions of two arguments are abbreviated by the two argu-

ments separated by an operator denoting the function. Except for the
assignment, concatenation, and relaticnal operators, both operands are

-4 -

BS(1)

BS(1)

converted to numeric form before the function is applied.
Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right
to left, all other operators bind left to right.

- (underscore) is the concatenation operator.

& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; | (logical or) has result
zero if both of its arguments are zero. It has result one if either of its
arguments is non-zero. Both operators treat a null string as a zero.

< <= > >= == |=
The relational operators (< less than, <= less than or equal, >
greater than, > = greater than or equal, == equal to, != not equal to)
return one if their arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level extend as fol-
lows: a>b>c is the same as a>b & b>c¢. A string comparison is made
if both operands are strings.

+ —_—
Add and subtract.
* /%

Multiply, divide, and remainder.

Exponentiation.
Built-in Functions:
Dealing with arguments
arg(i) :
is the value of the i-th actual parameter on the current level of function

call. At level zero, arg returns the i-th command-line argument (arg(0)
returns bs).

narg()
returns the number of arguments passed. At level zero, the command
argument count is returned.

Mathematical

abs(x)

is the absolute value of x.
atan(x)

is the arctangent of x. Its value is between —x /2 and = /2.
ceil(x)

returns the smallest integer not less than x.
cos(x)

is the cosine of x (radians).
exp(x)

is the exponential function of x.
floor(x)

returns the largest integer not greater than x.

BS(1)

BS(1)

log(x)

is the natural logarithm of x.
rand()

is a uniformly distributed random number between zero and one.
sin(x)

is the sine of x (radians).

sqrt(x)
is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format
specification in the style of pringf(3S). Only the %...f, %...e, and
% ...s types are safe.

index(x, y)
returns the number of the first position in x that any of the characters
from y matches. No match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a
character in the same position in £. Source characters that do not appear
in f are copied to the result. If the string f is longer than ¢, source char-
acters that match in the excess portion of f do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)

mstring(n)
The pattern is similar to the regular expression syntax of the ed(1) com-
mand. The characters ., [,], = (inside brackets), * and $ are special.
The mstring function returns the n-th (1 <= n <= 10) substring of
the subject that occurred between pairs of the pattern symbols \(and \)
for the most recent call to march. To succeed, patterns must match the
beginning of the string (as if all patterns began with ~). The function
returns the number of characters matched. For example:

match("a123ab123", "s\([a—z]\)") ==
mstring(1) == "b"

File handling

open(name, file, function)

close(name)
The name argument must be a bs variable name (passed as a string).
For the open, the file argument may be 1) a 0 (zero), 1, or 2 represent-
ing standard input, output, or error output, respectively, 2) a string
representing a file name, or 3) a string beginning with an ! representing
a command to be executed (via sh —c). The function argument must be
either r (read), w (write), W (write without new-line), or a (append).
After a close, the name reverts to being an ordinary variable. The initial
associations are:

open("get", 0, ")
open("put’, 1, "w")
open("puterr”, 2, "w")

BS(1)

BS(1)

Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s)
returns a single character file type indication: f for regular file, p for
FIFO (i.c., named pipe), d for directory, b for block special, or ¢ for
character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. ‘‘Sub-
scripts”’ (called keys) are strings (numbers are converted). The name
argument must be a bs variable name (passed as a string). The size
argument sets the minimum number of elements to be allocated. Bs
prints an error message and stops on table overflow. -

item(name, i)

key()
The item function accesses table elements sequentially (in normal use,
there is no orderly progression of key values). Where the item function
accesses values, the key function accesses the “‘subscript’ of the previ-
ous item call. The name argument should not be quoted. Since exact
table sizes are not defined, the interrogation operator should be used to
detect end-of-table, for example:

table("t", 100)

#. .ff word contains "party”, the following expression adds one
to the count of that word:
+ +tlword]

#‘ To print out the the key/value pairs:
fori =0, 7(s = item(t, i)), ++i if key() put = key()_":"_s
iskey(name, word)
The iskey function tests whether the key word exists in the table name
and returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is
handy for converting numeric strings to numeric internal form. Eval
can also be used as a crude form of indirection, as in:
name = "xyz'
eval("+ +"'_ name)
which increments the variable xyz. In addition, eval preceded by the

interrogation operator permits the user to control bs error conditions.
For example:

2eval("open(\"X\", \"XXX\", \"\")")
returns the value zero if there is no file named “XXX"’ (instead of halt-

ing the user’s program). The following executes a goto to the label L
(if it exists):

label="L"
if !(?eval("goto *_label)) puterr = "no label

BS(1)

plot(request, args)

BS(1)

The plot function produces output on devices recognized by tlor(1G).

The requests are as follows:
Call
plot(0, term)

plot(4)
plot(2, string)
plot(3, x1, yl, x2, y2)

plot(4, x, y, r)

- Function

causes further plot output to be
piped into #plot(1G) with an argu-
ment of —Tterm.

“‘erases” the plotter.

labels the current point with string.
draws the line between (xI,yl) and
(x2,y2).

draws a circle with center (x,y) and
radius r.

plot(5, x1, yl, x2, y2, x3, y3) draws an arc (counterclockwise) with

plot(6)
plot(7, x, y)
plot(8, x, y)

plot(9, x, y)
plot(10, string)
plot(11, x1, y1, x2, y2)

plot(12, x1, yl, x2, y2)

center (xI,yI) and endpoints
(x2,y2) and (x3 ,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point
to (x,).

draws a point at (x,y).

sets the line mode to string.

makes (xI,yl) the lower left corner
of the plotting area and (x2,y2) the

upper right corner of the plotting
arei.

causes subsequent x (y) coordinates
to be multiplied by x! (y1) and then
added to x2 (y2) before they are
plotted. The initial scaling is
plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot(1G). See plot(4)

for more details.
last()

in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs

Distance (inches) light travels in a nanosecond.

186000 * 5280 » 12 / 1e9

Compound interest (6% for 5 years on $1,000).

11.78496
int =.06/4
bal = 1000

fori =1 5«4 bal = bal + bal+int

bal — 1000

BS(1)

346.855007
exit

The outline of a typical bs program:
initialize things:

varl = 1
open("read*, "infile", "r")

.#“compute:
while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit

last input line:

run

Input/Output examples:
Copy "oldfile" to "newfile".
open("read”, "oldfile", "r")
open("write", "newfile", "w")

while ?(write = read)

.#”close *read" and "write":
close("read")
close("write")

Pipe between commands.
open("ls", "!ls »", "r")

open("pr”, "'pr —2 —h ‘List”, "w")
while ?2(pr = Is) ...

.#“be sure to close (wait for) these:
close("ls")
close("pr")
SEE ALSO
ed(1), sh(1), tplot(1G), access(2), printf(3S), stdio(3S), plot(4).

BS(1)

See Section 3 of this volume for further description of the mathematical
functions (pow on exp(3M) is used for exponentiation); bs uses the Stan-

dard Input/Output package.

CAL(1) ' CAL(1)

NAME
cal — print calendar
SYNOPSIS
cal [month] year
DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. Vear can be between 1 and 9999.

The month is a number between 1 and 12. The calendar produced is that
for England and her colonies.

Try September 1752.

BUGS

The year is always considered to start in January even though this is histor-
ically naive.
Beware that ‘“cal 78"’ refers to the early Christian era, not the 20th century.

CALENDAR(1) CALENDAR(1)

NAME
calendar — reminder service
SYNOPSIS '
calendar [—]
DESCRIPTION

Calendar consults the file calendar in the current directory and prints out
lines that contain today’s or tomorrow’s date anywhere in the line. Most
reasonable month-day dates such as ‘‘Dec. 7, “‘december 7,” “12/7,”
etc., are recognized, but not ‘7 December’ or “7/12°. On weekends
““tomorrow”’ extends through Monday.

When an argument is present, calendar does its job for every user who has
a file calendar in their login directory and sends them any positive results
by mail(1). Normally this is done daily by facilities in the UNIX operating
system.

FILES
calendar
/ust/lib/calprog to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cals
SEE ALSO
mail(1).

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ““tomorrow’’ does not account for holidays.

CAT(1) CAT(1)

NAME
cat — concatenate and print files

SYNOPSIS
cat { —u][—s]file...
DESCRIPTION
Cat reads cach file in sequence and writes it on the standard output. Thus:
cat file
prints the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat reads
from the standard input file. Output is buffered unless the —u option is
specified. The —s option makes cat silent about non-existent files. No
input file may be the same as the output file unless it is a special file.

WARNING
Command formats such as
cat filel file2 >filel
will cause the original data in filel to be lost, therefore, take care when
using shell special characters.
SEE ALSO
cp(1), pr(1).

CB(1) CB(1)

NAME

¢b — C program beautifier
SYNOPSIS

¢b [—s][—jl[—1leng]I file ...]
DESCRIPTION

Cb reads C programs either from its arguments or from the standard input
and writes them on the standard output with spacing and indentation that
displays the structure of the code. Under default options, cb preserves all
user new-lines. Under the —s flag ch canonicalizes the code to the style of
Kernighan and Ritchie in The C Programming Language. The —j flag
causes split lines to be put back together. The —1I flag causes cb to split
lines that are longer than leng.

SEE ALSO

cc(1).

The C Programming Language by B. W. Kernighan and D. M. Ritchie.
BUGS

Punctuation that is hidden in preprocessor statements will cause indentation
€rrors.

CC(1) CC(1)

NAME
cc, pcc — C compiler

SYNOPSIS
cc [option] ... file ...
pee [option] ... file ...

DESCRIPTION
Cc is the UNIX C compiler. Pcc is the portable version for a PDP-11
machine. They accept several types of arguments:

Arguments whose names end with .c ar¢ taken to be C source programs;
they are compiled, and each object program is left on the file whose name
is that of the source with .o substituted for .c. The .o file is normally
deleted, however, if a single C program is compiled and loaded all at one
go.

In the same way, arguments whose names end with .s are taken to be
assembly source programs and are assembled, producing a .o file.

The following options are interpreted by cc and pec. See ld(1) for link edi-
tor options and cpp(1) for more preprocessor options.

—c Suppress the link edit phase of the compilation, and force an
object file to be produced even if only one program is compiled.

—p Arrange for the compiler to produce code which counts the
number of times each routine is called; also, if link editing takes
place, replace the standard startoff routine by one which automati-
cally calls monitor(3C) at the start and arranges to write out a
mon.out file at normal termination of execution of the object pro-
gram. An cxecution profile can then be generated by use of
prof(1).

—f Link the object program with the floating-point interpreter for sys-
tems without hardware floating-point.

—g Cause the compiler to generate additional information needed for
the use of sdb(1). (Not for PDP-11.)

-0 Invoke an object-code optimizer.

-8 Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed .s.

—E Run only ¢pp(1) on the named C programs, and send the result to
the standard output.

= Run only ¢pp(1) on the named C programs, and leave the result
on corresponding files suffixed .i.

—Bstring
Construct pathnames for substitute compiler, assembler and link
editor passes by concatenating string with the suffixes cpp, ¢0 (or
ccom or comp, see under FILES below), cl, 2, as and 1d. If string
is empty it is taken to be /lib/o.

—t(p012al]
Find only the designated compiler, assembler and link editor
passes in the files whose names are constructed by a —B option.
In the absence of a —B option, the string is taken to be /lib/m.
—t "" is equivalent to —tp012.

—Woc,argl/[,arg2...]
Hand off the argument(s] argi to pass ¢ where c is one of [p012al]
indicating preprocessor, compiler first pass, compiler second pass,

-1-

cc(1)

CC(1)

optimizer, assembler, or link editor, respectively.

—d This option is no longer allowed because of a conflict of meaning.
The —W option must be used to specify precisely its destination.
To indicate the —dn option for the VAX assembler, use
—Wa,—dn. To indicate the —d option for the link editor, use
—Wl,—d.
Other arguments are taken to be either link editor option arguments, C
preprocessor option arguments, or C-compatible object programs, typically
produced by an earlier cc or pec run, or perhaps libraries of C-compatible
routines. These programs, together with the results of any compilations
specified, are linked (in the order given) to produce an executable program
with the name a.out.

FILES
file.c
file.o
a.out
/tmp/ctmx
/lib/cpp
/lib/clo1]
Jusr/lib/comp
/lib/ccom
/lib/c2
Jlib/ocx
/lib/nc*
/bin/as
/bin/ld
/lib/crt0.0
/lib/mcrt0.0
/lib/fert0.0
/lib/fmert0.0

/lib/libc.a
SEE ALSO

input file

object file

linked output

temporary

C preprocessor ¢pp(1)

PDP-11 compiler, cc

compiler, pcc 1
VAX compiler, cc

optional optimizer

backup compiler, occ

test compiler, ncc

assembler, as(1)

link editor, ld(1)

runtime startoff

startoff for profiling

startoff for floating-point interpretation (PDP-11 only)
startoff for floating-point interpretation and profiling
(PDP-11 only)

standard library, see (3)

The C Programming Language by B. W. Kernighan and D. M. Ritchie.
Programming in C— A Tutorial by B. W. Kernighan.

C Reference Manual by D. M. Ritchie.

adb(1), cpp(1), as(1), 1d(1), prof(1), sdb(1), monitor(3C).

DIAGNOSTICS

The diagnostics produced by C itself are intended to be self-explanatory.
Occasional messages may be produced by the assembler or the link editor.
Of these, the most mystifying are from the PDP-11 assembler, in particular
m, which means a multiply-defined external symbol (function or data).

CD(1) CD(1)

NAME
cd — change working directory

SYNOPSIS
cd [directory]

DESCRIPTION

If directory is not specified, the value of shell parameter SHOME is used as
the new working directory. If directory specifies a complete path starting
with /, ., .., directory becomes the new working directory. If neither case
applies, cd tries to find the designated directory relative to one of the paths
specified by the SCDPATH shell variable. SCDPATH has the same syntax
as, and similar semantics to, the SPATH shell variable. Cd must have exe-
cute (search) permission in directory .

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog-
nized and internal to the shell.

SEE ALSO
pwd(1), sh(1), chdir(2).

CDC(1) CDC(1)

NAME

cdc — change the delta commentary of an SCCS delta
SYNOPSIS

¢dc —rSID [—m[mrlist]] [—ylcomment]] files
DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the —r
keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(1) command (—m and
—y keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an
SCCSs file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments, and file names.

All the described keyletter arguments apply independently to each named
file:

—rSID Used to specify the SCCS IDentification (SID) string
of a delta for which the delta commentary is to be
changed.

—mmrlist] If the SCCS file has the v flag set (see admin(1)) then
a list of MR numbers to be added and/or deleted in
the delta commentary of the SID specified by the —r
keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(1). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
“comment” line. A list of all deleted MRs is placed
in the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If —m is not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value (see admin(1)), it
is taken to be the name of a program (or shell pro-
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates

-1-

CDC(1) y CDC(1)

and the delta commentary remains unchanged.

—ylcomment] Arbitrary text used to replace the comment(s) already
existing for the delta specified by the —r keyletter.
The previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

If —y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

The exact permissions necessary to modify the SCCS file are docu-
mented in the Source Code Control System User’s Guide. Simply
stated, they are either (1) if you made the delta, you can change its
delta commentary; or (2) if you own the file and directory you can
modify the delta commentary.

EXAMPLES
cdc —rl.6 —m"bl78-12345 1b177-54321 b179-00001" —ytrouble s.file

adds bl78-12345 and bi79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc —rl.6 s.file
MRs? 1b177-54321 bl78-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cde command via the standard input
(— on the command line), then the —m and —y keyletters must also be
used.

FILES
x-file (see delta(1))
z-file (see delta(1))

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).

Source Code Control System User’s Guide in the UNLX System User’s Guide.
DIAGNOSTICS

Use help(1) for explanations.

CFLOW (1) CFLOW(1)

NAME

cflow — generate C flow graph
SYNOPSIS

cflow [—r] [—ix] [~i_] [—dnum] files
DESCRIPTION

Cflow analyzes a collection of C, YACC, LEX, assembler, and object files
and attempts to build a graph charting the external references. Files
suffixed in .y, .l, .c, and .i are YACC'd, LEX’d, and C-preprocessed
(bypassed for .i files) as appropriate and then run through the first pass of
lint(1). (The —I, —D, and —U options of the C-preprocessor are also
understood.) Files suffixed with .s are assembled and information is
extracted (as in .o files) from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external refer-
ences which is displayed upon the standard output.

Each line of output begins with a reference (i.c., line) number, followed by
a suitable number of tabs indicating the level. Then the name of the global
(normally only a function not defined as an external or beginning with an
underscore; see below for the —i inclusion option) a colon and its
definition. For information extracted from C source, the definition consists
of an abstract type declaration (e.g., char #), and, delimited by angle brack-
ets, the name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file name
and location counter under which the symbol appeared (e.g., text). Leading
underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only < > is printed.

As an example, given the following in file.c:

int i
main()
£();
g0
£0);
0
{
i= h();

the command
cflow file.c

produces the the output

1 main: int(), <file.c 4>

2 f: int(), <filec 11>

3 h: <>

4 i int, <file.c 1>
5 g <>

CFLOW(1)

CFLOW(1)

When the nesting level becomes too deep, the —e option of pr(1) can be
used to compress the tab expansion to something less than every eight

spaces.

The following options are interpreted by cflow:

-r

—ix
—i

—dnum

DIAGNOSTICS

Reverse the ‘““caller:callee’’ relationship producing an inverted list-
ing showing the callers of each function. The listing is also sorted
in lexicographical order by callee.

Include external and static data symbols. The default is to include
only functions in the flow graph.

Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

The num decimal integer indicates the depth at which the flow
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be met with
contempt.

Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro-
grams used (e.g., the C-preprocessor).

SEE ALSO

as(1), cc(1), lex(1), lint(1), nm(1), pr(1), yacc(1).

BUGS

Files produced by Jex(1) and yacc(l) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

CHMOD (1) CHMOD(1)

NAME

chmod — change mode
SYNOPSIS

chmod mode files
DESCRIPTION

The permissions of the named files are changed according to mode, which
may be absolute or symbolic. An absolute mode is an octal number con-
structed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission [op permission

The who part is a combination of the letters u (for user’s permissions), g
(group) and o (other). The letter a stands for uge, the default if who is
omitted.

Op can be + to add permission to the file’s mode, — to take away permis-
sion, or = to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (exe-
cute), s (set owner or group ID) and t (save text, or sticky); u, g, or o indi-
cate that permission is to be taken from the current mode. Omitting permis-
sion is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Cperations
are performed in the order specified. The letter s is only useful with w or g
and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second makes a file
executable:

chmod o—w file
chmod +x file

SEE ALSO
Is(1), chmod(2).

CHOWN(1) CHOWN(1)

NAME
chown, chgrp — change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...
DESCRIPTION

Chown changes the owner of the files ta owner. The owner may be either a
decimal user ID or a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either
a decimal group ID or a group name found in the group file.
FILES
[etc/passwd
/etc/group
SEE ALSO
chown(2), group(4), passwd(4).

CMP(1) CMP(1)

NAME

cmp — compare two files
SYNOPSIS

emp [—111[—s] filel file2
DESCRIPTION

The two files are compared. (If filel is —, the standard input is used.)
Under default options, cmp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference
occurred. If one file is an initial subsequence of the other, that fact is
noted.

Options:
—1 Print the byte number (decimal) and the differing bytes (octal) for
each difference.
—s Print nothing for differing files; return codes only.
SEE ALSO
comm(1), diff(1).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

COL(1) COL(1)

NAME

col — filter reverse line-feeds

SYNOPSIS

col [—bfpx]

DESCRIPTION

Col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ASCIl code
ESC-7), and by forward and reverse half-line-feeds (ESC-9 and ESC-8).
Col s particularly useful for filtering multicolumn output made with the .rt
command of nroff and output resulting from use of the #b/(1) preprocessor.

If the —b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to
appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the —f (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

Unless the —x option is given, col will convert white space to tabs on out-
put wherever possible to shorten printing time.

The ASCI control characters SO (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO char-
acters are generated as appropriate to ensure that each character is printed
in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The
VT character is an alternate form of full reverse line-feed, included for
compatibility with some earlier programs of this type. All other non-
printing characters are ignored.

Normally, col will ignore any unknowr to it escape sequences found in its
input; the —p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The
use of this option is highly discouraged unless the user is fully aware of the
textual position of the escape sequences.

SEE ALSO

NOTES

BUGS

nroff(1), tbl(1).

The input format accepted by col matclies the output produced by nroff with
either the —T37 or —Tlp options. Use —T37 (and the —f option of col)
if the ultimate disposition of the output of col will be a device that can
interpret half-line motions, and —TIlp otherwise.

Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on a line.

Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts.

COMB(1) COMB(1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [—o] [—s] [—psid} [—clist] files

DESCRIPTION

Comb generates a shell procedure (see sh(1)) which, when run, will recon-
struct the given SCCS files. The reconstructed files will, hopefully, be
smaller than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named SCCS files. If a direc-
tory is named, comb behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored.
If a name of — is given, the standard input is read; each line of the stan-
dard input is taken to be the name of an SCCS file to be processed; non-
SCCs files and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

—pSID The SCCS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

—clist A list (see get(1) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

—o For each get —e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, other-
wise the reconstructed file would be accessed at the most recent
ancestor. Use of the —o keyletter may decrease the size of the
reconstructed SCCS file. It may also alter the shape of the delta
tree of the original file.

—s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 * (original — combined) / original
It is recommended that before any SCCS files are actually com-
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).
Source Code Control System User’s Guide in the UNLX System User’s Guide.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

COMM(1) COMM (1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCIH collating
sequence (see sort(1)), and produces a three-column output: lines only in
filel ; lines only in file2; and lines in both files. The file name — means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm —12 prints only the lines common to the two files; comm —23
prints only lines in the first file but not in the second; comm —123 is a no-
op.

SEE ALSO
cmp(1), diff (1), sort(1), uniq(1).

CONVERT(1) (not on PDP-11) CONVERT(1)

NAME

convert — convert object and archive files to common formats
SYNOPSIS

convert infile outfile
DESCRIPTION

Convert transforms input infile to output outfile. Infile must be different
from outfile. Infile may be any one of the following:

1) a pre-UNIX 5.0 VAX object file or link edited (a.out)
module

2) a pre-UNIX 5.0 VAX archive of object files or link edited
(a.out) modules

3) a pre-UNIX 5.0 3B20S archive of object files or link edited
(a.out) modules.

Convert will transform infile to one of the following:

1) an equivalent UNIX 5.0 VAX object file or link edited
(a.out) module

2) an equivalent UNIX 5.0 portable archive of equivalent
object files or link edited (a.out) modules

3) an equivalent UNIX 5.0 portable archive of unaltered
3B20S object files or link edited (a.out) modules.

All other types of input to the comvert(l) command will be passed
unmodified from the input file to the output file (along with appropriate
warning messages). When transforming archive files, the convert(1) com-
mand will inform the user that the archive symbol table has been deleted.
The archive symbol table may be restored by executing the ar(l) command
with the s option.

The convert command may be used in conjunction with the arcv(1l) com-
mand to transform archives generated on a PDP-11 to the UNIX 5.0 archive
format for usage on a 3B20S or VAX processor.

FILES
/tmp/convs

SEE ALSO
ar(1), arcv(l), a.out(4), ar(4).

CP(1)

NAME

CP(1)

¢p, In, mv — copy, link or move files

SYNOPSIS

cp filet [file2 ...] target
In filel [file2 ...] target
mv filel [file2 ..] target

DESCRIPTION

Filel is copied (linked, moved) to target. Under no circumstance can filel
and target be the same (take care when using sh(1) metacharacters). If tar-
get is a directory, then one or more files are copied (linked, moved) to that
directory.

If mv determines that the mode of target forbids writing, it will print the
mode (see chmod(2)) and read the standard input for one line (if the stan-
dard input is a terminal); if the line begins with y, the move takes place; if
not, mv exits.

Only my will allow filel to be a directory, in which case the directory
rename will occur only if the two directories have the same parent.

SEE ALSO

BUGS

cpio(1l), rm(1), chmod(2).

If filel and target lic on different file systems, mv must copy the file and
delete the original. In this case the owner name becomes that of the copy-
ing process and any linking relationship with other files is lost.

Ln will not link across file systems.

-

CPIO(1) CPIO(1)

NAME

cpio — copy file archives in and out

SYNOPSIS

cpio —o [acBv]
cpio —i { BedmrtuvfsSb6] [patterns]
cpio —p [adlmruv] directory

DESCRIPTION

Cpio —o (copy out) reads the standard input to obtain a list of path names
and copies those files onto the standard output together with path name
and status information.

Cpio —i (copy in) extracts files from the standard input which is assumed
to be the product of a previous cpio —o. Only files with names that match
patterns are selected. Patterns are given in the name-generating notation of
sh(1). In patterns, meta-characters ?, =, and [...] match the slash / charac-
ter. Multiple patterns may be specified and if no patterns are specified, the
default for patterns is * (i.e., select all files). The extracted files are condi-
tionally created and copied into the current directory tree based upon the.
options described below.

Cpio —p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination directory
tree based upon the options described below.

The meanings of the available options are:
a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not

apply to the pass option; meaningful only with data directed to or
from /dev/rmt?).

d Directories are to be created as needed.

¢ Write header information in ASCII character form for portability.

r Interactively rename files. If the user types a null line, the file is
skipped.

t Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

v Verbose: causes a list of file names to be printed. When used with

the t option, the table of contents looks like the output of an Is —1
command (see Is(1)).

Whenever possible, link files rather than copying them. Usable
only with the —p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

Copy in all files except those in patterns.

Swap bytes. Use only with the —i option.

Swap halfwords. Use only with the —i option.

Swap both bytes and halfwords. Use only with the —i option.
Process an old (i.e., UNIX Sixth Edition format) file. Only useful
with —i (copy in).

AT N ™

EXAMPLES

The first example below copies the contents of a directory into an archive;
the second duplicates a directory hierarchy:

Is | cpio —o >/dev/mt0

cd olddir
find . —depth —print | cpio —pdl newdir

-1--

CPIO(1) CPIO(1)

The trivial case ““find . —depth —print | cpio —oB >/dev/rmt0’’ can be
handled more efficiently by:

find . —cpio /dev/rmt0

SEE ALSO
ar(1), find(1), cpio(4).

BUGS
Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files. The —B option does not work with certain magnetic tape drives (see
un32(7) in the UNIX System Administrator’s Manual).

CPP(1) CPP(1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/lib/epp [option ...][ifile [ofile]]
DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any
C compilation using the cc(1) command. Thus the output of ¢pp is
designed to be in a form acceptable as input to the next pass of the C com-
piler. As the C language evolves, cpp and the rest of the C compilation
package will be modified to follow these changes. Therefore, the use of cpp
other than in this framework is not suggested. The preferred way to invoke
¢pp is through the cc(1) command since the functionality of cpp may some-
day be moved elsewhere. See m4(1) for a general macro processor.

Cpp optionally accepts two file names as arguments. Ifile and ofile are
respectively the input and output for the preprocessor. They default to
standard input and standard output if not supplied.

The following options to cpp are recognized:

—P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

—C By default, ¢pp strips C-style comments. If the —C option is
specified, all comments (except those found on ¢pp directive lines)
are passed along.

—Uname
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The
current list of these possibly reserved symbols includes:
operating system: ibm, gcos, os, tss, unix

hardware: interdata, pdpll, u370, u3b, vax
UNIX variant: RES, RT

—Dname

— Dname =def -

Define name as if by a #define directive. If no =def is given,
name is defined as 1.

—Idir Change the algorithm for searching for #include files whose names
do not begin with / to look in dir before looking in the directories
on the standard list. Thus, #include files whose names are
enclosed in ** will be searched for first in the directory of the ifile
argument, then in directories named in —I options, and last in
directories on a standard list. For #include files whose names are
enclosed in <>, the directory of the ifile argument is not searched.

Two special names are understood by cpp. The name __LINE__ is defined
as the current line number (as a decimal integer) as known by ¢pp, and
__FILE__ is defined as the current file name (as a C string) as known by
¢pp. They can be used anywhere (including in macros) just as any other
defined name.

All cpp directives start with lines begun by #. The directives are:

define name roken-string
Replace subsequent instances of name with token-string.

define name(arg, ..., arg) token-string
Notice that there can be no space between name and the (. Replace’
subsequent instances of name followed by a (, a list of comma

-1-

CPP(1) CPP(1)

separated tokens, and a) by token-string where each occurrence of
an arg in the token-string is replaced by the corresponding token in
the comma separated list.

undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used,
filename is only searched for in the standard places. See the —I
option above for more detail.

line integer-constant "filename"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file where it comes from. If "filename" is not
given, the current file name is unchanged.

endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching # endif.

#ifdef name .
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening # undef.

#ifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous #define without being the sub-
ject of an intervening # undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-
expression evaluates to non-zero. All binary non-assignment C
operators, the ?: operator, the unary —, !, and ~ operators are all
legal in constant-expression. The precedence of the operators is the
same as defined by the C language. There is also a unary operator
defined, which can be used in constant-expression in these two
forms: defined (name) or defined name. This allows the utility of
#ifdef and #ifndef in a #if directive. Only these operators,
integer constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof operator is not
available.

#else Reverses the notion of the test directive which matches this direc-
tive. So if lines previous to this directive are ignored, the following
lines will appear in the output. And vice versa.
The test directives and the possible #else directives can be nested.
FILES

/usr/include standard directory for # include files
SEE ALSO '

cc(1), m4(1).
DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory.
The line number and filename where the error occurred are printed along
with the diagnostic.

CPP(1) CPP(1)

NOTES
When newline characters were found in argument lists for macros to be
expanded, previous versions of cpp put out the newlines as they were
found and expanded. The current version of ¢pp replaces these newlines
with blanks to alleviate problems that the previous versions had when this
occurred.

CPRS(1) (3B20S only) CPRS(1)

NAME

cprs — compress an IS25 object file
SYNOPSIS '

cprs [—pv] filel file2
DESCRIPTION

The cprs command reduces the size of an 1S25 object file, filel, by remov-
ing duplicate structure and union descriptors. The reduced file, file2, is
produced as output.

The options are:

—p Print statistical messages including: total number of tags, total dupli-
cate tags, and total reduction of filel.
—v Print verbose error messages if error condition occurs.

SEE ALSO
strip(1).

CRYPT(1) CRYPT(1)

NAME

crypt — encode/decode

SYNOPSIS

crypt { password]

DESCRIPTION

Crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no pass-
word is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. Crypt encrypts and decrypts with the same
key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed
in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; ‘‘sneak paths’’ by which keys or clear text can become visible
must be minimized.

Crypt implements a one-rotor machine designed along the lines of the Ger-
man Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work
required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e. to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower-
case letters, then encrypted files can be read by expending only a substan-
tial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visibie
to users executing ps(1) or a derivative. To minimize this possibility, crypt
takes care to destroy any record of the key immediately upon entry. The
choice of keys and key security are the most vulnerable aspect of crypt.

FILES

/dev/tty for typed key
SEE ALSO

ed(1), makekey(1).
BUGS

If output is piped to nroff and the encryption key is not given on the com-
mand line, crypt can leave terminal modes in a strange state (see stty(1)).

If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the
original files will be decrypted correctly.

CSPLIT(1) CSPLIT(1)

NAME

csplit — context split
SYNOPSIS

csplit [—s] [—k] [—f prefix] file argl [... argn]
DESCRIPTION

Csplit reads file and separates it into n+1 sections, defined by the argu-
ments argl... argn. By default the sections are placed in xx00 ... xxn
(n may not be greater than 99). These sections get the following pieces of

file:

00: From the start of file up to (but not including) the line refer-
enced by argl .

01: From the line referenced by argl up to the line referenced by
arg?.

n+1: From the line referenced by argn to the end of file.
The options to csplit are:

—s Csplit normally prints the character counts for each file
created. If the —s option is present, csplit suppresses the
printing of all character counts.

-k Csplit normally removes created files if an error occurs. If
the —k option is present, csplit leaves previously created
files intact.

—f prefix If the —f option is used, the created files are named
prefix00 . . . prefixn. The default is xx00 ... xxn.

The arguments (arg! ... argn) to csplit can be a combination of the fol-
lowing:
frexp/ A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rexp. The current line becomes the line contain-
ing rexp. This argument may be followed by an optional +
or — some number of lines (e.g., /Page/—5).

%rexp% This argument is the same as /rexp/, except that no file is
created for the section.

Inno A file is to be created from the current line up to (but not
including) Inno. The current line becomes /nno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows Inno, the
file will be split every Inno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the Shell in the appropriate quotes. Regular expressions may
not contain embedded new-lines. Csplit does not affect the original file; it
is the users responsibility to remove it.
EXAMPLES
csplit —f cobol file ‘/procedure division/’ /parS./ /parl6./

This example creates four files, cobol00 ... cobol03. After editing the
“split” files, they can be recombined as follows:

CSPLIT(1) CSPLIT(1)

cat cobol0[0—3] > file
Note that this example overwrites the original file.
csplit —k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines.
The —k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit —k prog.c ‘%main(%’ ‘/"}/+1’ {20}

Assuming that prog.c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(1), sh(1), regexp(5).
DIAGNOSTICS
Self explanatory except for:
arg — out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

CT(1C) CT(1C)

NAME

ct — spawn getty to a remote terminal

SYNOPSIS

ctf —b][—v][—wn]][—sspeed] telno ...

DESCRIPTION

FILES

Ct dials the phone number of a modem that is attached to a terminal, and
spawns a getfy process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropri-
ate places. If more than one telephone number is specified, cz will try each
in succession until one answers; this is useful for specifying alternate dial-
ing paths.

Ct will try each line listed in the file fusr/lib/uucp/L-devices until it finds an
available line with appropriate attributes or runs out of entries. If there are
no free lines, ¢t will ask if it should wait for one, and if so, for how many
minutes it should wait before it gives up. Cr will continue to try to open
the dialers at one-minute intervals until the specified limit is exceeded.
The dialogue may be overridden by specifying the —wn option, where n is
the maximum number of minutes that ¢t is to wait for a line.

Normally, ¢t will hang up the current line, so that that line can answer the
incoming call. The —h option will prevent this action. If the —v option is
used, ¢t will send a running narrative to the standard error output stream.

The data rate may be set with the —s option, where speed is expressed in
baud. The default rate is 300.

After the user on the destination termiral logs out, ¢t prompts, Recon-~
nect? If the response begins with the letter n the line will be dropped; oth-
erwise, getty will be started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

[usr/lib/uucp/L-devices
Jusr/adm/ctlog

SEE ALSO

cu(1C), login(1), wucp(1C).

CU(1C) cu(ic)

NAME
cu — call another UNIX system

SYNOPSIS
cu [—sspeed] [—lline] [—h] [—¢t] [—d] [—m] [—o]—e] telno | dir

DESCRIPTION

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX sys-
tem. It manages an interactive conversation with possible transfers of
ASCI files. Speed gives the transmission speed (110, 150, 300, 600, 1200,
4800, 9600); 300 is the default value. Most of our modems are either 300
or 1200 baud. For dial out lines, cu will choose a modem speed (300 or
1200) as the slowest available which will handle the specified transmission
speed. Directly connected lines may be set to speeds higher than 1200
baud. :

The —1 value may be used to specify a device name for the communica-
tions line device to be used. This can be used to override searching for the
first available line having the right speed. The speed of a line is taken from
the file fusrflibfuucp/L-devices, overriding any speed specified by the —s
option. The —h option emulates local echo, supporting calls to other com-
puter systems which expect terminals to be in half-duplex mode. The —t
option is used when dialing an ASCI terminal which has been set to auto-
answer. Appropriate mapping of carriage-returns to carriage-return-line-
feed pairs is set. The —d oprtion cause diagnostic traces to be printed.
The —m option specifies a direct line which has modem control. The —e
(—o) option designates that even (odd) parity is to be generated for data
sent to the remote. The —d option causes diagnostic traces to be printed.
Telno is the telephone number, with equal signs for secondary dial tone or
minus signs for delays, at appropriate places. The string dir for telno may
be used for directly connected lines, and implies a null ACU. Using dir
insures that a line has been specified by the —1 option.

Cu will try each line listed in the file /usr/lib/uucp/L-devices until it finds an
available line with appropriate attributes or runs out of entries. After mak-
ing the connection, cu runs as two processes: the fransmit process reads
data from the standard input and, except for lines beginning with ~, passes
it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with =, passes it to the standard out-
put. Normally, an automatic DC3/DC1 protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with ~ have
special meanings.

The transmit process interprets the following:

-~

terminate the conversation.

"1 escape to an interactive shell on the local system.

“lemd. .. run cmd on the local system (via sh —c).

“Scmd . .. run cmd locally and send its output to the remote sys-
tem.

“%take from [to] copy file from (on the remote system) to file to on
the local system. If 7o is omitted, the from argument
is used in both places.

“%put from [to} copy file from (on local system) to file 0 on remote
system. If 70 is omitted, the from argument is used
in both places.

CU(1C) CU(1C)

FILES

send the line ~... to the remote system.

“%nostop turn off the DC3/DC1 input control protocol for the
remainder of the session. This is useful in case the
remote system is one which does not respond prop-
erly to the DC3 and DCI1 characters,

The receive process normally copies data from the remote system to its
standard output. A line from the remote that begins with "> initiates an
output diversion to a file. The complete sequence is:

“>[>]:file
Zero or more lines to be written to file

>

Data from the remote is diverted (or appended, if >> is used) to file.
The trailing "> terminates the diversion.

The use of “%put requires stty(1) and caz(1) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted
at appropriate places.

The use of “%take requires the existence of echo(1) and cat(l) on the
remote system. Also, stty tabs mode should be set on the remote system
if tabs are to be copied without expansion.

Jusr/lib/uucp/L-devices
/Just/spool/uucp/LCK..(tty-device)
/dev/null

SEE ALSO

cat(1), ct(1C), echo(l), stty(1), uucp(1C).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.
There is an artificial slowing of transmission by cu during the “%put opera-
tion so that loss of data is unlikely.

CUT(1) cut(1)

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut —clist [filel file2 ...]
cut —flist [—dchar] [—s] [filel file2 ..]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a
punched card (—c option), or the length can vary from line to line and be
marked with a field delimiter character like tab (—f option). Cut can be
used as a filter; if no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional — to indicate ranges as in the —o option of
nroff [troffl for page ranges; e.g., 1,4,7; 1—3,8; —5,10 (short for
1-5,10); or 3— (short for third through last field),

—clist The list following —c (no space) specifies character positions
(e.g., —c1—72 would pass the first 72 characters of each line).

—flist The list following —f is a list of fields assumed to be separated in
the file by a delimiter character (see —d); e.g. , —f1,7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless —s is
specified.

—dchar The character following —d is the field delimiter (—f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

—s Suppresses lines with no delimiter characters in case of —f
option. Unless specified, lines with no delimiters will be passed
through untouched.

Either the —c or —f option must be specified.

HINTS
Use grep(1) to make horizontal ‘‘cuts’’ (by context) through a file, or
paste(1) to put files together column-wise (i.e., horizontally). To reorder
columns in a table, use cut and paste.

EXAMPLES
cut —d: —f1,5 /etc/passwd mapping of user IDs to names
name="who am i |cut —f1 —d" " to set name to current login name.
DIAGNOSTICS
line too long A line can have no more than 511 characters or

fields.

bad list for c/f option Missing —c¢ or —f option or incorrectly specified list.
No error occurs if a line has fewer fields than the list
calls for.

no fields , The list is empty.

SEE ALSO
grep(1), paste(1).

Cw(1) CwW(1)

NAME
cw, checkew — prepare constant-width text for troff

SYNOPSIS
ew [-1xx J [-xxx) [-en] [-t][+t][-a]/l files]

checkew [-1xx] [-rxx] files

DESCRIPTION

Cw is a preprocessor for troff (1) input files that contain text to be typeset in
the constant-width (CW) font.

Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs and of com-
puter output in user manuals, programming texts, etc. (An earlier version
of this font was used in typesetting The C Programming Language by B. W.
Kernighan and D. M. Ritchie.) It has been designed to be quite distinctive
(but not overly obtrusive) when used together with the Times Roman font.

Because the CW font contains a ‘‘non-standard’’ set of characters and
because text typeset with it requires different character and inter-word spac-
ing than is used for ‘‘standard’’ fonts, documents that use the CW font
must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

IS%X& () »+@.,/:3=P0]11-_~~"<>{}#\

plus eight non-ASCII characters represented by four-character froff(1)
names (in some cases attaching these names to ‘‘non-standard®’ graphics):

Character Symbol Troff Name

“Cents’’sign ¢ \(ct

EBCDIC *“‘not”sign - \(no
Leftarrow « \(<-

Right arrow -+ \(->

Down arrow ¢ \(da

Vertical single quote ' \(fm
Control-shift indicator \(dg
Visible space indicator n~ \(s8q
Hyphen - \(hy

The hyphen is a synonym for the unadorned minus sign (-). Certain ver-
sions of c¢w recognize two additional names: \ (ua for an up arrow and
\ (1h for a diagonal left-up (home) arrow.

Cw recognizes five request lines, as well as user-defined delimiters. The
request lines look like troff(1) macro requests, and are copied in their
entirety by cw onto its output; thus, they can be defined by the user as
troff (1) macros; in fact, the .CW and .CN macros should be so defined (see
HINTS below). The five requests are:

.CW Start of text to be set in the CW font; .CW causes a break; it can
take precisely the same options, in precisely the same format, as are
available on the cw command line.

.CN End of text to be set in the CW font; .CN causes a break; it can
take the same options as are available on the cw command line.

.CD Change delimiters and/or settings of other options; takes the same
options as are available on the cw command line.

Ccw(1)

Cw(1)

.CP argl arg2 arg3 ... argn
All the arguments (which are delimited like troff(1) macro argu-
ments) are concatenated, with the odd-numbered arguments set in
the CW font and the even-numbered ones in the prevailing font.

.PC argl arg2 arg3 ... argn
Same as .CP, except that the even-numbered arguments are set in
the CW font and the odd-numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text (e.g., a program frag-
ment) that is to be typeset in the CW font “‘as is.”” Normally, cw operates
in the transparent mode. In that mode, except for the .CD request and the
nine special four-character names listed in the table above, every character
between .CW and .CN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (*) at the beginning of lines, and
backslashes (\) everywhere to be “‘hidden’” from troff(1). The transparent
mode can be turned off (see below), in which case normal troff (1) rules
apply; in particular, lines that begin with . and ’ are passed through
untouched (except if they contain delimiters—see below). In either case,
cw hides the effect of the font changes generated by the .CW and .CN
requests; cw also defeats all ligatures (£i, ££, etc.) in the CW font.

The only purpose of the .CD request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform
the same function as the .CW/.CN requests; they are meant, however, to
enclose CW “‘words” or ‘‘phrases” in running text (see example under
BUGS below). Cw treats text between delimiters in the same manner as
text enclosed by .CW/.CN pairs, except that, for aesthetic reasons, spaces
and backspaces inside .CW/.CN pairs have the same width as other CW
characters, while spaces and backspaces between delimiters are half as wide,
so they have the same width as spaces in the prevailing text (but are not
adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside . CW/.CN pairs.
The options are:

-1xx The one- or two-character string xx becomes the left delimiter; if
xx is omitted, the left delimiter becomes undefined, which it is ini-
tially.

-xxx Same for the right delimiter. The left and right delimiters may (but
need not) be different.

-fn The CW font is mounted in font position n; acceptable values for n
are 1, 2, and 3 (default is 3, replacing the bold font). This option
is only useful at the beginning of a document.

-t Turn transparent mode off.
+t Turn transparent mode on (this is the initial default).

-4 Print current option settings on file descriptor 2 in the form of
troff(1) comment lines. This option is meant for debugging.

Cw reads the standard input when no files are specified (or when - is
specified as the last argument), so it can be used as a filter. Typical usage
is:

cw files | troff ...

Checkew checks that left and right delimiters, as well as the .CW/.CN
pairs, are properly balanced. It prints out all offending lines.

-2-

Cw(1)

HINTS

FILES

Cw(l1)

Typical definitions of the .CW and .CN macros meant to be used with the
mm(5) macro package:
.de CW
.DS I
.ps 9
.vs 10.5p
.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...
.de CN
.ta 0.5i 1i 1,51 2i 2.5i 3i 3.5i 4i 4.5i 5i 5.5i 6i
.Vs

.ps
.DE

At the very least, the .CW macro should invoke the roff(1) no-fill (.nf)
mode.

When set in running text, the CW font is meant to be set in the same point
size as the rest of the text. In displayed matter, on the other hand, it can
often be profitably set one point smaller than the prevailing point size (the
displayed definitions of .CW and .CN above are one point smaller than the
running text on this page). The CW font is sized so that, when it is set in
9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be: c¢w, thl, and egn.
Usually, the tables contained in such documents will not contain any CW
text, although it is entirely possible to have elements of the table set in the
CW font; of course, care must be taken that b/(1) format information not
be modified by cw. Attempts to set equations in the CW font are not likely
to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces:
letting « represent a backspace, d««\ (dg yields d. (Because backspaces
are half as wide between delimiters as inside .CW/.CN pairs—see
above—two backspaces are required for each overstrike between delim-
iters.)

Jusr/lib/font/ftCW CW font-width table

SEE ALSO

eqn(1), mmt(1), tbl(1), troff(1), mm(5), mv(5).

WARNINGS

BUGS

If text preprocessed by cw is to make any sense, it must be set on a
typesetter equipped with the CW font or on a STARE facility; on the latter,
the CW font appears as bold, but with the proper CW spacing,

Only a masochist would use periods (.), backslashes (\), or double quotes
(") as delimiters, or as arguments to .CP and .PC.

Certain CW characters don’t concatenate gracefully with certain Times
Roman characters, e.g., a CW ampersand (&) followed by a Times Roman
commac(,); in such cases, judicious use of troff(1) half- and quarter-spaces
(\i and \") is most salutary, e.g., one should use _& \", (rather than
just plain _& _,) to obtain &, (assuming that _ is used for both delimiters).
Using cw with nroff is silly.

The output of cw is hard to read.

See also BUGS under troff (1).

CXREF(1) CXREF(1)

NAME

cxref — generate C program cross reference
SYNOPSIS

cxref [options] files
DESCRIPTION

Cxref analyzes a collection of C files and attempts to build a cross reference
table. Cxref utilizes a special version of ¢pp to include #define’d informa-
tion in its symbol table. It produces a listing on standard output of all sym-
bols (auto, static, and global) in each file separately, or with the —c option,
in combination. Each symbol contains an asterisk (*) before the declaring
reference.

In addition to the —D, —I and —U options (which are identical to their
interpretation by cc(1)), the following options are interpreted by cxref:
—¢ Print a combined cross-reference of all input files.

—w<num>

Width option which formats output no wider than <num>
(decimal) columns. This option will default to 80 if <pum> is
not specified or is less than 51.

—o file Direct output to named file.

-s Operate silently; does not print input file names.
~t Format listing for 80-column width.
FILES
Jusr/lib/xcpp special version of C-preprocessor.
SEE ALSO
cc(1).
DIAGNOSTICS

Error messages are unusually cryptic, but usually mean that you can’t com-
pile these files, anyway.

DATE(1) DATE(1)

NAME
date — print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is
the month number; dd is the day number in the month; Ak is the hour
number (24 hour system); the second mm is the minute number; yy is the
last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year
is mentioned. The system operates in GMT. Date takes care of the conver-
sion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of
the user. The format for the output is similar to that of the first argument
to printf(3S). All output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be replaced in the output by
its corresponding value. A single % is encoded by %%. All other characters
are copied to the output without change. The string is always terminated
with a new-line character.

Field Descriptors:

insert a new-line character

insert a tab character

month of year — 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

nER g HNZME<e g "B

EXAMPLE
date ‘+DATE: %m/%d/%y%nTIME: %H:%M:%S’
would have generated as output:
DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you aren’t the super-user and you try to change the
date;
bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.
FILES
/dev/kmem
WARNING
It is a bad practice to change the date while the system is running multi-
user.

DC(1) DC(1)

NAME
dc — desk calculator

SYNOPSIS
de [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. The overall structure of dc is
a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The fol-
lowing constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0—9. It may be preceded by an under-
score (_) to input a negative number. Numbers may contain decimal
points.

+—/+%"
The top two values on the stack are added (+), subtracted (—),
multiplied (#), divided (/), remaindered (%), or exponentiated (°).
The two entries are popped off the stack; the result is pushed on the
stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as
a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the 1 is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

P The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

All values on the stack are printed.

q exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

X treats the top element of the stack as a character string and executes
it as a string of dc commands.

X replaces the number on the top of the stack with its scale factor.
[...]1 puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two clements of the stack are popped and compared. Regis-
ter x is evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any exist-
ing fractional part of the argument is taken into account, but other-
wise the scale factor is ignored.

! interprets the rest of the line as a UNIX command.
c All values on the stack are popped.

DC(1) DC(1)

i The top value on the stack is popped and used as the number radix
for further input. I pushes the input base on the top of the stack.
0 The top value on the stack is popped and used as the number radix

for further output.
(1) pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-
negative scale factor: the appropriate number of places are printed on
output, and maintained during multiplication, division, and exponen-
tiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

z The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal)
and executed.

3¢+ are used by bc for array operations.

EXAMPLE
This example prints the first ten values of n!:
{lal +dsasplal0>ylsy
Osal
lyx
SEE ALSO

be(1), which is a preprocessor for de providing infix notation and a C-like
syntax which implements functions and reasonable control structures for
programs.
DIAGNOSTICS
x is unimplemented
where x is an octal number.
stack empty
for not enough elements on the stack to do what was asked.
Out of space
when the free list is exhausted (too many digits).
Out of headers
for too many numbers being kept around.

Out of pushdown

for too many items on the stack.
Nesting Depth

for too many levels of nested exccution.

DD(1) DD(1)

NAME
dd — convert and copy a file
SYNOPSIS
dd [option=value] ...
DESCRIPTION
Dd copies the specified input file to the specified output with possible

conversions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical

1/0.

option values

if=file input file name; standard input is default

of =file output file name; standard output is default

ibs=n input block size n bytes (default 512)

ocbs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done

chs=n conversion buffer size

skip=n skip n input records before starting copy

seek=n seek n records from beginning of output file before copying

count=n copy only n input records

conv =ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
Icase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
«e+ 5 ++. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2 respec-
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the former
case chs characters are placed into the conversion buffer, converted to
ASCII, and trailing blanks trimmed and new-line added before sending the
line to the output. In the latter case ASCII characters are read into the
conversion buffer, converted to EBCDIC, and blanks added to make up an
output record of size cbs.

After completion, dd reports the number of whole and partial input and
output blocks.
EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per record into the ASCIH file x :

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw
physical devices because it allows reading and writing in arbitrary record
sizes.

SEE ALSO
cp(1).

DD(1) DD(1)

DIAGNOSTICS
JS+p records in(out) numbers of full and partial records read(written)
BUGS

The ASCII/EBCDIC conversion tables are taken from the 256 character stan-
dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a
standard, corresponds better to certain IBM print train conventions. There
is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only
on conversion to EBCDIC. These should be separate options.

DELTA(1) DELTA (1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [—rSID] [—s] [—n] [—glist] {—m[mrlist]] [—y[lcomment]] [—p]
files

DESCRIPTION

Delta is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by get(1) (called the g-file, or generated
file).

Delta makes a delta to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is
given, the standard input is read (see WARNINGS); each line of the stan-
dard input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admin(1)) that may be present in the
SCCS file (see —m and —y keyletters below).

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get —e)
on the same SCCS file were done by the same person
(login name). The SID value specified with the —r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command (see get(1)). A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

—s Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

—n Specifies retention of the edited g-file (normally
removed at completion of delta processing).
—glist Specifies a list (see get(1) for the definition of list) of

deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

—m[mrlist] If the SCCS file has the v flag set (see admin(1)) then
a Modification Request (MR) number must be sup-
plied as the reason for creating the new delta.

If —m is not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates
the MR list.

DELTA (1)

DELTA(1)

Note that if the v flag has a value (see admin(1)), it
is taken to be the name of a program (or shell pro-
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates (it
is assumed that the MR numbers were not all valid).

—ylcomment] Arbitrary text used to describe the reason for making

FILES

the delta. A null string is considered a valid conment.

If —y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff(1) format.

All files of the form ?-file are explained in the Source Code Control System
User's Guide. The naming convention for these files is also described there.

g-file
p-file
g-file
x-file
z-file
d-file
[usr/bin/bdiff

WARNINGS

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the exccution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS ﬁle
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the ‘‘gotten’” file
and the g-file.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special
meaning to SCCS (see sccsfile(5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (—) is specified ¢n the delta command line, the —m
(if necessary) and —y keyletters must also be present. Omission of these
keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO

admin(1), bdiff(1), cdc(1), get(1), help(1), prs(1), rmdel(1), sccsfile(4).
Source Code Control System User’s Guide in the UNIX System User’s Guide.

DIAGNOSTICS

Use help(1) for explanations.

DEROFF(1) DEROFF(1)

NAME

deroff — remove nroff/troff, tbl, and eqn constructs

SYNOPSIS

deroff [—mx] [—w] [files]

DESCRIPTION

Deroff teads each of the files in sequence and removes all troff (1) requests,
macro calls, backslash constructs, egn(1) constructs (between .EQ and .EN
lines, and between delimiters), and tb/(1) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder
of the file on the standard output. Deroff follows chains of included files
(.s0 and .nx froff commands); if a file has already been included, a .so
naming that file is ignored and a .nx naming that file terminates execution.
If no input file is given, deroff reads the standard input.

The —m option may be followed by an m, s, or . The —mm option
causes the macros be interpreted so that only running text is output (i.e.,
no text from macro lines.) The —ml option forces the —mm option and
also causes deletion of lists associated with the mm macros.

If the —w option is given, the output is a word list, one “‘word” per line,
with all other characters deleted. Otherwise, the output follows the origi-
nal, with the deletions mentioned above. In text, a ““word” is any string
that contains at least two letters and is composed of letters, digits, amper-
sands (&), and apostrophes (’); in a macro call, however, a “word” is a
string that begins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits, apos-
trophes, and ampersands. Trailing apostrophes and ampersands are
removed from ‘“‘words.”

SEE ALSO

BUGS

eqn(1), nroff(1), tbl(1), troff(1).

Deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little out-
put.

The —ml option does not handle nested lists correctly.

DIFF(1) DIFF(1)

NAME

diff — differential file comparator

SYNOPSIS

diff [—efbh] filel file2

DESCRIPTION

FILES

Diff tells what lines must be changed in two files to bring them into agree-
ment. If filel (file2) is —, the standard input is used. If filel (file2) is a
directory, then a file in that directory with the name file2 (file!) is used.
The normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for d
and reading backward one may ascertain equally how to convert file? into
filel. As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated
as a single number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file
flagged by >.

The —b option causes trailing blanks (spaces dnd tabs) to be ignored and
other strings of blanks to compare equal.

The —e option produces a script of a, ¢ and d commands for the editor ed,
which will recreate file2 from filel. The —f option produces a similar
script, not useful with ed, in the opposite order. In connection with —e,
the following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed scripts
(52,93,...) made by diff need be on hand. A “latest version’ appears on
the standard output.

(shift; cat $»; echo ‘1,8p’) | ed — 5

Except in rare circumstances, diff finds a smallest sufficient set of file
differences.

Option —h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options —e and —f are unavailable with —h.

Jusr/lib/diffh for —h

SEE ALSO

cmp(l), comm(1), ed(1).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the —e or —f option are naive about creat-
ing lines consisting of a single period (.).

DIFF3(1) DIFF3(1)

NAME

diff3 — 3-way differential file comparison
SYNOPSIS

diff3 [—ex3] filel file2 file3
DESCRIPTION

Diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

all three files differ

====] filel is different
====) file2 is different
====3 file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

finl a Text is to be appended after line number n/ in
file f, where f = 1, 2, or 3.

fnl n2¢ Text is to be changed in the range line nl to line
n2. If n1 = n2, the range may be abbreviated to 1
nl.

The original contents of the range follows immediately after a ¢ indication.
When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the changes
that normally would be flagged ==== and ====3. Option —x (—3)
produces a script to incorporate only changes flagged ==== (====3),
The following command will apply the resulting script to filel .

(cat script; echo ‘1,$p") | ed — filel

FILES
/tmp/d3=
Just/lib/diff3prog
SEE ALSO
diff(1).
BUGS .
Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes won’t work.

DIFFMK(1) DIFFMK (1)

NAME

diffmk — mark differences between files

SYNOPSIS

difmk namel name2 name3

DESCRIPTION

Diffmk compares two versions of a file and creates a third file that includes
‘“‘change mark’ commands for nroff or troff (1). Namel and name2 are the
old and new versions of the file. Diffimk generates name3, which contains
the lines of name2 plus inserted formatter ‘‘change mark™ (.mc) requests.
When name3 is formatted, changed or inserted text is shown by | at the

right margin of each line. The position of deleted text is shown by a single
..

If anyone is so inclined, diffink can be used to produce listings of C (or
other) programs with changes marked. A typical command line for such
use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

pll

A 77

.nf

.0

.nc
The .1l request might specify a different line length, depending on the
nature of the program being printed. The .eo and .nc requests are probably
needed only for C programs.

If the characters | and # are inappropriate, a copy of diffmk can be edited to
change them (diffmk is a shell procedure).

SEE ALSO

BUGS

diff(1), nroff(1), troff(1).

Acsthetic considerations may dictate manual adjustment of some output.
File differences involving only formatting requests may produce undesirable
output, ie., replacing .sp by .sp 2 will produce a “change mark’’ on the
preceding or following line of output.

DIRCMP(1) DIRCMP(1)

NAME

dircmp — directory comparison
SYNOPSIS

diremp [—d] [—s] dirl dir2
DESCRIPTION

Dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to
each directory are generated for all the options. If no option is entered, a
list is output indicating whether the filenames common to both directories
have the same contents.

—d Compare the contents of files with the same name in both direc-
tories and output a list telling what must be changed in the two files
to bring them into agreement. The list format is described in
diff (1).

—s Suppress messages about identical files.

SEE ALSO
cmp(1), diff(1).

DIS(1) (3B20S only) DIS(1)

NAME
dis — 3B20S disassembler

SYNOPSIS

dis [—o] [—V] [—L] [—4 sec] [—da sec] [—t sec] [—1 string] files
DESCRIPTION

The dis command produces an assembly language listing of each of its

object file arguments. The listing includes assembly statements and the
binary that produced those statements.

The following options are interpreted by the disassembler and may be
specified in any order.

-0 Will print numbers in octal. Default is hexadecimal.

-V Version number of the disassembler will be written to stan-
dard error.

-L Invokes a lookup of C source labels in the symbol table for
subsequent printing.

~d sec Disassembles the named section as data, printing the offset of
the data from the beginning of the section.

—da sec Disassembles the named section as data, printing the actual
address of the data.

—t sec Disassembles the named section as text.

—1string Will disassemble the library file specified as string. For exam-
ple, one would issue the command dis —1 x —1 z to disassem-
ble libx.a and libz.a. All libraries are assumed to be in
Jusr/lib.

If the —d, —da or —t options are specified, only those named sections
from each user supplied file name will be disassembled. Otherwise, all sec-
tions containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such
as [5], represents that the C breakpointable line number, starts with the fol-
lowing instruction. An expression such as <40> in the operand field, fol-
lowing a relative displacement for control transfer instructions, is the com-
puted address within the section to which control will be transferred. A C
function name will appear in the first column, followed by ().

SEE ALSO
as(1), cc(1), 1d(1).

DIAGNOSTICS
The self explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

DPD(1C) DPD(1C)

NAME

dpd, Ipd — HONEYWELL sending daemon, line printer daemon

SYNOPSIS

Jusr/lib/dpd
Jusr/lib/Ipd

DESCRIPTION

FILES

Dpd is the daemon for the 200-series DATA-PHONE® set or for a KMC11-B
using vpm(7). It is designed to submit jobs to the HONEYWELL 6000 com-
puter via the GRTS interface. Lpd is the daemon for a line printer.

Dpd uses the directory /usr/spool/dpd. Lpd uses the directory
/usr/spool/lpd. The file lock in either directory is used to prevent two
daemons from becoming active simultaneously. After the program has suc-
cessfully set the lock, it forks and the main path exits, thus spawning the
daemon. The directory is scanned for files beginning with ““df*’. Each such
file is submitted as a job. Each line of a job file must begin with a key
character to specify what to do with the remainder of the line.

S directs dpd to generate a unique snumb card. The snumb number is
generated from the file snumb in the spooling directory in the case
of the DATA-PHONE set daemon. This key character is not used by
Ipd.

specifies that the remainder of the line is to be sent as a literal.

is the same as L, but signals the $ IDENT card which is to be mailed

back by the mail option.

specifies that the rest of the line is a file name. That file is to be

sent as binary cards.

is the same as B except a form-feed is prepended to the file.

specifies that the rest of the line is a file name. After the job has

been transmitted, the file is unlinked.

is followed by a user ID; after the job is sent, a message is mailed to

the user via the mail(1) command to verify the sending of the job.

is followed by a user file name, to be sent back under the mail
option.

Q is followed by a string of characters, which is a message to be sent
back to the user under the mail option. (Not used by Ipd).

Any error encountered will cause the daemon to drop the call, wait up to
20 minutes, (only 10 seconds for [pd), and start over. This means that an
improperly constructed ‘“df”’ file may cause the same job to be submitted
every 20 minutes.

Dpd is automatically initiated by all of the GCOS commands (dpr, geat,
gcosmail, fget, and fsend). Lpd is automatically initiated by the line printer
command, lpr.

To restart dpd or Ipd (in the case of hardware or software malfunction), it
is necessary to first kill the old daemon (if it is still alive), and remove the
lock file (if present), before initiating the new daemon. This can be done
automatically by /etc/rc when the system is brought up, in the event there
were jobs left in the spooling directory when the system last went down.

il o

z 2 cm w

Just/spool/dpd/+ spool area for GCOS daemons.
Jusr/spool/lpd/#* spool area for line printer daemon.
/etc/passwd to get the user’s name.

/dev/dn? ACU device.

/dev/du? DATA-PHONE set.

DPD(1C) DPD(1C)

/dev/vpm? VPM device to interface to KMC11-B.
/dev/lp line printer device.
SEE ALSO

dpr(1C), fget(1C), fsend(1C), gcat(1C), geosmail(1C), Ipr(1).
BUGS

If a umask(1) of 077 is used, the print jobs may be spooled but won’t be
able to be printed.

DPR(1C) DPR(1C)

NAME

dpr — off-line print
SYNOPSIS

dpr [—destination] [options] [files]
DESCRIPTION

Dpr causes the named files to be printed off-line at the specified destina-
tion, by GCOS at the Murray Hill Computation Center. GCOS identification
must appear in the UNIX password file (see passwd(4)), or be supplied by
the —i option. If no files are listed the standard input is assumed; thus dpr
may be used as a filter.

The destination is a two-character code which is taken to be a Murray Hill
GCOS “‘station id.”* Useful codes are rl for quality print, and q1 for quality
print with special ribbon, both on regular wide paper. The codes r2 and q2
give the same print on narrow paper. The code mx is a Xerox 9700 printer.
The default destination is on-line at the Murray Hill Computation Center.

The following options, each as a separate argument, and in any combina-
tion (multiple outputs are permitted), may be given before or after the des-
tination:

—c Makes a copy of the file to be sent before returning to the user.

-r Removes the file after sending it.

—ffile Use file as a dummy file name to report back in the mail. (This is
useful for distinguishing multiple runs, especially when dpr is being
used as a filter).

—ijob, bin
Supply the GCOS “ident card’’ image as the parameter —ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

—m When transmission is complete, reports by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is the default option.

—n Does not report the completion of transmission by mail(1).

—p Selects portrait mode. Used in conjunction with a XEROX 9700
printer.

—sn Submits job to GCOS with service grade n (n=1, 2, 3, 4). Default
is —s2.

EXAMPLES
The command:

dpr —r —n errorl error2

will send the files errorl and error2 to GCOS for printing, removing the
files after they have been sent, but not sending mail. The line:

pr filel | dpr —s1 —fjobl —rl

will send the output of pr to GCOS for printing on the quality printer with
service grade 1, and will send mail that job! has been sent.

FILES
Jetc/passwd user’s identification and GCOS ident card.
Jusr/lib/dpd sending daemon.
Jusr/spool/dpd/* spool area.

SEE ALSO

dpd(1C), fget(1C), fsend(1C), geat(1C).

DU (1) DuU(1)

NAME
du — summarize disk usage

SYNOPSIS
du [—ars] [names]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) direc-
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument —s causes only the grand total (for each of the
specified names) to be given. The optional argument —a causes an entry to
be generated for each file. Absence of either causes an entry to be gen-
erated for each directory only.

Du is normally silent about directories that cannot be read, files that cannot
be opened, etc. The —r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

BUGS
If the —a option is not used, non-directories given as arguments are not
listed.
If there are too many distinct linked files, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count.

DUMP(1) ’ (not on PDP-11) DUMP(1)

NAME
dump — dump selected parts of an object file
SYNOPSIS
dump [—a] [—1] [—e] [—h] [—s) [—r] [—1] [—t] [—z name] files
DESCRIPTION
The dump command dumps selected parts of each of its object file argu-
ments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following

options:

—a Dump the archive header of each member of each archive file
argument.

—f Dump each file header.

—o Dump each optional header.

—h Dump section headers.

-$ Dump section contents.

-r Dump relocation information.

g | Dump line number information.

—t Dump symbol table entries.

—zname Dump line number entries for the named function.

The following modifiers are used in conjunction with the options listed
above to modify their capabilities.

—d number Dump the section number or range of sections starting at
number and ending either at the last section number or number
specified by +d.

+d number Dump sections in the range either beginning with first section
or beginning with section specified by —d.

—n name Dump information pertaining only to the named entity. This
modifier applies to —h, —s, —r, —1, and —t.

—t index Dump only the indexed symbol table entry. The —t used in
conjunction with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table
entry or at the entry specified by the —t option.

—v Dump information in symbolic representation rather than
numeric (e.g., C_STATIC instead of 0X02). This modifier can
be used with all the above options except —s and —o options
of dump.

—z name,number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at ecither function name or
number specified by —z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the —z option may be
replaced by a blank.

DUMP(1) (not on PDP-11) DUMP(1)

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal or
decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

ECHO(1)

NAME

ECHO(1)

echo — echo arguments

SYNOPSIS

echo [arg] ...

DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a new-line
on the standard output. It also understands C-like escape conventions;
beware of conflicts with the shell’s use of \:

\b
\¢
\f
\n
\r
\t
\\
\n

backspace

print line without new-line

form-feed

new-line

carriage return

tab

backslash

the 8-bit character whose ASCII code is the 1-, 2- or 3-digit
octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(1).

ED(1) ED(1)

NAME
ed, red — text editor

SYNOPSIS
ed [—][—x]Ifie]

red [—][—x][file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an
e command (see below) on the named file; that is to say, the file is read
into ed’s buffer so that it can be edited. The optional — suppresses the
printing of character counts by e, r, and w commands, of diagnostics from
e and ¢ commands, and of the ! prompt after a !shell command. I —x is
present, an x command is simulated first to handle an encrypted file. Ed
operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the
text being edited resides in a temporary file called the buffer. There is only
one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via
Ishell command. Attempts to bypass these restrictions result in an error
message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including
a format specification as the first line of file and invoking ed with your ter-
minal in stty —tabs or stty tab3 mode (see stty(1), the specified tab stops
will automatically be used when scanning file. For example, if the first line
of a file contained:
<:t5,10,15 572:>

tab stops would be set at columns 5, 10 and 15, and a maximum line length
of 72 would be imposed. NOTE: while inputting text, tab characters when
typed are expanded to every eighth column as is the defauit.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses,
50 that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expres-
sions are used in addresses to specify lines and in some commands (eg., s)
to specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters
are: '

ED(1)

1.3

1.4

ED(1)

a. ., [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([}; see 1.4 below).

b. ” (caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ([]) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE
(see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in
the g command, below.)

A period (.) is a one-character RE that matches any character except
new-line.

A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches any omne character in that string. If,
however, the first character of the string is a circumflex (°), the
one-character RE matches any character except new-line and the
remaining characters in the string. The ~ has this special meaning
only if it occurs first in the string. The minus (—) may be used to
indicate a range of consecutive ASCII characters; for example, [0—9]
is equivalent to [0123456789). The — loses this special meaning if it
occurs first (after an initial ", if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first
character within it (after an initial ", if any); e.g., [Ja—f] matches
either a right square bracket (]) or one of the letters a through f
inctusive. The four characters listed in 1.2.a above stand for them-
selves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1

2.2

2.3

24

2.5

2.6

A one-character RE is a RE that matches whatever the one-character
RE matches.

A one-character RE followed by an asterisk () is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE
that matches a range of occurrences of the one-character RE. The
values of m and n must be non-negative integers less than 256;
\{m\} matches exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of occurrences between m
and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of
the strings matched by each component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same RE. Here n is a digit; the sub-expression specified is that begin-
ning with the n-th occurrence of \(counting from the left. For
example, the expression ~\(.#\)\1$ matches a line consisting of two
repeated appearances of the same string.

ED(1) ED(1)

Finally, an entire RE may be constrained to match only an initial segment
or final segment of a line (or both):

3.1 A circumflex (") at the beginning of an entire RE constrains that RE
to match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE
to match a final segment of a line.

The construction " entire RE$ constrains the entire RE to match the entire
line.

The null RE (e.g., //) is equivalent to the last RE encountered. See also
the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current line is the last line
affected by a command; the exact effect on the current line is discussed
under the description of each command. Addresses are constructed as fol-
lows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.
4

‘x addresses the line marked with the mark name character x, which
must be a lower-case letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by search-
ing forward from the line following the current line toward the end of
the buffer and stopping at the first line containing a string matching
the RE. If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so that the
entire buffer is searched. See also the last paragraph before FILES
below.

6. A RE enclosed in question marks (?) addresses the first line found
by searching backward from the line preceding the current line toward
the beginning of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the
end of the buffer and continues up to and including the current line.
See also the last paragraph before FILES below.

7. An address followed by a plus sign (4) or a minus sign (—) fol-
lowed by a decimal number specifies that address plus (respectively
minus) the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or —, the addition or subtraction is taken
with respect to the current line; e.g, —5 is understood to mean .—5.

9. If an address ends with + or —, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and of
rule 8 immediately above, the address ~ refers to the line preceding
the current line. (To maintain compatibility with earlier versions of
the editor, the character ~ in addresses is entirely equivalent to —.)
Moreover, trailing + and — characters have a cumulative effect, so
— — refers to the current line less 2. '

10. For convenience, a comma (,) stands for the address pair 1,$, while
a semicolon (;) stands for the pair .,$.

ED(1) ED(1)

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error. Com-
mands that accept one or two addresses assume default addresses when an
insufficient number of addresses is given; if more addresses are given than
such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They
may also be separated by a semicolon (;). In the latter case, the current
line (.) is set to the first address, and only then is the second address cal-
culated. This feature can be used to determine the starting line for forward
and backward searches (see rules 5. and 6. above). The second address of
any two-address sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that
the given addresses are the default.

It is generally illegal for more than one command to appear on a line.
However, any command (except e, f, r, or w) may be suffixed by I, n or p,
in which case the current line is either listed, numbered or printed, respec-
tively, as discussed below under the /, n and p commands.

(.)a
<text>

The append command reads the given text and appends it after the
addressed line; . is left at the last inserted line, or, if there were
none, at the addressed line. Address 0 is legal for this command: it
causes the ‘“‘appended’’ text to be placed at the beginning of the
buffer. The maximum number of characters that may be entered
from a terminal is 256 per line (including the newline character).

(.)e
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; . is left at the last line input, or,
if there were none, at the first line that was not deleted.

(ey.)d
The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last
line of the buffer. If no file name is given, the currently-
remembered file name, if any, is used (see the f command). The
number of characters read is typed; file is remembered for possible
use as a default file name in subsequent e, , and w commands. If
file is replaced by !, the rest of the line is taken to be a shell
(sh(1)) command whose output is to be read. Such a shell com-
mand is not remembered as the current file name. See also DIAG-
NOSTICS below.

E file
The Edit command is like e, except that the editor does not check

to see if any changes have been made to the buffer since the last w
command.

ED(1)

f file

ED(1)

If file is given, the file-name command changes the currently-
remembered file name to file; otherwise, it prints the currently-
remembered file name.

(1,8)g/RE [command list

In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given com-
mand list is executed with . initially set to that line. A single com-
mand or the first of a list of commands appears on the same line as
the global command. All lines of a multi-line list except the last
line must be ended with a \; a, i, and ¢ commands and associated
input are permitted; the . terminating input mode may be omitted if
it would be the last line of the command list. An empty command
list is equivalent to the p command. The g, G, v, and V com-
mands are not permitted in the command list. See also BUGS and
the last paragraph before FILES below.

(1,$)G/RE/

(i

In the interactive Global command, the first step is to mark every
line that matches the given RE. Then, for every such line, that line
is printed, . is changed to that line, and any one command (other
than one of the a, ¢, i, g, G, v, and ¥V commands) may be input
and is executed. After the execution of that command, the next
marked line is printed, and so on; a new-line acts as a null com-
mand; an & causes the re-execution of the most recent command
executed within the current invocation of G. Note that the com-
mands input as part of the execution of the G command may
address and affect any lines in the buffer. The G command can be
terminated by an interrupt signal (ASCH DEL or BREAK).

The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes-
sages are printed for all subsequent ? diagnostics. It will also
explain the previous ? if there was one. The H command alter-
nately turns this mode on and off; it is initially off.

<text>

The insert command inserts the given text before the addressed
line; . is left at the last inserted line, or, if there were none, at the
addressed line. This command differs from the a command only in
the placement of the input text. Address O is not legal for this
command. The maximum number of characters that may be
entered from a terminal is 256 per line (including the newline char-
acter).

(5. +1)j

(+)kx

The join command joins contiguous lines by removing the appropri-
ate new-line characters. If exactly one address is given, this com-
mand does nothing.

The mark command marks the addressed line with name x, which
must be a lower-case letter. The address ‘x then addresses this
line; . is unchanged.

ED(1)

ED(1)

|
The list command prints the addressed lines in an unambiguous
way: a few non-printing characters (e.g., tab, backspace) are
represented by (hopefully) mnemonic overstrikes, all other non-
printing characters are printed in octal, and long lines are folded.
An] command may be appended to any other command other than
e, f,r,orw.

(vy.)ma
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for @ and causes the addressed
line(s) to be moved to the beginning of the file; it is an error if
address a falls within the range of moved lines; . is left at the last
line moved.

]
The number command prints the addressed lines, preceding each
line by its line number and a tab character; . is left at the last line
printed. The n command may be appended to any other command
other than e, f, r, or w.

(ese)p
The print command prints the addressed lines; . is left at the last
line printed. The p command may be appended to any other com-
mand other than e, f, r, or w; for example, dp deletes the current
line and prints the new current line.

P
The editor will prompt with a & for all subsequent commands. The
P command alternately turns this mode on and off; it is initially off.
q
The quit command causes ed to exit. No automatic write of a file
is done (but see DIAGNOSTICS below).
0 .

The editor exits without checking if changes have been made in the
buffer since the last w command.

(8)r file

The read command reads in the given file after the addressed line.
If no file name is given, the currently-remembered file name, if
any, is used (see e and f commands). The currently-remembered
file name is not changed unless file is the very first file name men-
tioned since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc-
cessful, the number of characters read is typed; . is set to the last
line read in. If file is replaced by !, the rest of the line is taken to
be a shell (sh(1)) command whose output is to be read. For exam-
ple, "Sr !Is" appends current directory to the end of the file being
edited. Such a shell command is not remembered as the current
file name.

(«s.)8/RE[replacement / or

(-s.)8/RE [replacement /g
The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is
found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the
command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the

-6-

ED(1)

ED(1)

substitution to fail on all addressed lines. Any character other than
space or new-line may be used instead of / to delimit the RE and
the replacement; . is left at the last line on which a substitution
occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of
& in this context may be suppressed by preceding it by \. As a
more general feature, the characters \n, where » is a digit, are
replaced by the text matched by the n-th regular subexpression of
the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present, n is determined by
counting occurrences of \(starting from the left. When the charac-
ter % is the only character in the replacement, the replacement used
in the most recent substitute command is used as the replacement in
the current substitute command. The % loses its special meaning
when it is in a replacement string of more than one character or is
preceded by a \.

A line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

(5.)ta
This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0); . is
left at the last line of the copy.

The undo command nullifies the effect of the most recent com-
mand that modified anything in the buffer, namely the most recent
a,c,d,g,i,j,m,r,s,t,v, G, or ¥V command.

(1,$)v/RE/command list .
This command is the same as the global command g except that the
command list is executed with . initially set to every line that does
not match the RE.

(1,8)V/RE/
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the RE.

(1,%)w file

The write command writes the acddressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writable by everyone), unless your umask setting (see sh(1)) dic-
tates otherwise. The currently-remembered file name is not
changed unless file is the very first file name mentioned since ed
was invoked. If no file name is given, the currently-remembered
file name, if any, is used (see e and f commands); . is unchanged.
If the command is successful, the number of characters written is
typed. If file is replaced by !, the rest of the line is taken to be a
shell (sh(1)) command whose standard input is the addressed lines.
Such a shell command is not remembered as the current file name.

A key string is demanded from the standard input. Subsequent e,
r, and w commands will encrypt and decrypt the text with this key
by the algorithm of crypr(1). An explicitly empty key turns off
encryption.

ED(1) ED(1)

($)=
The line number of the addressed line is typed; . is unchanged by
this command.

Ishell command

The remainder of the line after the ! is sent to the UNIX shell
(sh(1)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the remem-
bered file name; if a ! appears as the first character of the shell
command, it is replaced with the text of the previous shell com-
mand. Thus, !! will repeat the last shell command. If any expan-
sion is performed, the expanded line is echoed; . is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be printed.
A new-line alone is equivalent to .+1p; it is useful for stepping
forward through the buffer.

If an interrupt signal (ASCI DEL or BREAK) is sent, ed prints a ? and
returns to its command level.

Some size limitations:-512 characters per line, 256 characters per global
command list, 64 characters per file name, and 128K characters in the
buffer. The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters
after the last new-line. Files (e.g., a.out) that contain characters not in the
ASCI set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be
the last character before a new-line, that delimiter may be omitted, in
which case the addressed line is printed. The following pairs of commands
are equivalent:

s/sl/s2 s/sl/s2/p

g/sl g/sl/p

751 751?
FILES

/tmp/e# temporary; # is the process number.

ed.hup work is saved here if the terminal is hung up.
DIAGNOSTICS

? for command errors.

file for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
ed’s buffer via the e or ¢ commands: it prints ? and allows one to continue
editing. A second e or ¢ command at this point will take effect. The —
command-line option inhibits this feature. '

SEE ALSO
crypt(1), grep(1), sed(1), sh(1), stty(1), fspec(4), regexp(5).
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNIX by B. W. Kernighan.

CAVEATS AND BUGS
A !/ command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, 7, and w commands cannot
be used if the the editor is invoked from a restricted shell (see sh(1)).
The sequence \n in a RE does not match a new-line character.
The ! command mishandles DEL.

-8-

ED(1) ED(1)

Files encrypted directly with the crypt(1) command with the null key cannot
be edited.
Characters are masked to 7 bits on input.

EFL(1) EFL(1)

NAME
efl — Extended Fortran Language

SYNOPSIS
efl [options] [files]

DESCRIPTION
Efl compiles a program written in the EFL language into clean Fortran on
the standard output. Efl provides the C-like control constructs of ratfor(1):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:
struct

integer flags(3)

character(8) name

long real coords(2)

} table(100) 1

The language offers generic functions, assignment operators (+=, &=,
etc.), and sequentially evaluated logical operators (&& and II). Thereis a
uniform input/output syntax:

write(6,x,y:f(7,2), do i=1,10 { a(i,j),z.b(i) })
EFL also provides some syntactic *“sugar’’:

free-form input:
multiple statements per line; automatic continuation; state-
ment label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, >=, &, etc.,, become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Efi understands several option arguments: —w suppresses warning mes-
sages, — § suppresses comments in the generated program, and the default
option —C causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it
had appeared in an option statement at the start of the program. Many
options are described in the reference manual. A set of defaults for a par-
ticular target machine may be selected by one of the choices:
system =unix, system=gcos, or system=cray. The default setting of the
system option is the same as the machine the compiler is running on.
Other specific options determine the style of input/output, error handling,
continuation conventions, the number of characters packed per word, and
default formats.

EFL(1) EFL(1)

Efl is best used with f77(1).

SEE ALSO
cc(1), £77(1), ratfor(1).
The Programming Language EFL by S.I. Feldman.

ENABLE(1) ENABLE(1)

NAME
enable, disable — enable/disable LP printers

SYNOPSIS
enable printers
disable [—c] [—r[reason]] printers

DESCRIPTION
Enable activates the named printers, enabling them to print requests taken
by Ip(1). Use Ipstat(1) to find the status of printers.

Disable deactivates the named printers, disabling them from nprinting
requests taken by /p(1). By default, any requests that are currently printing
on the designated printers will be reprinted in their entirety either on the
same printer or on another member of the same class. Use Ipstat(1) to find
the status of printers. Options useful with disable are:

—¢ Cancel any requests that are currently printing on any of the
designated printers.

—rlreason] Associates a reason with the deactivation of the printers.
This reason applies to all printers mentioned up to the next
—r option. If the —r option is not present or the —r option
is given without a reason, then a default reason will be used.
Reason is reported by Ipstat(1).
FILES
/ust/spool/lp/x
SEE ALSO
Ip(1), Ipstat(1).

ENV(1) ’ ENV(1)

NAME

env — set environment for command execution
SYNOPSIS

env [—] [name=value] ... [command args]
DESCRIPTION

Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of
the form name=value are merged into the inherited environment before
the command is executed. The — flag causes the inherited environment to
be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resuliing environment is printed, one
name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(4), environ(5).

EQN(1) EQN(1)

NAME

eqn, neqn, checkeq — format mathematical text for nroff or troff

SYNOPSIS

eqn [—dxy 1 [—pn J [—sn 1 [—fn] [files]
meqn [—dxy] [—pn 1 [—sn] [—fn] [files]
checkeq [files]

DESCRIPTION

Eqn is a troff (1) preprocessor for typesetting mathematical text on a photo-
typesetter, while negn is used for the same purpose with nroff on
typewriter-like terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent.

If no files are specified (or if — is specified as the last argument), these
programs read the standard input. A line beginning with .EQ marks the
start of an equation; the end of an equation is marked by a line beginning
with .EN. Neither of these lines is altered, so they may be defined in macro
packages to get centering, numbering, etc. It is also possible to designate
two characters as delimiters; subsequent text between delimiters is then
treated as egn input. Delimiters may be set to characters x and y with the
command-line argument ~—-dxy or (more commonly) with delim xy between
-EQ and .EN. The left and right delimiters may be the same character; the
dollar sign is often used as such a delimiter. Delimiters are turned off by
delim off. All text that is neither between delimiters nor between .EQ and
.EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN
pairs.

Tokens within egn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character such as x could appear, a complicated
construction enclosed in braces may be used instead. Tilde (™) represents a
full space in the output, circumflex (*) half as much.

Subscripts and superscripts are produced with the keywords subzand sup.
Thus x sub j makes x;, a sub k sup 2 produces a2, while e*? is made
with e sup {x sup 2 + y sup 2}. Fractions are made with over: a over b
yields %; sqrt makes square roots: 1 over sqrt {ax sup 2+bx+c} results in
1

Vax™bx+c

The keywords from and to introduce lower and upper limits: lim Dx; is
n—co 0

made with lim from {n —> inf } sum from 0 to n x sub i. Left and right
brackets, braces, etc., of the right height are made with left and right:

2
left [x sup 2 + y sup 2 over alpha right] ~=~ 1 produces |x*+Z—|=1.
- a

Legal characters after left and right are braces, brackets, bars, ¢ and f for
ceiling and floor, and ** for nothing at all (useful for a right-side-only
bracket). A left thing need not have a matching right thing.

EQN(1) EQN(1)

Vertical piles of things are made with pile, lpile, cpile, and rpile:
a
pile {a above b above c} produces b. Piles may have arbitrary numbers of

c

elements; Ipile left-justifies, pile and cpile center (but with different verti-

cal spacing), and rpile right justifies. Matrices are made with matri:lx:
Xt

matrix { lcol { x sub i above y sub 2 } ccol { 1 above 2 } } produces y2 2

In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under: x dot = f(t) bar is x=f(t), y dotdot bar ~=" n under is y=un,
andxvec ="y dyad s X =Y.

Point sizes and fonts can be changed with size n or size +n, roman, italic,
bold, and font n. Point sizes and fonts can be changed globally in a docu-
ment by gsize n and gfont n, or by the command-line arguments —sn and
—fn.

Normally, subscripts and superscripts are reduced by 3 points from the pre-
vious size; this may be changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the
desired lineup point in the first equation; place lineup at the place that is to
line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:
define thing % replacement %

defines a new token called thing that will be replaced by replacement when-
ever it appears thereafter. The % may be any character that does not occur
in replacement.

Keywords such as sum (3)), int (f), inf (c0), and shorthands such as
>= (=), != (#), and —> (—) are recognized. Greek letters are spelled
out in the desired case, as in alpha (a), or GAMMA (T'). Mathematical
words such as sim, cos, and log are made Roman automatically. Troff(1)
four-character escapes such as \(dd (§) and \(bs (&) may be used any-
where. Strings enclosed in double quotes (*...") are passed through
untouched; this permits keywords to be entered as text, and can be used to
communicate with troff(1) when all else fails. Full details are given in the
manual cited below. .

SEE ALSO

BUGS

Typesetting Mathematics— User’s Guide by B. W. Kernighan and L. L.
Cherry.
cw(1), mm(1), mmt(1l), nroff(1), tbl(1), troff(1), eqnchar(5), mm(S),
mv(5).

To embolden digits, parentheses, etc., it is necessary to quote them, as in
bold *12.3".
See also BUGS under troff (1).

EXPR(1) EXPR(1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is
written on the standard output. Terms of the expression must be separated
by blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings con-
taining blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2’s complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within { } symbols.

expr \| expr
returns the first expr if it is neither null nor 0, otherwise returns
the second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns
0.

expr { =,\>,\>=,\<,\<=, I= } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr{ +, — } expr
addition or subtraction of integer-valued arguments.

expr {\s, [, % } expr
multiplication, division, or remainder of the integer-valued argu-
ments.

expr : expr
The matching operator : compares the first argument with the
second argument which must be a regular expression; regular
expression syntax is the same as that of ed(1), except that all pat-
terns are “‘anchored” (i.e., begin with “) and, therefore, ~ is not a
special character, in that context. Normally, the matching operator
returns the number of characters matched (0 on failure). Alterna-
tively, the \(...\) pattern symbols can be used to return a portion
of the first argument.

EXAMPLES R .
1. a= expr $a + 1
adds 1 to the shell variable a.
2. # “For $a equal to either "/usr/abc/file" or just "file"

expr $a : “a/\(%\)" \| $a

returns the last segment of a path name (i.e., file). Watch
out for / alone as an argument: expr will take it as the divi-
sion operator (see BUGS below).

EXPR(1) EXPR(1)

3. # A better re‘presentati‘on of example 2.
expr //$a : ".a\(A)

The addition of the // characters eliminates any ambiguity
about the division operator and simplifies the whole expres-

sion.
4, expr SVAR : “.&°
returns the number of characters in SVAR.
SEE ALSO
ed(1), sh(1).
EXIT CODE
As a side effect of expression evaluation, expr returns the following exit
values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
DIAGNOSTICS
syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string
BUGS

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an =,
the command:

expr $a = =
looks like:
eXpr = = =

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a = X=

F77(1) F17(1)

NAME
f77 — Fortran 77 compiler

SYNOPSIS
77 [options] files

DESCRIPTION
F77 is the UNIX Fortran 77 compiler; it accepts several types of file argu-
ments:

Arguments whose names end with .f are taken to be Fortran 77
source programs; they are compiled and each object program is left
in the current directory in a file whose name is that of the source,
with .o substituted for .f.

Arguments whose names end with .r or .e are taken to be RATFOR
or EFL source programs, respectively; these are first transformed by
the appropriate preprocessor, then compiled by f77, producing .0
files.

In the same way, arguments whose names end with .c or .s are
taken to be C or assembly source programs and are compiled or
assembled, producing .o files.

The following options have the same meaning as in cc(1) (see /d(1) for link
editor options):

—c Suppress link editing and produce .o files for each source file.
-p Prepare object files for profiling (see prof(1)).

-0 Invoke an object-code optimizer.

-S Compile the named programs and leave the assembler-

language output in corresponding files whose names are
suffixed with .s. (No .o files are created.)

—ooutput Name the final output file output, instead of a.out.

—f In systems without floating-point hardware, use a version of
J77 that handles floating-point constants and links the object
program with the floating-point interpreter.

—g Generate additional information needed for the use of sdb(1)
(VAX-11/780 only).

The following options are peculiar to f77:

—onetrip Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at all if the upper
limit is smaller than the lower limit.)

-1 Same as —onetrip.
—66 Suppress extensions which enhance Fortran 66 compatibility.
—-C Generate code for run-time subscript range-checking.

—I[24s] Change the default size of integer variables (only valid on
machines where the “‘normal’’ integer size is not equal to the
size of a single precision real). —I2 causes all integers to be
2-byte quantities, —I4 (default) causes all integers to be 4-
byte quantities, and —Is changes the default size of subscript
expressions (only) from the size of an integer to 2 bytes.

—-U Do not "fold" cases. F77 is normally a no-case language (i.e.
a is equal to A). The —U option causes f77 to treat upper
and lower cases to be separate.

—u Make the default type of a variable undefined, rather than
using the default Fortran rules.
—w Suppress all warning messages. If the option is —wé66, only

Fortran 66 compatibility warnings are suppressed.

-1-

F17(1) F17(1)

—F Apply EFL and RATFOR preprocessor to relevant files, put the
result in files whose names have their suffix changed to .of.
(No .o files are created.)

—m Apply the M4 preprocessor to each EFL or RATFOR source file
before transforming with the ratfor(1) or efl(1) processors.

—E The remaining characters in the argument are used as an EFL
flag argument whenever processing a .e file.

—R The remaining characters in the argument are used as a RAT-

FOR flag argument whenever processing a .r file.

Other arguments are taken to be either link-editor option arguments or
f77-compilable object programs (typically produced by an earlier run), or
libraries of f77-compilable routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to pro-
duce an executable program with the default name a.out .

FILES
file.[fresc] input file
file.o object file
a.out linked output
.Jfort[pid}.? temporary
Jusr/lib/f77pass1 compiler
/lib/cl pass 2
Jlib/c2 optional optimizer

Jusr/lib/1ibF77.a intrinsic function library
Jusr/lib/libl77.a Fortran I/O library
/lib/libc.a C library; see Section 3 of this Manual.

SEE ALSO
A Portable Fortran 77 Compiler by S. 1. Feldman and P. J. Weinberger.
asa(1), cc(1), efl(1), fsplit(1), 1d(1), m4(1), prof(1), ratfor(1l), sdb(1).
DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor /d(1).

FACTOR(1) FACTOR(1)

NAME

factor — factor a number
SYNOPSIS

factor [number]
DESCRIPTION

When factor is invoked without an argument, it waits for a number to be
typed in. If you type in a positive number less than 2°° (about 7.2)(1016) it
will factor the number and print its prime factors; each one is printed the
proper number of times. Then it waits for another number. It exits if it
encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and
then exits.

Maximum time to factor is proportional to \/n and occurs when » is prime
or the square of a prime. It takes 1 minute to factor a prime near 10" on a
PDP-11.

DIAGNOSTICS
““Ouch’” for input out of range or for garbage input.

FGET(1C) (DEC only) FGET(1C)

NAME
fget, fget.demon — retrieve files from the HONEYWELL 6000

SYNOPSIS
fget [options] [files]
Jusr/lib/fget.demon time

DESCRIPTION
Fget arranges to have one or more GCOS files sent to UNIX. GCOS '
identification must appear in the UNIX password file (see passwd(4)), or be
supplied by the —i option. Normally, the files retrieved will appear in the
UNIX user’s current directory under the GCOS file name. Fget.demon is the
daemon that does the actual retrieval. :

The GCOS catalog from which the files are obtained depends on the form of
the file name argument. If the file name has only embedded slashes, then
it is assumed to be a full GCOS path name and that file is retrieved. If the
file name has no embedded slashes or begins with a slash, then the GCOS
catalog from which the file is retrieved is the same as the UNIX login name
of the person who issues the command. If, however, a user has a different
name in the third field of the GCOS “ident card image” (which image is
extracted from the UNIX password file—see passwd(4)), this name is taken
as the GCOS catalog name. Whatever GCOS catalog is finally used, the files
must either have general read permission or the user must have arranged
that the user ID network has read permission on that catalog (see
Ssend(1C)). This can be accomplished with the GCOS command:

filsys mc <user ID>,(r)/network/

The UNIX file into which the retrieved GCOS file will ultimately be written
is initialized with one line containing the complete GCOS file name. If the
file contains the initial line for an extended period, it means that GCOS is
down or something has gone horribly wrong and you should try again.

The following options, each as a separate argument may appear in any
order but must precede all file arguments.

—a Retrieve files as ASCH (default).

—b Retrieve files as binary.

—ddir Use dir as the UNIX directory into which retrieved files are written.

—ffile Use file as the UNIX filename for the retrieved file.

—1ijob, bin
Supply the GCOS ‘‘ident card” image as the parameter —ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

—m When the request has been forwarded to GCOS, report by mail(1)
the so-called snumb of the receiving job; mail is sent by the UNIX
dpd(1C) daemon; there is no guarantee that the GCOS job ran or
that UNIX retrieved the output. This is the default option.

—n Do not report the forwarding of the request by mail(1).

—o Print the on-line GCOS accounting output.

—t Toss out the on-line GCOS accounting output. This is the default

option.

—sn Submit job to GCOS with service grade n (n=1, 2, 3, 4). Default is
—sl.

—uuserid

Use userid as the GCOS catalog name for all files.

The GCOS job to send the requested files to UNIX is sent by the dpd(1C)
daemon. Receiving these files is then done by a corresponding retrieval
daemon, fget.demon, which stays alive for a minimum of time seconds,

-1-

FGET(1C) (DEC only) FGET(1C)

(default 360), or until it has successfully retrieved one or more files. The
file glock in the spooling directory /usr/spool/dpd is used to prevent two
daemons from becoming active simultaneously. After the program has suc-
cessfully set the lock, it forks and the main path exits, thus spawning the
daemon. GRTS is interrogated for any output for the daemon’s station-id.
If none, fget.demon will wait up to time seconds, interrogating GRTS every
minute or so to see if any output has arrived. All problems and successful
transactions are recorded in the errors file in the spooling directory.

To restart fget.demon (in the case of hardware or software malfunction), it
is necessary to first kill the old fget.demon (if still alive), and remove the
lock file (if present), before initiating fget.demon. This should be done
automatically by /etc/rc when the system is brought up, in case there are any
files waiting to come over.

EXAMPLES
The command:
fget —ugcosme —t —n —d fusr/me/test filel file2

will retrieve the GCOS files gecosme/filel and gcosme/file2, as the UNIX
files /usr/me/test/filel and /usr/me/test/file2, respectively, but will not
generate any mail or GCOS accounting output as a result of the transaction.

FILES
/etc/passwd user’s identification and GCOS ident card.
/usr/lib/dpd sending daemon.
Jusr/spool/dpd/+ spool area.
/dev/dn? ACU device.
/dev/du? DATA-PHONE set.
/dev/vpb? Bottom VPM device to interface to KMC11-B.
/dev/vpm? Top VPM device to interface to KMC11-B.
SEE ALSO

dpd(1C), dpr(1C), fsend(1C), passwd(4).

FILE(1) FILE(1)

NAME

file — determine file type
SYNOPSIS

file [—c] [~f fiile] [—m mfile] arg ...
DESCRIPTION

File performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ASCII, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than 0 (see Id(1)).

If the —f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

File uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indi-
cates its type. Commentary at the beginning of /etc/magic explains its for-
mat.

The —m option instructs file to use an alternate magic file.

The —e flag causes file to check the magic file for format errors. This vali-
dation is not normally carried out for reasons of efficiency. No file typing is
done under —c.

FIND(1) FIND (1)

NAME
find — find files

SYNOPSIS
find path-name-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descrip-
tions, the argument »n is used as a decimal integer where +n means more
than n, —n means less than n and n means exactly n.

—name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [,
? and »).

—perm onum True if the file permission flags exactly match the octal
number onum (see chmod(1)). If onum is prefixed by a
minus sign, more flag bits (017777, see stat(2)) become
significant and the flags are compared:

(flags&onum)==onum

—type ¢ True if the type of the file is ¢, where c is b, ¢, d, p, or f
for block special file, character special file, directory, fifo
(a.k.a named pipe), or plain file.

~links n True if the file has n links. _

—user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

—group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

—size n True if the file is n blocks long (512 bytes per block).

—atime n True if the file has been accessed in n days.

—mtime n True if the file has been modified in n days.

—ctime n True if the fiie has been changed in »n days.

—exec cmd True if the executed cmd returns a zero value as exit
status. The end of cmd must be punctuated by an
escaped semicolon. A command argument {} is replaced
by the current path name.

—ok cmd Like —exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

—print Always true; causes the current path name to be printed.

—cpio device Write the current file on device in cpio (4) format (5120
byte records). ’

—newer file True if the current file has been modified more recently

(expression)

than the argument file.

True if the parenthesized expression is true (parentheses
are special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

FIND(1) FIND(1)

1)} The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxta-
position of two primaries).

3) Alternation of primaries (—o is the or operator).

EXAMPLE
To remove all files named a.out or .0 that have not been accessed for a
week:

find / \(—name a.out —o —name ».c’\) —atime +7 —exec rm {} \;

FILES
/etc/passwd, /etc/group

SEE ALSO
cpio(1), sh(1), test(1), stat(2), cpio(4), fs(4).

FSEND(1C) (DEC only) FSEND (1C)

NAME
fsend — send files to the HONEYWELL 6000

SYNOPSIS
fsend [options] [files]

DESCRIPTION
Fsend arranges to have one or more UNIX files sent to HONEYWELL GCOS.
GCOS identification must appear in the UNIX password file (see passwd(4)),
or be supplied by the —i option. If no names appear, the standard input is
sent; thus fsend may be used as a filter.

Normally, the catalog on the HONEYWELL file system in which the new file
will appear is the same as the UNIX login name of the person who issues
the command. If, however, a user has a different name in the third field of
the GCOS “‘ident card image’’ (which image is extracted from the UNIX
password file; see passwd(4)), this name is taken as the GCOS catalog name.
Whatever GCOS catalog is finally used, the user must have arranged that
the user ID “‘network” has create permission on that catalog, or read and
write permission on the individual files. The latter is more painful but pre-
ferred if access to other files in the catalog is to be fully controlled. This
can be accomplished with the GCOS commands:

filsys mc <user ID>,c/network/,m/ <user ID>/
or

filsys cf <file>,w/network/,b/<<initial-size>,unlimited/

The name of the GCOS file is ordinarily the same as the name of the UNIX
file. When the standard input is sent, the GCOS file is normally taken to be
pipe.end.

The following options, each as a separate argument, may appear in any
order but must precede all file name arguments.

—a Send succeeding files as ASCII (default). If the last character of the
file is not a new-line, one is added. All other characters are
preserved.

—b Send succeeding files as binary. Each UNIX byte is right justified in
a GCOS byte and the bytes packed into 120-byte logical records (30
GCOS words). The last record is padded out with NULs.

—c Make copies of the files to be sent before returning to the user.

-r Remove the files after sending them.

—ffile Use file as the GCOS file name for the file being sent.

—ijob,bin
Supply the GCOS “‘ident card” image as the parameter —ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

—m When transmission is complete, report by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is the default option. ,

—n Do not report the completion of transmission by mail(1).

—o Print the on-line GCOS accounting output.

—t Toss out the on-line GCOS accounting output. This is the default

option.

—sn Submit job to GCOS with service grade n (n=1, 2, 3, 4). Default is
—sl.

—uuserid

Use userid as the GCOS catalog name for all files.

FSEND(1C) (DEC only) FSEND(1C)

—x Send succeeding files to be archived by the GCOS archive command.

EXAMPLE

The command:
fsend —t —uunixsup —b —fgfile ufile

will send the binary UNIX file ufile to become the GCOS file nnixsup/gfile,
and will not produce any on-line GCOS accounting output.

FILES
/etc/passwd user’s identification and GCOS ident card.
Jusr/lib/dpd sending daemon.
/usr/spool/dpd/# spool area.

SEE ALSO

dpd(1C), dpr(1C), fget(1C), geat(1C), mail(1).

FSPLIT(1) FSPLIT(1)

NAME
fsplit — split £77, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file(s) into separate files, with onc procedure per file.
A procedure includes blockdata, function, main, program, and subroutine pro-
gram segments. Procedure X is put in file X.f, X.r, or X.e depending on
the language option chosen, with the following exceptions: main is put in
the file MAIN.[efr] and unnamed blockdata segments in the files
blockdataN .[efr] where N is a unique integer value for each file.

The following options pertain:

—f (default) Input files are f77.
-r Input files are ratfor.

—e Input files are Efl.

it Strip f77 input lines to 72 or fewer characters with trailing blanks
removed.
SEE ALSO
csplit(1), efi(1), £77(1), ratfor(1), split(1).

GCAT(1C) GCAT(1C)

NAME
geat — send phototypesetter output to the HONEYWELL 6000

SYNOPSIS
geat [options] [files]

DESCRIPTION
Gcat arranges to have troff (1) output sent to the phototypesetter or debug-
ging devices (STARE or line printer) attached to the HONEYWELL system.
GCOS identification must appear in the UNIX password file (see passwd(4)),
or be supplied by the —i option. If no file name appears, the standard
input is sent; thus gcat may be used as an output pipe for troff (1).

The option —g (for GCOS) must be used with the troff (1) command to
make things work properly. This command string sends output to the
GCOS phototypesetter:

troff —g file | geat

The following options, each as a separate argument, and in any combina-
tion (multiple outputs are permitted), may be given after gcat:

—ph Send output to the phototypesetter. This is a default option.

—st Send output to STARE for fast turn-around.

—tx Send output as text to the line printer (useful for checking spelling,
hyphenation, pagination, etc.).

—du Send output to the line printer, dummied up to make the format
correct. Because many characters are dropped, the output is
unreadable, but useful for seeing the shape (margins, etc.) of the
document.

—c Make a copy of the file to be sent before returning to the user.

-r Remove the file after sending it.

—ffile Use file as a dummy file name to report back in the mail. (This is
useful for distinguishing multiple runs, especially when geat is being
used as a filter). '

—ijob,bin
Supply the GCOS “‘ident card” image as the parameter —ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

—m When transmission is complete, report by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is a default option.

—n Do not report the completion of transmission by mail(1).

-0 Print the on-line GCOS accounting output.

—t Toss out the on-line GCOS accounting output. This is a default
option.

—sn Submit job to GCOS with service grade n (n=1, 2, 3, 4). Default is
—sl.

If none of the output options are specified, phototypesetter output (—ph) is
assumed by default.

EXAMPLE
The command:
troff —g myfile | gcat —st —im1234,m567,myname —fmyfile

will send the output of troff (1) to STARE, with the GCOS ‘‘ident card”
specifying ‘““M1234,M567, MYNAME", and will report back that myfile has
been sent.

GCAT(1C) GCAT(1C)

FILES
Jetc/passwd user’s identification and GCOS ident card.
Jusr/lib/dpd sending daemon.
Jusr/spool/dpd/* spool area.

SEE ALSO

dpd(1C), dpr(1C), fget(1C), fsend(1C), troff(1).

GCOSMAIL(1C) GCOSMAIL(1C)

NAME

gecosmail — send mail to HIS user
SYNOPSIS

geosmail [option ...] [HISuserid ... |
DESCRIPTION

Gcosmail takes the standard input up to an end of file and sends it as mail
to the named users on the HONEYWELL 6000 system, using the HIS mail
command. The following options are recognized by gcosmail:

—ffile Use file as a dummy file name to report back in the mail. (This is
useful for distinguishing multiple runs).

—ijob, bin . '

Supply the GCOS “ident card” image as the parameter —ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

—m When transmission is complete, report by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is a default option.

—n Do not report the completion of transmission by mail(1).

—o Print the on-line GCOS accounting output.

—t Toss out the on-line GCOS accounting output. This is a default

option. .
—sn Submit job to GCOS with service grade n (n=1, 2, 3, 4). Default is
—sl.
FILES
/etc/passwd user’s identification and GCOS ident card.
Jusr/lib/dpd sending daemon.
/Jusr/spool/dpd/* spool area.
SEE ALSO

dpd(1C), dpr(1C), fsend(1C).

GDEV(1G) GDEV(1G)

NAME
hpd, erase, hardcopy, tekset, td — graphical device routines and filters
SYNOPSIS
hpd [—options] [GPS file ...]
erase
hardcopy
tekset
td [—eurn] [GPS file ...]
DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see
graphics(1G)).
hpd Hpd translates a GPS (see gps(4)), to instructions for the
Hewlett-Packard 7221A Graphics Plotter. A viewing window is
computed from the maximum and minimum points in file
unless the —u or —r option is provided. If no file is given, the
standard input is assumed. Options are:
en Select character set n, n between 0 and 5 (see the
HP7221A Plotter Operating and Programming Manual,
Appendix A).
pn Select pen numbered 7, n between 1 and 4 inclusive.
rn Window on GPS region n, n between 1 and 25 inclusive.
sn Slant characters n degrees clockwise from the vertical.
u Window on the entire GPS universe.
xdn Set x displacement of the viewport’s lower left corner to n
inches.
xvn Set width of viewport to n inches.
ydn Set y displacement of the viewport’s lower left corner to n
inches.
yvn Set height of viewport to n inches.
erase Erase sends characters to a Tektronix 4010 series storage termi-

nal to erase the screen.

hardcopy When issued at a Tektronix display terminal with a hard copy
unit, hardcopy generates a screen copy on the unit.

tekset Tekset sends characters to a Tektronix terminal to clear the
display screen, set the display mode to alpha, and set characters
to the smallest font.

td Td translates a GPS to scope code for a Tektronix 4010 series
storage terminal. A viewing window is computed from the max-
imum and minimum points in file unless the —u or —r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display.
rn Display GPS region n, n between 1 and 25 inclusive.
u Display the entire GPS universe.

SEE ALSO
ged(1G), graphics(1G), gps(4).

GED(1G) GED(1G)

NAME
ged — graphical editor

SYNOPSIS
ged [—euRrn] [GPS fie ...]

DESCRIPTION
Ged is an interactive graphical editor used to display, construct, and edit
GPS files on Tektronix 4010 series display terminals. If GPS file(s) are
given, ged reads them into an internal display buffer and displays the buffer.
The GPS in the buffer can then be edited. If — is given as a file name, ged
reads a GPS from the standard input.

Ged accepts the following command line options:
e Do not erase the screen before the initial display.
rn Display region number 2.
u Display the entire GPS universe.
R Restricted shell invoked on use of !.

A GBS file is composed of instances of three graphical objects: lines, arc,
and text. Arc and lines objects have a start point, or object-handle, followed
by zero or more points, or point-handles. Text has only an object-handle.
The objects are positioned within a Cartesian plane, or universe, having 64K
(—32K to +32K) points, or universe-units, on each axis. The universe is
divided into 25 equal sized areas called regions. Regions are arranged in
five rows of five squares each, numbered 1 to 25 from the lower left of the
universe to the upper right.

Ged maps rectangular areas, called windows, from the universe onto the
display screen. Windows allow the user to view pictures from different
locations and at different magnifications. The universe-window is the win-
dow with minimum magnification, i.e. the window that views the entire
universe. The home-window is the window that completely displays the con-
tents of the display buffer.

COMMANDS
Ged commands are entered in stages. Typically each stage ends with a
<cr> (return). Prior to the final <er>- the command may be aborted by
typing rubout. The input of a stage may be edited during the stage using
the erase and kill characters of the calling shell. The prompt # indicates
that ged is waiting at stage 1.

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name followed by
argument(s) followed by a «<er>. A command name is a sin-
gle character. Command arguments are either option(s) or a
file-name. Options are indicated by a leading —.

2. Text Text is a sequence of characters terminated by an unescaped
<<cr>. (120 lines of text maximum.)

3. Points Points is a sequence of one or more screen locations (max-
imum of 30) indicated either by the terminal crosshairs or by
name. The prompt for entering points is the appearance of the
crosshairs. When the crosshairs are visible, typing:

sp (space) enters the current location as a point. The point
is identified with a number.

GED(1G)

4. Pivot

GED(1G)

$n enters the previous point numbered n.
>x labels the last point entered with the upper case letter x.
$x enters the point labeled x.

establishes the previous points as the current points. At
the start of a command the previous points are those
locations given with the previous command.

= echoes the current points.

$.n enters the point numbered # from the previous points.
erases the last point entered.)

@ erases all of the points entered.

The pivot is a single location, entered by typing <cr> or by
using the $ operator, and indicated with a ».

5. Destination

The destination is a single location entered by typing <cr> or
by using $.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Com-

mand stages

are optional.

are printed in italics. Arguments surrounded by brackets *[]”
Parentheses ““()’’ surrounding arguments separated by “‘or”’

means that exactly one of the arguments must be given.

Construct commands:

Arc
Box
Circle

[—echo,style,weight] points
[—echo,style,weight] points
[—echo,style,weight] points

Hardware [—echo] text points

Lines
Text

Edit commands:

Delete
Edit

Kopy
Move
Rotate
Scale

[—echo,style,weight] points

[—angle,echo,height, mid-point,right-point, text, weight]
text points

(— (universe or view) or points)

[—angle,echo,height,style,weight] (— (universe or
view) or points)

[—echo,points,x] points pivot destination
[—echo,points,x] points pivot destination
{—angle,echo,kopy,x] points pivot destination
[—echo,factor,kopy,x!] points pivot destination

View commands:
coordinates points

erase

new-display

object-handles (— (universe or view) or points)

GED(1G) GED(1G)

point-handles (— (labelled-points or universe or view) or points)

view (— (home or universe or region) or [—x] pivot des-
tination)

X [—view] points

zoom [—out] points

Other commands:
quit or Quit
read [—angle,echo,height, mid-point,right-point, text, weight]
JSile-name [destination]

set [—angle,echo,factor, height, kopy, mid-point,points,
right-point,style, text, weight, x]

write file-name

tcommand

?

Options:
Options specify parameters used to construct, edit, and view graphical
objects. If a parameter used by a command is not specifed as an option, the
default value for the parameter will be used (see set below). The format of
command options is
~option [,option]

where option is keyletter{value]. Flags take on the values of true or false
indicated by + and — respectively. If no value is given with a flag, true is
assumed.

Object options:

anglen Angle of n degrees.

echo When true, echo additions to the display buffer.

factorn Scale factor is n percent.

heightn Height of text is n universe-units (0=<n<1280).

kopy When true, copy rather than move.

mid-point When true, mid-point is used to locate text string.

points When true, operate on points otherwise operate on
objects.

right-point When true, right-point is used to locate text string.
styletype Line style set to one of following types:

so solid

da dashed

dd dot-dashed
do dotted

d long-dashed

GED(1G)

Area options:

GED(1G)
text When false, text strings are outlined rather than drawn.
weighttype Sets line weight to one of following #fypes:

n narrow
m medium
b bold
home Reference the home-window.
out Reduce magnification.
regionn Reference region n.
universe Reference the universe-window.
view Reference those objects currently in view.
X Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:
Arc and Lines

behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points are
point-handles. Lines connects the handles in numerical order. Arc
fits a curve to the handles (currently a maximum of 3 points will be
fit with a circular arc; splines will be added in a later version).

Box and Circle

are special cases of Lines and Arc, respectively. Box generates a rec-
tangle with sides parallel to the universe axes. A diagonal of the rec-
tangle would connect the first point entered with the last point. The
first point is the object-handle. Point-handles are created at each of
the vertices. Circle generates a circular arc centered about the point
numbered zero and passing through the last point. The circle’s
object-handle coincides with the last point. A point-handle is gen-
erated 180 degrees around the circle from the object-handle.

Text and Hardware

generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <<cr>. Multiple lines of
text may be entered by preceding a cr with a backslash (i.e. \er). The
Text command creates software generated characters. Each line of
software text is treated as a separate fext object. The first point
entered is the object-handle for the first line of text. The Hardware
command sends the characters in fext uninterpreted to the terminal.

Edit commands:

Edit commands operate on portions of the display buffer called defined-
areas. A defined-area is referenced either with an area option or interac-
tively. If an area option is not given, the perimeter of the defined-area is
indicated by points. If no point is entered, a small defined-area is built
around the location of the <<er>. This is useful to reference a single point.
If only one point is entered, the location of the <cr> is taken in conjunc-
tion with the point to indicate a diagonal of a rectangle. A defined-area
referenced by points will be outlined with dotted lines.

Delete

removes all objects whose object-handle lies within a defined-area.
The universe option removes all objects and erases the screen.

-4-

GED(1G) GED(1G)

Edit modifies the parameters of the objects within a defined-area. Parame-
ters that can be edited are:
angle angle of text
height height of text
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined-area
by the displacement from the pivot to the destination.

Rotate
rotates objects within a defined-area around the pivor. If the kopy flag
is true then the objects are copied rather than moved.

Scale
For objects whose object-handles are within a defined-area, point dis-
placements from the pivot are scaled by factor percent. If the kopy
flag is true then the objects are copied rather than moved.

View commands:
coordinates
prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object- (and/or point-handles) that lie within the defined-area
with O (or P). point-handles identifies labelled points when the
labelled-points flag is true.

view moves the window so that the universe point corresponding to the
pivot coincides with the screen point corresponding to the destination.
Options for home, universe, and region display particular windows in
the universe.

x indicates the center of a defined-area. Option view indicates the
center of the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing
window based on the defined-area. For increased magnification, the
window is set to circumscribe the defined-area. For a decrease in
magnification the current window is inscribed within the defined-area.

Other commands:
quit or Quit
exit from ged. quit responds with 7 if the display buffer has not been
written since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read
directly. If the file contains text it is converted into fext object(s).
The first line of a text file begins at destination.

set when given option(s) resets default parameters, otherwise it prints
current default values.

write
outputs the contents of the display buffer to a file.

-5.

GED(1G) GED(1G)

! escapes ged to execute a UNIX command.
? lists ged commands.

SEE ALSO
gdev(1G), graphics(1G), sh(l), gps(4).
An Introduction to the Graphical Editor in the UNIX System Graphics Guide.

GET (1) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS :
get [—rSID] [—ccutoff] [—ilist] [—xlist] [—aseq-no.] [—k] [—el
[—1lp]] [—p] {—m] [—n] [—s] [—b] [—g} [—t] file ...

DESCRIPTION '
Get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with —. The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that non-
SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading
s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

—eSID The SCCS IDentification string (SID) of the version (delta) of
an SCCS file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an SCCS file is retrieved (as well
as the SID of the version to be eventually created by delta(1) if
the —e keyletter is also used), as a function of the SID
specified.

—ccutoff Cutoff date-time, in the form:
YY[MM[DD{HH[MM([SSI]]1]1]

No changes (deltas) to the SCCS file which were created after
the specified cutoff date-time are included in the generated ASCII
text file. Units omitted from the date-time default to their
maximum possible values; that is, —c7502 is equivalent to
—¢750228235959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:
"—c77/2/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to a send(1C) command;

“tget "—c%E% %U%" s.file

—e Indicates that the ger is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of delta(1).
The —e keyletter used in a get for a particular version (SID) of
the SCCS file prevents further gers for editing on the same SID
until delta is executed or the j (joint edit) flag is set in the SCCS
file (see admin(1)). Concurrent use of get —e for different
SIDs is always allowed.

If the g-file generated by get with an —e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the ger command with the —k keyletter in place of
the —e keyletter.

GET(1)

—ilist

—xlist

GET(1)

SCCS file protection specified via the ceiling, floor, and author-
ized user list stored in the SCCS file (see admin(1)) are enforced
when the —e keyletter is used.

Used with the —e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file (see
admin(1)) or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the crea-
tion of the generated file. The list has the following syntax:

<list> = <range> | <list> , <range>
<range> ::= SID | SID — SID

SID, the SCCS Identification of a delta, may be in any form
shown in the ‘‘SID Specified”> column of Table 1. Partial SIDs
are interpreted as shown in the “SID Retrieved’’ column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the —i keyletter for the list
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The —k keyletter is
implied by the —e keyletter.

Causes a delta summary to be written into an /file. If —lp is
used then an /file is not created; the delta summary is written
on the standard output instead. See FILES for the format of the
lfile.

Causes the text retrieved from the SCCS file to be written on
the standard output. No g-file is created. All output which nor-
mally goes to the standard output goes to file descriptor 2
instead, unless the —s keyletter is used, in which case it disap-
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descrip-
tor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre-
ceded by the SID of the delta that inserted the text line in the
SCCS file. The format is: SID, followed by a horizontal tab, fol-
lowed by the text line.

Causes each generated text line to be preceded with the ZM%
identification keyword value (see below). The format is: ZM%
value, followed by a horizontal tab, followed by the text line.
When both the —m and —n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the —m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an /-file, or to verify the existence of
a particular SID.

Used to access the most recently created (‘‘top”) delta in a
given release (e.g., —rl), or release and level (e.g., —r1.2).

-2-

GET(1) GET(1)

—aseg-no. The delta sequence number of the SCCS file delta (version) to
be retrieved (see sccsfile(5)). This keyletter is used by the
comb(1) command; it is not a generally useful keyletter, and
users should not use it. If both the —r and —a keyletters are
specified, the —a keyletter is used. Care should be taken when
using the —a keyletter in conjunction with the —e keyletter, as
the SID of the delta to be created may not be what one expects.
The —r keyletter can be used with the —a and —e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named, each
file name is printed (preceded by a new-line) before it is processed. If the
—i keyletter is used included deltas are listed following the notation
“Included’’; if the —x keyletter is used, excluded deltas are listed following
the notation ‘‘Excluded’’.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
none} no R defaults to mR mR.mL mR.(mL+1)
none} yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1***

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R = mR mR.mL mR.mL.(mB+1).1

R - RomRand pRmL* bR.mL.(mB+1).1
Trunk succ.#

R - in release > R R.mL R.mL.(mB+1).1
and R exists

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.

R.L - in release > R R.L R.L.(mB+1).1

R.L.B no No branch succ. R.LB.mS R.LB.(mS+1)

R.L.B yes No branch succ. RLBmS R.L.(mB+1).1

R.L.BS . no No branch succ. R.L.BS R.LB.(S+1)

R.LBS . yes No branch succ. R.L.B.S R.L.(mB+1).1

R.L.B.S - Branch succ. R.L.BS R.L.(mB+1).1

* “R”, “L”, “B”, and “‘S” are the ‘“‘release’’, ‘“‘level”, ‘“‘branch’’, and
“‘sequence’’ components of the SID, respectively; ““m’’ means ‘“‘max-
imum”. Thus, for example, “R.mL’’ means ‘‘the maximum level
number within release R’’; “R.L.(mB+1).1” means ‘‘the first
sequence number on the new branch (i.e., maximum branch number
plus one) of level L within release R’’. Note that if the SID specified
is of the form “R.L”, “R.L.B”, or “R.L.B.S”, each of the specified
components must exist.

** “hR” is the highest existing release that is lower than the specified,
nonexistent, release R.

GET(1) GET(1)

*** This is used to force creation of the first delta in a new release.

Successor. ’

t The —b keyletter is effective only if the b flag (see admin (1) is
present in the file. An entry of — means “‘irrelevant™.

% This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the SCCS file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the file (see
admin(1)), or if absent, the name of the SCCS file with the lead-
ing s. removed.

%1% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text.

%R% Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y% Module type: value of the t flag in the SCCS file (see admin(1)).

%F% SCCS file name.

%P% Fully qualified SCCS file name.

%Q% The value of the q flag in the file (see admin(1)).

%C% Current line number. This keyword is intended for identifying
messages output by the program such as ‘‘this shouldn’t have
happened’’ type errors. It is not intended to be used on every

" line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what(1).

% W% A shorthand notation for constructing what(1) strings for UNIX
program files. W% = %Z%%M%<horizontal-tab>%I%

%A% Another shorthand notation for constructing what(1) strings for
non-UNIX program files. %A% = %Z%%Y% %M% %1%%Z%

Several auxiliary files may be created by get, These files are known generi-
cally as the g-file, l-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of the form s.module-
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c, the auxiliary file names would be
Xyz.c, l.xyz.¢, p.xyz.¢, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the —p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned by
the real user. If the —k keyletter is used or implied its mode is 644; other-
wise its mode is 444. Only the real user need have write permission in the

-4-

GET(1) GET(1)

current directory.

The Kfile contains a table showing which deltas were applied in generating
the retrieved text. The /-file is created in the current directory if the —I
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the /-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or wasn’t applied
and ignored;
= if the delta wasn’t applied and wasn’t ignored.

c. A code indicating a ‘“‘special’”’ reason why the delta was or

was not applied:
“I’”: Included.
“X**: Excluded.
“C”: Cut off (by a —¢ keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of
creation.
Blank.
Login name of person who created delta.

~F ®moa

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an —e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of ger with an —e keyletter for the same SID until delta is exe-
cuted or the joint edit flag, j, (see admin(1)) is set in the SCCS file. The p-
file is created in the directory containing the SCCS file and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol-
lowed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real user,
followed by a blank, followed by the date-time the get was executed, fol-
lowed by a blank and the —i keyletter argument if it was present, followed
by a blank and the —x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-file at any
time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

SEE ALSO

admin(1), delta(l), help(1), prs(1), what(1), sccsfile(4).
Source Code Control System in the UNIX System Support Tools Guide.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user doesn’t, then only
one file may be named when the —e keyletter is used.

-5.

GETOPT(1)

NAME
getopt — parse command options
SYNOPSIS . .
set —— getopt optstring $e
DESCRIPTION

Getopt is used to break up options in command lines for easy parsing by
shell procedures and to check for legal options. Optstring is a string of
recognized option letters (see getopt(3C)); if a letter is followed by a colon,
the option is expected to have an argument which may or may not be
separated from it by white space. The special option —— is used to delimit
the end of the options. If it is used explicitly, gefopt will recognize it; oth-
erwise, getopt will generate it; in either case, getopt will place it at the end
The shell’s positional parameters (81 $2 ...) are reset so
that each option is preceded by a — and is in its own positional parameter;
each option argument is also parsed into its own positional parameter.

of the options.

EXAMPLE

The following code fragment shows how one- might process the arguments
for a command that can take the options a or b, as well as the option o,

which requires an argument:

set —— “getopt abo: $x°

if [$21!=0]

then
echo SUSAGE
exit 2

fi

for i in $*

do
case $i in
—a | —b) FLAG=$§i; shift;;
—0) OARG=$2; shift 2;;
-=) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd
cmd
cmd
cmd

SEE ALSO

—aoarg file file

—a —o arg file file
—oarg —a file file

—a —oarg —— file file

sh(1), getopt(3C).

DIAGNOSTICS

Getopt prints an error message on the standard error when it encounters an

option letter not included in optstring.

GETOPT(1)

GRAPH(1G) GRAPH(1G)

NAME

graph — draw a graph

SYNOPSIS

graph [options]

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by
the tplot (1G) filters.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be sur-
rounded with quotes *, in which case they may be empty or contain blanks
and numbers; labels never contain new-lines.

The following options are recognized, each as a separate argument:

—a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by —x).

—b Break (disconnect) the graph after each label in the input.

—c Character string given by next argument is default label for each
point.

—-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full
grid (default).

i | Next argument is label for graph.

—m Next argument is mode (style) of connecting lines: 0 discon-

nected, 1 connected (default). Some devices give distinguish-
able line styles for other small integers (e.g., the Tektronix
4014: 2=dotted, 3=dash-dot, 4=short-dash, 5=long-dash).

—s Save screen, don’t erase before plotting.

—x [1] 1If 1is present, x axis is logarithmic. Next 1 (or 2) arguments
are lower (and upper) x limits. Third argument, if present, is
grid spacing on x axis. Normally these quantities are deter-
mined automatically.

—y [1] Similarly for y.

—h Next argument is fraction of space for height.

—w Similarly for width.

-r Next argument is fraction of space to move right before plotting.
—u Similarly to move up before plotting.

—t Transpose horizontal and vertical axes. (Option —x now applies

to the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

SEE ALSO

BUGS

graphics(1G), spline(1G), tplot(1G).

Graph stores all points internally and drops those for which there isn’t
room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

GRAPHICS(1G) GRAPHICS (1G)

NAME

graphics — access graphical and numerical commands
SYNOPSIS

graphics [—r]
DESCRIPTION

Graphics appends the path name /usr/bin/graf to the current $SPATH
value, changes the primary shell prompt to ~, and executes a new shell.
The directory /usr/bin/graf contains all of the Graphics subsystem com-
mands. If the —r option is given, access to the graphical commands is
created in a restricted environment; that is, SPATH is set to /:rbin:-
/usr/rbin:/bin:/usr/bin:/usr/bin/graf and the restricted shell, rsh, is
invoked. To restore the environment that existed prior to issuing the
graphics command, type EOT (control-d on most terminals). To:logoff
from the graphics environment, type quit.

The command line format for a command in graphics is command name fol-
lowed by argument(s). An argument may be a file name or an option string.
A file name is the name of any UNIX file except those beginning with —.
The file name — is the name for the standard input. An option string con-
sists of — followed by one or more option(s). An option consists of a
keyletter possibly followed by a value. Options may be separated by com-
mas.

The graphical commands have been partitioned into four groups.
Commands that manipulate and plot numerical data; see stat(1G).
Commands that generate tables of contents; see toc(1G).

Commands that interact with graphical devices; see gdev(1G) and
g2ed(1G).
A collection of graphical utility commands; see gusil(1G).

A list of the graphics commands can be generated by typing whatis in the

graphics environment.

SEE ALSO
gdev(1G), ged(1G), gutil(1G), stat(1G), toc(1G), gps(4).
UNIX System Graphics Guide.

GREEK (1) GREEK(1)

NAME

greek — select terminal filter
SYNOPSIS

greek [—Tterminal]
DESCRIPTION

Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE® Model 37 ter-
minal (which is the nroff default terminal) for certain other terminals. Spe-
cial characters are simulated by overstriking, if necessary and possible. If
the argument is omitted, greek attempts to use the environment variable
STERM (see environ(5)). The following terminals are recognized currently:

300 DASI 300.

300-12 DASI 300 in 12-pitch.
300s DASI 300s.

300s-12 DASI 300s in 12-pitch.
450 DASI 450.

450-12 DASI 450 in 12-pitch.

1620 Diablo 1620 (alias DASI 450).

1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.

hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

FILES
Jusr/bin/300
/usr/bin/300s
Jusr/bin/4014
Jusr/bin/450
Jusr/bin/hp
SEE ALSO
300(1), 4014(1), 450(1), eqn(l), hp(l), mm(1), tplot(1G), nroff(1),
environ(5), greek(5), term(5).

GREP(1) GREP(1)

NAME

grep, egrep, fgrep — search a file for a pattern

SYNOPSIS

grep [options] expression [files]
egrep [options] [expression] [files]
fgrep [options] [strings] [files]

DESCRIPTION

Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the
standard output. Grep patterns are limited regular expressions in the style
of ed(1); it uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that some-
times needs exponential space. Fgrep patterns are fixed strings; it is fast
and compact. The following options are recognized:

—v All lines but those matching are printed.

—x (Exact) only lines matched in their entirety are printed (fgrep only).

=¢ Only a count of matching lines is printed.

—1 Only the names of files with matching lines are listed (once),
separated by new-lines.

—n Each line is preceded by its relative line number in the file.

~—b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by context.

—s The error messages produced for nonexistent or unreadable files are
suppressed (grep only).

—e expression
Same as a simple expression atgument, but useful when the expres-
sion begins with a — (does not work with grep).

—f file
The regular expression (egrep) or strings list (fgrep) is taken from the
Jile.

In all cases, the file name is output if there is more than one input file.
Care should be taken when using the characters 8, *, [, *, |, (,), and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes ‘...".

Fgrep searches for lines that contain one of the strings separated by new-
lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the
addition of:

1. A regular expression followed by + matches one or more
occurrences of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of
the regular expression.

3. Two regular expressions separated by | or by a new-line match
strings that are matched by either.

4, A regular expression may be enclosed in parentheses () for group-
ing.

The order of precedence of operators is [], then » ? +, then concatenation,
then | and new-line.

SEE ALSO

ed(1), sed(1), sh(1).

GREP(1) GREP(1)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

Ideally there should be only one grep, but we don’t know a single algorithm
that spans a wide enough range of space-time tradeofTs.
Lines are limited to 256 characters; longer lines are truncated.

~ Egrep does not recognize ranges, such as [a—z], in character classes.

GUTIL(1G)

NAME

GUTIL(1G)

gutil — graphical utilities

SYNOPSIS

command-name [options] [files]

DESCRIPTION

Below is a list of miscellancous device independent utility commands found
in /usr/bin/graf. If no files are given, input is from the standard input.
All output is to the standard output. Graphical data is stored in GPS for-
mat; see gps(4).

bel
cvrtopt

gd

gtop

pd

ptog

quit
remcom

— send bel character to terminal
[=sstring fstring istring tstring] [args] — options converter
Cvrtopt reformats args (usually the command line arguments of
a calling shell procedure) to facilitate processing by shell pro-
cedures. An arg is either a file name (a string not beginning
with a —, or a — by itself) or an option string (a string of
options beginning with a —). Output is of the form:

—option —option . . . file name(s)
All options appear singularly and preceding any file names.
Options that take values (e.g., —rl.1) or are two letters long
must be described through options to cvriopt.

Cvrtopt is usually used with set in the following manner as the
first line of a shell procedure: .
set — “cvrtopt =[options] $@
Options to cvrtopt are:
sstring String accepts string values.
fstring String accepts floating point numbers as values.
istring String accepts integers as values.
tstring String is a two letter option name that takes no value.
String is a one or two letter option name.

[GPS files 1 — GPS dump

Gd prints a human readable listing of GPS.

[—rnu] [GPSfiles 1 — GPS to plot(4) filter

Gtop transforms a GPS into plot(4) commands displayable by plot
filters. GPS objects are translated if they fall within the window
that circumscribes the first file unless an option is given.

Options:
™m translate objects in GPS region 7.
u translate all objects in the GPS universe.

[plot(5) files 1 — plot(4) dump
Pd prints a human readable listing of plor(4) format graphical
commands.

[plot(5) files 1 — plot(4) to GPS filter
Ptog transforms plot(4) commands into a GPS.

— terminate session

[files] — remove comments
Remcom copies its input to its output with comments removed.
Comments are as defined in C (i.e., /# comment #/).

-1-

GUTIL(1G) GUTIL(1G)

whatis [—o] [names] — brief online documentation
Whatis prints a brief description of each name given. If no name
is given, then the current list of description names is printed.
whatis \ prints out every description.

Option:
° just print command options
yoo file — pipe fitting

Yoo is a piping primitive that deposits the output of a pipeline
into a file used in the pipeline. Note that, without yoo, this is
not usually successful as it causes a read and write on the same
file simultaneously.

SEE ALSO
graphics(1G), gps(4).

HELP(1) HELP(1)

NAME

help — ask for help

SYNOPSIS

help [args]

DESCRIPTION

Help finds information to explain a message from a command or explain
the use of a command. Zero or more arguments may be supplied. If no
arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the follow-
ing types:
type 1 Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation for the
program or set of routines which produced the mes-
sage (e.g., ge6, for message 6 from the ger com-
mand).
type 2 Does not contain numerics (as a command, such as
get)
type 3 Is all numeric (e.g., 212)
The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try ‘‘help stuck”.

FILES
/usr/lib/help directory containing files of message text.
/usr/lib/help/helploc file containing locations of help files not in
Jusr/lib/help.
DIAGNOSTICS

Use help(1) for explanations.

HP(1) HP(1)

NAME

hp — handle special functions of HP 2640 and 2621-series terminals
SYNOPSIS

bp[—e][—m]
DESCRIPTION

Hp supports special functions of the Hewlett-Packard 2640 series of termi-
nals, with the primary purpose of producing accurate representations of
most nroff output. A typical use is:

nroff —h files ... | hp

Regardless of the hardware options on your terminal, Ap tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the
“display enhancements’ feature, subscripts and superscripts can be indi-
cated in distinct ways. If it has the ‘“‘mathematical-symbol’’ feature, Greek
and other special characters can be displayed.

The flags are as follows:

—e It is assumed that your terminal has the ‘‘display enhancements”’
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super-
scripts are shown in Half-bright mode, and subscripts in Half-
bright, Underlined mode. If this flag is omitted, Ap assumes that
your terminal lacks the ‘‘display enhancements’” feature. In this
case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usual light-on-dark.

—m Requests minimization of output by removal of new-lines. Any
contiguous sequence of 3 or more new-lines is converted into a
sequence of only 2 new-lines; i.e., any number of successive blank
lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
as does 300(1), except that “‘not’’ is approximated by a right arrow, and
only the top half of the integral sign is shown. The display is adequate for
examining output from negn.

DIAGNOSTICS
“line too long”’ if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO
300(1), col(1), eqn(1), greek(1), nroff(1), tbl(1).

BUGS

An ‘“‘overstriking sequence’’ is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if
either printing character is an underscore, the other printing character is
shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video). Nothing special
is done if a backspace is adjacent to an ASCII control character. Sequences
of control characters (e.g., reverse line-feeds, backspaces) can make text
“‘disappear”’; in particular, tables generated by tbl/(1) that contain vertical
lines will often be missing the lines of text that contain the ‘““foot’” of a
vertical line, unless the input to Ap is piped through col(1).

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

HPIO(1) (3B20S only) HPIO(1)

NAME
hpio — HP 2645A terminal tape file archiver

SYNOPSIS
hpio —olre] file ...

hpio —i[rta] [—n count]

DESCRIPTION

Hpio is designed to take advantage of the tape drives on Hewlett Packard
2645A terminals. Up to 255 UNIX files can be archived onto a tape car-
tridge for off-line storage or for transfer to another UNIX system. The
actual number of files depends on the sizes of the files. One file of about
115,000 bytes will almost fill a tape cartridge. Almost 300 1-byte files will
fit on a tape, but the terminal will not be able to retrieve files after the first
255. This manual page is not intended to be a guide for using tapes on HP
2645A terminals, but tries to give enough information to be able to create
and read tape archives and to position a tape for access to a desired file in
an archive.

Hpio —o (copy out) copies the specified file(s), together with path name
and status information to a tape drive on your terminal (which is assumed
to be positioned at the beginning of a tape or immediately after a tape
mark). The left tape drive is used by default. Each file is written to a
separate tape file and terminated with a tape mark. When hpio finishes, the
tape is positioned following the last tape mark written.

Hpio —i (copy in) extracts a file(s) from a tape drive (which is assumed to
be positioned at the beginning of a file that was previously written by a hpio
—o). The default action extracts the next file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from or writ-
ten to the tape. Tapes should always be rewound before the terminal is
turned off. To rewind a tape depress the green function button, then func-
tion key 5, and then select the appropriate tape drive by depressing either
function key 5 for the left tape drive or function key 6 for the right. If
several files have been archived onto a tape, the tape may be positioned at
the beginning of a specific file by depressing the green function button,
then function key 8, followed by typing the desired file number (1—255)
with no RETURN, and finally function key 5 for the left tape or function
key 6 for the right. The desired file number may also be specified by a
signed number relative to the current file number.

The meanings of the available options are:

r Use the right tape drive.

¢ Include a checksum at the end of each file. The checksum is
always checked by hpio —i for each file written with this option by
hpio —o.

n count The number of input files to be extracted is set to count. If this
option is not given, count defaults to 1. An arbitrarily large count
may be specified to extract all files from the tape. Hpio will stop at
the end of data mark on the tape.

t Print a table of contents only. No files are created. Printed infor-
mation gives the file size in bytes, the file name, the file access
modes, and whether or not a checksum is included for the file.

a Ask before creating a file. Hpio —i normally prints the file size
and name, creates and reads in the file, and prints a status message
when the file has been read in. If a checksum is included with the
file, it reports whether the checksum matched its computed value.
With this option, the file size and name are printed followed by a

-1-

HPIO(1) (3B20S only) HPIO(1)

?. Any response beginning with y or Y will cause the file to be
copied in as above. Any other response will cause the file to be

skipped.
FILES
/dev/tty??
to block messages while accessing a tape
SEE ALSO
26454 Display Station User’s Manual, Hewlett-Packard Company, Part
Number 02645-90001.
DIAGNOSTICS
BREAK
An interrupt signal terminated processing.
Can’t create ‘file’.
File system access permissions did not allow file to be created.
Can’t get tty options on stdout.
Hpio was unable to get the input-output control settings associated
. with the terminal.
Can’t open ‘file’.
File could not be accessed to copy it to tape.
End of Tape.
No tape record was available when a read from a tape was
requested. An end of data mark is the usual reason for this, but it
may also occur if the wrong tape drive is being accessed and no
tape is present.
‘file’ not a regular file.
File is a directory or other special file. Only regular files will be
copied to tape.
Readcnt = re, terment = fc.
Hpio expected to read rc bytes from the next block on the tape, but
the block contained tc bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by interfer-
ence from other terminal I/O.
Skip to next file failed.
An attempt to skip over a tape mark failed.
Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.
Write failed. : :
A tape write failed. This is most frequently caused by specifying
the wrong tape drive, running off the end of the tape, or trying to
write on a tape that is write protected.
WARNINGS

Tape I/O operations may copy bad data if any other I/O involving the ter-
minal occurs. Do not attempt any type ahead while Apio is running, Hpio
turns off write permissions for other users while it is running, but processes
started asynchronously from your terminal can still interfere. The most
common indication of this problem, while a tape is being written, is the
appearance of characters on the display screen that should have been copied
to tape.

The keyboard, including the terminal’s BREAK key, is locked during tape
write operations; the BREAK key is only functional between writes.

Hpio must have complete control of the attributes of the terminal to com-
municate with the tape drives. Interaction with commands such as cu(1C)
may interfere and prevent successful operation.

HPIO(1) (3B20S only) HPIO(1)

BUGS

Some binary files contain sequences that will confuse the terminal.

An hpio —i that encounters the end of data mark on the tape (e.g., scan-
ning the entire tape with hpio —itn 300), leaves the tape positioned after
the end of data mark. If a subsequent hpio —o is done at this point, the
data will not be retrievable. The tape must be repositioned manually using
the terminal’s FIND FILE —1 operation {depress the green function button,
function key 8, and then function key 5 for the left tape or function key 6
for the right tape) before the hpio —o is started.

If an interrupt is received by hpio while a tape is being written, the terminal
may be left with the keyboard locked. If this happens, the terminal’s
RESET TERMINAL key will unlock the keyboard.

HYPHEN(1) HYPHEN(1)

NAME

hyphen — find hyphenated words
SYNOPSIS

hyphen [files]
DESCRIPTION

Hyphen finds all the hyphenated words ending lines in files and prints them
on the standard output. If no arguments are given, the standard input is
used; thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nrof’s hyphenation in textfile.

mm textfile | hyphen

SEE ALSO
mm(l), troff(1).

BUGS
Hyphen can’t cope with hyphenated iialic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spuri-
ous extra output.

ID(1) ID(1)

NAME

id — print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

Id writes a message on the standard output giving the user and group IDs
and the corresponding names of the invoking process. If the effective and
real IDs do not match, both are printed.

SEE ALSO
logname(1), getuid(2).

IPCRM(1)

NAME

IPCRM(1)

ipcrm — remove a message queue, semaphore set or shared memory id

SYNOPSIS

ipcrm [options 1

DESCRIPTION

Ipcrm will remove one or more specified message, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

—q msqid

—~m shmid

—s semid

—Q msgkey

—~M shmkey

—S semkey

The details

removes the message queue identifier msqgid from the system
and destroys the message queue and data structure associated
with it.

removes the shared memory identifier shmid from the system.

The shared memory segment and data structure associated
with it are destroyed after the last detach.

removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated
with it.

removes the message queue identifier, created with key

msgkey, from the system and destroys the message queue and
data structure associated with it.

removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment and
data structure associated with it are destroyed after the last
detach.

removes the semaphore identifier, created with key semkey,
from the system and destroys the set of semaphores and data
structure associated with it.

of the removes are described in msgctl(2), shmectl(2), and

semctl(2). The identifiers and keys may be found by using ipes(1).

SEE ALSO

ipes(1), msgetl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2),
shmctl(2), shmget(2), shmop(2).

IPCS(1) IPCS(1)

NAME
ipcs — report inter-process communication facilities status

SYNOPSIS
ipes [options]

DESCRIPTION
Ipcs prints certain information about active inter-process communication
facilities. Without opfions, information is printed in short format for mes-
sage queues, shared memory, and semaphores that are currently active in
the system. Otherwise, the information that is displayed is controlled by
the following options:

—q Print information about active message queues.

—m Print information about active shared memory segments.

—s Print information about active semaphores.

If any of the options —¢q, —m, or —s are specified, information about only

those indicated will be printed. If none of these three are specified, infor-

mation about all three will be printed.

—b Print biggest allowable size information. (Maximum number of
bytes in messages on queue for message queues, size of segments
for shared memory, and number of semaphores in each set for
semaphores.) See below for meaning of columns in a listing.

—c Print creator’s login name and group name. See below.

-0 Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg-
ments.)

-p Print process number information. (Process ID of last process to
send a message and process ID of last process to receive a message
on message queues and process ID of creating process and process
ID of last process to attach or detach on shared memory segments)
See below.

—t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last
msgsnd and last msgrcv on message queues, last shmat and last shmdt
on shared memory, last semop(2) on semaphores.) See below.

—a Use all print options. (This is a shorthand notation for —b, —¢,

—o, —p, and —t.)
—C corefile

Use the file corefile in place of /dev/kmem.
—N namelist

The argument will be taken as the name of an alternate namelist
(/unix is the default).

The column headings and the meaning of the columns in an ipes listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always
appears. Note that these options only determine what information is pro-
vided for each facility; they do not determine which facilities will be listed.

T (all)
Type of the facility:
q message queue;
m shared memory segment;
(] semaphore.
D (all)

The identifier for the facility entry.

IPCS(1)

KEY

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

IPCS(1)

(all)
The key used as an argument to msgget, semget, or shmget
to create the facility entry. (Note: The key of a shared
memory segment is changed to IPC_PRIVATE when the
segment has been removed until all processes attached to
the segment detach it.)

(all)
The facility access modes and flags: The mode consists of
11 characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrev;

S if a pracess is waiting on a msgsnd;

D if the associated shared memory segment has
been removed. It will disappear when the
last process attached to the segment detaches
it;

C if the associated shared memory segment is
to be cleared when the first attach is exe-
cuted;

— if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of
three bits each. The first set refers to the owner’s per-
missions; the next to permissions of others in the user-
group of the facility entry; and the last to all others.
Within each set, the first character indicates permission to
read, the second character indicates permission to write or
alter the facility entry, and the last character is currently
unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;
— if the indicated permission is not granted.
(all)
The login name of the owner of the facility entry.
(alt)
The group name of the group of the owner of the facility
entry.
(2,0)

The login name of the creator of the facility entry.

(a,0)
The group name of the group of the creator of the facility
entry.

(a,0)
The number of bytes in messages currently outstanding
on the associated message queue.

(a,0)
The number of messages currently outstanding on the
associated message queue.

(a,b)
The maximum number of bytes allowed in messages out-
standing on the associated message queue.

(a,p)
The process ID of the last process to send a message to
the associated queue.

-2-

IPCS(1)

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

FILES
Junix
/dev/kmem
[etc/passwd

/etc/group
SEE ALSO

IPCS(1)

(a,p)
The process ID of the last process to receive a message
from the associated queue.

(at)
The time the last message was sent to the associated
queue.

(a,t)
The time the last message was received from the associ-
ated queue.

(at)
The time when the associated entry was created or
changed.

(a,0)
The number of processes attached to the associated
shared memory segment.

(a,b)
The size of the associated shared memory segment.

(a,p)
The process ID of the creator of the shared memory
entry.

(a,p)
The process ID of the last process to attach or detach the
shared memory segment.

@@
The time the last attach was completed to the associated
shared memory segment.

(a,t)
The time the last detach was completed on the associated
shared memory segment.

(a,b)
The number of semaphores in the set associated with the
semaphore entry.

(a.t)
The time the last semaphore operation was completed on
the set associated with the semaphore entry.

system namelist
memory

user names
group names

msgop(2), semop(2), shmop(2).

BUGS

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

JOIN(1) JOIN(1)

NAME

join — relational database operator

SYNOPSIS

join [options] filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by
the lines of filel and file2. If filel is —, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from filel, then the rest of the line from
file2.

Fields are normally separated by blank, tab or new-line. In this case, multi-
ple separators count as one, and leading separators are discarded.

These options are recognized:

—an In addition to the normal output, produce a line for each unpairable
line in file n, where n is 1 or 2. i

—es Replace empty output fields by string s.

~jn m Join on the mth field of file n. If n is missing, use the mth field in
each file.

—o list Each output line comprises the fields specifed in /ist, each element
of which has the form n.m, where n is a file number and m is a
field number.

—tc Use character c as a separator (tab character). Every appearance of
¢ in a line is significant.

SEE ALSO

BUGS

awk(1), comm(1), sort(1).

With default field separation, the collé.tin.g sequence is that of sort —b; with
—t, the sequence is that of a plain sort.

The conventions of join, sort, comm, unig and awk(1) are wildly incongru-
ous.

KASB(1) (DEC only) KASB(1)

NAME

kasb, kunb — assembler/un-assembler for the KMC11B microprocessor

SYNOPSIS

kasb [name] [—o namel] [—d name2]
kunb [name] [—o namel]

DESCRIPTION

Kasb is an assembler/debugger/loader for the KMC11B microprocessor.
The optional argument name specifies the input file; default is standard
input. The optional argument —o indicates that the next argument namel
will be the output of the assembler; default is a.out. The optional argu-
ment —d indicates that the assembler is to be used in debug mode and that
the next argument name2 is the device file name of the microprocessor.
No output file is created in debug mode.

Error diagnostics are written on the standard error output and contain the
input file name and line number and a brief description of the error. C
preprocessor control lines to change the file name and line number are
recognized. This allows the use of the preprocessor to expand the input
before assembly.

Kunb is an un-assembler for the KMC11/DMCI11 microprocessor. It pro-
duces an output listing, acceptable to the assembler kash, from the input
object.

The optional argument name specifies the input object, default is standard
input. The format of the input is either assembler output (first word magic
0410), or formatted dump (first word magic 0440), or raw dump (anything
else). In the first two cases, the header is ignored.

The optional argument —o indicates that the next argument namel is to
contain the output listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels
will be inserted at these locations with format Lint:, where int is the octal
value of the location in words. Immediate values of instructions are also
printed in octal. Page breaks are noted by the labels PO:, ..., P3:.

FILES
a.out output object
/dev/kmc? microprocessor device
/lib/cpp C preprocessor

SEE ALSO

kmc(7), vpm(7).
Assembler for the DEC KMCI1 Microprocessor by L. A. Wehr.

1

KILL(1) KILL(1)

NAME
kill — terminate a process

SYNOPSIS
kill [—signo] PID ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will nor-
mally kill processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the
Shell (unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported). Process
numbers can also be found by using ps(1).

The details of the kill are described in kill(2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-
user.

If a signal number preceded by — is given as first argument, that signal is
sent instead of terminate (see signal(2)). In particular “kill —9 ...” is a
sure kill.

SEE ALSO
ps(1), sh(1), kill(2), signal(2).

LD(1) (not on PDP-11) LD(1)

NAME
Id — link editor for common object files

SYNOPSIS
Id [—e epsym] [—f fill] [—1x] [—m] [—r] [—s] [—o outfile] [~u sym-
name] [—L dir] [—x] [—N] [=V] [~VS num] file-names

DESCRIPTION

The ld command combines several object files into one, performs reloca-
tion, resolves external symbols, and supports symbol table information for
symbolic debugging. In the simplest case, the names of several object pro-
grams are given, and /d combines them, producing an object module that
can either be executed or used as input for a subsequent /d run. The out-
put of /d is left in a.out. This file is executable if no errors occurred during
the load. If any input file, file-name, is not an object file, /d assumes it is
either an ASCII file containing link editor directives or an archive library.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. The library (archive) symbol
table (see ar(4)) is searched sequentially with as many passes as are neces-
sary to resolve external references which can be satisfied by library
members. Thus, the ordering of library members is unimportant.

The following options are recognized by /d.

—e epsym
Set the default entry point address for the output file to be that of
the symbol epsym.

—f fill This option sets the default fill pattern for ‘‘holes> within an out-
put section as well as initialized bss sections. The argument fill is a
two-byte constant.

—Ix This option specifies a library named x. It stands for libx.a where x
is up to seven characters. A library is searched when its name is
encountered, so the placement of a —1 is significant. By default,
libraries are located in /lib and /usr/lib.

—m This option causes a map or listing of the input/output sections to
be produced on the standard output.

—o outfile
This option produces an output object file by the name outfile. The
name of the default object file is a.out.

-r This option causes relocation entries to be retained in the output
object file. Relocation entries must be saved if the output file is to
become an input file in a subsequent /d run. The link editor will
not complain about unresolved references.

—s This option causes line number entries and symbol table informa-
tion to be stripped from the output object file.

—u symname
Takes the argument symname as a symbol and enters it as
undefined in the symbol table. This is useful for loading entirely
from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first rou-
tine.

b 4 Do not preserve local (non-.globl) symbols in the output symbol
table; only enter external and static symbols. This option saves
some space in the output file.

-1-

LD(1) (not on PDP-11) LD(1)

—L dir
Change the algorithm of searching for libx.a to look in dir before
looking in /lib.

—N Put the data section immediately following the text in the output

file .

—V Output a message giving information about the version of Id being
used.

—VS num

The num argument is taken as a decimal version number identify-
ing the a.out file that is produced. The version stamp is stored in
the optional header.

FILES
/lib/libx.a libraries
a.out output file
SEE ALSO
as(1),cc(1),a.out(4),ar(4).
CAVEATS

Through its input directives, the common link editor gives users great flexi-
bility; however, people who use the input directives must assume some
added responsibilities. Input directives should insure the following proper-
ties for programs:

— C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the data space.

LD(1) (PDP-11 only) LD(1)

NAME
Id — link editor

SYNOPSIS
d [—sulxXrdnim] [—o name] [—t name 1 [—V num 1] file ...

DESCRIPTION

Ld combines several object programs into one; resolves external references;
and searches libraries (as created by ar(1)). In the simplest case several
object files are given, and Id combines them, producing an object module
which can be either executed or become the input for a further /d run. (In
the latter case, the —r option must be given to preserve the relocation
bits.) The output of /d is left on a.out. This file is made executable if no
errors occurred during the load and the —r flag was not specified.

The argument routines are concatenated in the order specified. The entry
point of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. If a routine from a library refer-
ences another routine in the library, the referenced routine must appear
after the referencing routine in the library. Thus the order of programs
within libraries is important.

The symbols _etext, _edata and _end (etext, edata and end in C) are
reserved, and if referred to, are set to the first location above the program,
the first location above initialized data, and the first location above all data
respectively. It is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a —.
Except for —1, they should appear before the file names.

—s “‘Strip”’ the output, that is, remove the symbol table and relocation
bits to save space (but impair the usefulness of the debugger).
This information can also be removed by strip(1). This option is
turned off if there are any undefined symbols.

—u Take the following argument as a symbol and enter it as undefined
in the symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an unresolved
reference is needed to force the loading of the first routine.

-1 This option is an abbreviation for a library name. —1 alone stands
for /lib/libc.a, which is the standard system library for C and
assembly language programs. —Ix stands for /lib/libx.a, where x
is a string. If that does not exist, Id tries /usr/lib/libx.a A library
is searched when its name is encountered, so the placement of a —1
is significant.

-X Do not preserve local (non-.globl) symbols in the output symbol
table; only enter external symbols. This option saves some space in
the output file.

—X Save local symbols except for those whose names begin with L.
This option is used by cc to discard internally generated labels while
retaining symbols local to routines.

-r Generate relocation bits in the output file so that it can be the sub-
ject of another Id run. This flag also prevents final definitions from
being given to common symbols, and suppresses the ‘‘undefined
symbol’’ diagnostics.

LD(1)

(PDP-11 only) LD(1)

—d Force definition of common storage even if the —r flag is present.

-n Arrange that when the output file is executed, the text portion will
be read-only and shared among all users executing the file. This
involves moving the data areas up to the first possible 4K word
boundary following the end of the text. Use —N to turn it off.

—i When the output file is executed, the program text and data areas
will live in separate address spaces. The only difference between
this option and —n is that here the data starts at location 0.

—m The names of all files and archive members used to create the out-
put file are written to the standard output.

—0 The name argument after —o is used as the name of the /d output
file, instead of a.out.

-t The name argument is taken to be a symbol name, and any refer-
ences to or definitions of that symbol are listed, along with their
types. There can be up to 16 occurrences of —tname on the com-
mand line.

—V The num argument is taken as a decimal version number identify-
ing the a.out that is produced. Num must be in the range
0—32767. The version stamp is stored in the a.out header; see
a.out(4).

FILES

/lib/lib?.a libraries

/usr/lib/lib?.a more libraries

a.out output file

SEE ALSO

ar(1), as(1), cc(1), a.out(4), ar(4).

LEX(1) LEX(1)

NAME
lex — generate programs for simple lexical tasks

SYNOPSIS
lex [—retvn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to
be searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yptext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate char-
acter classes, as in [abx—2z] to indicate a, b, x, y, and z; and the operators
», +, and ? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrences of, the previous character or
character class. The character . is the class of all ASCII characters except
new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r{d,e} in a rule indicates between d and e
instances of regular expression . It has higher precedence than |, but lower
than *, ?, +, and concatenation. The character ~ at the beginning of an
expression permits a successful match only immediately after a new-line,
and the character § at the end of an expression requires a trailing new-line.
The character / in an expression indicates trailing context; only the part of
the expression up to the slash is returned in yytext, but the remainder of
the expression must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within * symbols or preceded by \.
Thus [a—2zA—Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a charac-
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(), and the library
contains a main() which calls it. The action REJECT on the right side of
the rule causes this match to be rejected and the next suitable match exe-
cuted; the function yymore() accumulates additional characters into the
same yytext; and the function yyless(p) pushes back the portion of the
string matched beginning at p, which should be between yytext and
ytext +yyleng. The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %% it is copied into the external definition area of the
lex.yy.c file. All rules should follow a %%, as in YACC. Lines preceding
%% which begin with a non-blank character define the string on the left to
be the remainder of the line; it can be called out later by surrounding it
with {}. Note that curly brackets do not imply parentheses; only string sub-
stitution is done.

EXAMPLE
D [0—9]
%%
if printf("IF statement\n");

[a—z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);

-1-

LEX (1) LEX (1)

*++" printf("unary op\n");

"+t printf("binary op\n");

"[x { loop:
while (input() 1= %),
switch (input())

case ’/": break;
case ‘*: unput(’¥’);
defauli: go to loop;

}
}

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag —r indicates RATFOR
actions, —c indicates C actions and is the default, —t causes the lex.yy.c
program to be written instead to standard output, —v provides a one-line
summary of statistics of the machine generated, —n will not print out the
— summary. Moultiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2000)
%n n number of states is n (500)

%t n number of parse tree nodes is » (1000)
%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the —v option,
unless the —n option is used.
SEE ALSO
yacc(1).
LEX— Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.
BUGS
The —r option is not yet fully operational.

LINE(1) LINE(1)

NAME
line — read one line

SYNOPSIS
line

DESCRIPTION
Line copies one line (up to a new-line) from the standard input and writes
it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a new-line. It is often used within shell files to read from the
user’s terminal.

SEE ALSO
sh(1), read(2).

LINT(1) LINT(1)

NAME

lint — a C program checker
SYNOPSIS

lint [—abhlnpuvx] file ...
DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be
bugs, non-portable, or wasteful. It also checks type usage more strictly
than the compilers. Among the things which are currently detected are
unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant.
Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying
numbers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked
for mutual compatibility. By default, lint uses function definitions from the
standard lint library llib-lc.In; function definitions from the portable lint
library llib-port.In are used when lint is invoked with the —p option.

Any number of lint options may be used, in any order. The following
options are used to suppress certain kinds of complaints:

—a Suppress complaints about assignments of long values to variables
that are not long.

—b Suppress complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result in a
large number of such complaints.)

—h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.
—u Suppress complaints about functions and external variables used

and not defined, or defined and not used. (This option is suitable
for running lint on a subset of files of a larger program.)

—v Suppress complaints about unused arguments in functions.

- { Do not report variables referred to by external declarations but
never used.

The following arguments alter lint’s behavior:

—Ix Include additional lint library llib-lx.In. You can include a lint ver-
sion of the math library llib-lm.In by inserting —Im on the com-
mand line. This argument does not suppress the default use of
Ilib-Ic.In. This option can be used to keep local lint libraries and is
useful in the development of multi-file projects.

—n Do not check compatibility against either the standard or the port-
able lint library.
—=p Attempt to check portability to other dialects (IBM and GCOS) of C.

The —D, —U, and —I options of cc(1) are also recognized as separate
arguments.

Certain conventional comments in the C source will change the behavior of
lint:
/*NOTREACHED#/

at appropriate points stops comments about unreachable
code.

LINT(1) LINT(1)

/*VARARGSn*/
suppresses the usual checking for variable numbers of argu-
ments in the following function declaration. The data types
of the first n arguments are checked; a missing n is taken
to be 0.

/*ARGSUSED#*/
turns on the —v option for the next function.

/*LINTLIBRARY#/
at the beginning of a file shuts off complaints about unused
functions in this file.

Lint produces its first output on a per source file basis. Complaints regard-
ing included files are collected and printed after all source files have been
processed. Finally, information gathered from all input files is collected
and checked for consistency. At this point, if it is not clear whether a com-
plaint stems from a given source file or from one of its included files, the
source file name will be printed followed by a question mark.

FILES
/ust/lib/lint[12] programs
[usr/lib/llib-lc.In declarations for standard functions (binary format;
source is in /usr/lib/1lib-Ic)
/ust/lib/llib-port.In declarations for portable functions (binary format;
source is in /usr/lib/Ilib-port)
/usr/lib/llib-lm.In declarations for standard math functions (binary for-
mat; source is in /usr/lib/1lib-lm)
Jusr/tmp/#+lint* temporaries
SEE ALSO
cc(1).
BUGS

Exit(2) and other functions which do not return are not understood; this
causes various lies.

LIST(1) (3B20S only) LIST(1)

NAME
list — produce C source listing from 3B20S object file

SYNOPSIS
list [—V] [—h] source-file . . . [object-file]

DESCRIPTION
The list command produces a C source listing with line number information
attached. If muitiple C source files were used to create the object file, /st
will accept multiple file names. The object file is taken to be the last non-C
source file argument. If no object file is specified the default object file,
a.out, will be used.

Line numbers will be printed for each breakpoint inserted by the compiler
(generally, each executable C statement that begins a new line of source).
Line numbering begins anew for each function. Line number 1 is always
the line containing the left curly brace ({) that begins the function body.
Line numbers will also be supplied for inner block redeclarations of local
variables so that they can be distinguished by the symbolic debugger.

The —V flag will supply version information of the /ist command.
The —h flag will suppress heading output.

CAVEATS
Object files given to list must have symbolic debugging symbols.

Since list does not use the C preprocessor, it may be unable to recognize
function definitions whose syntax has been distorted by the use of C
preprocessor macro substitutions.

SEE ALSO
as(1), cc(1), 1d(1).

DIAGNOSTICS
““list: name: cannot open”’ if name cannot be read.

LOGIN(1) LOGIN(1)

NAME
login — sign on

SYNOPSIS
login [name [env-var ...]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a com-
mand or by the system when a connection is first established. Also, it is
invoked by the system when a previous user has terminated the initial shell
by typing a cntrl-d to indicate an ‘“‘end-of-file.”” (See How to Get Started at
the beginning of this volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial command inter-
preter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during
the typing of your password, so it will not appear on the written record of
the session. '

At some installations, an option may be invoked that will require you to
enter a second ““dialup” password. This will occur only for dial-up connec-
tions, and will be prompted by the message ‘‘dialup password:”’. Both pass-
words are required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure
fetc/profile is performed, the message-of-the-day, if any, is printed, the
user-ID, the group-ID, the working directory, and the command interpreter
(usually sh(1)) is initialized, and the file .profile in the working directory is
excuted, if it exists. These specifications are found in the /etc/passwd file
entry for the user. The name of the command interpreter is — followed by
the last component of the interpreter’s pathname (i.e., —sh). If this field
in the password file is empty, then the default command interpreter, /bin/sh
is used.

The basic environment (see environ(5)) is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin

SHELL =last-field-of-passwd-entry
MAIL= /usr/mail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying additional
arguments to login, cither at execution time or when login requests your
login name. The arguments may take either the form xxx or xxx=yyy.
Arguments without an equal sign are placed in the environment as
La=xxx

where 7 is a number starting at 0 and is incremented each time a new vari-
able name is required. Variables containing an = are placed into the
environment without modification. If they already appear in the efnviron-
ment, then they replace the older value. There are two exceptions. The
variables PATH and SHELL cannot be changed. This prevents people, log-
ging into restricted shell environments, from spawning secondary shells

-1-

LOGIN(1) LOGIN(1)

which aren’t restricted. Both login and getty understand simple single char-
acter quoting conventions. Typing a backslash in front of a character
quotes it and allows the inclusion of such things as spaces and tabs.

FILES
/etc/utmp accounting
[etc/wtmp accounting
[usr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file
Jetc/profile system profile
.profile user’s login profile

SEE ALSO

mail(1), newgrp(1), sh(1), su(1), passwd(4), profile(4), environ(5).

DIAGNOSTICS
Login incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX program-
ming counselor.
No utmp entry. You must exec "login® jfrom the lowest level "sh’. if you
attempted to execute login as a command, without using the shell’s exec
internal command or from other than th< initial shell.

LOGNAME(1) LOGNAME(1)

NAME
logname — get login name

SYNOPSIS
logname
DESCRIPTION
Logname returns the contents of the environment variable SLOGNAME,
which is set when a user logs into the system.
FILES
[etc/profile
SEE ALSO
env(l), login(1), logname(3X), environ(5).

LORDER(1) LORDER(1)

NAME

lorder — find ordering relation for an object library
SYNOPSIS

lorder file ...
DESCRIPTION

The input is one or more object or library archive files (see ar(1)). The
standard output is a list of pairs of object file names, meaning that the first
file of the pair refers to external identifiers defined in the second. The out-
put may be processed by sort(1) to find an ordering of a library suitable for
one-pass access by Id(1). Note that the link editor (except on the PDP -11)
Id(1) is capable of multiple passes over an archive in the portable archive
format (see ar(4)) and does not require that lorder(1) be used when build-
ing an archive. The usage of the lorder(1) command may, however, allow
for a slightly more efficient access of the archive during the link edit pro-
cess.

The following example builds a new library from existing .o files.
ar cr library ~lorder *.0 | tsort”

FILES

ssymref, *ssymdef temporary files
SEE ALSO

ar(1), 1d(1), tsort(1), ar(4).
BUGS

Object files whose names do not end with .0, even when contained in
library archives, are overlooked. Their global symbols and references are
attributed to some other file.

LP(1) ? LP(1)

NAME
Ip, cancel — send/cancel requests to an LP line printer
SYNOPSIS
Ip [—c] [—ddest] [—m] [—nnumber] [—ooption] [—s] [—ttitle] [—w]
files
cancel [ids] [printers]
DESCRIPTION

Lp arranges for the named files and associated information (collectively
called a request) to be printed by a line printer. If no file names are men-
tioned, the standard input is assumed. The file name — stands for the
standard input and may be supplied on the command line in conjunction
with named files. The order in which files appear is the same order in
which they will be printed.

Lp associates a unique id with each request and prints it on the standard
output. This id can be used later to cancel (see cancel) or find the status
(see Ipstat (1)) of the request. :

The following options to Jp may appear in any order and may be intermixed
with file names:

—-c Make copies of the files to be printed immediately when lp is
invoked. Normally, files will not be copied, but will be linked
whenever possible. If the —c option is not given, then the
user should be careful not to remove any of the files before
the request has been printed in its entirety. It should also be
noted that in the absence of the —¢ option, any changes made
to the named files after the request is made but before it is
printed will be reflected in the printed output.

—ddest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed
only on that specific printer. If dest is a class of printers, then
the request will be printed on the first available printer that is
a member of the class. Under certain conditions (printer una-
vailability, file space limitation, etc.), requests for specific des-
tinations may not be accepted (see accept(1M) and Ipstat(1)).
By default, dest is taken from the environment variable
LPDEST (if it is set). Otherwise, a default destination (if one
exists) for the computer system is used. Destination names
vary between systems (see Ipstaz(1)).

—m Send mail (see mail(1)) after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

—nnumber Print number copies (default of 1) of the output.

—ooption Specify printer-dependent or class-dependent options. Several
such options may be collected by specifying the —o keyletter
more than once. For more information about what is valid for
options, see Models in lpadmin(1M).

—s Suppress messages from Ip(1) such as "request id is ...".
—ttitle Print ritle on the banner page of the output.
—w Write a message on the user’s terminal after the files have

been printed. If the user is not logged in, then mail will be
sent instead.

LP(1) LP(1)

Cancel cancels line printer requests that were made by the /p(1) command.
The command line arguments may be either request ids (as returned by
Ip(1)) or printer names (for a complete list, use Ipstat(1)). Specifying a
request id cancels the associated request even if it is currently printing.
‘Specifying a printer cancels the request which is currently printing on that
printer. In either case, the cancellation of a request that is currently print-
ing frees the printer to print its next available request.

FILES
Jusr/spool/lp/+
SEE ALSO
enable(1), Ipstat(1), mail(1).
accept(1M), lpadmin(1M), Ipsched(1M) in the UNILX System Administrator’s
Manual.

LPR(1) (Obsolescent) LPR(1)

NAME

Ipr — line printer spooler
SYNOPSIS

Ipr [option ...] [name ...]
DESCRIPTION

Lpr causes the named files to be queued for printing on a line printer. If
no names appear, the standard input is assumed; thus /pr may be used as a
filter.

The following opfions may be given (each as a separate argument and in any
order) before any file name arguments:

—c Makes a copy of the file to be sent before returning to the user.

—-r Removes the file after sending it.

—m When printing is complete, reports that fact by mail(1).

—n Does not report the completion of printing by mail(1). This is the
default option.

—ffile Use file as a dummy file name to report back in the mail. (This is
useful for distinguishing multiple runs, especially when Jpr is being
used as a filter).

FILES
/etc/passwd user’s identification and accounting data.
Jusr/lib/lpd line printer daemon.
/usr/spool/lpd/« spool area.

SEE ALSO

dpd(1C), dpr(1C), Ip(1).

LPSTAT(1) ' LPSTAT(1)

NAME

Ipstat — print LP status information

SYNOPSIS

Ipstat [options]

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line printer sys-
tem.

If no options are given, then Ipstat prints the status of all requests made to
Ip(1) by the user. Any arguments that are not options are assumed to be
request ids (as returned by /p). Lpstat prints the status of such requests.
Options may appear in any order and may be repeated and intermixed with
other arguments. Some of the keyletters below may be followed by an
optional Jist that can be in one of two forms: a list of items separated from
one another by a comma, or a list of items enclosed in double quotes and
separated from one another by a comma and/or one or more spaces. For
example:

—u"userl, user2, user3"

The omission of a list following such keyletters causes all information
relevant to the keyletter to be printed, for example:

Ipstat —o
prints the status of all output requests.

—allist] Print acceptance status (with respect to Ip) of destinations for
requests. List is a list of intermixed printer names and class

names.

—~cllist] Print class names and their members. List is a list of class
names.

-d Print the system default destination for Ip.

—ollist] Print the status of output requests. List is a list of intermixed
printer names, class names, and request ids.

—pllist] Print the status of printers. List is a list of printer names.
-r Print the status of the LP request scheduler

—s Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names
and their members, and a list of printers and their associated
devices.

-t Print all status information.

—ullist] Print status of output requests for users. List is a list of login
names.

—v[list] Print the names of printers and the pathnames of the devices
associated with them. List is a list of printer names.

Jusr/spool/lp/*

SEE ALSO

enable(1), Ip(1).

Ls(1) LS(1)

NAME
Is — list contents of directories

SYNOPSIS
Is [—logtasdrucifp] names

DESCRIPTION
For each directory named, /s lists the contents of that directory; for each
file named, /s repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given,
the current directory is listed. When several arguments are given, the argu-
ments are first sorted appropriately, but file arguments are processed before
directories and their contents. There are several options:

-1 List in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file (see below).
If the file is a special file, the size field will contain the major and
minor device numbers, rather than a size.

-0 The same as —1, except that the group is not printed.
—g The same as —1, except that the owner is not printed.
-t Sort by time of last modification (latest first) instead of by name.

—a List all entries; in the absence of this option, entries whose names
begin with a period (.) are not listed.

—s Give size in blocks (including indirect blocks) for each entry.

-—d If argument is a directory, list only its name; often used with —1 to
get the status of a directory.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriate.

—u Use time of last access instead of last modification for sorting (with
the —t option) and/or printing (with the —1 option).

—e¢ Use time of last modification of the inode (mode, etc.) instead of
last modification of the file for sorting (—t) and/or printing (—1).

—i For each file, print the i-number in the first column of the report.

—f Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off —1, —t, —s, and
—r, and turns on —a; the order is the order in which entries
appear in the directory.

—p Put a slash after each filename if that file is a directory. Especially
useful for CRT terminals when combined with the pr(1) command
as follows: Is —p |pr —5 —t —w80.

The mode printed under the —1 option consists of 11 characters that are
interpreted as follows:

The first character is:

if the entry is a directory;

if the entry is a block special file;

if the entry is a character special file;

if the entry is a fifo (a.k.a. *‘named pipe’’) special file;
if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner’s permissions; the next to
permissions of others in the user-group of the file; and the last to

|'Uﬂ='ﬂ-

-1-

LS(1)

LS(1)

all others. Within each set, the three characters indicate permission
to read, to write, and to execute the file as a program, respectively.
For a directory, ‘‘execute’ permission is interpreted to mean per-
mission to search the directory for a specified file.

The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

EER

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character
is given as s if the file has set-user-ID mode. The last character of
the mode (normally x or —) is t if the 1000 (octal) bit of the mode
is on; see chmod(1) for the meaning of this mode. The indications
of set-ID and 1000 bit of the mode are capitalized (S and T respec-
tively) if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES

Jetc/passwd to get user IDs for Is —l and Is —o.
/etc/group to get group IDs for Is —land Is —g.

SEE ALSO

chmod(1), find(1).

M4(1) M4(1)

NAME
m4 — macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other
languages. Each of the argument files is processed in order; if there are no
files, or if a file name is —, the standard input is read. The processed text
is written on the standard output.

The options and their effects are as follows:

—e Operate interactively. Interrupts are ignored and the output is °
unbuffered. Using this mode requires a special state of mind.

—s Enable line sync output for the C preprocessor (#line ...)

—Bint Change the size of the push-back and argument collection buffers
from the default of 4,096.

—Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

—Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

—Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any —D or —U flags:
—Dname[=val]

Defines name to val or to null in val’s absence.

—Uname
undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters,
digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. If fewer arguments are supplied than are
in the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text. After
argument collection, the value of the macro is pushed back onto the input
stream and rescanned.

M4 makes available the following built-in macros. They may be redefined,
but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in

-1-

M4(1)

undefine
defn

pushdef
popdef

ifdef

shift

changequote

changecom

divert

undivert

divhum
dnl

ifelse

incr

M4(1)

the replacement text, where n is a digit, is replaced by the n-
th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by
the number of arguments; $¢ is replaced by a list of all the
arguments separated by commas; $@ is like $¢, but each argu-
ment is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one if any.

if the first argument is defined, the value is the second argu-
ment, otherwise the third. If there is no third argument, the
value is null. The word unix is predefined on UNIX versions
of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quot-
ing nullifies the effect of the extra scan that will subsequently
be performed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (i.e., ~ °).

change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-
line. With two arguments, both markers are affected. Com-
ment markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argu-
ment. Output diverted to a stream other than O through 9 is
discarded.

causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next
new-line.

has three or more arguments. If the first argument is the
same string as the second, then the value is the third argu-
ment. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6 and 7. Otherwise,
the value is either the fourth string, or, if it is not present,
null.

returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

-2-

M4(1)

decr
eval

len
index

substr

translit
include
sinclude
syscmd

sysval
maketemp

mdexit
m4wrap

errprint
dumpdef

traceon

traceoff

SEE ALSO

M4(1)

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-
bit arithmetic. Operators include +, —, », /, %, " (exponen-
tiation), bitwise &, |, ~, and ~; relationals; parentheses. Octal
and hex numbers may be specified as in C. The second argu-
ment specifies the radix for the result; the default is 10. The
third argument may be used to specify the minimum number
of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or —1 if the second argument
does not occur.

returns a substring of its first argument. The second argu-
ment is a zero origin number selecting the first character; the
third argument indicates the length of the substring. A miss-
ing third argument is taken to be large enough to extend to
the end of the first string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX command given in the first argument. No
value is returned.

is the return code from the last call to sysemd.

fills in a string of XXXXX in its argument with the current pro-
cess ID.

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is 0.

argument 1 will be pushed back at final EOF; example:
mdwrap(cleanup()")

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or
for all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

cc(1), cpp(1). The M4 Macro Processor by B. W. Kernighan and D. M.

Ritchie.

MACHID(1) MACHID (1)

NAME
pdpll, u3b, udb5, vax — provide truth value about your processor type

SYNOPSIS
pdp1l
u3b
u3bs
vax

DESCRIPTION
The following commands will return a true value {exit code of 0) if you are
on a processor that the command name indicates.
pdpl1 True if you are on a PDP-11/45 or PDP-11/70.
u3b True if you are on a 3B20S.
u3b5 True if you are on a 3BS.
vax True if you are on a VAX-11/750 or VAX-11/780.
The commands that do not apply will return a false (non-zero) value.

These commands are often used within make(1) makeﬁles and shell pro-
cedures to increase portability.

SEE ALSO
sh(1), test(1), true(1).

MAIL(1) MAIL(1)

NAME
mail, rmail — send mail to users or read mail

SYNOPSIS
mail [—epqr 1 [—f1 file]
mail [—t] persons
rmail [—t] persons
DESCRIPTION
Mail without arguments prints a user’s mail, message-by-message, in last-

in, first-out order. For each message, the user is prompted with a ?, and a
line is read from the standard input to determine the disposition of the

message:
<new-line> Go on to next message.
+ Same as <<new-line>.
d Delete message and go on to next message.
p Print message again.
- Go back to previous message.
s [files] Save message in the named files (mbox is
default).
w [files] Save message, without its header, in the named

files (mbox is default).
m [persons] Mail the message to the named persons (yourself
is default).
q Put undeleted mail back in the mailfile and stop.
EOT (control-d) Same as q.

X Put all mail back in the mailfile unchanged and
stop.

tcommand Escape to the shell to do command.

* Print a command summary.

The optional arguments alter the printing of the mail:

—e causes mail not to be printed. An exit value of 0 is returned if the
user has mail; otherwise, an exit value of 1 is returned.

—-p causes all mail to be printed without prompting for disposition.

—q causes mail to terminate after interrupts. Normally an interrupt
only causes the termination of the message being printed.

-r causes messages to be printed in first-in, first-out order.

—ffile causes mail to use file (e.g., mbox) instead of the default mailfile.

When persons are named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each person’s mailfile.
The message is preceded by the sender’s name and a postmark. Lines that
look like postmarks in the message, (i.e., “From ...”’) are preceded with a
>. The —t option causes the message to be preceded by all persons the
mail is sent to. A person is usually a user name recognized by login(1). If
a person being sent mail is not recognized, or if mail is interrupted during
input, the file dead.letter will be saved to allow editing and resending.

To denote a recipient on a remote system, prefix person by the system
name and exclamation mark (see uucp(1C)). Everything after the first exc-
lamation mark in persons is interpreted by the remote system. In particular,
if persons contains additional exclamation marks, it can denote a sequence
of machines through which the message is to be sent on the way to its ulti-
mate destination. For example, specifying a'blede as a recipient’s name
causes the message to be sent to user blcde on system a. System a will
interpret that destination as a request to send the message to user cde on

MAIL(1) MAIL(1)

system b. This might be useful, for instance, if the sending system can
access system a but not system b, and system a has access to system b.

The mailfile may be manipulated in two ways to alter the function of mail.
The other permissions of the file may be read-write, read-only, or neither
read nor write to allow different levels of privacy. If changed to other than
the default, the file will be preserved even when empty to perpetuate the
desired permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded
to person. This is especially useful to forward all of a person’s mail to one
machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp(1C) uses rmail as a security
precaution.

When a user logs in, the presence of mail, if any, is indicated. Also,
notification is made if new mail arrives while using mail.

FILES
/etc/passwd to identify sender and locate persons
Jusr/mail/user incoming mail for user; i.e., the mailfile
$HOME/mbox saved mail
$MAIL variable containing path name of mailfile
/tmp/max temporary file
Just/mail/«.lock lock for mail directory
dead.letter unmailable text

SEE ALSO
login(1), uwucp(1C), write(1).

BUGS

Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

MAKE(1)

NAME

MAKE(1)

make — maintain, update, and regenerate groups of programs

SYNOPSIS

make [—f makefile] [—p] [—i] [—k] [—s] [—r] [—n] [—Bb] [—e]
[—m] [—t] [—d] [~q] [names]

DESCRIPTION

The following is a brief description of all options and some special names:

—f makefile

.DEFAULT

PRECIOUS

SILENT
JGNORE

Description file name. Makefile is assumed to be the name of
a description file. A file name of — denotes the standard
input. The contents of makefile override the built-in rules if
they are present.

Print out the complete set of macro definitions and target
descriptions.

Ignore error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears in
the description file.

Abandon work on the current entry, but continue on other
branches that do not depend on that entry.

Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ are printed.

Compatibility mode for old makefiles.
Environment variables override assignments within makefiles.

Print a memory map showing text, data, and stack. This
option is a no-operation on systems without the getu system
call.

Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

Debug mode. Print out detailed information on files and
times examined.

Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists.

Dependents of this target will not be removed when quit or
interrupt are hit.

Same effect as the —s option.
Same effect as the —i option.

Make executes commands in makefile to update one or more target names.
Name is typically a program. If no —f option is present, makefile,
Makefile, s.makefile, and s.Makefile are tried in order. If makefile is —,
the standard input is taken. More than one — makefile argument pair may

appear.

MAKE(1) MAKE(1)

Make updates a target only if it depends on files that are newer than the
target. All prerequisite files of a target are added recursively to the list of
targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a :, then
a (possibly null) list of prerequisite files or dependencies. Text following a
; and all following lines that begin with a tab are shell commands to be exe-
cuted to update the target. The first line that does not begin with a tab or
begins a new dependency or macro definition. Shell commands may be
continued across lines with the <(backslash><new-line> sequence.
Everything printed by make (except the initial tab) is passed directly to the
shell as is. Thus,

echo a\
b

will produce
ab
exactly the same as the shell would.
Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.0 and b.o, and
that they in turn depend on their corresponding source files (a.c and b.c)
and a common file incl.h:

pgm: a.o b.o
cc a.0 b.o —o pgm
a.o: inclh a.c

c —c¢ a.c
b.o: incl.h b.c
cc —c b.c

Command lines are executed one at a time, each by its own shell. The first
one or two characters in a command can be the following: —, @, —@, or
@—. If @ is present, printing of the command is suppressed. If — is
present, make ignores an error. A line is printed when it is executed unless
the —s option is present, or the entry .SILENT: is in makefile, or unless
the initial character sequence contains a @. The —n option specifies print-
ing without execution; however, if the command line has the string
$(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The —t (touch) option updates
the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the —i
option is present, or the entry .IGNORE: appears in makefile, or the initial
character sequence of the command contains —. the error is ignored. If
the —k option is present, work is abandoned on the current entry, but con-
tinues on other branches that do not depend on that entry.

The —b option allows old makefiles (those written for the old version of
make) to run without errors. The difference between the old version of
make and this version is that this version requires all dependency lines to
have a (possibly null or implicit) command associated with them. The pre-
vious version of make assumed if no command was specified explicitly that
the command was null.

Interrupt and quit cause the target to be deleted unless the target is a
dependency of the special name .PRECIQUS,

MAKE(1) MAKE(1)

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are pro-
cessed before any makefile and after the internal rules; thus, macro assign-
ments in a makefile override environment variables. The —e option causes
the environment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing
any legal input option (except —f, —p, and —d) defined for the command
line. Further, upon invocation, make ‘‘invents’’ the variable if it is not in
the environment, puts the current options into it, and passes it on to invo-
cations of commands. Thus, MAKEFLAGS always contains the current
input options. This proves very useful for “‘super-makes”. In fact, as
noted above, when the —n option is used, the command $(MAKE) is exe-
cuted anyway; hence, one can perform a make —n recursively on a whole
software system to see what would have been executed. This is because
the —n is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a software
project without actually doing anything.

Macros

Entries of the form string] = string2 are macro definitions. String2 is
defined as all characters up to a comment character or an unescaped new-
line. Subsequent appearances of $(stringl [:subst] =[subst21]) are replaced
by string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl =subsi2 is a
substitute sequence. If it is specified, all non-overlapping occurrences of
substl in the named macro are replaced by subst2. Strings (for the pur-
poses of this type of substitution) are delimited by blanks, tabs, new-line
characters, and beginnings of lines. An example of the use of the substi-
tute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing
rules for building targets.

$+ The macro $¢ stands for the file name part of the current dependent
with the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It
is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT

: rule. It is the module which is out of date with respect to the target

(i.c., the ““manufactured’’ dependent file name). Thus, in the .c.0

rule, the $< macro would evaluate to the .c file. An example for
making optimized .o files from .c files is:

.C.0:
cc —c¢ —O $=»c
or:
.c.0:
cc —¢ —0 $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out of date with
respect to the target; essentially, those modules which must be rebuiit.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

-3-

MAKE(1) MAKE(1)

Four of the five macros can have alternative forms. When an upper case D
or F is appended to any of the four macros the meaning is changed to
“directory part” for D and ‘‘file part” for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory part, ./ is gen-
erated. The only macro excluded from this alternative form is $?. The
reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prere-
quisites such as .c, .s, etc. If no update commands for such a file appear in
makefile, and if an inferable prerequisite exists, that prerequisite is com-
piled to make the target. In this case, make has inference rules which allow
building files from other files by examining the suffixes and determining an
appropriate inference rule to use. The current default inference rules are:

< < sh sh™ co .0 .c"c 8.0 5”0 .y.0 .y.0 Lo I".0
Jye .yclc.ca.clasa.h"h

The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompila-
tion, the following command is used:

make —fp — 2>/dev/null </dev/null

The only peculiarity in this output is the (mull) string which pringf(3S)
prints when handed a null string.

A tilde in the above rules refers to an SCCS file (see sccsfile(4)). Thus, the
rule .c".0 would transform an SCCS C source file into an object file (.0).
Because the s. of the SCCS files is a prefix it is incompatible with make’s
suffix point-of-view. Hence, the tilde is a way of changing any file refer-
ence into an SCCS file reference.

A rule with only one suffix (i.e. .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets
from only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order
is significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

SUFFIXES: 0 c .y .l s

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix
lists accumulate; .SUFFIXES: with no dependencies clears the list of
suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.0 b.o
cc a.0 b.o —o pgm
a.o b.o: inclLh

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclu-
sion of optional matter in any resulting commands. For example, CFLAGS,
LFLAGS, and YFLAGS are used for compiler options to cc(1), lex(1), and
yacc(l) respectively. Again, the previous method for -examining the
current rules is recommended.

MAKE(1) MAKE(1)

The inference of prerequisites can be controlled. The rule to create a file
with suffix .0 from a file with suffix .c is specified as an entry with .c.o: as
the target and no dependents. Shell commands associated with the target
define the rule for making a .o file from a .c file. Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries

FILES

If a target or dependency name contains parenthesis, it is assumed to be an
archive library, the string within parenthesis referring to a member within
the library. Thus lib(file.o) and $(LIB)(file.o) both refer to an archive
library which contains file.o. (This assumes the LIB macro has been previ-
ously defined.) The expression $(LIB)(filel.o file2.0) is not legal. Rules
pertaining to archive libraries have the form .XX.a where the XX is the
suffix from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires the XX to be different
from the suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive inter-
face follows. Here, we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date
ca:
$(CC) —c $(CFLAGS) $<
ar v 3@ $+.0
rm —f $*».0

In fact, the .c.a rule listed above is built into make and is unnecessary in
this example. A more interesting, but more limited example of an archive
library maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) —c $(CFLAGS) $(?:..0=.)
ar rv lib §?
rm $? (@echo lib is now up to date
cay

Here the substitution mode of the macro expansions is used. The $? list
is defined to be the set of object file names (inside lib) whose C source files
are out of date. The substitution mode translates the .0 to .c. (Unfor-
tunately, one cannot as yet transform to .¢”; however, this may become
possible in the future.) Note also, the disabling of the .c.a: rule, which
would have created each object file, one by one. This particular construct
speeds up archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

[Mm]akefile and s.[Mm]akefile

SEE ALSO

BUGS

sh(1).
Make— A Program for Maintaining Computer Programs by S. 1. Feldman.
An Augmented Version of Make by E. G. Bradford.

Some commands return non-zero status inappropriately; use —i to over-
come the difficulty. Commands that are directly executed by the shell, not-
ably ¢d(1), are ineffectual across new-lines in make. The syntax (lib(filel.o
file2.0 file3.0) is illegal. You cannot build lib(file.o) from file.o. The
macro $(a:.0=.c”) doesn’t work.

MAKEKEY (1) MAKEKEY(1)

NAME

makekey — generate encryption key
SYNOPSIS

/usr/lib/makekey
DESCRIPTION

Makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space. It
reads 10 bytes from its standard input, and writes 13 bytes on its standard
output. The output depends on the input in a way intended to be difficult
to compute (i.c., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two (the salt) are best chosen from the set of digits, ., /, and
upper- and lower-case letters. The salt characters are repeated as the first
two characters of the output. The remaining 11 output characters are
chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DES algorithm, but broken in 4,096 different ways.
Using the input key as key, a constant string is fed into the machine and
recirculated a2 number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

Makekey is intended for programs that perform encryption (e.g., ed(1) and
crypt(1)). Usually, its input and output will be pipes.

SEE ALSO
crypt(1l), ed(1), passwd(4).

MAN(1) MAN(1)

NAME
man, manprog — print entries in this manual

SYNOPSIS
man [options] [section] titles

/usr/lib/manprog file

DESCRIPTION
Man locates and prints the entry of this manual named fitle in the specified
section. (For historical reasons, the word ‘‘page” is often used as a
synonym for “‘entry’’ in this context.) The title is entered in lower case.
The section number may not have a letter suffix. If no section is specified,
the whole manual is searched for fitle and all occurrences of it are printed.
Options and their meanings are:

—t Typeset the entry in the default format (8.5"X11").

—s Typeset the entry in the small format (6”X9").

—T4014 Display the typeset output on a Tektronix 4014 terminal using
te(1). :

—Ttek Same as —T4014.

—Tst Print the typeset output on the MHCC STARE facility (this
option is not usable on most systems).

—Tvp Print the typeset output on a Versatec printer; this option is not
available at all UNIX sites.

—Tterm Format the entry using nroff and print it on the standard output
(usually, the terminal); term is the terminal type (see term(5)
and the explanation below); for a list of recognized values of
term, type help term2. The default value of term is 450.

—w Print on the standard output only the path names of the entries,
relative to /usr/man, or to the current directory for —d option.

-d Search the current directory rather than /usr/man; requires the
full file name (e.g., cu.lc, rather than just cu).

—12 Indicates that the manual entry is to be produced in 12-pitch.

May be used when STERM (see below) is set to one of 300,
300s, 450, and 1620. (The pitch switch on the DASI 300 and
300s terminals must be manually set to 12 if this option is
used.)

—c Causes man to invoke col(1); note that col(1) is invoked
automatically by man unless term is one of 300, 300s, 450, 37,
4000a, 382, 4014, tek, 1620, and X.

-y Causes man to use the non-compacted version of the macros.

The above options other than —d, —e, and ‘—y are mutually exclusive,
except that the —s option may be used in conjunction with the first four
—T options above. Any other opfions are passed to troff, nroff, or the
man(5) macro package.

When using nroff, man examines the environment variable STERM (see
environ(5)) and attempts to select options to nroff, as well as filters, that
adapt the output to the terminal being used. The —Tterm option overrides
the value of STERM; in particular, one should use —Tlp when sending the
output of man to a line printer.

Section may be changed before each iitle.
As an example:
man man

would reproduce on the terminal this entry, as well as any other entries
named man that may exist in other sections of the manual, e.g., man(5).

-1-

MAN(1) MAN(1)

If the first line of the input for an entry consists solely of the string:

I\. x
where x is any combination of the three characters ¢, e, and t, and where
there is exactly one blank between the double quote (*) and x, then man
will preprocess its input through the appropriate combination of cw(1),
eqn(1) (negn for nroff) and tbi(1), respectively; if eqn or negn are invoked,
they will automatically read the file /usr/pub/eqnchar (see egnchar(5)).

The man command executes manprog that takes a file name as its argu-
ment. Manprog calculates and returns a string of three register definitions
used by the formatters identifying the date the file was last modified. The
returned string has the form:

—~rdday —rmmonth —ryyear

and is passed to nroff which sets this string as variables for the man macro
package. Months are given from O to 11, therefore month is always 1 less
than the actual month. The man macros calculate the correct month. If
the man macro package is invoked as an option to nroff/troff (i.e., nroff
—man file), then the current day/month/year is used as the printed date.

FILES
[usr/man/u_man/man([1-6]/* the UNIX System User’s Manual
/usr/man/a_man/man[178]/¢ the UNIX System Administator’s Manual
/Jusr/man/local/man[1-8]/» local additions
Jusr/lib/manprog calculates modification dates of entries
SEE ALSO :
cw(l), eqn(l), nroff(1), tbl(1), tc(l), troff(1), environ(5), man(5),
term(5).
BUGS

All entries are supposed to be reproducible either on a typesetter or on a
terminal. However, on a terminal some information is necessarily lost.

Pages bearing the same name in both manuals will result in the UNIX Sys-
tem Administrator’s Manual entry being printed first, if no section argument
is supplied.

MESG(1) MESG(1)

NAME
mesg — permit or deny messages

SYNOPSIS
mesg [n][y]

DESCRIPTION
Mesg with argument n forbids messages via write(1) by revoking non-user
write permission on the user’s terminal. Mesg with argument y reinstates
permission. All by itself, mesg reports the current state without changing
it.

FILES
/dev/ttys

SEE ALSO
write(1).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

MKDIR (1) ‘ MKDIR(1)

NAME

mkdir — make a directory
SYNOPSIS

mkdir dirname ...
DESCRIPTION

Mkdir creates specified directories in mode 777 (possibly altered by
umask(1)). Standard entries, ., for the directory itself, and .., for its
parent, are made automatically.

Mkdir requires write permission in the parent directory.
SEE ALSO
sh(1), rm(1), umask(1).

DIAGNOSTICS
Mkdir returns exit code O if all directories were successfully made; other-
wise, it prints a diagnostic and returns non-zero.

MM(1) MM(1)

NAME
mm, osdd, checkmm — print/check documents formatted with the MM
macros

SYNOPSIS
mm [options] [files]

osdd [options] [files]
checkmm [files]

DESCRIPTION
Mm can be used to type out documents using nroff and the MM text-
formatting macro package. It has options to specify preprocessing by rbl(1)
and/or negn (see egn(1)) and postprocessing by various terminal-oriented
output filters. The proper pipelines and the required arguments and flags
for nroff and MM are generated, depending on the options selected.

Osdd is equivalent to the command mm -—-meosd. For more information
about the OSDD adapter macro package, see mosd(5).

Options for mm are given below. Any other arguments or flags (e.g.,
—rC3) are passed to nroff or to MM, as appropriate. Such options can
occur in any order, but they must appear before the files arguments. If no
arguments are given, mm prints a list of its options.

—Tterm Specifies the type of output terminal; for a list of recognized
values for term, type help term2. If this option is not used, mm
will use the value of the shell variable STERM from the environ-
ment (see profile(4) and environ(5)) as the value of term, if
STERM is set; otherwise, mm will use 450 as the value of term. If
several terminal types are specified, the last one takes precedence.

12 Indicates that the document is to be produced in 12-pitch. May
be used when STERM is set to one of 300, 300s, 450, and 1620.
(The pitch switch on the DASI 300 and 300s terminals must be
manually set to 12 if this option is used.)

—c Causes mm to invoke col(1); note that col(1) is invoked automat-
ically by mm unless term is one of 300, 300s, 450, 37, 4000a,
382, 4014, tek, 1620, and X.

—e Causes mwm to invoke negn; also causes megn to read the
/usr/pub/eqnchar file (see egnchar(5)).

—t Causes mm to invoke tbi(1).

—E Invokes the —e option of nroff.

-y Causes mm to use the non-compacted version of the macros (see
mm(S)).

As an example (assuming that the shell variable STERM is set in the
environment to 450), the two command lines below are equivalent:

mm —t —rC3 —12 ghh+
tbl ghh+ | nrof —cm —T450—12 —h —rC3
Mm reads the standard input when — is specified instead of any file names.

(Mentioning other files together with — leads to disaster.) This option
allows mm to be used as a filter, e.g.:

cat dws | mm —

Checkmm is a program for checking the contents of the named files for
errors in the use of the Memorandum Macros, missing or unbalanced neqn
delimiters, and .EQ/.EN pairs. Note: The user need not use the checkeq
program (see egn(1)). Appropriate messages are produced. The program
skips all directories, and if no file name is given, standard input is read.

-1-

MM(1) MM(1)

HINTS
1. Mm invokes nroff with the —h flag. With this flag, nroff assumes
that the terminal has tabs set every 8 character positions.
2, Use the —olist option of nroff to specify ranges of pages to be out-

put. Note, however, that mm, if invoked with one or more of the
—e, —t, and — options, together with the —olist option of nroff
may cause a harmless ‘‘broken pipe’’ diagnostic if the last page of
the document is not specified in list.

3. If you use the —s option of nroff (to stop between pages of out-
put), use line-feed (rather than return or new-line) to restart the
output. The —s option of nroff does not work with the —¢ option
of mm, or if mm automatically invokes col(1) (see —c¢ option
above).

4. If you lie to mm about the kind of terminal its output will be
printed on, you’ll get (often subtle) garbage; however, if you are
redirecting output into a file, use the —T37 option, and then use
the appropriate terminal filter when you actually print that file.

SEE ALSO .
col(1), cw(l), env(l), eqn(l), greek(l), mmt(l), nroff(1), tbi(1),
profile(4), mm(5), mosd(5), term(5).
UNIX System Document Processing Guide.
DIAGNOSTICS
mm “mm: no input file’’ if none of the arguments is a readable file
and mm is not used as a filter.
checkmm ‘‘Cannot open filename** if file(s) is unreadable. The remaining
output of the program is diagnostic of the source file.

MMT (1) MMT(1)

NAME

mmt, mvt — typeset documents, view graphs, and slides

SYNOPSIS

mmt [options] [files]
mvt [options] [files]

DESCRIPTION

These two commands are very similar to mm(1), except that they both
typeset their input via troff(1), as opposed to formatting it via nroff; mmt
uses the MM macro package, while mvt uses the Macro Package for View
Graphs and Slides. These two commands have options to specify prepro-
cessing by tbl(1) and/or egn(1). The proper pipelines and the required
arguments and flags for #off(1) and for the macro packages are generated,
depending on the options selected.

Options are given below. Any other arguments or flags (e.g., —rC3) are
passed to troff (1) or to the macro package, as appropriate. Such options
can occur in any order, but they must appear before the files arguments. If
no arguments are given, these commands print a list of their options.

—e Causes these commands to invoke egn(l); also causes egn to
read the /usr/pub/eqgnchar file (see egnchar(5)).
—t Causes these commands to invoke zb/(1).

—Tst Directs the output to the MH STARE facility.

~Tvp Directs the output to a Versatec printer; this option is not avail-
able at all UNIX sites.

—T4014 Directs the output to a Tektronix 4014 terminal via the #(1)

filter.
—Ttek Same as —T4014.
—a Invokes the —a option of troff (1).
-y Causes mmt to use the non-compacted version of the macros

(see mm(5)). No effect for mvt.

These commands read the standard input when — is specified instead of
any file names.

Mwt is just a link to mmt.

HINT
Use the —olist option of troff(1) to specify ranges of pages to be output.
Note, however, that these commands, if invoked with one or more of the
—e, —t, and — options, together with the —olist option of troff(1) may
cause a harmless ‘‘broken pipe’’ diagnostic if the last page of the document
is not specified in lisz.

SEE ALSO
env(l), eqn(l), mm(l), tbl(1), tc(l), troff(1), profile(4), environ(5),
mm(5), mv(5).
UNIX System Document Processing Guide.

DIAGNOSTICS

“m[mv]t: no input file’’ if none of the arguments is a readable file and the
command is not used as a filter.

NET(1C) (DEC only) NET(1C)

NAME
net — execute a command on the PCL network

SYNOPSIS
net system [command[args]]

DESCRIPTION
Net provides a bi-directional connection to another UNIX, The first argu-
ment is the name of the remote system. The second argument is a com-
mand to be executed. If command is not given, then an interactive shell
(/bin/sh —i) on the remote system is created and an initial working direc-
tory of / is established. Any remaining arguments are passed to the given
command as arguments.

Net reads the standard input, thus allowing command to be part of a “‘pipe-
line’’ if command reads the standard input also.

EXAMPLES

Execute the who(l) command on system A and return the output to your
terminal:

net A who
Copy a directory structure from system A to the local system:

cd /dir/on/localsys

net A "cd /dir/on/A; find . —print | cpio —oc" | cpio —icda
Copy one file from system A to the local system:

net A ‘cat /file/on/A" > [file/on/localsys

Send a directory structure from the local system to system A (this uses the
command’s ability to read standard input):

find . —print | cpio —o | net A "cd /dir/fon/A; cpio —id"

FILES
/dev/pcl/?[0-7] PCL channel interfaces for system ?.
/dev/pcl/ctrl PCL control channel.
Jusr/adm/pcllog activity log.
SEE ALSO
cpio(1), find(1), sh(1), who(1).
DIAGNOSTICS
net: cannot open channel to system
A connection can’t be made to the requested system.
connection broken
A non-recoverable write error occurred.
write error
A recoverable write error occurred. The write will be retried until it
completes successfully without lesing data.
cannot fork reader process '
Net is unable to create a reader process and a writer process.
WARNINGS

A successful invocation of net reads at least 2 blocks of the standard input,
if present, even if command does not use standard input. The standard
input must be explicitly closed (via <&—) or redirected (such as from
/dev /null) if this feature is not desired.

NET(1C) (DEC only) NET(1IC)

BUGS

Only the first character of a system name is recognized. Remaining charac-
ters are silently discarded.

The user’s command environment is not carried forward to the remote sys-
tem except for the effective user ID.

Executing commands that do ‘“‘funny’’ things with your terminal (i.e.,
cu(1C), passwd(1), su(l), etc.) don’t work as expected.

NEWFORM(1)

NAME

NEWFORM(1)

newform — change the format of a text file

SYNOPSIS

newform [—s] [—itabspec] [—otabspec] [—bn] [—en] [—pn] [—an]
{—f] [—cchar] [—In] [files]

DESCRIPTION

Newform reads lines from the named files, or the standard input if no input
file is named, and reproduces the lines on the standard output. Lines are
reformatted in accordance with command line options in effect.

Except for —s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order specified. This means that option

sequences

like ““—el5 —160" will yield results different from ‘‘—160

—el5”. Options are applied to all files on the command line.

—itabspec

—otabspec

—lIn

—bn

—en

—pn

—an

Input tab specification: expands tabs to spaces, according to the
tab specifications given. Tabspec recognizes all tab specification
forms described in tabs(1). In addition, tabspec may be ——, in
which newform assumes that the tab specification is to be found
in the first line read from the standard input (see fspec(4)). If
no tabspec is given, tabspec defaults to —8. A tabspec of —0
expects no tabs; if any are found, they are treated as —1.

Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as
for —itabspec. If no tabspec is given, tabspec defaults to —8. A
tabspec of —0 means that no spaces will be converted to tabs on
output.

Set the effective line length to n characters. If n is not entered,
—1 defaults to 72. The default line length without the —1
option is 80 characters. Note that tabs and backspaces are con-
sidered to be one character (use —i to expand tabs to spaces).

Truncate n characters from the beginning of the line when the
line length is greater than the effective line length (see —ln).
Default is to truncate the number of characters necessary to
obtain the effective line length. The default value is used when
—b with no n is used. This option can be used to delete the
sequence numbers from a COBOL program as follows:

newform —I11 —b7 file-name

The —I11 must be used to set the effective line length shorter
than any existing line in the file so that the —b option is
activated.

Same as —bn except that characters are truncated from the end
of the line.

Change the prefix/append character to k. Default character for
k is a space.

Prefix n characters (see —ck) to the beginning of a line when
the line length is less than the effective line length. Default is
to prefix the number of characters necessary to obtain the
effective line length.

Same as —pn except characters are appended to the end of a
line.

NEWFORM(1)

—f

DIAGNOSTICS

NEWFORM(1)

Write the tab specification format line on the standard output
before any other lines are output. The tab specification format
line which is printed will correspond to the format specified in
the last —o option. If no —o option is specified, the line which
is printed will contain the default specification of —8.

Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared,
the eighth character is replaced by a # and any characters to the
right of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is
used on a file without a tab on each line. The characters
sheared off are saved internally until all other options specified
are applied to that line. The characters are then added at the
end of the processed line.

For example, to convert a file with leading digits, one or more
tabs, and text on each line, to a file beginning with the text, all
tabs after the first expanded to spaces, padded with spaces out to
colamn 72 (or truncated to column 72), and the leading digits
placed starting at column 73, the command would be:

newform —s —i —I —a —e file-name’

All diagnostics are fatal.

usage: ... Newform was called with a bad option.

not —s format There was no tab on one line.

can’t open file Self explanatory.

internal line too long A line exceeds 512 characters after being expanded
in the internal work buffer.

tabspec in error A tab specification is incorrectly formatted, or

specified tab stops are not ascending.

tabspec indirection illegal A tabspec tead from a file (or standard input) may

EXIT CODES

not contain a tabspec referencing another file (or
standard input).

0 — normal execution
1 — for any error

SEE ALSO

csplit(1), tabs(1), fspec(4).

BUGS

Newform normally only keeps track of physical characters; however, for the
—i and —o options, newform will keep track of backspaces in order to line
up tabs in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from the stan-
dard input (by use of —i—— or —o——).

If the —f option is used, and the last —o option specified was —o— —, and
was preceded by either a —o—— or a —i——, the tab specification format
line will be incorrect.

NEWGRP(1) NEWGRP(1)

NAME

newgrp — log in to a new group

SYNOPSIS

newgrp [—1 [group]

DESCRIPTION

FILES

Newgrp changes the group identification of its caller, analogously to
login(1). The same person remains logged in, and the current directory is
unchanged, but calculations of access permissions to files are performed
with respect to the new group ID.

Newgrp without an argument changes the group identification to the group
in the password file; in effect it changes the group identification back to the
caller’s original group.

An initial — flag causes the environment to be changed to the one that
would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user himself
does not, or if the group has a password and the user is not listed in
/etc/group as being a member of that group.

When most users log in, they are members of the group named other.

/etc/group
/etc/passwd

SEE ALSO

BUGS

login(1), group(4).

There is no convenient way to enter a password into /etc/group. Use of
group passwords is not encouraged, because, by their very nature, they
encourage poor security practices. Group passwords may disappear in the
future.

NEWS(1) NEWS(1)

NAME

news — print news items

SYNOPSIS

news [—aJ [—n][—s][items]

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention,
these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current
files in /usr/mews, most recent first, with each preceded by an appropriate
header. News stores the “‘currency’’ time as the modification date of a file

. named .news_time in the user’s home directory (the identity of this direc-

tory is determined by the environment variable SHOME); only files more
recent than this currency time are considered “‘current.”

The —a option causes news to print all items, regardless of currency. In
this case, the stored time is not changed.

The —n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The —s option causes mews to report how many current items exist,
without printing their names or contents, and without changing the stored
time. It is useful to include such an invocation of news in one’s .profile
file, or in the system’s /etc/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and
the next item is started. Another delete within one second of the first
causes the program to terminate.

/etc/profile
Jusr/news/«
$HOME/.news_time

SEE ALSO

profile(4), environ(5).

NICE(1) NICE(1)

NAME

nice — run a command at low priority
SYNOPSIS

nice [—increment] command [arguments]
DESCRIPTION

Nice executes command with a lower CPU scheduling priority. If the incre-
ment argument (in the range 1-19) is given, it is used; if not, an increment
of 10 is assumed.

The super-user may run commands with priority higher than normal by
using a negative increment, e.g., ——10.
SEE ALSO
nohup(1), nice(2).
DIAGNOSTICS ’
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

NL(1) NL(1)

NAME
nl — line numbering filter

SYNOPSIS
ol [—htype] [—btypel [—ftype] [—vstart#] [—iincr] [—p] [—lnum]
[—ssep] [—wwidth] [—nformat] [—ddelim] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file is named
and reproduces the lines on the standard output. Lines are numbered on
the left in accordance with the command options in effect.

NI views the text it reads in terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a
body, and a footer section. Empty sections are valid. Different line
numbering options are independently available for header, body, and footer
(e.g. no numbering of header and footer lines while numbering blank lines
only in the body).

The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

ARRY header
\\: body
\: footer

Unless optioned otherwise, nl assumes the text being read is in a single log-
ical page body.

Command options may appear in any order and may be intermingled with
an optional file name. Only one file may be named. The options are:

—bype Specifies which logical page body lines are to be numbered.
Recognized fypes and their meaning are: a, number all lines; t,
number lines with printable text only; m, no line numbering;
pstring, number only lines that contain the regular expression
specified in string. Default type for logical page body is t (text
lines numbered).

—hype Same as —btype except for header. Default fype for logical page
header is n (no lines numbered). :

—ftype Same as —bype except for footer. Default for logical page
footer is m (no lines numbered).

—p Do not restart numbering at logical page delimiters.

—vstart# Start# is the initial value used to number logical page lines.
Default is 1.

—iincr Incr is the increment value used to number logical page lines.
Default is 1.

—ssep Sep is the character(s) used in separating the line number and
the corresponding text line. Default sep is a tab.

—wwidth Width is the number of characters to be used for the line
number. Default width is 6.

—nformat Format is the line numbering format. Recognized values are: In,
left justified, leading zeroes supressed; rn, right justified, leading
zeroes supressed; rz, right justified, leading zeroes kept. Default
Jformat is ra (right justified).

-1-

NL(1) NL(1)

—lnum Num is the number of blank lines to be considered as one. For
example, —I2 results in only the second adjacent blank being
numbered (if the appropriate —ha, —ba, and/or —fa option is
set). Default is 1.

—dxx The delimiter characters specifying the start of a logical page sec-
tion may be changed from the default characters (\:) to two user
specified characters. If only one character is entered, the second
character remains the default character (). No space should
appear between the —d and the delimiter characters. To enter a
backslash, use two backslashes.

EXAMPLE
The command:

nl —v10 —il0 —d!+ filel file2

will number files 1 and 2 starting at line number 10 with an increment of
ten. The logical page delimiters are !+.

SEE ALSO
pr(1).

NM(1)

NAME

(not on PDP-11) NM(1)

nm — print name list of common object file

SYNOPSIS

nm [—o] [—x] [~h] [—v] [—n] [—e] [—f] [—u)] [—V] file-names

DESCRIPTION

The nm command displays the symbol table of each common object file
file-name. File-name may be a relocatable or absolute common object file;
or it may be an archive of relocatable or absolute common object files. For
each symbol, the following information will be printed:

Name
Value

Class
Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its storage class.

Its type and derived type. If the symbol is an instance of a struc-
ture or of a union then the structure or union tag will be given
following the type (e.g. struct-tag). If the symbol is an array,
then the array dimensions will be given following the type (eg.,
char[n][m]). Note that the object file must have been compiled
with the —g option of the cc(1) command for this information to
appear.

Its size in bytes, if available. Note that the object file must have
been compiled with the —g option of the cc(1) command for this
information to appear.

The source line number at which it is defined, if available. Note
that the object file must have been compiled with the —g option
of the cc(1) command for this information to appear.

For storage classes static and external, the object file section con-
taining the symbol (e.g., text, data or bss).

The output of mm may be controlled using the following flags:

-0

—X

A symbol’s value and size will be printed in octal instead of
decimal.

A symbol’s value and size will be printed in hexadecimal instead
of decimal.

The output header data is not displayed.

External symbols will be sorted by value before they are printed.
External symbols will be sorted by name before they are printed.
Only static and external symbols are printed.

Full output is produced. Redundant symbols (.text, .data and
.bss), normally suppressed, are printed.

Only undefined symbols are printed.
Version of nm command éxecuting is displayed on stderr output.

Flags may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nm name —e —v
and nm —ve name print the static and external symbols in name, with
external symbols sorted by value.

FILES

Jusr/tmp/nm??777?

NM(1) (not on PDP-11) NM(1)

SEE ALSO
as(1), cc(1), 1d(1), a.out(4), ar(4).

DIAGNOSTICS
‘““nm: name: cannot open”’
if name cannot be read.

‘“am: name: bad magic”
if name is not an appropriate common object file.

“nm: name: no symbols
if the symbols have been stripped from name.

NM(1) (PDP-11 only) NM(1)

NAME

nm — print name list
SYNOPSIS

nm [—gnoprsu] [file ...]
DESCRIPTION

Nm prints the name list (symbol table) of each object file in the argument
list. If an argument is an archive, a listing for each object file in the
archive will be produced. If no file is given, the symbols in a.out are listed.
Each symbol name is preceded by its value (blanks if undefined) and one
of the letters U (undefined), A (absolute), T (text segment symbol), D
(data segment symbol), B (bss segment symbol), R (register symbol), F
(file symbol), or C (common symbol). If the symbol is local (non-

external) the type letter is in lower case. The output is sorted alphabeti-
cally.

Options are:
—g Print only global (external) symbols.
—n Sort numerically rather than alphabetically.

—o Prefix file or archive element name to each output line rather than
only once. This option can be used to make piping to grep(1) more
meaningful.

—p Don’t sort; print in symbol-table order.
-r Sort in reverse order.

—s Sort according to the size of the external symbol (computed from
the difference between the value of the symbol and the value of the
symbol with the next highest value). This difference is the value
printed. This flag turns on —g and —n and turns off —u and —p.

—u Print only undefined symbols.

SEE ALSO
ar(1), a.out(4), ar(4).

NOHUP(1) NOHUP(1)

NAME

nohup — run a command immune to hangups and quits
SYNOPSIS

nohup command [arguments]
DESCRIPTION

Nohup executes command with hangups and quits ignored. If output is not
re-directed by the user, it will be sent to nohup.out. If nohup.out is not
writable in the current directory, output is redirected to SHOME/nohup.out.

SEE ALSO
nice(1), signal(2).

NROFF(1)

NAME

NROFF(1)

nroff — format text

SYNOPSIS

nroff [options | [files]

DESCRIPTION

Nroff formats text contained in files (standard input by default) for printing
on typewriter-like devices and line printers. Its capabilities are described in
the NROFF/TROFF User’s Manual cited below.

An argument consisting of a minus (—) is taken to be a file name
corresponding to the standard input. The options, which may appear in any
order, but must appear before the files, are:

—olist

—sN

—raN
—i

—-q

-z
—mname

-—cname

—kname

—Tname

—un

Print only pages whose page numbers appear in the list of
numbers and ranges, separated by commas. A range N—M
means pages N through M; an initial —N means from the
beginning to page N; and a final N— means from N to the end.
(See BUGS below.)

Number first generated page N.

Stop every N pages. Nroff will halt after every N pages (default
N=1) to allow paper loading or changing, and will resume upon
receipt of a line-feed or new-line (new-lines do not work in pipe-
lines, e.g., with mmm(1)). This option does not work if the out-
put of nroff is piped through col(1). When nroff halts between
pages, an ASCII BEL is sent to the terminal.

Set register a (which must have a one-character name) to N.
Read standard input after files are exhausted.

Invoke the simultaneous input-output mode of the .rd request.
Print only messages generated by .tm (terminal message)
requests.

Prepend to the input files the non-compacted (ASCII text) macro
file /usr/lib/tmac/tmac.name.

Prepend to the input files the compacted macro files
/usr/lib/macros/cmp.[nt].[dt]).name and
/Jusr/lib/macros/ucmp.[nt}.name.

Compact the macros used in this invocation of nroff, placing the
output in files [dt].name in the current directory (see the May
1979 Addendum to the NROFF/TROFF User’s Manual for details
of compacting macro files).

Prepare output for specified terminal. Known names are 37 for
the (default) TELETYPE® Model 37 terminal, tn300 for the GE
TermiNet 300 (or any terminal without half-line capability),
300s for the DASI 300s, 300 for the DASI 300, 450 for the DASI
450, Ip for a (generic) ASCII line printer, 382 for the DTC-382,
4000A for the Trendata 4000A, 832 for the Anderson Jacobson
832, X for a (generic) EBCDIC printer, and 2631 for the Hewlett
Packard 2631 line printer.

Produce equally-spaced words in adjusted lines, using the full
resolution of the particular terminal.

Use output tabs during horizontal spacing to speed output and
reduce output character count. Tab settings are assumed to be
every 8 nominal character widths.

Set the emboldening factor (number of character overstrikes) for
the third font position (bold) to n, or to zero if n is missing.

NROFF(1) NROFF(1)

FILES
Jusr/lib/suftab suffix hyphenation tables
Jtmp/taS# temporary file
/usr/lib/tmac/tmac.* standard macro files and pointers
Jusr/lib/macros/+ standard macro files
Jusr/lib/term/# terminal driving tables for nroff
SEE ALSO
NROFF[TROFF User’s Manual
A TROFF Tutorial
col(1), cw(1), eqn(1), greek(1), mm(1), tbl(1), troff(1), mm(5).
BUGS

Nroff believes in Eastern Standard Time; as a result, depending on the time
of the year and on your local time zone, the date that nroff generates may
be off by one day from your idea of what the date is.

When nroff is used with the —olist option inside a pipeline (e.g., with one
or more of cw(1), egn(1), and bl(1)), it may cause a harmless ‘‘broken
pipe’’ diagnostic if the last page of the document is not specified in /ist.

NSCSTAT(1C) NSCSTAT(1C)

NAME

nscstat — query the operation status of the NSC network

SYNOPSIS

nscstat [netname ...] [—ludqrbpal [—n names]

DESCRIPTION

Nscstat, without arguments, gives a short operational status report of the
NSC network from the viewpoint of the local node. This includes the status
of the NSC network and the total number of files queued for transmission.
A list of network names may be specified. If no network names are given,
the options specified are performed for all known networks. Nscstat recog-
nizes the following arguments:

—1 Output a long listing. This option indicates the status of the printed
node (on-line or off-line), the total number of files queued waiting
transmission to this node, and the time when the first job was queued
for transmission.

—p Report the last time the system received a poke from remote systems.

—r Report the last time the system received a request' to transfer from
remote systems.

—b Report the last time the current system had to notify remote systems
that it was too busy to handle its request.

—u List the status of all nodes that are on-line (up).

—d List the status of all nodes that are off-line (down).

—q List the status of all nodes that have files queued for transmission.
—a List the status of all nodes configured on the network.

—n names
Name specifies that status is requested for this node only. If more than
one network is specified, this option is disabled.

Each of the above arguments may be used singly or together with several
others. When used together, the output is the intersection of the sets of
nodes matching each option. If a node name list is specified, status for that
node will only be reported if it is in the intersection set of the specified
options.

EXAMPLE

FILES

BUGS

To get a long listing of all nodes that are currently off-line and have files
queued for transmission:

nscstat —Idq

Jusr/nsc/rvchan list of nodes currently configured on the network
Just/nsc/cons/* nodes that are considered on-line
Jusr/nsc/jobs/Cx jobs queued for transmission
Just/nsc/cons/on-line/+
whether the NSC network is active or not on this net-
work

Nscstat tries to interpret the specified options intelligently. If none of the
options specified apply to any of the specified nodes, no detailed status will
be reported.

NSCTORJE(1C) NSCTORJE(1C)

NAME

nsctorje — re-route jobs from the NSC network to RJE
SYNOPSIS

nsctorje [—d names)
DESCRIPTION

Nsctorje will resubmit jobs queued on the NSC local network (via
nusend(1C) across the RIE link (if it exists). Nsctorje submits a nusend(1C)
command to re-route each queued job. By default, jobs will be re-routed if
either the remote host is marked down locally or if the NSC network on the
local host is inactive. Nsctorje recognizes the following options:

—d names re-route all jobs queued only to the remote machine name.

SEE ALSO
nusend(1C).
nscmon(1M), rje(8) in the UNIX System Administrator’s Manual.
FILES
Jusr/nsc/NORJE file indicating that no RIE connection exists on this
machine
Jusr/nsc/rvchan nusend(1C) network configuration file
Jusr/asp/udest nodes accessible through RJE
BUGS

Any file larger than 190,000 bytes will not be re-routed across the RJE link.
It will remain queued on the NSC network until the remote node becomes
available.

NUSEND (1C) NUSEND(1C)

NAME
nusend — send files to another UNIX on the NSC network
SYNOPSIS

nusend —d dest [—n netname] [—a acct] [—m] [—e] [—s] [—¢] [~x]
[—u destuser] [[—f destfile] srcfile] [—!cmd [cmdfile]] ...

DESCRIPTION
Nusend sends copies of the named files or command to another UNIX sys-
tem via the NSC network. If the file name — is given, the standard input is
read at that point.

—d dest Destination. Dest can be any one of the UNIX systems on the
NSC local network. See /usr/msc/rvchan for an up-to-date list of
valid NSC destinations.

—n netname
Network name. Netname can be any one of the networks known
to the local system (see nscmon(1M) for the definition of a net-
work. This option is only needed when sending to your own sys-
tem. See /usr/msc/mets for the up-to-date list of valid networks).

—a acct Use acct as the account number for the job. By default, the
account number is read from the password file.

—s Silent. Suppress the one-line message which contains the submit-
ted job name.
—c Copy. Make a copy of the file. Default is to set up a pointer to

the file in the user’s directory. If any changes are made to the file
before transmission, the changes will be sent to the destination
unless the —c option is used.

—X Generate checksums on all data tranmissions.

Mail will normally be sent to the receiving login(s) to report the receipt of
the file(s). Mail will be sent to both sending and receiving logins if there
were errors in transmission. The default may be overridden with the fol-
lowing switches:

—m Report by mail(1) when the file transfer is complete. The mail is
sent from the remote system via nusend.

—e Report by mail(1) only when an error occurred during the
transfer. No other mail will be sent.

Normally, the login name under which the new file will appear on the desti-
nation system is the same as the login name of the person who issues the
command.

The following options, each as a separate argument, may be interspersed
with file name arguments:

—u Use the next argument as the destination user’s login name for all
succeeding files.

—f Use the next argument as the destination file name for the
succeeding file. Srcfile must be specified. The destination path
name is assumed to be relative to the destination login directory if
there is no leading /. In either case, the target directory must be
mode 777, or if the file already exists, the file must be writable by
others. By default, files are delivered to directory rje under the
destination login directory. Rje must have been previously
created in mode 777 for everything to work. The name of the
destination file is ordinarily the same as the last component of the

-1-

NUSEND(1C) NUSEND(1C)

original file. When the standard input is sent, the destination file
name is normally taken to be pipe.end. If — is used, the stan-
dard input is taken.

—!cmd Cmd is sent to the remote machine for execution. A file name or
— can be used as standard input to the command. If no file is
specified, /dev/null is used.

EXAMPLES

Assuming XXAAA, XXBBB and XXCCC are machines on the NSC network,
then:

To send files filel, file2, and file3 to XXAAA (assuming the source and des-
tination logins are the same):

nusend —d XXAAA filel file2 file3

To send file cprog.c to login name dave on XXBBB and to get confirmation
mail returned:

nusend —d XXBBB —m --u dave cprog.c

To send file myfile to XXCCC and rename it to yourfile (assuming the
source and destination logins are the same):

nusend —d XXCCC —f yourfile myfile

To send file a.out from XXAAA to login name debbie on XXBBB via remote
execution:

nusend —d XXAAA RS —!"nusend —d XXBBB —u debbie
“logdir debbie”/a.out

FILES
[etc/passwd account number for NSC job
/usr/nsc/jobs/Cs job queue area
Jusr/nsc/rvchan table of known destinations
Jusr/nsc/nets table of known networks
/usr/nsc/log/nusend usage log

SEE ALSO

mail(1), nscstat(1C).

oD(1)

NAME

oD(1)

od — octal dump

SYNOPSIS

od [—bedosx] [file] [[+ Joffset[. [b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If
the first argument is missing, —o is default. The meanings of the format
options are:

=b
—-c

Interpret bytes in octal.

Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\0, backspace=\b, form-feed=\f, new-line=\n,
return=\r, tab==\t; others appear as 3-digit octal numbers.

Interpret words in unsigned decimal.
Interpret words in octal.

Interpret 16-bit words in signed decimal.
Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument
is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the offset
is interpreted in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.

Dumping continues until end-of-file.

SEE ALSO

dump(1).

PACK(1) PACK(1)

NAME

pack, pcat, unpack — compress and expand files

SYNOPSIS

pack [—] name ...
peat name ...

- unpack name ...
DESCRIPTION

Pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and owner
as those of name. If pack is successful, name will be removed. Packed
files can be restored to their original form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.
If the — argument is used, an internal flag is set that causes the number of
times each byte is used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences of — in place of
name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms
the first part of each .z file, it is usually not worthwhile to pack files smaller
than three blocks, unless the character frequency distribution is very
skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distri-
bution of characters, show little compression, the packed versions being
about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.
No packing will occur if:

the file appears to be already packed;

the file name has more than 12 characters;

the file has links;

the file is a directory;

the file cannot be opened;

no disk storage blocks will be saved by packing;
a file called name.z already exists;

the .z file cannot be created;

an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters
to allow space for the appended .z extension. Directories cannot be
compressed.

Peat does for packed files what cat(1) does for ordinary files. The specified
files are unpacked and written to the standard output. Thus to view a
packed file named name.z use:

pcat name.z
or just:

pcat name
To make an unpacked copy, say mnn, of a packed file named name.z
(without destroying name.z) use the command:

pcat name >nnn

PACK(1) PACK (1)

Pcat returns the number of files it was unable to unpack. Failure may
occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name
ends in .z). If this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name,
and has the same access modes, access and modification dates, and owner
as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for
the following:

a file with the “unpacked’’ name already exists;
if the unpacked file cannot be created.

PASSWD(1) PASSWD (1)

NAME

passwd — change login password

SYNOPSIS

passwd name

DESCRIPTION

FILES

This command changes (or installs) a password associated with the login
name.

The program prompts for the old password (if any) and then for the new
one (twice). The caller must supply these. New passwords should be at
least four characters long if they use a sufficiently rich alphabet and at least
six characters long if monocase. Only the first eight characters of the pass-
word are significant.

Only the owner of the name or the super-user may change a password; the
owner must prove he knows the old password. Only the super-user can
create a null password.

The password file is not changed if the new password is the same as the old
password, or if the password has not ‘““aged’’ sufficiently; see passwd(4).

/etc/passwd

SEE ALSO

login(1), crypt(3C), passwd(4).

PASTE(1) PASTE(1)

NAME

paste — merge same lines of several files or subsequent lines of one file

SYNOPSIS

paste filel file2 ...
paste —dlist filel file2 ...
paste —s [—dlist] filel file2 ...

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of the given
input files filel, file2, etc. It treats each file as a column or columns of a
table and pastes them together horizontally (parallel merging). If you will,
it is the counterpart of cat(1) which concatenates vertically, i.c., one file
after the other. In the last form above, paste subsumes the function of an
older command with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is
to the standard output, so it can be used as the start of a pipe, or as a filter,
if — is used in place of a file name.

The meanings of the options are:

—d Without this option, the new-line characters of each but the last file
(or last line in case of the —s option) are replaced by a tab charac-
ter. This option allows replacing the tab character by one or more
alternate characters (see below).

list One or more characters immediately following —d replace the
default zab as the line concatenation character. The list is used cir-
cularly, i. e. when exhausted, it is reused. In parallel merging (i. e.
no —s option), the lines from the last file are always terminated
with a new-line character, not from the /ist. The list may contain
the special escape sequences: \m (new-line), \t (tab), \\
(backslash), and \0 (empty string, not a null character). Quoting
may be necessary, if characters have special meaning to the shell
(e.g. to get one backslash, use —d"™\\\").

—s Merge subsequent lines rather than one from each input file. Use
tab for concatenation, unless a list is specified with —d option.
Regardless of the list, the very last character of the file is forced to
be a new-line.

— May be used in place of any file name, to read a line from the stan-
dard input. (There is no prompting).

EXAMPLES
Is | paste —d"" — list directory in one column
Is | paste — — — — list directory in four columns
paste —s —d"\t\n" file combine pairs of lines into lines
SEE ALSO

grep(1), cut(1),
pr(1): pr —t —m... works similarly, but creates extra blanks, tabs and
new-lines for a nice page layout.

DIAGNOSTICS
line too long Output lines are restricted to 511 characters.
too many files Except for —s option, no more than 12 input files

may be specified.

PR(1) PR(1)

NAME
pr — print files

SYNOPSIS
pr [options] [files]

DESCRIPTION
Pr prints the named files on the standard output. If file is —, or if no files
are specified, the standard input is assumed. By default, the listing is
separated into pages, each headed by the page number, a date and time,
and the name of the file.

By default, columns are of equal width, separated by at least one space;
lines which do not fit are truncated. If the —s option is used, lines are not
truncated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

The below options may appear singly or be combined in any order:
+k Begin printing with page k (default is 1).

—k Produce k-column output (default is 1). The options —e and —i
are assumed for multi-column output.

—a Print multi-column output across the page.

—m Merge and print all files simultaneously, one per column (overrides
the —k, and —a options).

—d Double-space the output.

—eck Expand input tabs to character positions k+1, 2«k+1, 3+k+1, etc.
If k is O or is omitted, default tab settings at every eighth position
are assumed. Tab characters in the input are expanded into the
appropriate number of spaces. If ¢ (any non-digit character) is
given, it is treated as the input tab character (default for ¢ is the tab
character).

—ick In output, replace white space wherever possible by inserting tabs to
character positions k+1, 2#k+1, 3sk+1, etc. If k is O or is omit-
ted, default tab settings at every eighth position are assumed. If ¢
(any non-digit character) is given, it is treated as the output tab
character (default for ¢ is the tab character).

—nck Provide k-digit line numbering (default for k is 5). The number
occupies the first k+1 character positions of each column of nor-
mal output or each line of —m cutput. If ¢ (any non-digit charac-
ter) is given, it is appended to the line number to separate it from
whatever follows (default for ¢ is a tab). ’

—wk Set the width of a line to k character positions (default is 72 for
equal-width multi-column output, no limit otherwise).

—ok Offset each line by k character positions (default is 0). The
number of character positions per line is the sum of the width and
offset.

—lk Set the length of a page to k lines (default is 66).

—h Use the next argument as the header to be printed instead of the
file name.

—p Pause before beginning each page if the output is directed to a ter-
minal (pr will ring the bell at the terminal and wait for a carriage
return).

PR(1) PR(1)

—f Use form-feed character for new pages (default is to use a sequence
of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.
-t Print neither the five-line identifying header nor the five-line trailer

normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

—sc Separate columns by the single character ¢ instead of by the
appropriate number of spaces (default for ¢ is a tab).

EXAMPLES
Print filel and file2 as a double-spaced, three-column listing headed by

“file list”":
pr —3dh 'file list® filel file2
Write filel on file2, expanding tabs to columns 10, 19, 28, 37, ...:
pr —e9 —t <filel >file2
FILES
[dev/ttys to suspend messages

SEE ALSO
cat(1).

PROF(1) PROF(1)

NAME
prof — display profile data

SYNOPSIS
prof [—tcan] [—ox] [—g] [—z] [—h] [—s] [—m mdata] [prog]

DESCRIPTION
Prof interprets the profile file produced by the monitor(3C) function. The
symbol table in the object file prog (a.out by default) is read and correlated
with the profile file (mon.out by default). For each external text symbol
the percentage of time spent executing between the address of that symbol
and the address of the next is printed, together with the number of times
that function was called and the average number of milliseconds per call.

The mutually exclusive options t, ¢, a, and n determine the type of sorting
of the output lines:

—t Sort by decreasing percentage of total time (default).

—c Sort by decreasing number of calls.

—a Sort by increasing symbol address.

—n Sort lexically by symbol name.

The mutually exclusive options o and x specify the printing of the address
of each symbol monitored:

—0 Print each symbol address (in octal) along with the symbol name.

—Xx Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:
—g Include non-global symbols (static functions).

=z Include all symbols in the profile range (see monitor(3C)), even if
associated with zero number of calls and zero time.

—h Suppress the heading normally printed on the report. (This is use-
ful if the report is to be processed further.)

—s Print a summary of several of the monitoring parameters and statis-
tics on the standard error output.

—m mdata
Use file mdata instead of mon.out for profiling data.

For the number of calls to a function to be tallied, the —p option of cc(1)
must have been given when the file containing the function was compiled.
This option to the cc command also arranges for the object file to include a
special profiling start-up function that calls monitor(3C) at the beginning
and end of execution. It is the call to monitor at the end of execution that
causes the mon.out file to be written. Thus, only programs that call exit(2)
or return from main will cause the mon.out file to be produced.

FILES
mon.out for profile
a.out for namelist

SEE ALSO
cc(1), nm(1), exit(2), profil(2), monitor(3C).

PROF(1) PROF(1)

BUGS

There is a limit of 300 functions that may have call counters established
during program execution. If this limit is exceeded, other data will be
overwritten and the mon.out file will be corrupted. The number of call
counters used will be reported automatically by the prof command when-
ever the number exceeds 250.

PRS(1) PRS(1)

NAME
prs — print an SCCS file

SYNOPSIS
prs [—dldataspec]] [—r[SID]] [—e] [—1] [—a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an SCCS file (see
sccsfile(4)) in a user supplied format. If a directory is named, prs behaves
as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with
s.), and unreadable files are silently ignored. If a name of — is given, the
standard input is read; each line of the standard input is taken to be the
name of an SCCS file or directory to be processed; non-SCCS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter argu-
ments, and file names.

All the described keyletter arguments apply independently to each named
file:

—dldataspec] Used to specify the output data specification. The
dataspec is a string consisting of SCCS file data key-
words (see DATA KEYWORDS) interspersed with
optional user supplied text.

—r[sip] Used to specify the SCCS IDentification (SID) string
of a delta for which information is desired. If no SID
is specified, the SID of the most recently created delta
is assumed.

—e Requests information for all deltas created earlier
than and including the delta designated via the —r
keyletter.

-1 Requests information for all deltas created /ater than
and including the delta designated via the —r
keyletter.

—a Requests printing of information for both removed,
i.e., delta type = R, (see rmdel(1)) and existing, i.e.,
delta type = D, deltas. If the —a keyletter is not
specified, information for existing deltas only is pro-
vided.

DATA KEYWORDS
Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file (see scesfile(4)) have an associated data
keyword. There is no limit on the numter of times a data keyword may
appear in a dataspec.

The information printed by prs consists of: (1) the user supplied text; and
(2) appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword sub-
stitution is direct, or Multi-line (M), in which keyword substitution is fol-
lowed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab
is specified by \t and carriage return/new-line is specified by \n.

PRS(1)

Keyword
:Dt:
:DL:
:Li:

:Lu:
:DT:
H{
:R:

:LK:
:Q:
:M:

:CB:
:Ds:
:ND:

:BD:

:GB:
W:
sA:
:Z:

:PN:

TABLE 1. SCCS Files Data Keywords

Data Item

Delta information

Delta line statistics

Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type

SCCS 1D string (SID)
Release number

Level number

Branch number
Sequence number

Date Delta created

Year Delta created
Month Deita created

Day Delta created

Time Delta created

Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for deita
Comments for delta
User names

Flag list

Module type flag

MR validation flag

MR validation pgm name
Keyword error/warning flag
Branch flag

Joint edit flag

Locked releases

User defined keyword
Module name

Floor boundary

Ceiling boundary

Default SID

Null delta flag

File descriptive text

Body

Gotten body

A form of what(1) string
A form of what(1) string
what (1) string delimiter
SCCS file name

SCCS file path name

* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

File Section
Delta Table

User Names
Flags

Comments
Body

N/A
N/A
N/A
N/A
N/A

PRS(1)

Value
See below*
:Liz/:Ld:/:Lu:
nnnnn
nnnnn
nnnnn
DorR
:RecL:cB:.:S:
nnnn
nnnn
nnnn
nnnn
:Dy:/:Dm:/:Dd:
nn
nn
nn
:The::Tm:::Ts:
nn
nn
nn
logname
nnnn
nnnn
:Dn:/:Dx:/:Dg:
:DS: :DS:...
:DS: :DS:...
:DS: :DS:...
text
text
text
text
text
yes or no
text
yes or no
yes or no
yes or no
:R:...
text
text
:R:
:R:
:I
yes or no
text
text
text
sZaMa\t:I:
:Z::Y: :M: :Le:Z:
@#)
text
text

-

]
mmwmmgggmmmmmmmmmmmmmgzzzmmmmmwmmmmmmmmmmwmmmmwmmmmg

PRS(1) PRS(1)

EXAMPLES
prs —d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:
Users and/or user IDs for s.file are:
xyz
131
abc

prs —d"Newest delta for pgm :M:: :I: Created :D: By :P:" —r s.file
may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:

bl78-12345

bl79-54321

COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the “‘D” type. The only keyletter argument
allowed to be used with the special case is the —a keyletter.

FILES

SEE ALSO

admin(1), delta(l), get(1), help(1), sccsfile(4).

Source Code Control System User’s Guide in the UNIX System User’s Guide.
DIAGNOSTICS

Use help(1) for explanations.

PS(1)

NAME

PS(1)

ps — report process status

SYNOPSIS

ps [options]

DESCRIPTION

Ps prints certain information about active processes. Without options,
information is printed about processes associated with the current terminal.
Otherwise, the information that is displayed is controlled by the following

options:
—e
—d
—a

—f

o |
—c corefile

—8 swapdev

—n namelist

—t tist

—p plist

—u ulist

—g glist

Print information about all processes.

Print information about all processes, except process group
leaders.

Print information about all processes, except process group
leaders and processes not associated with a terminal.

Generate a full listing. (Normally, a short listing containing
only process ID, terminal (*‘tty’’) identifier, cumulative execu-
tion time, and the command name is printed.) See below for
meaning of columns in a full listing.

Generate a long listing. See below.

Use the file corefile in place of /dev/mem.

Use the file swapdev in place of /dev/swap. This is useful
when examining a corefile; a swapdev of /dev/mull will cause
the user block to be zeroed out.

The argument will be taken as the name of an alternate namel-
ist (/unix is the default).

Restrict listing to data about the processes associated with the
terminals given in #list, where fist can be in one of two forms:
a list of terminal identifiers separated from one another by a
comma, or a list of terminal identifiers enclosed in double
quotes and separated from one another by a comma and/or
one or more spaces.

Restrict listing to data about processes whose process ID
numbers are given in plist, where plist is in the same format as
tlist.

Restrict listing to data about processes whose user ID numbers
or login names are given in ulist, where wlist is in the same
format as #list. In the listing, the numerical user ID will be
printed unless the —f option is used, in which case the login
name will be printed.

Restrict listing to data about processes whose process groups
are given in glist, where glist is a list of process group leaders
and is in the same format as rlist.

The column headings and the meaning of the columns in a ps listing are
given below; the letters f and 1 indicate the option (full or long) that causes
the corresponding heading to appear; all means that the heading always
appears. Note that these two options only determine what information is
provided for a process; they do not determine which processes will be listed.

F (1) Flags (octal and additive) associated with the process:

01 in core;

02 system process;

04 locked in core (e.g., for physical 1/0);
10 being swapped;

20 being traced by another process;

PS(1)

S)
UID (¢(A)]
PID (all)
PPID (&)
C ()
STIME ()
PRI)
NI)
ADDR)
Sz)
WCHAN (1)
TTY (all)
TIME (all)
CMD (all)

PS(1)

40 another tracing flag.
The state of the process:
non-existent;
sleeping;
waiting;
running;
intermediate;
terminated;
stopped;
growing.
The user ID number of the process owner; the login name
is printed under the —f option. ’
The process ID of the process; it is possible to kill a pro-
cess if you know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
Starting time of the process.
The priority of the process; higher numbers mean lower
priority.
Nice value; used in priority computation.
The memory address of the process (a pointer to the seg-
ment table array on the 3B20S), if resident; otherwise,
the disk address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if
blank, the process is running.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name; the full command name and its
arguments are printed under the —f option.

XHN—mgno

A process that has exited and has a parent, but has not yet been waited for
by the parent, is marked <defunct>>,

Under the —f option, ps tries to determine the command name and argu-
ments given when the process was created by examining memory or the
swap area. Failing this, the command name, as it would appear without the
—f option, is printed in square brackets.

/unix system namelist.

/dev/swap the default swap device.

/etc/passwd supplies UID information.

/etc/ps_data internal data structure.

[dev searched to find terminal (*'tty’’) names.

FILES

/dev/mem memory.
SEE ALSO

kill(1), nice(1).
BUGS

Things can change while ps is running; the picture it gives is only a close
approximation to reality. Some data printed for defunct processes are

irrelevant.

PTX(1)

NAME

PTX(1)

ptx — permuted index

SYNOPSIS

ptx [options] [input [output]]

DESCRIPTION

FILES

Pix generates the file output that can be processed with a text formatter to
produce a permuted index of file input (standard input and output default).
It has three phases: the first does the permutation, generating one line for
each keyword in an input line. The keyword is rotated to the front. The
permuted file is then sorted. Finally, the sorted lines are rotated so the
keyword comes at the middie of each line. Ptx output is in the form:

.Xx "tail” "before keyword" "keyword and after" *head"

where .xx is assumed to be an nroff or troff (1) macro provided by the user,
or provided by the mptx(5) macro package. The before keyword and key-
word and after fields incorporate as much of the line as will fit around the
keyword when it is printed. Tail and head, at least one of which is always
the empty string, are wrapped-around pieces small enough to fit in the
unused space at the opposite end of the line.

The following options can be applied:

—f Fold upper and lower case letters for sorting.

—t Prepare the output for the phototypesetter.

—wn Use the next argument, n, as the length of the output line.
The default line length is 72 characters for nroff and 100 for
troff.

—gn Use the next argument, n, as the number of characters that prx

will reserve in its calculations for each gap among the four
parts of the line as finally printed. The default gap is 3.

—oonly Use as keywords only the words given in the only file.

—iignore Do not use as keywords any words given in the ignore file. If
the —i and —o options are missing, use /usr/lib/eign as the
ignore file.

—b break Use the characters in the break file to separate words. Tab,
new-line, and space characters are always used as break charac-
ters.

~r Take any leading non-blank characters of each input line to be
a reference identifier (as to a page or chapter), separate from
the text of the line. Attach that identifier as a Sth field on each
output line.

The index for this manual was generated using ptx.

/bin/sort
Jusr/lib/eign
/Just/lib/tmac/tmac.ptx

SEE ALSO

BUGS

nroff(1), troff(1), mm(5), mptx(5).

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes () are botched, because ptx uses that character
internally.

PWD(1) PWD(1)

NAME
pwd — working directory name
SYNOPSIS
pwd
DESCRIPTION
Pwd prints the path name of the working (current) directory.
SEE ALSO
cd(1).
DIAGNOSTICS

““Cannot open ..”” and “‘Read error in ..”’ indicate possible file system trou-
ble and should be referred to a UNIX programming counselor.

RATFOR(1) RATFOR(1)

NAME

ratfor — rational Fortran dialect
SYNOPSIS

ratfor [options] [files]
DESCRIPTION

Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran.
Ratfor provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {
case integer: statement

[default:] statement

loops:
while (condition) statement
for (expression; condition; expression) statement 1
do limits statement
repeat statement [until (condition)]
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

include:
include file

_ The option —h causes quoted strings to be turned into 27H constructs.
The —C option copies comments to the output and attempts to format it
neatly. Normally, continuation lines are marked with a & in column 1; the
option —6x makes the continuation character x and places it in column 6.

Ratfor is best used with f77(1).
SEE ALSO
efl(1), £77(1). .
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

REGCMP(1) REGCMP(1)

NAME

regcmp — regular expression compile
SYNOPSIS

regemp [—] files
DESCRIPTION

Regemp, in most cases, precludes the need for calling regemp(3X) from C
programs. This saves on both execution time and program size. The com-
mand regcmp compiles the regular expressions in file and places the outpit
in file.i. If the — option is used, the output will be placed in file.c. The
format of entries in file is a name (C variable) followed by one or more
blanks followed by a regular expression enclosed in double quotes. The
output of regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included into C
programs, or file.c files may be compiled and later loaded. In the C pro-
gram which uses the regemp output, regex(abc,line) will apply the regular
expression named abe to line. Diagnostics are self-explanatory.

EXAMPLES
name "([A—Za—z][A—Za—20—9_]+)$0"

telno "\({0,1}([2—9][011[1—9])$0\){0,1} »*
"([2—9][o—91{2hs1[—]{0,1}"
"(l0—91{4})$2"

In the C program that uses the regemp output,
regex(telno, line, area, exch, rest)
will apply the regular expression named telno to line.

SEE ALSO
regemp(3X).

RJESTAT(1C) RJESTAT(1C)

NAME

rjestat — RJE status report and interactive status console
SYNOPSIS

rjestat [host 1... [—shost]| [—chost emd]...
DESCRIPTION

Rjestat provides a method of determining the status of an RIJE link and of
simulating an IBM remote console (with UNIX features added). When
invoked with no arguments, rjestat reports the current status of all the RJE
links connected to to the UNIX system. The options are:

host Print the status of the line to host. Host is the pseudonym for
a particular IBM system. It can be any name that corresponds
to one in the first column of the RJE configuration file.

—shost After all the arguments have been processed, start an interac-
tive status console to host.

—chost cmd
Interpret cmd as if it were entered in status console mode to
host. See below for the proper format of cmd.

In status console mode, rjestat prompts with the host pseudonym followed
by : whenever it is ready to accept a command. Commands are terminated
with a new-line. A line that begins with ! is sent to the UNIX shell for exe-
cution. A line that begins with the letter q terminates rjestat. All other
input lines are assumed to have the form:

ibmemd | redirect

Ibmemd is any IBM JES or HASP command. Only the super-user or rje login
can send commands other than display or inquiry commands. Redirect is a
pipeline or a redirection to a file (e.g., ““>> file’’ or *“ | grep ...""). The IBM
response is written to the pipeline or file. If redirect is not present, the
response is written to the standard output of rjestat.

An interrupt signal (DEL or BREAK) will cancel the command in progress
and cause rjestat to return to the command input mode.

EXAMPLE

The following command reports the status of all the card readers attached
to host A, remote 5. JES2 is assumed.

rjestat —cA ‘$du,rmt5 | grep RD’

DIAGNOSTICS
The message “‘RJE error: ...”" indicates that rjestat found an inconsistency in
the RJE system. This may be transient but should be reported to the site
administrator.

FILES
/usr/rje/lines RJE configuration file

resp host response file that exists in the RJE subsystem directory
(e.g., /usr/rjel).
SEE ALSO
send(1C).
OS/VS2 HASP II Version 4 Operator’s Guide, IBM SRL # GC27-6993.
Operator’s Library: OS/VS2 Reference (JES2), IBM SRL # GC38-0210.

RM(1) RM(1)

NAME

rm, rmdir — remove files or directories
SYNOPSIS

rm [—fri] file ...

rmdir dir ...
DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry
was the last link to the file, the file is destroyed. Removal of a file requires
write permission in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is a terminal, its
permissions are printed and a line is read from the standard input. If that
line begins with y the file is deleted, otherwise the file remains. No ques-
tions are asked when the —f option is given or if the standard input is not
a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument —r has been used. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

If the —i (interactive) option is in effect, rm asks whether to delete each

file, and, under —r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.
SEE ALSO

unlink(2).

DIAGNOSTICS .
Generally self-explanatory. It is forbidden to remove the file .. merely to
avoid the antisocial consequences of inadvertently doing something like:

rm—r.s

RMDEL(1) RMDEL(1)

NAME

rmdel — remove a delta from an SCCS file

SYNOPSIS

rmdel —rSID files

DESCRIPTION

Rmdel removes the delta specified by the SID from each named SCCS file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named SCCS file. In addition, the
specified must not be that of a version being edited for the purpose of mak-
ing a delta (i. e., if a p-file (see get(1)) exists for the named SCCS file, the
specified must not appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User’s Guide. Simply stated, they are either (1)
if you make a delta you can remove it; or (2) if you own the file and direc-
tory you can remove a delta.

FILES
x-file (see delta(1))
z-file (see delta(1))
SEE ALSO

delta(1), get(1), help(1), prs(1), sccsfile(4).
Source Code Control System User’s Guide in the UNIX System User's Guide.

DIAGNOSTICS

Use help(1) for explanations.

SACT(1)

NAME

SACT(1)

sact — print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION

Sact informs the user of any impending deltas to a named SCCS file. This
situation occurs when get(1) with the —e option has been previously exe-
cuted without a subsequent execution cof delta(1). If a directory is named
on the command line, sact behaves as though each file in the directory
were specified as a named file, except that non-SCCS files and unreadable
files are silently ignored. If a name of — is given, the standard input is
read with each line being taken as the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1

Field 2
Field 3

Field 4
Field 5
SEE ALSO

specifies the SID of a delta that currently exists in the
SCCS file to which changes will be made to make the
new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the
delta (i.e. executed a get for editing).

contains the date that get —e was executed.
contains the time that get —e was executed.

delta(1), get(1), unget(1).

DIAGNOSTICS

Use help(1) for explanations.

SADP(1) SADP(1)

NAME

sadp — disk access profiler
SYNOPSIS

sadp [—th] [—d device[—drive]] s [n]
DESCRIPTION

Sadp reports disk access location and seck distance, in tabular or histogram
form. It samples disk activity once every second during an interval of s
seconds. This is done repeatedly if n is specified. Cylinder usage and disk
distance are recorded in units of eight cylinders.

Valid values of device are rp06, rm05, and disk. Drive specifies the disk
drives and it may be:

a drive number in the range supported by device,

two numbers separated by a minus (indicating an inclusive range),
or

a list of drive numbers separated by commas.

Up to eight disk drives may be reported. The —d option may be omitted,
if only one device is present.

The —t flag causes the data to be reported in tabular form. The —h flag
produces a histogram on the printer of the data. Default is —t.
EXAMPLE
The command:
sadp —d rp06 —0 900 4
will generate 4 tabular reports, each describing cylinder usage and seek dis-
tance of rp06 disk drive 0 during a 15 minute interval.

FILES
/dev/kmem

SAG(1G) SAG(1G)

NAME

sag — system activity graph

SYNOPSIS

sag [options]

DESCRIPTION

Sag graphically displays the system activity data stored in a binary data file
by a previous sar(1) run. Any of the sar data items may be plotted singly,
or in combination; as cross plots, or versus time. Simple arithmetic combi-
nations of data may be specified. Sag invokes sar and finds the desired data
by string-matching the data column header (run sar to see what’s avail-
able). These options are passed thru to sar:

—s time Select data later than time in the form hh[:mm]. Default is
08:00.

—e time Select data up to time. Default is 18:00.
—isec Select data at intervals as close as possible to sec seconds.

—ffile Use file as the data source for ser. Default is the current daily
data file /usr/adm/sa/sadd.

Other options:

—T term Produce output suitable for terminal ferm. See tplot(1G) for
known terminals. If term is vpr, output is processed by vpr —p
and queued to a Versatec printer. Default for term is STERM.

—X Sspec X axis specification with spec in the form:
"name [op name]...[lo hi]"

—y spec Yy axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report,
with an optional device name in square brackets, e.g., r-+w/s[dsk—1], or
an integer value. Op is + — ¢ or / surrounded by blanks. Up to five
names may be specified. Parentheses are not recognized. Contrary to cus-
tom, + and — have precedence over * and /. Evaluation is left to
rightt Thus A / A + B * 100 is evaluated (A/(A-+B))*100, and
A+B/C+ Dis (A+B)/(C+D). Lo and hi are optional numeric
scale limits. If unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to
5 spec’s separated by ; may be given for —y. Enclose the —x and —y
arguments in ** if blanks or \<<CR> are included. The —y default is:

~y "“%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES

FILES

To see today’s CPU utilization:
sag
To see activity over 15 minutes of all disk drives:
TS="date +%H:%M"
sar —o tempfile 60 15
TE="date +%H:%M"
sag —f tempfile —s $TS —e $TE —y "r+w/s[dsk]"

Jusr/adm/sa/sadd daily data file for day dd.

SEE ALSO

sar(1), tplot(1G).

SAR(1) SAR(1)

NAME
sar — system activity reporter

SYNOPSIS
sar [—ubdycwaqvmA] [—o file] t [n]

sar [—ubdycwaqvmA] [—s time] [—e time] [—i sec] [—f file]

DESCRIPTION

Sar, in the first instance, samples cumulative activity counters in the
operating system at n intervals of ¢ seconds. If the —o option is specified, it
saves the samples in file in binary format. The default value of nis 1. In
the second instance, with no sampling interval specified, sar extracts data
from a previously recorded file, either the one specified by —f option or, by
default, the standard system activity daily data file /usr/adm/sa/sadd for
the current day dd. The starting and ending times of the report can be
bounded via the —s and —e fime arguments of the form hh[:mm]:ss]]. The
—i option selects records at sec second intervals. Otherwise, all intervals
found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

—u Report CPU utilization (the default):
%usr, %sys, %wio, %idle — portion of time running in user mode,
running in system mode, idle with some process waiting for block I/0,
and otherwise idle.
~b Report buffer activity:
bread/s, bwrit/s — transfers per second of data between system
buffers and disk or other block devices;
Iread/s, lwrit/s — accesses of system buffers;
%rcache, %wcache — cache hit ratios, ¢. g., 1 — bread/Iread;
pread/s, pwrit/s — transfers via raw (physical) device mechanism.
—d Report activity for each block device, e. g., disk or tape drive:
%busy, avque — portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s — number of data transfers from or to device, number
of bytes transferred in 512 byte units;
avwait, avserv — average time in ms. that transfer requests wait idly
on queue, and average time to be serviced (which for disks includes
seek, rotational latency and data transfer times).
—y Report TTY device activity:
rawch/s, canch/s, outch/s — input character rate, input character rate
processed by canon, output character rate;
rcevin/s, xmtin/s, mdmin/s — receive, transmit and modem interrupt
' rates.
—c¢ Report system calls:
scall/s — system calls of all types;
sread/s, swrit/s, fork/s, exec/s — specific system calls;
rchar/s, wchar/s — characters transferred by read and write system

calls.
—w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s — number of transfers and

number of 512 byte units transferred for swapins (including initial
loading of some programs) and swapouts;
pswch/s — process switches.

—a Report use of file access system routines:
iget/s, nameifs, dirblk/s.

—q Report average queue length while occupied, and % of time occupied:
rung-sz, %runocc — run queue of processes in memory and runnable;

-1-

1

SAR(1) SAR(1)

swpq-sz, %swpocc — swap queue of processes swapped out but ready

to run.
—v Report status of text, process, inode and file tables:
text-sz, proc-sz, inod-sz, file-sz — entries/size for ecach table,
evaluated once at sampling point;
text-ov, proc-ov, inod-ov, file-ov — overflows occurring between

sampling points. :
—m Report message and semaphore activities:
msg/s, sema/s — primitives per second.
—A Report all data. Equivalent to —udgbwecayvm.
EXAMPLES
To see today’s CPU activity so far:
sar
To watch CPU activity evolve for 10 minutes and save data:
sar —o temp 60 10
To later review disk and tape activity from that period:
sar —d —f temp
FILES
Jusr/adm/sa/sadd daily data file, where dd are digits representing the day
of the month.
SEE ALSO
sag(1G).
sar(1M) in the UNIX System Administrator’s Manual.

SCAT(1) SCAT(1)

NAME

scat — concatenate and print files on synchronous printer
SYNOPSIS

scat [—u][—s] file .
DESCRIPTION

Scat reads each file in sequence and writes it on the standard output, which
is assumed to be a synchronous printer device. Thus:

scat file > /dev/sp0
prints the file, and:
cat filel file2 > /dev/sp0
concatenates filel and file2 and places the result on the printer.

If no input file is given, or if the argument — is encountered, scat reads
from the standard input file. Output is buffered in 512-byte blocks unless
the —u option is specified. The —s option makes scaf silent about non-
existent files.

SEE ALSO
cp(1), pr(1), stty(1).

WARNINGS
Scat uses synchronous printers in line mode with the wrap around option
enabled. This means that the maximum line length is 79 characters; longer

lines will be wrapped back to the beginning of the next line each time the
end of a printer line is reached.

SCC(1) (DEC only) SCC(1)

NAME

scc — C compiler for stand-alone programs

SYNOPSIS

sce [+[1ib]] [option] .. [file] ..

DESCRIPTION

Scc prepares the named files for stand-alone execution. The option and file
arguments may be anything that can legally be used with the cc command;
it should be noted, though, that the —-p (profiling) option, as well as any
object module that contains system calls, will cause the executable not to
run.

Scc defines the compiler constant, STANDALONE, so that sections of C
programs may be compiled conditionally when the executable will be run
stand-alone.

The first argument specifies an auxiliary library that defines the device
configuration of the PDP-11 computer for which the stand-alone executable
is being prepared. Lib may be one of the following:

A RP04/05/06 disk and TU16 magnetic tape, or equivalent on the
PDP-11 plus RMO5 and RM80 disks, and TU78 and TSI1 tapes, or
equivalent on the VAX

B RK11/RKOS disk, RP11/RPO3 disk, and TM11/TU16 magnetic tape,
or equivalent

If no +Ilib argument is specified, +A is assumed. If the + argument is
specified alone, no configuration library is loaded unless the user supplies
his own. :

FILES
/lib/ert2.0 execution start-off
Jusr/lib/lib2.a stand-alone library
[ust/lib/lib2A.a +A configuration library (PDP-11 only)
[usr/lib/lib2B.a +B configuration library (PDP-11 only)
SEE ALSO

cc(1), 1d(1), a.out(4).

SCCSDIFF(1) SCCSDIFF(1)

NAME

sccsdiff — compare two versions of an SCCS file
SYNOPSIS

scesdiff —rSID1 —rSID2 [—p) [—sn] files
DESCRIPTION

Secsdiff compares two versions of an SCCS file and generates the differences
between the two versions. Any number of SCCS files may be specified, but
arguments apply to all files.

—1SID? SID1 and SID2 specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff(1) in the

order given.
-p pipe output for each file through pr(1).
—sn n is the file segment size that bdiff’ will pass to diff(1).

This is useful when diff fails due to a high system load.
FILES

SEE ALSO

bdiff (1), get(1), help(1), pr(1).

Source Code Control System User's Guide UNIX System User’s Guide.
DIAGNOSTICS

“file: No differences” If the two versions are the same.
Use help(1) for explanations.

SDB(1) (not on PDP-11) SDB(1)

NAME
sdb — symbolic debugger

SYNOPSIS
sdb [—w] [—W] [objfil [corfil [directory]]]

DESCRIPTION
Sdb is a symbolic debugger which can be used with C and F77 programs. It
may be used to examine their files and to provide a controlled environment
for their execution.

Objfil is normally an executable program file which has been compiled with
the —g (debug) option; if it has not been compiled with the —g option, or
if it is not an executable file, the symbolic capabilities of sdb will be limited,
but the file can still be examined, and the program debugged. The default
for objfil is a.out. Corfil is assumed to be a core image file produced after
executing objfil; the default for corfil is core. The core file need not be
present. A — in place of corfil will force sdb to ignore any core image file.
Source file names in objfil are interpreted relative to directory.

It is useful to know that at any time there is a current line and current file.
If corfil exists then they are initially set to the line and file containing the
source statement at which the process terminated or stopped. Otherwise,
they are set to the first line in main(). The current line and file may be
changed with the source file examination commands.

Normally, warnings are provided if the source files used in producing objfil
cannot be found, or are newer than objfil. This checking feature and the
accompanying warnings may be disabled by the use of the —W flag.

Names of variables are written just as they are in C or F77. Variables local
to a procedure may be accessed using the form procedure:variable. If no
procedure name is given, the procedure containing the current line is used
by default. F77 common variables are regarded as local symbols by sdb, as
the symbolic names are local to procedures.

It is also possible to refer to structure members as variable .member, pointers
to structure members as variable—>>member and array elements as
variable{number]. Pointers may be dereferenced by using the form
pointer[0]. Combinations of these forms may also be used. A number may
be used in place of a structure variable name, in which case the number is
viewed as the address of the structure, and the template used for the struc-
ture is that of the last structure referenced by sdb. An unqualified structure
variable may also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will display the values
of all the elements of a structure when it is requested to display a structure.
An exception to this interpretation occurs when displaying variable
addresses. An entire structure does have an address, and it is this value
sdb displays, not the addresses of individual elements.

Elements of a multidimensional array may be referenced as
variable[numberllnumber)..., or as variable[number,number,...]. In place of
number, the form number ;number may be used to indicate a range of values,
* may be used to indicate all legitimate values for that subscript, or sub-
scripts may be omitted entirely if they are the last subscripts and the full
range of values is desired. As with structures, sdb displays all the values of
an array or section of an array if trailing subscripts are omitted. It displays
only the address of the array itself or section specified by the user if sub-
scripts are omitted. A multidimensional parameter in an F77 program can-
not be displayed as an array, but it is actually a pointer, whose value is the
location of the array. The array itself can be accessed symbolically from the

-1-

SDB(1) (not on PDP-11) SDB(1)

calling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in nam-
ing variables may be used. Number is the occurrence of the specified pro-
cedure on the stack, counting the top, or most current, as the first. If no
procedure is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb all addresses refer to the executing
program; otherwise they refer to objfil or corfil. An initial argument of —w
permits overwriting locations in objfil.
Addresses.
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri-
ples (b1, el, f1) and (b2, €2, f2) and the file address corresponding to a
written address is calculated as follows:

bladdress<el

file address =address +f1— bl
otherwise

b2address<e2

file address=address +f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for pro-
grams with separated I and D space) the two segments for a file may over-
lap.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, bl is set to
0, el is set to the maximum file size and fI is set to O; in this way the
whole file can be examined with no address translation.

In order for sdb to be used on large files all appropriate values are kept as
signed 32 bit integers.

Commands.
The commands for examining data in the program are:

t Print a stack trace of the terminated or stopped program.
T Print the top line of the stack trace.

variable [Im
Print the value of variable according to length ! and format m. If]
and m are omitted, sdb chooses a length and format suitable for the
variable’s type as declared in the program. The length specifiers are:

b one byte

h two bytes (haif word)
1 four bytes (long word)
number

string length for formats s and a

-2-

SDB(1) (not on PDP-11) SDB(1)

Legal values for m are:
character
decimal
decimal, unsigned
octal
hexadecimal
32 bit single precision floating point
64 bit double precision floating point
Assume variable is a string pointer and print charac-
ters starting at the address pointed to by the variable.
Print characters starting at the variable’s address.
This format may not be used with register variables.

] pointer to procedure

i disassemble machine language instruction with

addresses printed symbolically.
I disassemble machine language instruction with
addresses just printed numerically.

The length specifiers are only effective with the formats d, u, o and x.
If one of these formats is specified and / is omitted, the length
defaults to the word length of the host machine; 4 for the 3B20S and
VAX-11/780. If a numeric length specifier is used for the s or a com-
mand then that many characters are printed. Otherwise successive
characters are printed until either a null byte is reached or 128 charac-
ters are printed. The last variable may be redisplayed with the com-
mand ./.

o MO E AN

The sh(1) metacharacters * and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, both variables local to the current procedure
and global variables are matched, while if a procedure name is
specified then only variables local to that procedure are matched. To
match only global variables, the form :pattern is used.

linenumber ?lm

variable:?Im
"Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the format Im.
The default format is ’i‘.

variable =Im

linenumber =Im

number=Iim
Print the address of variable or linenumber, or the value of mumber in
the format specified by Im. If no format is given, then Ix is used.
The last variant of this command provides a convenient way to con-
vert between decimal, octal and hexadecimal.

variable!value

Set variable to the given value. The value may be a number, charac-
ter constant or a variable. The value must be well defined; expres-
sions which produce more than one value, such as structures, are not
allowed. Character constants are denoted ’character. Numbers are
viewed as integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers are viewed:
as integers. The variable may be an expression which indicates more
than one variable, such as an array or structure name. If the address
of a variable is given, it is regarded as the address of a variable of
type int. C conventions are used in performing any type conversions
necessary to perform the indicated assignment.

-3-

SDB(!) (not on PDP-11) SDB(1)

X Print the machine registers and the current machine language instruc-
tion.

X Print the current machine language instruction.
The commands for examining source files are:

e procedure

e file-name

e directory/

e directory file-name
The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The
default is the current working directory. The latter two forms change
the value of directory. If no procedure, file name, or directory is
given, the current procedure and file names are reported.

[regular expression /
Search forward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing / may be elided.

2regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing ? may be elided.

Print the current line.

z Print the current line followed by the next 9 lines. Set the current
line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count +
Advance the current line by count lines. Print the new current line.

count—
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args

count R
Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin-
ning with < or > causes redirection for the standard input or output
respectively. If count is given, it specifies the number of breakpoints
to be ignored.

linenumber ¢ count

linenumber C count
Continue after a breakpoint or interrupt. If count is given, it specifies
the number of breakpoints to be ignored. C continues with the signal
which caused the program to stop and c ignores it. If a linenumber is
specified then a temporary breakpoint is placed at the line and execu-
tion is continued. The breakpoint is deleted when the command
finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line.

-4-

SDB(1) (not on PDP-11) SDB(1)

If count is given, it specifies the number of breakpoints to be ignored.

8 count

S count
Single step. Run the program through count lines. If no count is
given then the program is run for one line. S is equivalent to s
except it steps through subroutine calls.

I Single step by one machine language instruction. I steps with the sig-
nal which caused the program to stop and i ignores it.

variable$m count

address:m count
Single step (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is
done by software, it can be very slow.

level v
Toggle verbose mode, for use when single stepping with S, s or m. If
level is omitted, then just the current source file and/or subroutine
name is printed when either changes. If level is 1 or greater, each C
source line is printed before it is executed; if level is 2 or greater, each
assembler statement is also printed. A v turns verbose mode off if it
is on for any level.

k Kill the debugged program.

procedure(argl,arg2,...)

procedure(argl,arg2,...)/m
Execute the named procedure with the given arguments. Arguments
can be integer, character or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d.

linenumber b commands

Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g. “‘proc:’’), a breakpoint is placed at the first line
in the procedure even if it was not compiled with the debug flag. If
no linenumber is given, a breakpoint is placed at the current line. If
no commands are given then execution stops just before the break-
point and control is returned to sdb. Otherwise the commands are
executed when the breakpoint is encountered and execution contin-
ues. Multiple commands are specified by separating them with semi-
colons. If k is used as a command to execute at a breakpoint, control
returns to sdb, instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given then
the breakpoints are deleted interactively: Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d then the breakpoint is deleted.

D Delete all breakpoints.
1 Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number, the command

-5-

SDB(1) (not on PDP-11) SDB(1)

effectively does a linenumber b 1. If linenumber is of the form proc:,
the command effectively does a proc: b T.

Miscellaneous commands:

Ycommand
The command is interpreted by sh(1).

new-line

If the previous command printed a source line then advance the
current line by 1 line and print the new current line. If the previous
command displayed a core location then display the next core location.

control-D
Scroll. Print the next 10 lines of instructions, source or data depend-
ing on which was printed last.

< filename
Read commands from filename until the end of file is reached, and
then continue to accept commands from standard input. When sdb is
told to display a variable by a command in such a file, the variable
name is displayed along with the value. This command may not be
nested; < may not appear as a command in a file.

M Print the address maps.
M[?2/lslbef

New values for the address map are recorded. The arguments ? and
/ specify the text and data maps respectively. The first segment,
(b1 ,el f1) is changed unless * is specified, in which case the second
segment (b2,e2f2) of the mapping is changed. If fewer than three
values are given, the remaining map parameters are left unchanged.
* string

Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

FILES
a.out
core
SEE ALSO
a.out(4), core(4).
WARNINGS
On the VAX-11/780, C variables are identified internally with an underscore
prepended. User variables which differ by only an initial underscore cannot
be distinguished, as sdb recognizes both internal and external names.
Data which are stored in text sections are indistinguishable from functions.
BUGS

If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a pro-
cedure which formats data from a core image.

SDB(1) (not on PDP-11) SDB(1)

The default type for printing F77 parameters is incorrect. Their address is
printed instead of their value.

Tracebacks containing F77 subprograms with multiple entry points may
print too many arguments in the wrong order, but their values are correct.

The range of an F77 array subscript is assumed to be I to n, where n is the
dimension corresponding to that subscript. This is only significant when
the user omits a subscript, or uses *, to indicate the full range. There is no
problem in general with arrays having subscripts whose lower bounds are
not 1.

On the 3B20S there is no hardware trace mode and single stepping is imple-
mented by setting pseudo breakpoints where possible.

The entry point to an optimized function cannot be found on the 3B20S.
Setting a breakpoint at the beginning of an optimized function may cause
the middle of some instruction within the function to be overwritten. This
problem can be circumvented by disassembling the first few instructions of
the function, and manually setting a breakpoint at the first instruction after
the stack pointer is adjusted.

SDIFF(1) SDIFF(1)

NAME

sdiff — side-by-side difference program
SYNOPSIS

sdiff [options ...] filel file2
DESCRIPTION

Sdiff uses the output of diff (1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical, a << in the
gutter if the line only exists in filel, a > in the gutter if the line only exists
in file2, and a | for lines that are different.

For example:

x

a a

b <

Cc <

d d

c
The following options exist:
—wn Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-1 Only print the left side of any lines that are identical.
—s Do not print identical lines.

—o output Use the next argument, output, as the name of a third file that
is created as a user controlled merging of filel and file2. Ident-
ical lines of filel and file2 are copied to output. Sets of
differences, as produced by diff(1), are printed; where a set of
differences share a common gutter character. After printing
each set of differences, sdiff prompts the user with a % and
waits for one of the following user-typed commands:

1 append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical
lines

v turn off silent mode

el call the editor with the left column

er call the editor with the right column

e call the editor with the concatenation of left
and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on
the end of the output file.

SEE ALSO
diff(1), ed(1).

SE(1) SE(1)

NAME
se — screen editor for video terminals

SYNOPSIS
se [—Tlterm]] [—ifile] [—ofile] [—s] [file]

DESCRIPTION
Se is an interactive screen editor for use on asynchronous, ASCH CRT ter-
minals. If the file argument is given, se will read the file into its buffer so
that it can be edited. If no file is specified, the buffer will be empty and
there will be no current file name.

Options to se are:

-T Causes se to print a list of the terminal types it understands and
exit immediately, ignoring all other options.

—Tterm Specifies the terminal type being used. If no —T option is
specified, se will check the environment variables SETERM and
TERM (in that order) to determine the terminal type specified
(the first non-null value it finds is the one used). If no termi-
nal type is specified or if the terminal type specified is unknown
to se, se will print a diagnostic followed by a list of terminal
types it understands and then exit.

—ifile Causes a sequence of se commands to be read from the named
file. The file is read to end of file. If more than one —i option
is given, the files are read in the order specified on the com-
mand line. When all —i options have been processed, com-
mands are read from the standard input. A maximum of five
files may be specified.

—ofile Causes a copy of all commands given to this invocation of se to
be placed in file. This file may then be used with the —i
option.

—s Reduce the number of messages printed on the status line.

This is intended for the expert user.

Other than the order of multiple —i options, the order of the options and
the filename on the command line is not important.

During editing, se displays the contents of the file on the screen. As the
file is edited, the screen is updated to reflect changes made in the file con-
tents. If the entire contents of the file will not fit on the screen, se displays
a portion of it. The limits of the file are indicated on the screen by the TOP
OF FILE and BOTTOM OF FILE messages.

The top line of the display is used for a status line. The status line contains
(from left to right): the last command entered (or being entered), error
messages and the name of the file being edited.

The current position in the file is indicated by the position of the cursor on

- the screen. The cursor can be moved to different file positions by cursor
movement commands or find commands. The cursor is not restricted to
text already present. If text is inserted or overwritten to the right of the
end of the line, the line will be padded with blanks.

Se operates in command mode: each character typed is interpreted as part
of an se command. As each command is recognized, the appropriate action
is performed. To add new text to the file, the insert command is used.
During insert, characters typed are interpreted as text to be added to the
file. The text is added before the current cursor position. For example, if
the cursor is positioned on the first r in the word edr-formatter and the

-1-

SE(1) SE(1)

insert command is given, typing ito and ending the insert yields editor-
formatter.

COMMAND SYNTAX
Most se commands are of the form:

[count] [text-identifier] command

The count is an optional field, an integer between 1 and 32,767. The
default value for count is one. The optional text-identifier specifies the block
of text of interest. Valid text-identifiers are described below; the default
value for text-identifiers is dependent on the command. If more than one
count or text-identifier is used, all but the last will be ignored. Commands are
specified below.

TEXT IDENTIFIERS
The valid text-identifiers (text-id) are:

Text-id Text Represented

. Character

w Word

F File

1 Line

S (ors) Screen 1
e Previously defined region

/ Region found by last find command

In general, a text-id block is identified as that in which the cursor is posi-
tioned. A fext-id may also be identified by a cursor positioned on the white
space following the text-id.

CURSOR KEYS
The cursor keys on the terminal keyboard are used to move the cursor
around the screen and through the file. For terminals with no cursor keys,
the ctrl+z, ctrl+x, ctrl+¢, ctrl+v keys may be used instead of —, |, T
and — respectively.

NOTATION
In the list of se commands below, the following notations apply:

[] items within brackets are optional

{1 one of the items within the braces must be used
text-id identifies a block of text

chars any string of characters

position-cursor a sequence of cursor-moves or find commands (see below)

TEXT COMMANDS :
Commands longer than one character (for example, READ) may be
invoked by typing an unique initial substring followed by a RETURN (new-
line). If the substring is not unique the RETURN is ignored. The BREAK
key causes se to stop its current action and return to its command level.

cursor moves
[count] cursor key Move the cursor count lines up () or down
(]) or count characters to the left (—) or the
right (—). Screen scroll will occur if the top or
bottom of screen is encountered. The cursor
will wrap at line beginning and end as
expected.

[count] [text-id] cursor key Move the cursor the specified amount of text-id
blocks. If the fext-id is character (.) (default),

-2-

SE(1)

space-bar
RETURN
TAB

HOME

Define Region

SE(1)

the action is the same as for plain cursor key
use (see above). For all other ftext-ids, —
means beginning of, — means end of, | means
previous, and | means next. For example, S|
means go to the next screen.

The space-bar moves the cursor one character
to the right (equivalent to .—). '

The RETURN key moves the cursor to the
beginning of the next line.

The TAB key moves the cursor to the next tab
position (set every 8 columns).

For terminals that have a HOME key, it moves
the cursor to the top left corner of the screen
(equivalent to S«).

b [position-cursor] ctrl+d Define an arbitrary linear region. Any com-

Copy text

mand that changes the file being edited will
cause the current region to be undefined.

[count] [text-id] ¢ [position-cursor] etrl+d

Delete text
[count] [text-id] d

Refresh document display
DISPLAY

Edit file

Copy text-id block (default is one character) at
new cursor position.

Delete fext-id block (default is one character).

Rewrites display from the file. Useful to
restore contents of screen from the effects of
line noise etc.

EDIT {[filename] { ctrl+d, RETURN }

Find string occurrence

Start editing the specified file. If no file name
has been specified, use the current file. If the
contents of the current file have been altered
since the last WRITE command, the user is
first queried as to whether to save those
changes.

[text-id] f chars § ctrl+d, RETURN }

Search text-id (default is entire file) for chars
and position cursor there. The cursor is not
moved if chars are not found. The chars are
interpreted as a regular expression (see
regexp(5)).

Find all and execute command automatically
[count] [text-id] g chars { ctrl+d, RETURN } command

Search text-id (default is entire file) for all
occurrences of chars; position-cursor at first
occurrence and execute command. Continue to
next occurrence and apply the same command,
and so on. The command may not be another
global command. The chars are interpreted as
a regular expression (see regexp(5)).

-3-

SE(1) SE(1)

Find all and execute command interactively
[count] [text-id] G chars { ctrl+d, RETURN } command

Search text-id (default is entire file) for first
occurrence of chars; position-cursor at first
occurrence and wait for command; execute
command and continue to next occurrence
where a new command may be input, and so
on. The command may not be another global
command. The chars are interpreted as a reg-
ular expression (see regexp(5)).

Insert text

[text-id] i chars ctrl+d Insert text at the current cursor position. If
the text-id is 1, a blank line is inserted and the
cursor positioned at the beginning of that line.
Use of cursor-keys (no preceding count or
text-id) positions the cursor at the next charac-
ter to be inserted. The back-space key will
cause the previous character to be deleted.

Move text
[count] [text-id] m [position-cursor] etrl+d
Reposition text-id block (default is one charac-
ter) at new position. It is an error if the new
position is within the text to be moved.

Overwrite text
o chars ctrl+d Performs one-to-one character replacement
beginning at cursor position. Use of cursor-
keys (no preceding count or text-id) positions
the cursor at the next character to be overwrit-
ten. The back-space key will cause the previ-
ous character to be deleted.

Leave the editor
q Exits from se. If the contents of the current
file have been altered since the last WRITE
command, the user is first queried as whether
to save those changes.

Get text
READ [filename] { ctrl4d, RETURN }
Insert text from filename at cursor position. If
no filename is specified, the current filename is
used. The cursor position is unchanged.

Replace text
[count] [text-id] r chars ctrl4-d
Replace text-id block (default is one character)
with text.

Undo last command
UNDO Undoes last text-modifying command. An
UNDO may not be undone.

Save text
[count] [text-id] WRITE [filename] { ctrl+d, RETURN }
Save text from text-id (default is entire file) in
the named file. If filename is not specified,
text is saved in the file currently being edited.
Note that existing text in the file is replaced.

-4-

SE(1) SE(1)

Process through UNIX
[count] [text-id] X UNIX-command { ctrl+d, RETURN }
Passes text-id block (default is no text) to the
UNIX-command as standard input and replaces
text-id block with the standard output from the
UNIX-command.

Request help
? Display a listing of available se fext-ids, com-
mands and their syntax.
Escape from editor
[count] [text-id] ! UNIX-command { ctrl+-d, RETURN }
If the text-id or count is specified, it is given as
standard input to the UNIX command. Other-
wise, standard input is the same as for se. No
changes are made to the file being edited.
Repeat last command
* Ditto repeats the last command. This means
the command plus preceding fext-id and count.

Go to line
N # Move to line N, where N is an integer between
1 and 32,767.
Erase input
@ Cause se to ignore any partially typed com-

mand (including count, modifier, and multi-
character command).

TERMINAL REQUIREMENTS
Se can run on any terminal with suitable cursor addressing. In order to use
cursor keys, they must emit characters to the host computer. Performance
may be degraded if the terminal does not have:

— character insert and delete
— line insert and delete
— erase to end of line and page

If the terminal type specified is not suitable (i.e. it has no cursor address-
ing), se prints a diagnostic and exits immediately.

The environment variable TERMINFO modifies the search for the specified
terminal type in the terminal description file. If present, it should contain
one of two kinds of values:

— an alternate file name for the terminal description file (in this case, the
first character must be a /). This file will be used to search for a
description of the specified terminal instead of the default terminal
description file.

— the description for a specific terminal (this should be the entry from the
terminal description file with the escaped newlines removed). This
description will be treated as though it had been prepended to the
default terminal description file. Using TERMINFO in this manner
allows the redefinition of a specific terminal description or the inclusion
of a description for a terminal that is not included in the default termi-
nal description file.

If the description contained in TERMINFO is that of the terminal to be used
with se, start-up time for se can be reduced considerably since the terminal
description file need not be searched.

-5-

SE(1) SE(1)

FILES
/tmp/se# temporary; # is the process number.
Jtmp/sei# record of keystrokes; # is the process number.
Jusr/lib/se.term terminal description file

DIAGNOSTICS
. Error messages are displayed on the message line on the screen during edit-
ing.

WARNING
Regular expressions span more than one line, thus abc.*xyz may match the
entire file.
Some terminals need persuasion to make the cursor keys emit characters.
For example, HP2621 cursor keys only emit characters when the function
labels are displayed and the SHIFT key is held down and the cursor key
struck.

SEE ALSO

regexp(5).

SED(1) SED(1)

NAME

sed — stream editor
SYNOPSIS

sed [—n][—e script] [—f sfile] [files]
DESCRIPTION

Sed copies the named files (standasd input default) to the standard output,
edited according to a script of commands. The —f option causes the script
to be taken from file sfile; these options accumulate. If there is just one
—e option and no —f options, the flag —e may be omitted. The —n
option suppresses the default output. A script consists of editing com-
mands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under —n)
and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address,
i.e., a /regular expression/ in the style of ed(1) modified thus:

In a context address, the construction \?regular expression? , where
? is any character, is identical to /regular expression/. Note
that in the context address \xabc\xdefx, the second x
stands for itself, so that the regular expression is abexdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period . matches any character except the terminal new-line of
the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that
matches the address.

A command line with two addresses selects the inclusive range
from the first pattern space that matches the first address
through the next pattern space that matches the second. (If
the second address is a number less than or equal to the
line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the
first address.

Editing commands can be applied only to non-selected pattern spaces by
use of the negation function ! (below).

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which
end with \ to hide the new-line. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used
to protect initial blanks and tabs against the stripping that is done on every
script line. The 7file or wfile argument must terminate the command line
and must be preceded by exactly one blank. Each wfile is created before
processing begins. There can be at most 10 distinct wfile arguments.

SED(1) SED(1)

(1)a\

text Append. Place text on the output before reading the next input
line.

(2) b label Branch to the : command bearing the label. If label is empty,
branch to the end of the script.

(2)e\

text Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place fext on the output. Start the
next cycle.

(2)d Delete the pattern space. Start the next cycle.

)b Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.

2)¢g Replace the contents of the pattern space by the contents of the
hold space.

)G Append the contents of the hold space to the pattern space.

2)h Replace the contents of the hold space by the contents of the

pattern space.
(2)H Append the contents of the pattern space to the hold space.

931\
text Insert. Place text on the standard output.
)1 List the pattern space on the standard output in an unambiguous

form. Non-printing characters are spelled in two-digit ASCII and
long lines are folded.

2)n Copy the pattern space to the standard output. Replace the pat-
tern space with the next line of input.

Q)N Append the next line of input to the pattern space with an
embedded new-line. (The current line number changes.)

2)p Print. Copy the pattern space to the standard output.

(V31 4 Copy the initial segment of the pattern space through the first
new-line to the standard output.

Mg Quit. Branch to the end of the script. Do not start a new cycle.

(2)r rfile Read the contents of rfile. Place them on the output before
reading the next input line.

(2) s/regular expression [replacement [flags
Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of /. For a fuller description see ed(1). Flags is zero or

more of:

g Global. Substitute for all nonoverlapping
instances of the regular expression rather than
just the first one.

p Print the pattern space if a replacement was

made.
w wfile Write. Append the pattern space to wfile if a
replacement was made.

(2) t label Test. Branch to the : command bearing the label if any substitu-
tions have been made since the most recent reading of an input
line or execution of a t. If label is empty, branch to the end of
the script.

(2) w wfile
Write. Append the pattern space to wfile.

2)x Exchange the contents of the pattern and hold spaces.

(2) y/stringl [string2
Transform. Replace all occurrences of characters in stringl with
the corresponding character in string2. The lengths of stringl
and string2 must be equal.

-2-

SED(1) SED(1)

(2)! function
Don’t. Apply the function (or group, if function is {) only to
lines not selected by the address(es).

(0) : label This command does nothing; it bears a label for b and t com-
mands to branch to.

(1)= . Place the current line number on the standard output as a line.
@) Execute the following commands through a matching } only
when the pattern space is selected.
0) An empty command is ignored.
SEE ALSO

awk(1), ed(1), grep(1).

SEND(1C) SEND(IC)

NAME

send, gath — gather files and/or submit RJE jobs

SYNOPSIS

gath [—ih] file ...
send argument ...

DESCRIPTION
Gath

Gath concatenates the named files and writes them to the standard output.
Tabs are expanded into spaces according to the format specification for each
file (see fspec(4)). The size limit and margin parameters of a format
specification are also respected. Non-graphic characters other than tabs are
identified by a diagnostic message and excised. The output of gath contains
no tabs unless the —h flag is set, in which case the output is written with
standard tabs (every eighth column).

Any line of any of the files which begins with ~ is interpreted by gath as a
control line. A line beginning “~ *’ (tilde,space) specifies a sequence of
files to be included at that point. A line beginning ~! specifies a UNIX com-
mand; that command is executed, and its output replaces the ~! line in the
gath output.

Setting the —i flag prevents control lines from being interpreted and causes
them to be output literally.

A file name of — at any point refers to standard input, and a control line
consisting of ~. is a logical EOF. Keywords may be defined by specifying a
replacement string which is to be substituted for each occurrence of the
keyword. Input may be collected directly from the terminal, with several
alternatives for prompting. In fact, all of the special arguments and flags
recognized by the send command are also recognized and treated identically
by gath. Several of them only make sense in the context of submitting an
RIJE job.

Send

Send is a command-level interface to the RJE subsystems. It allows the
user to collect input from various sources in order to create a run stream
consisting of card images, and submit this run stream for transmission to
an IBM host computer. Output from the IBM system may be returned to
the user in either ASCII text form or EBCDIC punch format (see pnch (4)).

Possible sources of input to send are: ordinary files, standard input, the ter-
minal, and the output of a command or shell file. Each source of input is
treated as a virtual file, and no distinction is made based upon its origin.
Typical input is an ASCH text file of the sort that is created by the editor
ed(1). An optional format specification appearing in the first line of a file
(see fspec(4)) determines the settings according to which tabs are expanded
into spaces. In addition, lines that begin with ~ are normally interpreted as
commands controlling the execution of send. They may be used to set or
reset flags, to define keyword substitutions, and to open new sources of
input in the midst of the current source. Other text lines are translated
one-for-one into card images of the run stream.

The run stream that results from this collection is treated as one job by the
RIE subsystems. Send prints the card count of the run stream, and the
queuer that is invoked prints the name of the temporary file that holds the
job while it is awaiting transmission. The initial card of a job submitted to
a host must have a // in the first column. Any cards preceding this card
will be excised. If a host computer is not specified before the first card of

-1-

SEND(1C)

SEND(1C)

the runstream is ready to be sent, send will select a reasonable default. All
cards beginning with /*$ will be excised from the runstream, because they
are HASP command cards.

The arguments that send accepts are described below. An argument is
interpreted according to the first pattern that it matches. Preceding a char-
acter with \ causes it to loose any special meaning it might otherwise have
when matching against an argument pattern.

imessage
— sprompt

+ :prompt
—flags
+flags
=flags

{command

Sline

@directory

“comment

?:keyword

2keyword="xx

?keyword =string

=:keyword
keyword ="xx

keyword = string

Close the current source.
Open standard input as a new source.
Open the terminal as a new source.

Establish a default format specification for
included sources,

e.g., :m6t—12:

Print message on the terminal.

Open standard input and, if it is a terminal, print
prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.
Reset the specified flags.

Restore the specified flags to their state at the pre-
vious level.

Execute the specified UNIX command via the one-
line shell, with input redirected to /dev/null as a
default. Open the standard output of the com-
mand as a new source.

Collect contiguous arguments of this form and
write them as consecutive lines to a temporary
file; then have the file executed by the shell.
Open the standard output of the shell as a new
source.

The current directory for the send process is
changed to directory. The original directory will be
restored at the end of the current source.

Ignore this argument.

Prompt for a definition of keyword from the ter-
minal unless keyword has an existing definition.

Define the keyword as a two digit hexadecimal
character code unless it already has a non null
replacement.

Define the keyword in terms of a replacement
string unless it already has a non null replace-
ment.

Prompt for a definition of keyword from the termi-
nal.

Define keyword as a two-digit hexadecimal charac-
ter code.

Define keyword in terms of a replacement string.

SEND (1C)

SEND(1C)

host The host machine that the job should be submit-

ted to. It can be any name that corresponds to
one in the first column of the RJE configuration
file (/usr/rje/lines).

Sile-name Open the specified file as a new source of input.

When commands are executed via $ or ! the shell environment (see
environ(5)) will contain the values of all send keywords that begin with $
and have the syntax of a shell variable.

The flags recognized by send are described in terms of the special pro-
cessing that occurs when they are set:

—1! List card images on standard output. EBCDIC characters are
translated back to ASCII.

—q Do not output card images.
—f Do not fold lower case to upper.

—t Trace progress on diagnostic output, by announcing the opening
of input sources.

—k Ignore the keywords that are active at the previous level and
erase any keyword definitions that have been made at the current
level.

—r Process included sources in raw mode; pack arbitrary 8-bit bytes
one per column (80 columns per card) until an EOF.

—i Do not interpret control lines in included sources; treat them as
text.

—s Make keyword substitutions before detecting and interpreting
control lines.

—Yy Suppress error diagnostics and submit job anyway.

—g Gather mode, qualifying —1 flag; list text lines before converting
them to card images.

—h Write listing with standard tabs.
—p Prompt with # when taking input from the terminal.

—m When input returns to the terminal from a lower level, repeat the
prompt, if any.

—a Make —k flag propagate to included sources, thereby protecting
them from keyword substitutions.

—c¢ List control lines on diagnostic output.

—d Extend the current set of keyword definitions by adding those
active at the end of included sources.

—x This flag guarantees that the job will be transmitted in the order
of submission (relative to other jobs sent with this flag).

Control lines are input lines that begin with ~. In the default mode
+ir, they are interpreted as commands to send. Normally they are
detected immediately and read literally. The —s flag forces keyword
substitutions to be made before control lines are intercepted and inter-
preted. This can lead to unexpected results if a control line uses a key-
word which is defined within an immediately preceding ~$ sequence.
Arguments appearing in control lines are handled exactly like the com-
mand arguments to send, except that they are processed at a nested
level of input.

SEND(1C) SEND(1C)

The two possible formats for a control line are: ““argument” and
“~ argument ...”’. In the first case, where the ~ is not followed by a
space, the remainder of the line is taken as a single argument to send.
In the second case, the line is parsed to obtain a sequence of argu-
ments delimited by spaces. In this case the quotes * and * may be
employed to pass embedded spaces.

The interpretation of the argument . is chosen so that an input line
consisting of ~. is treated as a logical EOF. The following example
illustrates some of the above conventions:

send —
“ argument ...

This sequence of three lines is equivalent to the command synopsis at
the beginning of this description. In fact, the — is not even required.
By convention, the send command reads standard input if no other
input source is specified. Send may therefore be employed as a filter
with side-effects.

The execution of the send command is controlled at each instant by a
current environment, which includes the format specification for the
input source, a default format specification for included sources, the
settings of the mode flags, and the active set of keyword definitions.
This environment can be altered dynamically. When a control line
opens a new source of input, the current environment is pushed onto a
stack, to be restored when input resumes from the old source. The
initial format specification for the new source is taken from the first
line of the file. If none is provided, the established default is used or,
in its absence, standard tabs. The initial mode settings and active key-
words are copied from the old environment. Changes made while pro-
cessing the new source will not affect the environment of the old
source, with one exception: if —d mode is set in the old environment,
the old keyword context will be augmented by those definitions that are
active at the end of the new source.

When send first begins execution, all mode flags are reset, and the
values of the shell environment variables become the initial values for
keywords of the same name with a § prefixed.

The initial reset state for all mode flags is the + state. In general, spe-
cial processing associated with a mode N is invoked by flag —N and is
revoked by flag + N. Most mode settings have an immediate effect on
the processing of the current source. Exceptions to this are the —r
and —i flags, which apply only to included source, causing it to be pro-
cessed in an uninterpreted manner.

A keyword is an arbitrary 8-bit ASCII string for which a replacement
has been defined. The replacement may be another string or the hexa-
decimal code for a single 8-bit byte. At any instant, a given set of key-
word definitions is active. Input text lines are scanned, in one pass
from left to right, and longest matches are attempted between sub-
strings of the line and the active set of keywords. Characters that do
not match are output, subject to folding and the standard translation.
Keywords are replaced by the specified hexadecimal code or replace-
ment string, which is then output character by character. The expan-
sion of tabs and length checking, according to the format specification
of an input source, are delayed until substitutions have been made in a
line.

SEND(1C) SEND(IC)

All of the keywords definitions made in the current source may be
deleted by setting the —k flag. It then becomes possible to ‘reuse
them. Setting the —k flag also causes keyword definitions active at the
previous source level to be ignored. Setting the +k flag causes key-
words at the previous level to be ignored but does not delete the
definitions made at the current level. The =k argument reactivates
the definitions of the previous level.

When keywords are redefined, the previous definition at the same level
of source input is lost, however the definition at the previous level is
only hidden, to be reactivated upon return to that level unless a —d
flag causes the current definition to be retained.

Conditional prompts for keywords, ?:A,/p which have already been
defined at some higher level to be null or have a replacement will sim-
ply cause the definitions to be copied down to the current level; new
definitions will not be solicited.

Keyword substitution is an elementary macro facility that is easily
explained and that appears useful enough to warrant its inclusion in the
send command. More complex replacements are the function of a gen-
eral macro processor (m4(1), perhaps). To reduce the overhead of
string comparison, it is recommended that keywords be chosen so that
their initial characters are unusual. For example, let them all be upper
case.

Send performs two types of error checking on input text lines. Firstly,
only ASCII graphics and tabs are permitted in input text. Secondly, the
length of a text line, after substitutions have been made, may not
exceed 80 bytes. The length of each line may be additionally con-
strained by a size parameter in the format specification for an input
source. Diagnostic output provides the location of each erroneous line,
by line number and input source, a description of the error, and the
card image that results. Other routine errors that are announced are
the inability to open or write files, and abnormal exits from the shell.
Normally, the occurrence of any error causes send, before invoking the
queuer, to prompt for positive affirmation that the suspect run stream
should be submitted.

Before submitting a job to a host, send translates 8-bit ASCII characters
into their EBCDIC equivalents. The conversion for 8-bit ASCII charac-
ters in the octal range 040-176 is based on the character set described
in ““Appendix H’ of IBM System/370 Principles of Operation (IBM SRL
GA22-7000). Fach 8-bit ASCH character in the range 040-377
possesses an EBCDIC equivalent into which it is mapped, with five
exceptions: ~ into -, 0345 into ~, 0325 into ¢, 0313 into |, 0177 (DEL)
is illegal. In listings requested from senmd and in printed output
returned by the subsystem, the reverse translation is made with the
qualification that EBCDIC characters that do not have valid 8-bit ASCII
equivalents are translated into ~.

Additional control over the translation process is afforded by the —f
flag and hexadecimal character codes. As a default, send folds lower-
case letters into upper case. Setting the —f flag inhibits any folding.
Non-standard character codes are obtained as a special case of keyword
substitution.

SEE ALSO
m4(1), rjestat(1C), sh(l), fspec(4), pnch(4), ascii(5), environ(5).
UNIX Remote Job Entry User’s Guide in the UNIX System User’s Guide .

-5.

SEND(1C) SEND(1C)

BUGS
Standard input is read in blocks, and unused bytes are returned via
Iseek (2). If standard input is a pipe, multiple arguments of the form — and
— sprompt should not be used, nor should the logical EOF (".).

SH(1) SH(1)

NAME
sh, rsh — shell, the standard/restricted command programming language

SYNOPSIS
sh [—ceiknrstuvx] [args]
rsh [—ceiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read
from a terminal or a file. Rsh is a restricted version of the standard com-
mand interpreter sh; it is used to set up login names and execution
environments whose capabilities are more controlled than those of the stan-
dard shell. See Invocation below for the meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non-blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the com-
mand to be executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command name is
passed as argument O (see exec(2)). The value of a simple-command is its
exit status if it terminates normally, or (octal) 200+ status if it terminates
abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by | (or, for
historical compatibility, by "). The standard output of each command but
the last is connected by a pipe(2) to the standard input of the next com-
mand. Each command is run as a separate process; the shell waits for the
last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, &&, or ||,
and optionally terminated by ; or & Of these four symbols, ; and & have
equal precedence, which is lower than that of && and |]. The symbols &&
and || also have equal precedence. A semicolon (;) causes sequential exe-
cution of the preceding pipeline; an ampersand (&) causes asynchronous
execution of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol && (||) causes the list following it to be
executed only if the preceding pipeline returns a zero (non-zero) exit
status. An arbitrary number of new-lines may appear in a list, instead of
semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word
taken from the im word list. If in word ... is omitted, then the for
command executes the do l/ist once for each positional parameter
that is set (see Parameter Substitution below). Execution ends when
there are no more words in the list.

case word in [pattern [| pattern 1...) list 33]... esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that
used for file-name generation (see File Name Generation below).

if list then list [elif list them fist] ... [else list] fi
The list following if is executed and, if it returns a zero exit status,
the list following the first them is executed. Otherwise, the kst fol-
lowing elif is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else /ist is executed. If no
else list or then /ist is executed, then the if command returns a

-1-

SH(1)

SH(1)

zero exit status.
while list do list done
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list;
otherwise the loop terminates. If no commands in the do list are
executed, then the while command returns a zero exit status; until
may be used in place of while to negate the loop termination test.
(list)
Execute list in a sub-shell.
{lists}
list is simply executed.

The following words are only recognized as the first word of a command
and when not quoted:

if then else elif fi case esac for while until do done §{ }

Comments.

A word beginning with # causes that word and all the following characters
up to a new-line to be ignored.

Command Substitution.

The standard output from a command enclosed in a pair of grave accents
(") may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution.

The character $ is used to introduce substitutable parameters. Positional
parameters may be assigned values by set. Variables may be set by writing:

name =value | name=value] ...
Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or underscores (a
name), a digit, or any of the characters =, @, #, ?, —, §, and !.
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. A
name must begin with a letter or underscore. If parameter is a digit
then it is a positional parameter. If parameter is * or (@, then all
the positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from argument zero
when the shell is invoked.

${parameter: —word}
If parameter is set and is non-null then substitute its value; other-
wise substitute word.

${parameter:=word}
If parameter is not set or is null then set it to word; the value of the
parameter is then substituted. Positional parameters may not be
assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its value; other-
wise, print word and exit from the shell. If word is omitted, then
the message ‘‘parameter null or not set’’ is printed.

${parameter: +word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing. '

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not
set or is null:

SH(1)

SH(1)

echo ${d:— "pwd "}
If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set com-

mand.

? The decimal value returned by the last synchronously exe-
cuted command.

$ The process number of this shell.

! The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the c¢d com-
mand.

PATH The search path for commands (see Execution below). The
user may not change PATH if executing under rsh. '

CDPATH
The search path for the ¢d command.

MAIL If this variable is set to the name of a mail file, then the
shell informs the user of the arrival of mail in the specified
file.

PS1 Primary prompt string, by default “$.

PS2 Secondary prompt string, by default ‘>

IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PS1, PS2, and IFS, while HOME
and MAIL are not set at all by the shell (although HOME is set by login(1)).

(1]

Blank Interpretation.

After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu-
ments ("* or ~) are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

File Name Generation.

Following substitution, each command word is scanned for the characters =,
?, and [. If one of these characters appears then the word is regarded as a
pattern. The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches the pattern, then
the word is left unchanged. The character . at the start of a file name or
immediately following a /, as well as the character / itself, must be
matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by — matches any character lexically
between the pair, inclusive. If the first character following
the opening [~ is a ““!** then any character not enclosed is
matched.

Quoting.

The following characters have a special meaning to the shell and cause ter-
mination of a word unless quoted:

; & ()| " < > new-line space tab

SH(1)

SH(1)

A character may be guoted (i.e., made to stand for itself) by preceding it
with a \. The pair \new-line is ignored. All characters enclosed between a
pair of single quote marks (~), except a single quote, are quoted. Inside
double quote marks (**), parameter and command substitution occurs and
\ quotes the characters \, ~, *, and $. "$+" is equivalent to "$1 $2 ...%,
whereas "$@" is equivalent to "$1" "$2"

Prompting.

When used interactively, the shell prompts with the value of PS1 before
reading a command. If at any time a new-line is typed and further input is
needed to complete a command, then the secondary prompt (i.e., the value
of PS2) is issued.

Input/Output.

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may appear
anywhere in a simple-command or may precede or follow a command and
are not passed on to the invoked command; substitution occurs before word
or digit is used:

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the
file does not exist then it is created; otherwise, it is trun-
cated to zero length.

>>word Use file word as standard output. If the file exists then out-
put is appended to it (by first seeking to the end-of-file);
otherwise, the file is created.

<<[—1lword The shell input is read up to a line that is the same as word,
or to an end-of-file. The resulting document becomes the
standard input. If any character of word is quoted, then no
interpretation is placed upon the characters of the docu-
ment; otherwise, parameter and command substitution
occurs, (unescaped) \mew-line is ignored, and \ must be
used to quote the characters \, §, ~, and the first character
of word. If — is appended to <<, then all leading tabs are
stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor digit
(see dup(2)). Similarly for the standard output using >.

<&— The standard input is closed. Similarly for the standard out-
put using >.

If one of the above is preceded by a digit, then the file descriptor created is
that specified by the digit (instead of the default 0 or 1). For example:

. 2>&1
creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the com-
mand is the empty file /dev/null. Otherwise, the environment for the exe-
cution of a command contains the file descriptors of the invoking shell as
modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment.

The environment (see environ(5)) is a list of name-value pairs that is passed
to an executed program in the same way as a normal argument list. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. Executed commands inherit the same
environment. If the user modifies the values of these parameters or creates

-4-

SH(1)

SH(1)

new ones, none of these affects the environment unless the export com-
mand is used to bind the shell’s parameter to the environment. The
environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the —k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name. The following first prints a=b
¢ and then ¢

echo a=b ¢
set —k
echo a=b ¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by &; otherwise signals have the values inherited
by the shell from its parent, with the exception of signal 11 (but see also
the trap command below).

Execution.

Each time a command is executed, the above substitutions are carried out.
Except for the Special Commands listed below, a new process is created and
an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory contain-
ing the command. Alternative directory names are separated by a colon
(:). The default path is :/bin:/usr/bin (specifying the current directory,
/bin, and /usr/bin, in that order). Note that the current directory is
specified by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list. If the
command name contains a / then the search path is not used; such com-
mands will not be executed by the restricted shell. Otherwise, each direc-
tory in the path is searched for an executable file. If the file has execute
permission but is not an a.out file, it is assumed to be a file containing shell
commands. A sub-shell (i.e., a separate process) is spawned to read it. A
parenthesized command is also executed in a sub-shell.

Special Commands.

The following commands are executed in the shell process and, except as
specified, no input/output redirection is permitted for such commands:

No effect; the command does nothing. A zero exit code is
returned.
. file Read and execute commands from file and return. The search path
specified by PATH is used to find the directory containing file.
break [n]
Exit from the enclosing for or while loop, if any. If n is specified
then break n levels.
continue [7]
Resume the next iteration of the enclosing for or while loop. If n
is specified then resume at the n-th enclosing loop.
cd(arg]
Change the current directory to arg. The shell parameter HOME is

-5-

SH(1)

SH(1)

the default arg. The shell parameter CDPATH defines the search
path for the directory containing arg. Alternative directory names
are separated by a colon (:). The default path is <null> (specify-
ing the current directory). Note that the current directory is
specified by a null path name, which can appear immediately after
the equal sign or between the colon delimiters anywhere else in the
path list. If arg begins with a / then the search path is not used.
Otherwise, each directory in the path is searched for arg. The cd
command may not be executed by rsh.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec[arg ...]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command executed
(an end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environ-
ment of subsequently-executed commands. If no arguments are
given, then a list of all names that are exported in this shell is
printed.

newgrp [arg ...]
Equivalent to exec newgrp arg

read [name ...]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The return code
is 0 unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu-
ments are given, then a list of all readonly names is printed.

set [——ekntuvx [arg ...]]
—e Exit immediately if a command exits with a non-zero exit

status.
—k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

-n Read commands but do not execute them.
—t Exit after reading and executing one command.
—u Treat unset variables as an error when substituting,
—v Print shell input lines as they are read.
—x Print commands and their arguments as they are executed.
—— Do not change any of the flags; useful in setting $1 to —.
Using + rather than — causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $—. The remaining arguments are posi-
tional parameters and are assigned, in order, to §1, $2, If no
arguments are given then the values of all names are printed.

shift [»n] _

The positional parameters from $n+1 ... are renamed $1.... If n

is not given, it is assumed to be 1.

-6-

SH(1)

SH(1)

test
Evaluate conditional expressions. See test(1) for usage and descrip-
tion.

times
Print the accumulated user and system times for processes run
from the shell.

traplarglinl]...
arg is a command to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. An attempt
to trap on signal 11 (memory fault) produces an error. If arg is
absent then all trap(s) n are reset to their original values. If arg is
the null string then this signal is ignored by the shell and by the
commands it invokes. If n is O then the command arg is executed
on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

ulimit [—fp }J[n]
imposes a size limit of n
~f imposes a size limit of n blocks on files written by child

processes (files of any size may be read). With no argu-
ment, the current limit is printed.

. changes the pipe size to n (UNIX/RT only).
If no option is given, —f is assumed.

umask [nnn |
The user file-creation mask is set to nnn (see umask(2)). If nnn is
omitted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n
is not given then all currently active child processes are waited for
and the return code is zero.

Invocation.

If the shell is invoked through exec(2) and the first character of argument
zero is —, commands are initially read from /etc/profile and then from
SHOME/ .profile, if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as
/bin/sh. The flags below are interpreted by the shell on invocation only;
Note that unless the —c or —s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remaining
arguments are passed as positional parameters to that command file:

—c¢ string If the —c flag is present then commands are read from string.

-8 If the —s flag is present or if no arguments remain then com-
mands are read from the standard input. Any remaining argu-
ments specify the positional parameters. Shell output is written
to file descriptor 2.

—i If the —i flag is present or if the shell input and output are
attached to a terminal, then this shell is interactive. In this case
TERMINATE is ignored (so that kill 0 does not kill an interac-
tive shell) and INTERRUPT is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the shell.

-r If the —r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

SH(1) SH(1)

Rsh Only.
Rsh is used to set up login names and execution environments whose capa-
bilities are more controlled than those of the standard shell. The actions of
rsh are identical to those of sh, except that the following are disallowed:
changing directory (see cd(1)),
setting the value of SPATH,
specifying path or command names containing /,
redirecting output (> and >>).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-user
shell procedures that have access to the full power of the standard shell,
while imposing a limited menu of commands; this scheme assumes that the
end-user does not have write and execute permissions in the same direc-
tory.

The net effect of these rules is that the writer of the .profile has complete
control over user actions, by performing guaranteed setup actions and leav-
ing the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e.,
/usr/rbin) that can be safely invoked by rsh. Some systems also provide a
restricted editor red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return
a non-zero exit status. If the shell is being used non-interactively then exe-
cution of the shell file is abandoned. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command above).

FILES
/etc/profile
$HOME/ .profile
/tmp/sh*
/dev/nuil

SEE ALSO
cd(1), env(1), login(1), newgrp(1), test(l), umask(1l), dup(2), exec(2),
fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2), a.out(4),
profile(4), environ(5).

BUGS
The command readonly (without arguments) produces the same output as
the command export.
If << is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input document; a
garbage file /tmp/shs is created and the shell complains about not being
able to find that file by another name. '

SIZE(1) (not on PDP-11) SIZE(1)

NAME
size — print section sizes of common object files

SYNOPSIS
size [—o] [—x] [—V] files

DESCRIPTION
The size command produces section size information for each section in the
common object files. The size of the text, data and bss (uninitialized data)
sections are printed along with the total size of the object file. If an archive
file is input to the size command the information for all archive members is
displayed.
Numbers will be printed in decimal unless either the —o or the —x option
is used, in which case they will be printed in octal or in hexadecimal,
respectively.

The —V flag will supply the version information on the size command.
SEE ALSO
as(1), cc(1), 1d(1), a.out(4), ar(4).

DIAGNOSTICS
size: name: cannot open
if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

SIZE(1) (PDP-11 only) SIZE(1)

NAME

size — print sizes of object files
SYNOPSIS

size [object ...]
DESCRIPTION

Size prints the (decimal) number of bytes required by the text, data, and
bss portions, and their sum in octal and decimal, of each object-file argu-
ment. If no file is specified, a.out is used.

SEE ALSO
a.out(4).

SLEEP(1) SLEEP(1)

NAME
sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a com-
mand after a certain amount of time as in:

(sleep 105; command)&
or to execute a command every so often, as in:

while true
do
command
sleep 37
done

SEE ALSO
alarm(2), sleep(3C).

BUGS
Time must be less than 65536 seconds.

SNO(1)

NAME

SNO(1)

sno — SNOBOL interpreter

SYNOPSIS

sno [files]

DESCRIPTION
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno
obtains input from the concatenation of the named files and the standard
input. All input through a statement containing the label end is considered
program and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

SEE ALSO

" There are no unanchored searches. To get the same effect:

a#=b unanchored search for b.
asxsb=xc¢ unanchored assignment
There is no back referencing.
x = "abc'
a *x* X is an unanchored search for abc.

Function declaration is done at compile time by the use of the
(non-unique) label define. Execution of a function call begins at
the statement following the define. Functions cannot be defined at
run time, and the use of the name define is preempted. There is
no provision for automatic variables other than parameters. Exam-
ples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty state-
ment.

Labels, functions and variables must all have distinct names. In
particular, the non-empty statement on end cannot merely name a
label.

If start is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define
is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence
applies. Because of this, the arithmetic operators / and * must be
set off by spaces.

The right side of assignments must be non-empty.
Either ’ or * may be used for literal quotes.
The pseudo-variable sysppt is not available.

awk(1).
SNOBOL, a String Manipulation Language, by D. J. Farber, R. E. Griswold,
and L. P. Polonsky, JACM 11 (1964), pp. 21-30.

SORT(1) SORT(1)

NAME
sort — sort and/or merge files

SYNOPSIS
sort {—cmubdfinrtx] [+posl [—pos2]] ... [—o output] [names]

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the
standard output. The name — means the standard input. If no input files
are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by
bytes in machine collating sequence. The ordering is affected globally by
the following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d “Dictionary”’ order: only letters, digits and blanks are significant in
comparisons.

f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in non-numeric
comparisons.

n An initial numeric string, consisting of optional blanks, optional
minus sign, and zero or more digits with optional decimal point, is
sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.
tx ‘““Tab character’ separating fields is x.

The notation +posl —pos2 restricts a sort key to a field beginning at posi
and ending just before pos2. Posl and pos? each have the form m.n,
optionally followed by one or more of the flags bdfinr, where m tells a
number of fields to skip from the beginning of the line and n tells a
number of characters to skip further. If any flags are present they override
all the global ordering options for this key. If the b option is in effect n is
counted from the first non-blank in the field; b is attached independently to
pos2. A missing .n means .0; a missing —pos2 means the end of the line.
Under the —tx option, fields are strings separated by x; otherwise fields are
non-empty non-blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all
carlier keys .compare equal. Lines that otherwise compare equal are
ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give
no output unless the file is out of sort.

m Merge only, the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and
bytes outside keys do not participate in this comparison.

o The next argument is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words (capital-
ized words differ from uncapitalized):

sort —u +0f +0 list

SORT(1) SORT(1)

Print the password file (passwd(4)) sorted by user ID (the third colon-
separated field):

sort —t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month-
day) entries (the options —um with just one input file make the choice of a
unique representative from a set of equal lines predictable):

sort —um +0 —1 dates
FILES
Jusr/tmp/stm???
SEE ALSO
comm(1), join(1), uniq(1).

DIAGNOSTICS
Comments and exits with non-zero status for various trouble conditions
and for disorder discovered under option —e¢.

BUGS
Very long lines are silently truncated.

SPELL(1) SPELL(1)

NAME

spell, hashmake, spellin, hashcheck — find spelling errors

SYNOPSIS

spell [—v 1 [—b][—x][—1]I[+local file] [files]
/usr/lib/spell/hashmake

Jusr/lib/spell/spellin n

Jusr/lib/spell/hashcheck spelling list

DESCRIPTION

Spell collects words from the named files and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are
printed on the standard output. If no files are named, words are collected
from the standard input.

Spell ignores most troff (1), tbl(1), and egn(1) constructions.

Under the —v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the —b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise, Fowler and the OED to the contrary notwithstanding.

Under the —x option, every plausible stem is printed with = for each
word.

By default, spell (like deroff (1)) follows chains of included files (.so and .nx
troff (1) requests), unless the names of such included files begin with
Jusr/lib. Under the —1 option, spell will follow the chains of all included
files.

Under the +local_file option, words found in local_file are removed from
spell’s output. Local_file is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a
set of words that are correct spellings (in addition to spell’s own spelling
list) for each job.

The spelling list is based on many sources, and while more haphazard than
an ordinary dictionary, is also more effective with respect to proper names
and popular technical words. Coverage of the specialized vocabularies of
biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings (see FILES). Copies of all output are accu-
mulated in the history file. The stop list filters out misspellings (e.g.,
thier=thy—y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output.

hashcheck Reads a compressed spelling list and recreates the nine-digit
hash codes for all the words in it; it writes these codes on the
standard output.

SPELL(1) SPELL(1)

FILES
D_SPELL=/usr/lib/spell/hlistlab] hashed spelling lists, American & Brit-
ish
S_SPELL=/usr/lib/spell/hstop hashed stop list
H_SPELL= /usr/lib/spell/spellhist history file
Jusr/lib/spell/spellprog program
SEE ALSO
deroff(1), eqn(1), sed(1), sort(1), tbl(1), tee(1), troff(1).
BUGS

The spelling list’s coverage is uneven; new installations will probably wish
to monitor the output for several months to gather local additions; typi-
cally, these are kept in a separate local file that is added to the hashed
spelling_list via spellin.

The British spelling feature was done dy an American.

SPLINE(1G) SPLINE(1G)

NAME

spline — interpolate smooth curve
SYNOPSIS

spline [options]
DESCRIPTION

Spline takes pairs of numbers from the standard input as abscissas and ordi-
nates of a function. It produces a similar set, which is approximately
equally spaced and includes the input set, on the standard output. The
cubic spline output (R. W. Hamming, Numerical Methods for Scientists and
Engineers, 2nd ed., pp.349ff) has two continuous derivatives, and
sufficiently many points to look smooth when plotted, for example by
graph(1G).

The following options are recognized, each as a separate argument:

—a Supply abscissas automatically (they are missing from the input);

spacing is given by the next argument, or is assumed to be 1 if
next argument is not a number.

-k The constant k used in the boundary value computation:
yo=kyi, yi=lyaa
is set by the next argument (default & = 0).

—n Space output points so that approximately n intervals occur
between the lower and upper x limits (default n = 100).
—-p Make output periodic, i.e., match derivatives at ends. First and

last input values should normally agree.

—x Next 1 (or 2) arguments are lower (and upper) x limits. Nor-
mally, these limits are calculated from the data. Automatic abscis-
sas start at lower limit (default 0).
SEE ALSO
graph(1G).
DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

BUGS
A limit of 1,000 input points is enforced silently.

SPLIT(1) SPLIT(1)

NAME

split — split a file into pieces
SYNOPSIS

split [—n 1 [file [name]]
DESCRIPTION

Split reads file and writes it in »-line pieces (default 1000 lines) onto a set
of output files. The name of the first output file is name with aa appended,
and so on lexicographically, up to zz (a maximum of 676 files). Name can-
not be longer than 12 characters. If no output name is given, x is default.

If no input file is given, or if — is given in its stead, then the standard
input file is used.

SEE ALSO
bfs(1), csplit(1).

STAT(1G) STAT(1G)

NAME
stat — statistical network useful with graphical commands

SYNOPSIS
node-name [options] [files]

DESCRIPTION
Stat is a collection of command level functions (nodes) that can be inter-
connected using sh(1) to form a statistical network. The nodes reside in
/usr/bin/graf (see graphics(1G)). Data is passed through the network as
sequences of numbers (vectors), where a number is of the form:

[sign] (digits)(.digits)[e[sign]digits]

evaluated in the usual way. Brackets and parentheses surround fields. All
fields are optional, but at least one of the fields surrounded by parentheses
must be present. Any character input to a node that is not part of a
number is taken as a delimiter.

Stat nodes are divided into four classes.

Transformers, which map input vector elements into output
vector elements;

Summarizers, which calculate statistics of a vector;

Translators, which convert among formats; and

Generators, which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indi-
cated by a leading minus (—). In general, an option is specified by a char-
acter followed by a value, such as ¢5. This is interpreted as ¢ := 5 (c is
assigned 5). The following keys are used to designate the expected type of

the value:
c characters,
i integer,
f floating point or integer,

file file name, and

string string of characters, surrounded by quotes to include a Shell
argument delimiter.

Options without keys are flags. All nodes except generators accept files as
input, hence it is not indicated in the synopses.

Transformers:
abs [—ci] — absolute value
columns (similarly for —c options that follow)
af [—ci t v] — arithmetic function
titled output, verbose
ceil [—ci] — round up to next integer
cusum [—ci] — cumulative sum
exp [—ci] — exponential
floor [—ci] — round down to next integer

gamma [—¢/] — gamma

list [—ci dstring] — list vector elements
delimiter(s)

STAT(1G)

log
mod
pair
power
root
round
siline

sin
subset

Summarizers:
bucket

hilo

Ireg

mean

point

prod
qsort
rank
total
var
Translators:
bar

STAT(1G)

[—cibf] — logarithm

base

[—c¢i mf]1 — modulus

modulus

[—ci Ffile xi] — pair elements

File containing base vector, x group size

[—ci pf] — raise to a power

power

[—eixf] — take a root

root

[—cipisi] — round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[—ciifnisf] — generate a line given slope and intercept
intercept, number of positive integers, slope

[—ci] — sine

[—af bf ci Efile ii 1f nl np pf'si ti] — generate a subset
above, below, File with master vector, interval, leave,

master contains element mumbers to leave, master con-
tains element numbers to pick, pick, start, terminate

[—ai ¢i Ffile hf ii If ni] — break into buckets
average size, File containing bucket boundaries, high,
interval, low, number

[—Ffile] — correlation coefficient
File containing base vector

[— h1ooxoy]|— find high and low values

high only, low only, eption form, option form with x
prepended, option form with y prepended

[—Ffile i 0 s] — linear regression

File containing base vector, intercept only, option form for
siline, slope only

[—ff ni pf] — (trimmed) arithmetic mean

fraction, number, percent

[—f ni pf s] — point from empirical cumulative density
function

fraction, number, percent, sorted input

— internal product
[—c¢i] — quick sort
— vector rank

— sum total

— variance

[—abfgriwixfxayfyaylf yhf 1 — build a bar chart
suppress axes, bold, suppress frame, suppress grid, region,
width in percent, x origin, suppress x-axis label, y origin,
suppress y-axis label, y-axis lower bound, y-axis high
bound '

STAT(1G)

hist

label

pie

plot

title

Generators:
gas

prime
rand

RESTRICTIONS

STAT(1G)

[—abfgrixf xayfyaylf yhf] — build a histogram
suppress axes, bold, suppress frame, suppress grid, region,
X origin, suppress x-axis label, y origin, suppress y-axis
label, y-axis lower bound, y-axis high bound

[—b c Ffile h pri x xuy yr] — label the axis of a GPS
file
bar chart input, retain case, label File, histogram input,
plot input, rotation, x-axis, upper x-axis, y-axis, right y-
axis

[—b o ppni ppi ri v xi yi] — build a pie chart
bold, values outside pie, value as percentage(:=100), value
as percentage(:=i), draw percent of pie, region, no values,
X origin, y origin
Unlike other nodes, input is lines of the form

[< i e f cc >] value [label]

ignore (don’t draw) slice, explode slice, fill slice,

color slice ¢=(black, red, green, blue)
[—a b cstringd f Ffileg m ri xfxa xif xhf xIf xni xt
Y/ ya yif yhf ylf yniyt] — plot a graph
suppress axes, bold, plotting characters, disconnected,
suppress frame, File containing x vector, suppress grid,
mark points, region, X origin, suppress x-axis label, x
interval, x high bound, x low bound, number of ticks on
x-axis, suppress x-axis title, y origin, suppress y-axis label,
y interval, y high bound, y low bound, number of ticks on
y-axis, suppress y-axis title

[—b ¢ Lstring vstring ustring] — title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

[—ci if ni sftf] — generate additive sequence
interval, number, start, terminate

[-ci bi li ni] — generate prime numbers

high, low, number

[—¢i bf If mf ni si] — generate random sequence
high, low, multiplier, number, seed

Some nodes have a limit on the size of the input vector.

SEE ALSO

graphics(1G), gps(4).

STLOGIN(1) _ STLOGIN(1)

NAME

stlogin — sign on to synchronous terminal

SYNOPSIS

stlogin [delay]

DESCRIPTION

The stlogin command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It is invoked by the system
when a synchronous terminal requests service on a connected synchronous
line. You can direct your synchronous terminal to request service by first
hitting the LOCAL key and then hitting the S/R key.

Stlogin asks for your user name and your password. If you have a pass-
word, both must be entered before the S/R key is hit. The password field is
not displayed on the screen as you enter it.

At some installations, an option may be invoked that will require you to
enter a second “‘external” password. This will occur only for dial-up con-
nections, and will be prompted by the message ‘“‘External security:”’. Both
passwords are required for a successful login.

If password aging has been invoked by the super-user on your behalf, your
password may have expired. In this case, you will be shunted into
passwd(1) to change it, after which you may attempt to login again.

If you do not complete the login successfully within the period specified by
delay (e.g., 60 seconds), you are likely to be silently disconnected.

After a successful login, accounting files are updated, you will be informed
of the existence (if any) of mail, and the profiles (i.e., /etc/profile and
SHOME/.profile) (if any) are executed (see profile(4)). Stlogin initializes
the user and group IDs and the working directory, then executes a com-
mand interpreter (usually sh(1)) according to specifications found in the
/etc/passwd file. Argument O of the command interpreter is — followed
by the last component of the interpreter’s path name. The eavironment (see
environ (5)) is initialized to:

HOME=your-login-directory

PATH=:/bin:/usr/bin

LOGNAME=your-login-name

FILES
/etc/utmp accounting
/etc/wtmp accounting
Jusr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file
/etc/profile system profile
SHOME/.profile personal profile

SEE ALSO
mail(1), newgrp(l), passwd(l), sh(l), su(l), passwd(4), profile(4),
environ(5).

DIAGNOSTICS

Login incorrect
if the user name or the password is incorrect.
No shell, cannot open password file, no directory:
consult a UNIX programming counselor.
Your password has expired. Choose a new one.
if password aging is implemented.

STRIP(1) (not on PDP-11) STRIP(1)

NAME

strip — strip symbol and line number information from a common object
file

SYNOPSIS

strip [—1] [—x] [—r] [—s] [—V] file-names

DESCRIPTION

FILES

The strip command strips the symbol table and line number information
from common object files, including archives. Once this has been done, no
symbolic debugging access will be available for that file; therefore, this
command is normally run only on production modules that have been
debugged and tested.

The amount of information stripped from the symbol table can be con-
trolled by using any of the following options:

-1 Strip line number information only; do not strip any symbol table
information.

—x Do not strip static or external symbol information.

-r Reset the relocation indexes into the symbol table.

—s Reset the line number indexes into the symbol table (do not
remove). reset the relocation indexes into the symbol table.

-V Version of strip command executing.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip will complain and terminate without
stripping file-name unless the —r flag is used.

If the strip command is executed on a common archive file (see ar(4)) the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(l) command with the s option before the
archive can be link edited by the ld(1) command. Strip(1). will instruct the
user with appropriate warning messages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken
by the object file.

SEE ALSO

as(1), cc(1), 1d(1), ar(4), a.out(4).

DIAGNOSTICS

strip: name: cannot open
if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.
strip: name: relocation entries present; cannot strip

if name contains relocation entries and the —r flag is
not used, the symbol table information cannot be stripped.

STRIP(1) (PDP-11 only) STRIP(1)

NAME
strip — remove symbols and relocation bits
SYNOPSIS
strip name ...
DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the

output of the assembler and link editor. This is useful to save space after a
program has been debugged.

The effect of strip is the same as use of the —s option of /d(1).

If name is an archive file, strip will remove the local symbols from any
a.out format files it finds in the archive. Certain libraries, such as those
residing in /lib, have no need for local symbols. By deleting them, the size
of the archive is decreased and link editing performance is increased.

FILES
/tmp/stms temporary file

SEE ALSO
1d(1), ar(4), a.out(4).

STSTAT(1) STSTAT(1)

NAME

ststat — report synchronous terminal facilities status

SYNOPSIS

ststat [options]

DESCRIPTION

Ststat prints certain information about synchronous terminal facilities. The
information that is displayed is controlled by options:

—a Use all print options. (This is shorthand notation for —g, —1,
—p, and —t.)

—c¢ corefile Use the file corefile in place of /dev/kmem.

—g Print information about gen paramaters. (Number of syn-

chronous lines, number of printer ports, number of terminal
ports, number of message headers, and sizes of receive and
transmit buffer areas.)

ot | Print information about synchronous lines. (For each syn-
chronous line, whether or not the protocol script is runping
and whether or not it has established communications with a
controller on the line.)

—n namelist The argument will be taken as the name of an alternate namel-
ist (/unix is the default).

—-p Print printer port status information. (For each assigned
printer port, give the assigned path name and the synchronous
line number and device code for the assigned printer.) If
none of the print options —a, —g, —1, or —t are specified,
—p is supplied as a default.

—t Print terminal port status information. (For each active termi-
nal port, give the path name of the terminal device and tell
whether an open is waiting to be assigned to a terminal, open
to an active terminal, or open to a device that has hung up.)

FILES
/dev searched to find terminal (‘‘tty”’) names
/dev/kmem memory
Junix system namelist

SEE ALSO

st(1M), st(7).

DIAGNOSTICS

BUGS

Can’t read system namelist.
Unable to find system name entries in the namelist file.
No synchronous terminal lines in namelist.
Synchronous terminals are not configured in the system in the
namelist file.
Can’t open corefile.
Unable to open the specified corefile file.
Can’t read corefile.
A read failed on the corefile file.

The name of an active terminal port could not be found in the /dev
directory.

Things can change while ststat is running; the picture it gives is only a close
apporoximation to reality.

STTY (1) STTY(1)

NAME

stty — set the options for a terminal
SYNOPSIS

stty [—a][—g] [options]
DESCRIPTION

Sty sets certain terminal 1/O options for the device that is the current stan-
dard input; without arguments, it reports the settings of certain options;
with the —a option, it reports all of the option settings; with the —g
option, it reports current settings in a form that can be used as an argu-
ment to another sty command. Detailed information about the modes
listed in the first five groups below may be found in termio(7) for asynchro-
nous lines, or in stermio(7) for synchronous lines in the UNIX System
Administrator’s Manual . Options in the last group are implemented using
options in the previous groups. Note that many combinations of options
make no sense, but no sanity checking is performed. The options are
selected from the following:
Control Modes
parenb (—parenb) enable (disable) parity generation and detection.
parodd (—parodd) select odd (even) parity.
cs5 ¢s6 ¢s7 cs8 select character size (see termio(7)).
0 hang up phone line immediately.
50 75 110 134 150 200 300 600 1200 1800 2400 4300 9600 exta extb
Set terminal baud rate to the number given, if possi-
ble. (All speeds are not supported by all hardware
interfaces.)

hupcl (—hupel) hang up (do not hang up) DATA-PHONE® connection
on last close.

hup (—hup) same as hupcl (—hupcl).

cstopb (—cstopb) use two (one) stop bits per character.

cread (—cread) enable (disable) the receiver.

clocal (—clocal) assume a line without (with) modem control.

Input Modes
ignbrk (—ignbrk) ignore (do not ignore) break on input.
brkint (—brkint) signal (do not signal) INTR on break.
ignpar (—ignpar) ignore (do not ignore) parity errors.
parmrk (—parmrk) mark (do not mark) parity errors (see termio(7)).
inpck (—inpck) enable (disable) input parity checking.

istrip (—istrip) strip (do not strip) input characters to seven bits.

inler (—inler) map (do not map) NL to CR on input.

igner (—igner) ignore (do not ignore) CR on input.

icrnl (—icrnl) map (do not map) CR to NL on input.

iucle (—iucle) map (do not map) upper-case alphabetics to lower
case on input.

ixon (—ixon) enable (disable) START/STOP output control. Output

is stopped by sending an ASCII DC3 and started by
sending an ASCII DCI1.
ixany (—ixany) allow any character (only DC1) to restart output.
ixoff (—ixoff) request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.
Output Modes

opost (—opost) post-process output (do not post-process output;
ignore all other output modes).
olcuc (—olcuc) map (do not map) lower-case alphabetics to upper

case on output.

STTY(1)

onlcr (—onlcr)
ocrnl (—ocral)
onocr (—onocr)
onlret (—onlret)

ofill (—ofill)
ofdel (—ofdel)
cr0 crl cr2 cr3

nl0 nll
tab0 tabl tab2 tab3

bs0 bs1

10 ff1

vt0 vtl
Local Modes

isig (—isig)

icanon (—icanon)
xcase (—xcase)

echo (—echo)
echoe (—echoe)

echok (—echok)
Ifke (—Mke)
echonl (—echonl)
noflsh (—noflsh)
stwrap (—stwrap)

stflush (—stflush)

stappl (—stappl)

Control Assignments
control-character ¢

line i

Combination Modes
evenp or parity
oddp

STTY(1)

map (do not map) NL to CR-NL on output.

map (do not map) CR to NL on output.

do not (do) output CRs at column zero.

on the terminal NL performs (does not perform) the
CR function.

use fill characters (use timing) for delays.

fill characters are DELs (NULs).

select style of delay for carriage returns (see rer-
mio(7)).

select style of delay for line-feeds (see termio(7)).
select style of delay for horizontal tabs (see termio(7)
or stermio(7)).

select style of delay for backspaces (see termio(7)).
select style of delay for form-feeds (see termio(7)).
select style of delay for vertical tabs (see termio(7)).

~ enable (disable) the checking of characters against

the special control characters INTR and QUIT.

enable (disable) canonical input (ERASE and KILL
processing).

canonical (unprocessed) upper/lower-case presenta-
tion.

echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace-
space-backspace string. Note: this mode will erase
the ERASEed character on many CRT terminals; how-
ever, it does not keep track of column position and,
as a result, may be confusing on escaped characters,
tabs, and backspaces.

echo (do not echo) NL after KILL character.

the same as echok (—echok); obsolete.

echo (do not echo) NL.

disable (enable) flush after INTR or QUIT.

disable (enable) truncation of lines longer than 79
characters on a synchronous line.

enable (disable) flush on a synchronous line after
every write(2).

use application mode (use line mode) on a synchro-
nous line.

set control-character to ¢, where control-character is
erase, kill, intr, quit, eof, eol, ctab, min, or time
(ctab is used with —stappl; see stermio(7)), (min
and time are used with —icanon; see termio(7)). If ¢
is preceded by an (escaped from the shell) caret (°),
then the value used is the corresponding CTRL char-
acter (e.g., “"d” is a CTRL-d); **" ?”’ is interpreted as
DEL and “"— is interpreted as undefined.

set line discipline to i (0 < i < 127).

enable parenb and cs7.
enable parenb, ¢s7, and parodd.

—parity, —evenp, or —oddp

disable parenb, and set ¢s8.

raw (—raw or cooked)

enable (disable) raw input and output (no ERASE,

-2-

STTY (1) STTY(1)

KILL, INTR, QUIT, EOT, or output post processing).

nl (—nl) unset (set) icrml, onler. In addition —nl unsets
inlcr, igner, ocrnl, and onlret.
Icase (—lcase) set (unset) xcase, iucle, and olcuc.

LCASE (—LCASE) same as lcase (—lcase).
tabs (—tabs or tab3)
preserve (expand to spaces) tabs when printing.

ek reset ERASE and KILL characters back to normal #
and @.
sane resets all modes to some reasonable values.
term set all modes suitable for the terminal type term,
where term is one of tty33, tty37, vt0S, tn300, ti700,
or tek.
SEE ALSO

tabs(1), ioctl(2).
stermio(7), termio(7) in the UNIX System Adminstrator’s Manual.

suU(1) Su(1)

NAME

su — become super-user or another user
SYNOPSIS

su[—][name [arg ... 1]
DESCRIPTION

Su allows one to become another user without logging off. The default
user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is
already super-user). If the password is correct, su will execute a new shell
with the user ID set to that of the specified user. To restore normal user ID
privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting the super-user
to run shell procedures with restricted privileges (an arg of the form —¢
string executes string via the shell). When additional arguments are passed,
/bin/sh is always used. When no additional arguments are passed, su uses
the shell specified in the password file.

An initial — flag causes the environment to be changed to the one that
would be expected if the user actually logged in again. This is done by
invoking the shell with an arg0 of —su causing the .profile in the home
directory of the new user ID to be executed. Otherwise, the environment is
passed along with the possible exception of $PATH, which is set to
/bin: /etc: /usr/bin for root. Note that the .profile can check arg0 for —sh
or —su to determine how it was invoked.

FILES
/etc/passwd system’s password file
$HOME/ .profile user’s profile

SEE ALSO

env(1l), login(1), sh(1), environ(5).

SUM(1) SUM(1)

NAME

sum — print checksum and block count of a file
SYNOPSIS

sum [—r] file
DESCRIPTION

Sum calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file. It is typically used to look for bad
spots, or to validate a file communicated over some transmission line. The

option —r causes an alternate algorithm to be used in computing the check-
sum.

SEE ALSO
we(1).
DIAGNOSTICS

“Read error” is indistinguishable from end of file on most devices; check
the block count.

SYNC(1) SYNC(1)

NAME
sync — update the super block

SYNOPSIS
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped,
sync must be called to insure file system integrity. It will flush all previ-
ously unwritten system buffers out to disk, thus assuring that all file
modifications up to that point will be saved. See sync(2) for details.

SEE ALSO
sync(2).

TABS(1) TABS(1)

NAME
tabs — set tabs on a terminal

SYNOPSIS
tabs [tabspec] [+mn] [—Ttype]

DESCRIPTION
Tabs sets the tab stops on the user’s terminal according to the tab
specification zabspec, after clearing any previous settings. The user must of
course be logged in on a terminal with remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a
different way than most other terminals for some tab settings: the first
number in a list of tab settings becomes the left margin on a TermiNet ter-
minal. Thus, any list of tab numbers whose first element is other than 1
causes a margin to be left on a TermiNet, but not on other terminals. A
tab list beginning with 1 causes the same effect regardless of terminal type.
It is possible to set a left margin on some other terminals, although in a
different way (see below).

Four types of tab specification are accepted for tabspec: ‘‘canned,” repeti-
tive, arbitrary, and file. If no tabspec is given, the default value is —8, i.e.,
UNIX “‘standard”’ tabs. The lowest column number is 1. Note that for
tabs, column 1 always refers to the leftmost column on a terminal, even
one whose column markers begin at 0, e.g., the DASI 300, DASI 300s, and
DASI 450. '

—code Gives the name of one of a set of ““‘canned’” tabs. The legal codes
and their meanings are as follows:

—a 1,10,16,36,72
Assembler, IBM S/370, first format

—a2 1,10,16,40,72
Assembler, IBM S/370, second format

—c 1,8,12,16,20,55
COBOL, normal format

—c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one space
gets you to column 8, and a tab reaches column 12. Files using
this tab setup should include a format specification as follows:

<:it—c2 m6 s66 d:>

—c3 1,6,10,14,18,22,26,30,34,38,4%,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs
than —c2. This is the recommended format for COBOL. The ~
appropriate format specification is:

<:t—c3 m6 s66 d:>
—f 1,7,11,15,19,23

FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I '

—s 1,10,55
SNOBOL

—u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these ‘“‘canned’’ formats, three other types exist:

—n A repetitive specification requests tabs at columns 1+n, 1+2+n,
etc. Note that such a setting leaves a left margin of n columns on
TermiNet terminals only. Of particular importance is the value

.1-

TABS(1)

nl,n2,...

——file

TABS(1)

—8: this represents the UNIX “‘standard” tab setting, and is the
most likely tab setting to be found at a terminal. It is required for
use with the #roff —h option for high-speed output. Another spe-
cial case is the value —0, implying no tabs at all.

The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is pre-
ceded by a plus sign, it is taken as an increment to be added to the
previous value. Thus, the tab lists 1,10,20,30 and 1,10,+10,+10
are considered identical.

If the name of a file is given, tabs reads the first line of the file,
searching for a format specification. If it finds one there, it sets
the tab stops according to it, otherwise it sets them as —8. This
type of specification may be used to make sure that a tabbed file is
printed with correct tab settings, and would be used with the pr(1)
command:

tabs —— file; pr file

Any of the following may be used also; if a given flag occurs more than
once, the last value given takes effect:

~Toype

+mn

Tab and
DIAGNOSTICS

Tabs usually needs to know the type of terminal in order to set
tabs and always needs to know the type to set margins. Type is a
name listed in term(5). If no —T flag is supplied, tabs searches
for the STERM value in the environment (see emviron(5)). If no
tpe can be found, tabs tries a sequence that will work for many
terminals.

The margin argument may be used for some terminals. It causes
all tabs to be moved over » columns by making column n+1 the
left margin. If +m is given without a value of n, the value
assumed is 10. For a TermiNet, the first value in the tab list
should be 1, or the margin will move even further to the right.
The normal (leftmost) margin on most terminals is obtained by
+m0. The margin for most terminals is reset only when the +m
flag is given explicitly.

margin setting is performed via the standard output.

illegal tabs when arbitrary tabs are ordered incorrectly.
illegal increment when a zero or missing increment is found in an arbi-

trary specification.

unknown tab code when a *“‘canned’’ code cannot be found.
can’t open if ——file option used, and file can’t be opened.
file indirection if ——file option used and the specification in that file

SEE ALSO

points to yet another file. Indirection of this form is
not permitted.

nroff(1), environ(5), term(5).

BUGS .
There is

no consistency among different terminals regarding ways of clear-

ing tabs and setting the left margin.

It is generally impossible to usefully change the left margin without also
setting tabs.

Tabs clears only 20 tabs (on terminals requiring a long sequence), but is
willing to set 40.

TAIL(1) TAIL(1)

NAME

tail — deliver the last part of a file

SYNOPSIS

tail [+[numberllibe[f] 11 [file]

DESCRIPTION

Tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or —number from
the end of the input (if number is null, the value 10 is assumed). Number
is counted in units of lines, blocks, or characters, according to the
appended option 1, b, or ¢. When no units are specified, counting is by

-lines.

With the —f (‘“‘follow”’) option, if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied, but will
enter an endless loop, wherein it sleeps for a second and then attempts to
read and copy further records from the input file. Thus it may be used to
monitor the growth of a file that is being written by some other process.
For example, the command:

tail —f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail —15cf fred

will print the last 15 characters of the file fred, followed by any lines that
are appended to fred between the time fail is initiated and killed.

SEE ALSO

BUGS

dd(1).

Tails relative to the end of the file are treasured up in a buffer, and thus
are limited in length. Various kinds of anomalous behavior may happen
with character special files.

TAR(1) TAR(1)

NAME

tar — tape file archiver
SYNOPSIS

tar [key] [files]
DESCRIPTION

Tar saves and restores files on magnetic tape. Its actions are controlled by
the key argument. The key is a string of characters containing at most one
function letter and possibly one or more function modifiers. Other argu-
ments to the command are files (or directory names) specifying which files
are to be dumped or restored. In all cases, appearance of a directory name
refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The ¢ function
implies this function.
X The named files are extracted from the tape. If a named file

matches a directory whose contents had been written onto the
tape, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no files
argument is given, the entire content of the tape is extracted.
Note that if several files with the same name are on the tape, the
last one overwrites all earlier ones.

t The names of the specified files are listed each time that they
occur on the tape. If no files argument is given, all the names on
the tape are listed.

u The named files are added to the tape if they are not already there,
or have been modified since last written on that tape.
c Create a new tape; writing begins at the beginning of the tape,

instead of after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects
the desired function:

0,...,7 This modifier selects the drive on which the tape is mounted. The
: default is 1.

v Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the
function letter. With the t function, v gives more information
about the tape entries than just the name.

w causes far to print the action to be taken, followed by the name of
the file, and then wait for the user’s confirmation. If a word
beginning with y is given, the action is performed. Any other
input means ‘‘no”’.

f causes far to use the next argument as the name of the archive
instead of /dev/mt?. If the name of the file is —, tar writes to
the standard output or reads from the standard input, whichever is
appropriate. Thus, far can be used as the head or tail of a pipe-
line. Tar can also be used to move hierarchies with the command:

cd fromdir; tar f — . | (cd todir; tar xf —)

b causes far to use the next argument as the blocking factor for tape
records. The default is 1, the maximum is 20. This option should
only be used with raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (key
letters x and t).

1 tells rar to complain if it cannot resolve all of the links to the files
being dumped. If I is not specified, no error messages are printed.

-1-

TAR(1) TAR(1)

m tells tar to not restore the modification times. The modification
time of the file will be the time of extraction.

FILES
/dev/mt?
/tmp/tarx
DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If
the archive is on a disk file, the b option should not be used at all, because
updating an archive stored on disk can destroy it.
The current limit on file-name length is 100 characters.

TBL(1) TBL(1)

NAME
tbl — format tables for nroff or troff

SYNOPSIS
thl [—TXx] [files]

DESCRIPTION
Thl is a preprocessor that formats tables for nroff or troff(1). The input
files are copied to the standard output, except for lines between .TS and .TE
command lines, which are assumed to describe tables and are re-formatted
by tbl. (The .TS and .TE command lines are not altered by tbl).

.TS is followed by global options. The available global options are:

center center the table (default is left-adjust);

expand make the table as wide as the current line length;

box enclose the table in a box;

doublebox enclose the table in a double box;

allbox enclose each item of the table in a box;

tab (x) use the character x instead of a tab to separate items in
a line of input data.

The global options, if any, are terminated with a semi-colon (;).

Next come lines describing the format of each line of the table. Each such
format line describes one line of the actual table, except that the last format
line (which must end with a period) describes all remaining lines of the
table. Each column of each line of the table is described by a single key-
letter, optionally followed by specifiers that determine the font and point
size of the corresponding item, that indicate where vertical bars are to
appear between columns, that determine column width, inter-column spac-
ing, etc. The available key-letters are:

center item within the column;

right-adjust item within the column;

left-adjust item within the column;

numerically adjust item in the column: units positions of
numbers are aligned vertically;

span previous item on the left into this column;

center longest line in this columh and then left-adjust all
other lines in this column with respect to that centered line;
span down previous entry in this column;

_ replace this entry with a horizontal line;

= replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respectively; the
character | indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for the
table, followed finally by .TE. Within such data lines, data items are nor-
mally separated by tab characters.

=

If a data line consists of only _ or =, a single or double line, respectively,
is drawn across the table at that point; if a single item in a data line consists
of only _ or =, then that item is replaced by a single or double line.

Full details of all these and other features of bl are given in the reference
manual cited below.

The —TX option forces bl to use only full vertical line motions, making the
output more suitable for devices that cannot generate partial vertical line
motions (e.g., line printers).

TBL(1)

TBL(1)

If no file names are given as arguments (or if — is specified as the last
argument), thl reads the standard input, so it may be used as a filter.
When it is used with eqn(1) or negn, tbl should come first to minimize the
volume of data passed through pipes.

EXAMPLE

If we let — represent a tab (which should be typed as a genuine tab), then
the input:

IS

center box ;

cB s s

cl|cls

“lec

l|nn.

Household Population

Town—Households
—Number—Size
Bedminster—789—3.26
Bernards Twp.—3087—3.74
Bernardsville—2018—3.30
Bound Brook—3425—3.04
Bridgewater—7897—3.81
Far Hills—240—3.19

.TE
yields:
Household Fopulation
T Households
own Numt Si
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19
SEE ALSO

BUGS

TBL—A Program to Format Tables in the UNILX System Document Processing
Guide.
cw(1), eqn(1), mm(1), mmt(1), nroff(1), troff(1), mm(5), mv(5).

See BUGS under nroff(1).

TC(1) TC(1)

NAME

tc — phototypesetter simulator
SYNOPSIS '

te[—t][—sn]l[—pl]lfie]
DESCRIPTION

Tc interprets its input (standard input default) as device codes for a Wang
Laboratories, Inc. C/A/T phototypesetter. The standard output of #c is
intended for a Tektronix 4014 terminal with ASCII and APL character sets.
The sixteen typesetter sizes are mapped into the 4014°s four sizes; the
entire TROFF character set is drawn using the 4014’s character generator,
with overstruck combinations where necessary. Typical usage is:

troff —t files | tc
At the end of each page, tc waits for a new-line (empty line) from the key-
board before continuing on to the next page. In this wait state, the com-

mand e will suppress the screen erase before the next page; sn will cause
the next n pages to be skipped; and !emd will send cmd to the shell.

The command line options are:
—t Don’t wait between pages (for directing output into a file).
—sn Skip the first n pages.
—pl Set page length to /; | may include the scale factors p (points), i
(inches), ¢ (centimeters), and P (picas); default is picas.
SEE ALSO
4014(1), sh(1), tplot(1G), troff(1).

BUGS
Font distinctions are lost.

TEE(1) TEE(1)

NAME

tee — pipe fitting
SYNOPSIS

tee [—i] [—allfie]..
DESCRIPTION

Tee transcribes the standard input to the standard output and makes copies
in the files. The —i option ignores interrupts; the —a option causes the
output to be appended to the files rather than overwriting them.

TEST(1) TEST(1)

NAME 4
test — condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero
(true) exit status; otherwise, a non-zero (false) exit status is returned; test
also returns a non-zero exit status if there are no arguments. The follow-
ing primitives are used to construct expr:

—r file true if file exists and is readable.

—w file true if file exists and is writable.

—x file true if file exists and is executable.

—f file true if file exists and is a regular file.

—d file true if file exists and is a directory.

—c file true if file exists and is a character special file.
—b file true if file exists and is a block special file.

—p file true if file exists and is a named pipe (fifo).
—u file true if file exists and its set-user-ID bit is set.
—g file true if file exists and its set-group-ID bit is set.
—k file true if file exists and its sticky bit is set.

—s file true if file exists and has a size greater than zero.

—t [fildes] true if the open file whose file descriptor number is fildes (1
by default) is associated with a terminal device.

—zsl true if the length of string s! is zero.
—n sl true if the length of the string s/ is non-zero.
sl = 52 true if strings s/ and s2 are identical.

sl 1= s2 true if strings s/ and s2 are not identical.
sl true if sI is not the null string.

nl —eq n2 true if the integers nl and n2 are algebraically equal. Any of
the comparisons —ne, —gt, —ge, —It, and —le may be used
in place of —eq.

These primaries may be combined with the following operators:

! unary negation operator.
—a binary and operator.
-0 binary or operator (—a has higher precedence than —o).

(expr) parentheses for grouping.

Notice that all the operators and flags are separate arguments to fest.
Notice also that parentheses are meaningful to the shell and, therefore,
must be escaped.

SEE ALSO
find(1), sh(1).

TEST(1) TEST(1)

WARNING
In the second form of the command (i.e., the one that uses [], rather than
the word test), the square brackets must be delimited by blanks.
Some UNIX systems do not recognize the second form of the command.

TIME(1) TIME(1)

NAME
time — time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in
execution of the command. Times are reported in seconds.

The execution time can depend on what kind of memory the program hap-
pens to land in; the user time in MOS is often half what it is in core.

The times are printed on standard error.

SEE ALSO
timex(1), times(2).

TIMEX (1) TIMEX(1)

NAME
timex — time a command; report process data and system activity
SYNOPSIS
timex [options] command
DESCRIPTION
The given command is executed; the elapsed time, user time and system
time spent in execution are reported in seconds. Optionally, process
accounting data for the command and all its children can be listed or sum-

marized, and total system activity during the execution interval can be
reported. :

The output of timex is written on standard error.
Options are:

—p List process accounting records for command and all its children.
Suboptions f, h, k, m, r, and t modify the data items reported, as
defined in acctcom(1). The number of blocks read or written and
the number of characters transferred are always reported.

—0 Report the total number of blocks read or written and total charac-
ters transferred by command and all its children.

—s Report total system activity (not just that due to command) that
: occurred during the execution interval of command. All the data
items listed in sar(1) are reported.

SEE ALSO
acctcom(1), sar(1).

WARNING
Process records associated with command are selected from the accounting
file /usr/adm/pacct by inference, since process genealogy is not available.

Background processes having the same user-id, terminal-id, and execution
time window will be spuriously included.

EXAMPLES
A simple example:

timex —ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a
sub-shell:

timex —opskmt sh

session commands
EOT

TOC(1G) TOC(1G)

NAME
toc — graphical table of contents routines

SYNOPSIS
dtoc [directory]
ttoc mm-file
vtoc [—cdhnimsvn] [TTOC file]

DESCRIPTION
All of the commands listed below reside in /usr/bin/graf (scc
graphics(1G)).

dtoc Dtoc makes a textual table of contents, TTOC, of all subdirec-
tories beginning at directory (directory defaults to .). The list has
one entry per directory. The entry fields from left to right are
level number, directory name, and the number of ordinary read-
able files in the directory. Dtoc is useful in making a visual
display of all or parts of a file system. The following will make a
visual display of all the readable directories under /:

dtoc / | vtoc | td

ttoc Output is the table of contents generated by the .TC macro of
mm(1) translated to TTOC format. The input is assumed to be a
mm file that uses the .H family of macros for section headers. If
no file is given, the standard input is assumed.

vtoc Vioc produces a GPS describing a hierarchy chart from a TTOC.
The output drawing consists of boxes containing text connected
in a tree structure. If no file is given, the standard input is
assumed. Bach TTOC entry describes one box and has the form:
id lline-weight line-style] "text" [mark]
where:

id is an alternating sequence of numbers and dots.
The id specifies the position of the entry in the
hierarchy. The id 0. is the root of the tree.

line-weight is either:
n, normal-weight; or
m, medium-weight; or
b, bold-weight.

line-style is either:
so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
Id, long-dashed

text is a character string surrounded by quotes. The
characters between the quotes become the contents
of the box. To include a quote within a box it
must be escaped (\").

mark is a character string (surrounded by quotes if it
contains spaces), with included dots being escaped.
The string is put above the top right corner of the
box. To include either a quote or a dot within a
mark it must be escaped.

Entry example: 1.1 b,da "ABC" DEF
Entries may span more than one line by escaping the new-line

-1-

TOC(1G) TOC(1G)

(\new-line).

Comments are surrounded by the /#,¢/ pair. They may appear
anywhere in a TTOC.

Options:

¢ Use text as entered, (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n% of box width.

i Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

va Vertical interbox space is n% of box height.

SEE ALSO
graphics(1G), gps(4).

TOUCH(1) TOUCH(1)

NAME

touch — update access and modification times of a file
SYNOPSIS

touch [—ame] [mmddhhmm[yy]] files
DESCRIPTION

Touch causes the access and modification times of each argument to be
updated. If no time is specified (see date(1)) the current time is used. The
—a and —m options cause touch to update only the access or modification
times respectively (default is —am). The —c option silently prevents touch
from creating the file if it did not previously exist.

The return code from fouch is the number of files for which the times
could not be successfully modified (including files that did not exist and
were not created).

SEE ALSO
date(1), utime(2).

TPLOT (1G) TPLOT(1G)

NAME

tplot — graphics filters
SYNOPSIS

tplot [—Tterminal [—e raster]]
DESCRIPTION

These commands read plotting instructions (see plot(4)) from the standard
input and in general produce, on the standard output, plotting instructions
suitable for a particular terminal. If no terminal is specified, the environ-
ment parameter STERM (see environ(5)) is used. Known terminals are:

300 DASI 300.

300S DASI 300s.

450 DASI 450.

4014 Tektronix 4014,

ver Versatec D1200A. This version of plot places a scan-converted
image in /usr/tmp/raster$$ and sends the result directly to the
plotter device, rather than to the standard output. The —e option
causes a previously scan-converted file raster to be sent to the
plotter.

FILES
Jusr/lib/t300
Jusr/lib/t300s
/Jusr/lib/t450
Jusr/lib/t4014
Jusr/lib/vplot
Jusr/tmp/raster$$

SEE ALSO
plot(3X), plot(4), term(5).

TR(1) TR(1)

NAME
tr — translate characters

SYNOPSIS
tr [—cds] [stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in stringl are
mapped into the corresponding characters of string2. Any combination of
the options —cds may be used:

- Complements the set of characters in stringl with respect to the
universe of characters whose ASCH codes are 001 through 377
octal.

—d Deletes all input characters in stringl .

—s Squeezes all strings of repeated output characters that are in

string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a—z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

[asn] Stands for n repetitions of a. If the first digit of n is 0, n is con-
sidered octal; otherwise, n is taken to be decimal. A zero or miss-
ing n is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special mean-
ing from any character in a string. In addition, \ followed by 1, 2, or 3
octal digits stands for the character whose ASCII code is given by those
digits.

The following example creates a list of all the words in filel one per line in
file2, where a word is taken to be a maximal string of alphabetics. The
strings are quoted to protect the special characters from interpretation by
the shell; 012 is the ASCII code for newline.

tr —cs '[A—2Z][a—2z]" "\012+]" <filel >file2

SEE ALSO
ed(1), sh(1), ascii(5).

BUGS
Won’t handle ASCII NUL in stringl or string2; always deletes NUL from
input.

TROFF(1)

NAME

TROFF(1)

troff — typeset text

SYNOPSIS

troff [options] { files]

DESCRIPTION

Troffl formats text contained in files (standard input by default) for a Wang
Laboratories, Inc., C/A/T phototypesetter. Its capabilities are described in
the NROFF/TROFF User’s Manual cited below.

An argument consisting of a minus (—) is taken to be a file name
corresponding to the standard input. The options, which may appear in any
order, but must appear before the files, are:

—olist

—nN
—sN

—raN
—i

-q

—z
—mname

—cname

—kname

—Tname

Print only pages whose page numbers appear in the lix of
numbers and ranges, separated by commas. A range N—M
means pages N through M; an initial —N means from the
beginning to page N; and a final N— means from N to the end.
(See BUGS below.)

Number first generated page M.

Stop every N pages. Troff will stop the phototypesetter every N
pages, produce a trailer to allow changing cassettes, and resume
when the typesetter’s start button is pressed.

Set register a (which must have a one-character name) to V.
Read standard input after files are exhausted.

Invoke the simultaneous input-output mode of the .rd request.
Print only messages generated by .tm (terminal message)
requests.

Prepend to the input files the non-compacted (ASCII text) macro
file /usr/lib/tmac/tmac.name.

Prepend to the input files the compacted macro files
/usr/lib/macros/cmp.[nt].[dt].name and
/usr/lib/macros/ucmp.[nt].name.

Compact the macros used in this invocation of troff, placing the
output in files [dt].name in the current directory (see the May
1979 Addendum to the NROFF/TROFF User’s Manual for details
of compacting macro files).

Direct output to the standard output instead of the photo-
typesetter.

Refrain from feeding out paper and stopping phototypesetter at
the end of the run.

Wait until phototypesetter is available, if it is currently busy.
Report whether the phototypesetter is busy or available. No text
processing is done.

Send a printable ASCII approximation of the results to the stan-
dard output.

Print all characters in point size N while retaining all prescribed
spacings and motions, to reduce phototypesetter elapsed time.
Prepare output for the Murray Hill Computation Center photo-
typesetter and direct it to the standard output (this option is not
usable on most systems). This option is not compatible with the
—s option; furthermore, when this option is invoked, all .fp
(font position) requests (if any) in the rof input must come
before the first break, and no .tl requests may come before the
first break.

Use font-width tables for device name (the font tables are found
in /usr/lib/font/name /+). Currently, no names are supported.

-1-

TROFF (1) TROFF(1)

FILES
Jusr/lib/suftab suffix hyphenation tables
/tmp/ta$# temporary file
Jusr/lib/tmac/tmac.* standard macro files and pointers
Jusr/lib/macros/* standard macro files
Jusr/lib/font/« font width tables for troff
SEE ALSO
NROFF/TROFF User’s Manual and A TROFF Tutorial in the UNIX System
Document Processing Guide.
cw(1), eqn(1), mmt(1), nroff(1), tbl(1), tc(1), mm(5), mv(S).
BUGS

Troff believes in Eastern Standard Time; as a result, depending on the time
of the year and on your local time zone, the date that troff’ generates may
be off by one day from your idea of what the date is.

When troff is used with the —olist option inside a pipeline (e.g., with one or
more of cw(1), egn(1), and tbl(1)), it may cause a harmless ‘‘broken pipe’’
diagnostic if the last page of the document is not specified in Zist.

TROUBLE(1)

NAME

TROUBLE(1)

trouble — log a trouble report

SYNOPSIS
trouble

DESCRIPTION

The trouble command is a front end for the Piscataway Change Manage-
ment Tracking System (CMTS). It is used to log trouble reports on, or
request enhancements to UNIX. Trouble reports will be forwarded to Pisca-
taway via uucp(1C), where they are transformed into Modification Requests

(MRs).

The command will prompt for the following mandatory fields:

Name:

Location:
Phone:

Type:

System:
Machine:

Release:
Severity:

Date required:
Trouble Area:

Abstract:
Description:

The originator’s name (F. M. Last, F. Last, or First
Last); (3 to 6 letter ID, if they are in the names
file)

The external or internal mailing address

The telephone number (aaaa, aaa-bbb-ccce, 8aaa-
bbbb, or aaa-bbb-cccc xdddd)

sw (software), hdw (hardware), doc (documenta-
tion), enh (enhancement), unk (unknown)

The product under discussion (usually unix)

The CPU on which the trouble was found; ma if not
applicable

The product release number; na if not applicable

1 (out of commission, no circumvention), 2 (sever-
ity 1 if not fixed by due date (mo/da/yr)), 3
(needed), 4 (can be deferred)

The due date for a severity 2 trouble report

The command or area in which the trouble was
found

A one-line summary of the problem

The exact description of the problem; ed(1) is the
entry mechanism, so an a (append) must first be
typed. Once the description has been entered and
edited, a w (write) followed by a q (quit) is
required. Since nroff is used to format these
reports, all examples can be enclosed within the .ES
and .EE formatter macros that are supplied by trou-
ble. In addition, any backslashes should be entered
using the \e construct.

A response of ? will cause the expected format of the response to be

displayed.

Unless the description states otherwise, the trouble report may be selected
to appear in the MINI-SYSTEM NEWSLETTER. ’

FILES
Jusr/lib/trouble/tr.a

archived trouble reports

Jusr/libjtrouble/instruct instructions

Jusr/lib/trouble/trsh

Jusr/lib/trouble/trxmit
Jusr/lib/trouble/names

SEE ALSO
uucp(1C).

trouble report shell
re-transmission shell
letter ID data base

TRUE(1) TRUE(1)

NAME
true, false — provide truth values

SYNOPSIS
true

false

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccessfully. They
are typically used in input to sh(1) such as:

while true
do
command
done
SEE ALSO
sh(1).
DIAGNOSTICS

True has exit status zero, false nonzero.

TSORT(1) TSORT(1)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items con-
sistent with a partial ordering of items mentioned in the input file. If no
file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering
a library archive file.

TTY (1) TTY (1)

NAME

tty — get the terminal’s name
SYNOPSIS

tty [—1] [—s]
DESCRIPTION

Ty prints the path name of the user’s terminal. The —1 option prints the
synchronous line number to which the user’s terminal is connected, if it is
on an active synchronous line. The —s option. inhibits printing of the
terminal’s path name, allowing one to test just the exit code.

EXIT CODES

2 if invalid options were specified,
0 if standard input is a terminal,
1 otherwise.

DIAGNOSTICS

‘“not on an active synchronous line” if the standard input is not a synchro-
nous terminal and —1 is specified.
“not a tty”’ if the standard input is not a terminal and —s is not specified.

UMASK(1) UMASK(1)

NAME

umask — set file-creation mode mask
SYNOPSIS

umask [ooo]
DESCRIPTION

The user file-creation mode mask is set to ooo. The three octal digits refer
to read/write/execute permissions for owner, group, and others, respectively
(see chmod(2) and wmask(2)). The value of each specified digit is sub-

_ tracted from the corresponding “‘digit>* specified by the system for the crea-
tion of a file (see creat(2)). For example, umask 022 removes group and
others write permission (files normally created with mode 777 become
mode 7585; files created with mode 666 become mode 644).

If ooo is omitted, the current value of the mask is printed.
Umask is recognized and executed by the shell.

SEE ALSO
chmod(1), sh(1), chmod(2), creat(2), umask(2).

UNAME(1) UNAME(1)

NAME

uname — print name of current UNIX system
SYNOPSIS

uname | —snrvma]
DESCRIPTION

Uname prints the current system name of UNIX on the standard output file.
It is mainly useful to determine what system one is using. The options
cause selected information returned by uname(2) to be printed:

—s print the system name (default).

—n print the nodename (the nodename may be a name that the system
is known by to a communications network).

-r print the operating system release.

—-v print the operating system version.

—m print the machine hardware name.

—a print all the above information.

Arguments not recognized default the command to the —s option.

SEE ALSO 1
uname(2).

UNGET(1) UNGET(1)

NAME

unget — undo a previous get of an SCCS file
SYNOPSIS

unget [—rSID] [—s] [—n] files
DESCRIPTION

Unget undoes the effect of a get —e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of — is given, the standard
input is read with each line being taken as the name of an SCCS file to be
processed.

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the “new
delta). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same
SCCS file were done by the same person (login name).
A diagnostic results if the specified SID is ambiguous, or
if it is necessary and omitted on the command line.

—s Suppresses the printout, on the standard output, of the
intended delta’s SID.
—n Causes the retention of the gotten file which would nor-
mally be removed from the current directory.
SEE ALSO
delta(1), get(1), sact(1).
DIAGNOSTICS

Use help(1) for explanations.

UNIQ(1) UNIQ(1)

NAME

uniq — report repeated lines in a file
SYNOPSIS

unig [—ude [+n] [—n 1] [input [output]]
DESCRIPTION

Uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder
is written on the output file. Inpur and output should always be different.
Note that repeated lines must be adjacent in order to be found; see sorz(1).
If the —u flag is used, just the lines that are not repeated in the original file
are output. The —d option specifies that one copy of just the repeated lines
is to be written. The normal mode output is the union of the —u and —d
mode outputs.

The —c option supersedes —u and —d and generates an output report in
default style but with each line preceded by a count of the number of times
it occurred.

The n arguments specify skipping an initial portion of each line in the com-
parison:

—n The first n fields together with any blanks before each are ignored.
A field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before char-
acters.

SEE ALSO
comm(1), sort(1).

UNITS(1) UNITS(1)

NAME

units — conversion program

SYNOPSIS

units

DESCRIPTION

FILES

Units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch

You want: ¢cm
* 2.540000¢+00
/ 3.937008¢—01

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 Ibs force/in2
You want: atm

* 1.020689¢+00

/ 9.797299e¢—01

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations,
and metric prefixes are recognized, together with a generous leavening of
exotica and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,

e charge on an electron,

g acceleration of gravity,

force sameasg,

mole Avogadro’s number,

water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; Ib is. Compound names are run
together, (c.g. lightyear). British units that differ from their U.S. counter-
parts are prefixed thus: brgallon. For a complete list of units, type:

cat /usr/lib/unittab

Jusr/lib/unittab

UUCP(1C) UUCP(1C)

NAME

uucp, uulog, uuname — unix to unix copy

SYNOPSIS

uucp [options] source-files destination-file
uulog [options]
uuname [—1]

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have
the form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. The system-name may also be a list of names such as

in which case an attempt is made to send the file via the specified route,
and only to a destination in PUBDIR (see below). Care should be taken to
insure that intermediate nodes in the route are willing to foward informa-
tion.

The shell metacharacters ?, and {...] appearing in path-name will be
expanded on the appropriate system.

Path names may be one of:
1) a full path name;

) a path name preceded by “user where user is a login name
on the specified system and is replaced by that user’s login
directory;

3) a path name preceded by ~/user where user is a login name
on the specified system and is replaced by that user’s direc-
tory under PUBDIR;

) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will
fail. If the destination-file is a directory, the last part of the source-file name
is used.

Uucp preserves execute permissions across the transmission and gives 0666
read and write permissions (see chmod(2)).

The following options are interpreted by uucp:
—d Make all necessary directories for the file copy (default).
~f Do not make intermediate directories for the file copy.

—c Use the source file when copying out rather than copying the file
to the spool directory (default).

-C Copy the source file to the spool directory.

—mfile Report status of the transfer in file. If file is omitted, send mail to
the requester when the copy is completed.

—nuser Notify user on the remote system that a file was sent.

—esys Send the uucp command to system sys to be executed there.
(Note: this will only be successful if the remote machine allows

-1-

UUCP(1C) UUCP(1C)

the uucp command to be executed by /usr/lib/uucp/uuxqt.)

Uucp returns on the standard output a string which is the job number of
the request. This job number can be used by uustat to obtain status or ter-
minate the job.

Uulog.

Uulog queries a summary log of uucp and uux(1C) transactions in the file
/usr/spool/uucp/LOGFILE.

The options cause uulog to print logging information:
—ssps Print information about work involving system sys.
—uuser Print information about work done for the specified user.

Uuname.

Uuname lists the uucp names of known systems. The —I option returns
the local system name.

FILES
[usr/spool/uucp spool directory
/usr/spool/uucppublic public directory for receiving and sending (PUBDIR)
Jusr/lib/uucp/* other data and program files
SEE ALSO
mail(1), uux(1C).
WARNING

BUGS

The domain of remotely accessible files can (and for obvious security rea-
sons, usually should) be severely restricted. You will very likely not be
able to fetch files by path name; ask a responsible person on the remote
system to send them to you. For the same reasons you will probably not
be able to send files to arbitrary path names. As distributed, the remotely
accessible files are those whose names begin /usr/spool/uucppublic
(equivalent to “nuucp or just 7).

All files received by uucp will be owned by uucp.

The —m option will only work sending files or receiving a single file.
Receiving multiple files specified by special shell characters ? [...] will
not activate the —m option.

UUSTAT(1C) UUSTAT(1C)

NAME

uustat — uucp status inquiry and job control
SYNOPSIS

uustat [options]
DESCRIPTION

Uustat will display the status of, or cancel, previously specified uucp com-
mands, or provide general status on uucp connections to other systems.
The following options are recognized:

—jjobn Report the status of the uucp request jobn. If all is used for
Jobn, the status of all uucp requests is reported. If jobn is omit-
ted, the status of the current user’s uucp requests is reported.

—kjobn Kill the uucp request whose job number is jobn. The killed uucp
request must belong to the person issuing the uwstat command
unless one is the super-user.

—rjobn Rejuvenate jobn. That is jobn is touched so that its modification
time is set to the current time. This prevents wuuclean from
deleting the job until the jobs modification time reaches the limit
imposed by uuclean.

—chour Remove the status entries which are older than hour hours.
This administrative option can only be initiated by the user uucp
or the super-user.

—uuser Report the status of all uucp requests issued by user.

—8sys Report the status of all uucp requests which communicate with
remote system sys. '

—ohour Report the status of all uucp requests which are older than hour
hours.

—yhour Report the status of all uucp requests which are younger than
hour hours.

—mmch Report the status of accessibility of machine mch. If mch is
specified as all, then the status of all machines known to the
local uucp are provided.

—Mmch This is the same as the —m option except that two times are
printed. The time that the last status was obtained and the time
that the last successful transfer to that system occurred.

-0 Report the uucp status using the octal status codes listed below.
If this option is not specified, the verbose description is printed
with each uucp request.

—q List the number of jobs and other control files queued for each
machine and the time of the oldest and youngest file queued for
each machine. If a lock file exists for that system, its date of
creation is listed.

When no options are given, uustat outputs the status of all uucp requests
issued by the current user. Note that only one of the options —j, —m,
—k, —¢, —r, can be used with the rest of the other options.

For example, the command:
uustat —uhdc —smhtsa —y72

will print the status of all uucp requests that were issued by user kdc to
communicate with system mhisa within the last 72 hours. The meanings of
the job request status are:

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description.
The octal code corresponds to the following description:

-1-

UUSTAT(1C)

OCTAL
000001
000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

UUSTAT(1C)

STATUS

the copy failed, but the reason cannot be determined
permission to access local file is denied
permission to access remote file is denied
bad uucp command is generated

remote system cannot create temporary file
cannot copy to remote directory

cannot copy to local directory

local system cannot create temporary file
cannot execute uucp

copy (partially) succeeded

copy finished, job deleted

job is queuned

job killed (incomplete)

job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where fime is the latest status time and status is a self-explanatory descrip-
tion of the machine status.

Jusr/spool/uucp

spool directory

Jusr/lib/uucp/L_stat system status file
Jusr/lib/uucp/R_stat request status file

SEE ALSO
uucp(1C).

UUTO(1C) . UUTO(1C)

NAME

uuto, uupick — public UNIX-to-UNIX file copy

SYNOPSIS

uuto [options] source-files destination
wupick [—s system]

DESCRIPTION

FILES

Uuto sends source-files to destination. Uuto uses the uucp(1C) facility to
send files, while it allows the local system to control the file access. A
source-file name is a path name on your machine. Destination has the
form:

system!user

where system is taken from a list of system names that uucp knows about
(see uuname). Logname is the login name of someone on the specified sys-
tem.

Two options are available:

—p Copy the source file into the spool directory before transmission.
—m Send mail to the sender when the copy is complete.

The files (or sub-trees if