COIN TIMERS NO. 1B, D-99006, AND D-159938 AND ASSOCIATED NOS. 51A, 51C, 52A, D-99004, AND D-179538 DRIVES REQUIREMENTS AND ADJUSTING PROCEDURES

1. GENERAL

1.01 This section covers the No. 1B, D-99006, and D-159938 coin timers and associated Nos. 51A, 51C, 52A, D-99004, and D-179538 drives.

1.02 This section is reissued to include the Nos. 51C, 52A, and D-179538 drives. Detailed reasons for reissue will be found at the end of the section.

1.03 Reference shall be made to Section 020-010-711, covering General Requirements and definitions for additional information necessary for the proper application of the requirements listed herein.

1.04 The D-159938 timer shall meet the requirements covered by this section except those which apply to the "C" cam and "C" cam springs. The "C" cam and associated springs are not provided on the D-159938 timer.

1.05 <u>Asterisk</u>: Requirements are marked with an asterisk () when to check for them would necessitate the dismantling or dismounting of apparatus, or would affect the adjustment involved or other adjustments. No check need be made for these requirements unless the apparatus or part is made accessible for other reasons or its performance indicates that such

a check is advisable.

1.06 <u>One discharge of WECo. 57997 petrolatum</u> for the purpose of this section is the amount of petrolatum discharged from the No. 353C grease gun when the piston is fully depressed once.

1.07 One discharge of KS-6438 oil for the purpose of this section is the amount of KS-6438 oil discharged from the No. 552A oil gun when the piston is fully depressed once.

1.08 One dip of KS-8496 No. 3 lubricating compound for the purpose of this section is the amount of lubricant retained on the KS-14164 No. 4 artist's show card brush after being dipped in the lubricant to a depth of approximately 3/8 inch and scraped once against the side of the container as the brush is removed. There shall not be sufficient lubricant adhering to the brush to form a drop on the end of the bristles.

1.09 <u>Normal Position of Timer Gear and Cams</u>: The timer gear and associated cams are in their normal position when the end of the gear stop is resting against the end of the gear stop pawl or spring and with the armature resting against the head of the adjusting screw. 1.10 The term <u>contact spring</u> when used in this section includes, unless otherwise specified, both contact bars welded to the end of the spring. The front end of the spring may or may not be split. <u>A pair of contacts</u>, as referred to in this section, consists of a single contact bar of one contact spring and the corresponding contact bar on the opposing contact spring.

1.11 <u>Armature travel</u> is the gap between the stop plate on the armature and the nearest point on the pole piece when the armature is resting against the head of the adjusting screw.

1.12 Unless otherwise specified in the individual requirements, the driving shaft may be either rotating or stopped when checking that a requirement is met.

1.13 Before checking or readjusting to meet the requirements, the equipment should be taken out of service in accordance with the procedures outlined in the section of Division A300 covering methods of taking equipment out of service. When necessary to stop the motor of the driving shaft, make sure that the circuits associated with all timers operated by the driving shaft are made busy.

2. REQUIREMENTS

2.01 <u>Cleaning</u>

(a) Contacts shall be cleaned, when necessary, in accordance with the section covering cleaning of relay contacts. After cleaning any contacts, a check shall be made to see that both contacts on the bifurcated spring involved close as specified in requirement 2.22(c).

(b) Other parts shall be cleaned, when necessary, in accordance with approved procedures.

Fig. 1 - Lubricating Governor Pinion

Copyright, 1955, by American Telephone and Telegraph Company Printed in U. S. A.

2.02 Lubrication

- (a) The following parts shall be adequately lubricated with WECo. 57997 petrolatum.
 When lubrication is necessary, the lubricant shall be applied with the No. 353C grease gun equipped with a No. 570 straight nozzle as follows:
 - (1) Two discharges distributed evenly around the circumference of the driving shaft at each support bearing (one discharge on each side of the support) and two discharges to the driving shaft at the left and right thrust bearings.
 - (2) Fig. 2(A) One discharge to the slot in the pinion.
 - (3) Fig. 2(B) One discharge to the groove in the pinion.
 - (4) Fig. 2(C) Two discharges distributed evenly around the circumference of the shaft at each end of the pinion.
 - (5) Fig. 2(D) Three discharges to the hole in the hub of the gear shaft.
 - (6) Fig. 1(A) One discharge at the righthand face of the governor pinion.

(b) Fig. 5(A) - The friction washer shall be adequately lubricated with KS-6438 oil.
When lubrication is necessary, one discharge of the lubricant shall be applied with the No. 552A oil gun to each of the two holes in the damping disc. (c) Fig. 2(G) - The "C" cam shall be adequately lubricated with KS-8496 lucricating compound. When lubrication is necessary, one dip shall be distributed over the face of the cam which actuates the operating fingers on the "C" cam springs and the surface of the cam which rubs against the armature with the KS-14164 brush.

(d) Fig. 5(G) - The surface of the timer gear where it is engaged by the pinion prior to meshing shall be adequately lubricated with KS-8496 lubricating compound.
When lubrication is necessary, one dip shall be applied to the face of the timer gear at the point of pinion engagement.

(e) Where the motor is a reoilable type, lubricate it at intervals as specified in the section covering lubrication of Telechron motors.

(f) <u>Recommended Lubrication Intervals</u>: It is recommended that all parts except the driving shaft bearings, surface of the timer gear, and the motor, be lubricated at intervals of 24 months, the driving shaft bearings and the surface of the timer gear be lubricated at intervals of 12 months, and the motor at intervals as specified in the section covering lubrication of Telechron motors. These intervals may be extended or reduced if periodic inspections have indicated that local conditions are such to insure that requirements (a) to (e), inclusive, are met during the extended or reduced intervals.

Fig. 2 - Timer and Associated Drive Assembly

2.03 <u>Record of Lubrication</u>: During the period of installation, a record shall be kept by date of the lubrication of the timers and associated drives and this record shall be turned over to the telephone company with the equipment. If no lubrication has been done, it shall be so stated.

2.04 <u>End Play of Driving Shaft</u>: Fig. 2(E) -With the driving shaft motor stopped, the end play of the shaft shall be

Min Perceptible Max 0.010 inch

To check this requirement, gauge the minimum by feel and the maximum by inserting the No. 74D gauge between the shoulder of the gear and the plate.

2.05 <u>Engagement of Motor and Driving Shaft</u> <u>Gears</u>: The following requirements shall be met with the driving shaft motor stopped.

(a) With the driving shaft gear in the position of rotation where the head of the setscrew is nearest the motor shaft and with the bearing play of both shafts taken up so as to make the distance between them a maximum, the following requirements shall be met.

(1) The backlash between the driving shaft gear and the motor gear shall be

Min 0.005 inch

Gauge by feel.

(2) Fig. 3(A) - The teeth of the motor and driving shaft gears shall engage vertically for

Min 1/2 their depth

Gauge by eye.

Fig. 3 - Engagement of Motor and Driving Shaft Gears

(b) Fig. 2(F) - The teeth of the motor and driving shaft gears shall engage for their full width, at one point in the position of the gears, when they are moved back and forth in opposite directions to the extreme limits of motor and driving shaft end play. In no case, however, shall the engagement be less than 1/2 the width of the gear.

Gauge by eye and feel.

r

2.06 Mounting of Timers

 (a) Timers shall be fastened securely to the mounting plate and shall be so mounted that the side of the mounting bracket is approximately perpendicular to the driving shaft.

Gauge by eye and feel.

(b) The locknut on the positioning screw at the rear of the timer shall be tight.

Gauge by feel.

(c) Fig. 4(A) - With the driving shaft motor stopped and with the timer electrically operated, the teeth of the timer gear shall engage with the pinion in all positions of the gear for

Min 2/3 their depth

but there shall be backlash.

Gauge by eye.

Fig. 4 - Engagement of Timer Gear and Pinion

To check this requirement, rotate the gear manually so that one of the four reference holes in the gear is adjacent to the teeth in the pinion. Operate the timer electrically and check for engagement and backlash. Repeat this operation at the other three reference holes in the gear.

- 2.07 Engagement of Shifting Spring Tang and <u>Pinion</u> - Fig. 5(B)
 - (a) The shifting spring tang shall not touch the bottom of the pinion groove in the associated pinion but shall engage the pinion groove for

Min 1/32 inch

Gauge by eye for one complete revolution of the pinion.

To check this requirement, press up on the bottom of the pinion and observe if there is a movement of the pinion before it touches the bottom of the shifting spring tang.

(b) With the shifting spring tang touching one side of the pinion groove, there shall be a clearance between the shifting spring tang and the other side of the pinion groove.

Gauge by eye and feel.

Fig. 5 - Engagement of Shifting Spring Tang and Pinion

*2.08 <u>Freedom of Shaft Movement</u>: With the driving shaft motor stopped, with the motor gear disengaged, and with the shifting spring tangs of all timers on the plate engaged in the pinion grooves, the shaft shall rotate freely. This requirement is met if the shaft turns with the force specified below for the number of timers involved, applied to a tooth of the driving shaft gear.

Nos. 51A, 51C, and D-99004 Drives

Timers		Tension		
	None 1 to 10 11 to 20	50 grams 75 grams 100 grams		
Г	No. 52A and	D-179538 Drives		
Timers		Tension		
	None	50 grams		
	l to 7	75 grams		
L	8 to 14	100 grams		

Use the No. 79C gauge applied to the gear as shown in Fig. 6 and check at four points approximately 90 degrees apart.

2.09 Tripping Cam Clearance

 (a) With the tripping cam in the position where it is just about to trip the retractile spring, the retractile spring shall not be tripped until the motion of the timer gear from the normal position has been

Min 2 teeth

Gauge by eye.

Fig. 6 - Method of Checking Freedom of Shaft Movement

(b) Fig. 7(A) - With the timer gear restored to normal, immediately after the retractile spring has been tripped and with the play in the tripping cam taken up to insure the maximum clearance between the trailing tang of the tripping cam and the tripping finger attached to the timer gear, the clearance between the trailing tang of the tripping cam and the tripping finger, shall be

Min 1/32 inch

Gauge by eye.

2.10 <u>Freedom of Pinion Movement and Shifting</u> <u>Spring Tension</u>: Fig. 5(C) - With the driving shaft motor stopped and with the end play in the pinion taken up to the left, the shifting spring shall leave the armature and the pinion shall move with a force applied to

the tip of the shifting spring of

Max 100 grams

Fig. 7 - Tripping Cam Clearance

and with the end play in the pinion taken up to the right, the shifting spring shall restore against the armature when this force is reduced to

<u>Test</u> - Min 15 grams <u>Readjust</u> - Min 20 grams

Use the No. 70J gauge.

When checking the tension of the shifting spring where the No. 70J gauge cannot be applied due to mounting conditions, the requirement is met if the tension, as determined by lifting the spring with a KS-6320 orange stick, is approximately the same as the tension of another pinion spring which meets this requirement when checked by the No. 70J gauge.

2.11 <u>Armature Travel</u>: Fig. 19(A) - The armature travel shall be

Min 0.053 inch Max 0.060 inch

Use the No. 142A gauge.

*2.12 <u>Armature Adjusting Screw Clearance</u>: Fig. 5(D) - The armature adjusting screw shall not touch the sides of the hole in the armature during the operation of the armature.

Gauge by eye and feel.

2.13 <u>Index Finger Position</u>: Fig. 5(H) - The clearance between the index finger and the timer gear, in all positions of the gear shall be

Min 0.005 inch

Gauge by eye.

2.14 Pinion Position

(a) Fig. 5(E) - With the timer unoperated and the play in the pinion taken up to make the clearance between the gear and pinion as small as possible, the gear shall not touch the pinion at the positions of the four reference holes of the gear.

Gauge by eye.

To check this requirement, rotate the gear manually until one of the four reference holes in the gear is adjacent to the pinion and observe the clearance between the pinion and the gear. Repeat this operation at the other three reference holes in the gear.

(b) Fig. 8(A) - With the timer electrically operated and the play in the pinion taken up to make the meshing as small as possible, the teeth of the timer gear shall mesh for at least their full width with the pinion at the positions of the four reference holes of the gear.

Gauge by eye.

Fig. 8 - Engagement of Pinion With Associated Gear

To check this requirement, operate the timer ' electrically and note to what extent the pinion meshes with the gear, horizontally. Repeat this operation at the other three reference holes in the gear.

- 2.15 <u>Gear Stop Pawl Position</u> (for timers equipped with a gear stop pawl)
 - (a) With the end play of the timer gear taken up toward the mounting bracket,
 the pawl shall drop freely off the gear stop and against the pawl stop when the timer gear is rotated one revolution.

Gauge by eye.

(b) With the end play of the timer gear taken up toward the mounting bracket, the pawl shall not bind against the gear during the rotaton of the gear.

Gauge by eye.

Ths requirement is met if the gear restores to normal under the conditions covered in requirements 2.26(a) and (b).

(c) Fig. 9(A) - With the timer gear moved slightly from its normal position and with the pawl resting against the pawl stop, the pawl spring shall either touch the pawl or if it does not touch, the clearance between the pawl spring and the pawl shall not exceed 1/64 inch.

Gauge by eye.

*(d) <u>Readjust Only</u>: Fig. 9(B) - The tension of the pawl spring shall be

Max 5 grams

, Use the No. 70H gauge.

To check this requirement, apply the No. 70H gauge at the end of the pawl.

- 2.16 <u>Gear Stop Spring Postion</u> (for timers equipped with a gear stop spring)
 - (a) With the timer gear moved off-normal, the gear stop spring shall rest against the

Fig. 9 - Gear Stop Pawl Position

gear wheel with a slight pressure. This requirement is met if the stop spring rests against the gear and the gear restores to normal under the conditions covered in requirement 2.26(a).

(b) Fig. 10(A) - There shall be a clearance between the gear stop spring and the mounting bracket as the gear stop passes under the free end of the gear stop spring.

Gauge by eye.

(A) MOUNTING BRACKET GEAR STOP SPRING GEAR STOP

Fig. 10 - Gear Stop Spring Position

2.17 Engagement of Timer Gear and Governor Pinion: Fig. 19(B) - The teeth of the governor pinion shall mesh with the teeth of

the timer gear sufficiently to provide a good free-running fit, with backlash, for one complete revolution of the timer gear.

Gauge by eye and feel.

To check this requirement, move the timer gear off-normal with the fingers. Rotate the gear backward and forward several times, a distance equal to about one gear tooth and note by feel and observing the pinion whether there is play between the gear and pinion or whether they tend to bind. Repeat this operation at the positions of the four reference holes of the gear.

2.18 Contact Alignment

(a) Fig. 11(A) - On all timers equipped with standard contacts, the contacts shall line up so that the width on the contact surface of each contact bar falls wholly within the length of its mating bar.

Gauge by eye.

(b) Fig. 12(A) - On timers equipped with heavy contacts, the contact alignment shall be within the limits indicated in Fig. 12.

Gauge by eye. L.

MAXIMUM PERMISSIBLE MISALIGNMENT IDEAL PERMISSIBLE

NOT

L Fig. 12 - Alignment of Heavy Contacts

2.19 Spacer Clearance: Fig. 5(F) - The spacers on the solid springs shall not rub against the bifurcated springs through which they pass.

Gauge by eye and feel.

Page 6

⁺٦

L

2.20 Spring Tension

(a) "A" Cam Bifurcated Spring: With the timer gear off-normal, the bifurcated contact spring shall rest against the head of the stud in the associated spacer assembly by

Max 5 grams

Use the No. 70H gauge applied in front of the contacts.

(b) "B" and "C" Cam Bifurcated Springs: The tension of the bifurcated contact springs against the head of the stud in each of the associated spacer assemblies shall be

<u>Test</u> - Min 2.5 grams, Max 15 grams <u>Readjust</u> - Min 5 grams, Max 15 grams

Use the No. 70H gauge applied in front of the contacts on the bifurcated spring.

(c) <u>"A" Cam Springs</u>: With the timer gear rotated so that the stud on the bifurcated spring does not rest on the "A" cam, the combined tension of the solid and bifurcated contact springs, just as the tang of the solid spring leaves its stop, shall be

<u>Test</u> - Min 20 grams <u>Readjust</u> - Min 25 grams

Use the No. 70D gauge applied in front of the contacts on the solid contact spring.

(d) "B" and "C" Cam Springs: The combined tension of the solid and bifurcated contact springs in each pair, just as the tang of the solid spring leaves its stop, shall be

<u>Test</u> - Min 35 grams <u>Readjust</u> - Min 40 grams

Use the No. 70D gauge applied in front of the contacts on the solid spring.

(e) <u>Armature Spring Tension</u>: The tension of the armature spring shall be such that the force required to move the armature away from the armature adjusting screw shall be

Min 45 grams

Use the No. 70D gauge.

To check this requirement, measure the tension with the timer disengaged from the pinion and with the gauge applied directly in front of the armature stud.

2.21 Contact Separation

 (a) <u>"A" Cam Contacts</u>: Fig. 14(A) - With the timer gear rotated so that the "A" cam does not touch the stud, the contact separation shall be

Min 0.010 inch

Gauge by eye.

Use the No. 132B gauge as a reference.

(b) "B" Cam Contacts: Fig. 19(C) - The contact separation of the normally open contacts shall be

Min 0.010 inch

Gauge by eye.

Use the No. 132B gauge as a reference.

(c) <u>"C" Cam Contacts</u>: Fig. 19(D) - The contact separation of the normally open contacts shall be

Min 0.020 inch

Gauge by eye.

Use the No. 132F gauge as a reference.

2.22 Spring Gauging

(a) Both contacts on the bifurcated spring shall make with their associated contacts with the timer in the operated position for normally open contacts and in the unoperated position for normally closed contacts. In the case of the "A" and "B" cam contacts, this requirement shall be met with the end play of the timer gear taken up toward the mounting bracket.

Gauge by eye and feel.

(b) With the springs in the fully operated position and with a gauge of the value indicated below inserted between the tang of the solid spring and its stop, the contacts specified below shall meet the following conditions. For the "C" cam, this requirement shall be met for all positions of the cam.

Use the No. 74D and 132-type gauges.

				At Lo One 1	east Pair
Cont	tacts	Contac <u>Not</u> (Ind	ts Shall <u>Make</u> ches)	of Con <u>Shall</u> (Inc)	ntacts <u>Make</u> nes)
"A"	Cam	<u>Test</u> Readj	0.015 0.015	<u>Test</u> Readj	0.007
"B"	Cam	<u>Test</u> Readj	0.020 0.020	<u>Test</u> Readj	0.010 0.013
"C"	Cam	<u>Test</u> <u>Readj</u>	0.023 0.023	<u>Test</u> Readj	0.010 0.013

To check this requirement, insert the gauge of the specified thickness between the spring tang and its stop and parallel to either the stop or spring tang whichever will insure the minimum separation between the tang and the stop, as shown in Fig. 13. The "A" and "B" cam contacts shall be checked with the end play of the timer gear taken up toward the mounting bracket. Check whether a contact makes by applying the KS-6320 orange stick to the tip of the bifurcated spring and attempt to move the contact toward its associated spring. A movement of the bifurcated spring indicates that the contact is not closed.

(c) <u>Readjust Only</u>: After a particular contact is cleaned, build-up is removed or adjustments are made on a contact spring, both contacts on the bifurcated spring shall make approximately simultaneously with their associated contacts if it is a make contact or shall break approximately simultaneously with their associated contacts if it is a break contact. Operate the timer manually L and gauge by eye.

Fig. 13 - Method of Gauging Contact Springs

2.23 <u>"A" Cam Position</u>: Fig. 14(B) - With the timer gear in its normal position, the center line of the "A" cam shall be centrally located with respect to the center line of the stud on the A contact spring assembly. This requirement is met if, with one end of the gauge applied as shown in Fig. 15, the near end of the gauge takes a position to either side of a line passing through the end of the stud and parallel to the timer gear, and with the gauge reversed, the near end of the line opposite to that taken before the gauge was reversed.

Use the No. 143A gauge.

Fig. 14 - "A" Cam Position

Fig. 15 - Checking "A" Cam Position

2.24 <u>"C" Cam Position</u>

 (a) With the armature unoperated, the "C" cam shall be approximately centered between the armature and the C spring separator.

Gauge by eye.

(b) Fig. 16(A) - The C spring separator shall engage the embossed portion of the "C" cam by 0.010 inch but the trailing edge of the embossed portion shall not extend beyond the rear edge of the C spring separator.

Gauge by eye.

The P-220366 dental mirror and No. 510C test lamp may be used as an aid in checking the requirement.

(c) Fig. 17(A) - The C spring separator shall overlap the flat surface of the "C" cam throughout the movement of the cam when the cam is in engagement with the separator for

Min 1/32 inch

Gauge by eye.

To check this requirement, rotate the timer gear approximately 3/4 of a revolution and then operate the armature. Observe that the C spring separator satisfactorily overlaps the flat on the surface of the "C" cam for the full length of the cam. If the overlapping is insufficient, check that the legs supporting the "C" cam are not kinked or bowed.

2.25 <u>Timer Gear Retractile Spring Clearance</u>: With the coil of the retractile spring nearest the timer gears pushed as near the gear as possible, the clearance between the tip of the spring which projects through the gear and the mounting bracket shall be

Min 0.010 inch

Gauge by eye.

2.26 Timer Gear Retractile Spring Tension

(a) With the timer gear rotated so that the following end of the "A" cam is 1/8 inch ahead of the stud on the bifurcated spring, and with a force of 50 grams applied to a tooth in a direction to cause the timer gear to rotate away from the normal position, the gear shall move away from the normal position and shall restore to normal when this pressure is reduced to

Test	-	5	grams
Readjust	-	10	grams

Use the No. 79C gauge as shown in Fig. 18.

To check this requirement, proceed as fol- 🗂 lows. Rotate the gear 1/4 of a revolution to operate the tripping mechanism, thus insuring that the spring tension is at a minimum. Allow the gear to restore against its stop. Then apply the gauge to the bottom of the gear as indicated in Fig. 18. Hold the gauge horizontally and apply pressure gradually toward the rear of the timer until the gear moves farther away from its normal position. Continue exerting pressure until the gear has moved from six to eight teeth away from the normal position. Note that the pressure required to move the gear is not in excess of the specified 50 grams. Gradually reduce the pressure until the gear restores to its normal position. Note that the gauge reading does not go below the value specified until the gear has restored fully against its stop. . 1

Fig. 16 - "C" Cam Position (Top View)

Fig. 17 - "C" Cam Position (Front View)

Fig. 18 - Checking Retractile Spring Tension

Fig. 19 - Timer (Top View)

(b) Timers Equipped With Gear Stop Pawl: With the timer gear turned so that the pawl is resting on the top of the pawl stop and with the front end of the pawl approximately in the center of the stop, the gear shall restore to normal against a pressure of 5 grams

Use the No. 79C gauge.

- To check this requirement proceed as follows. Rotate the gear 1/4 of a revolution to operate the tripping mechanism, thus insuring that the spring tension is at a minimum. Allow the gear to restore against its stop. Then manually rotate the gear to the point where the front end of the pawl rests on the top of the pawl stop at approximately its center. Hold the gear in this position and apply the gauge to the gear as shown in Fig. 18 applying sufficient pressure to prevent the gear from restoring to normal. Gradually reduce the pressure until the gear starts to move toward the normal position. Check that the gauge reading, as the gear starts to move, is not less than the speci-L. fied value.

2.27 Straightness of Springs: Fig. 19(E) -All springs shall be free of sharp bends or kinks due to adjustment, but a gradual bow in the springs is permissible.

Gauge by eye.

2.28 Separation Between Springs: Fig. 19(F) -The clearance between adjacent springs, whether in their operated or unoperated positions, shall be

Min 0.015 inch

lauge by eye.

2.29 Electrical Requirements

(a) Operate: When the timer is assembled on a drive with the driving shaft motor stopped and the gear is in a position to prevent the pinion from meshing, the magnet shall operate the armature so that the stop plate on the armature touches the pole piece on the operate current specified on the circuit requirement table.

(b) Release: With the motor operating the driving shaft, the pinion shall disengage promptly from the timer gear and the gear restore to normal when the timer is released. This requirement shall be met when the loop in the end of the gear retractile spring is just at the point of slipping over its stop and with a force of 15 grams applied just ahead of the armature stud in a direction tending to operate the armature.

Use the No. 70H gauge.

To check this requirement, rotate the timer gear until the tripping cam begins to lift the loop in the end of the gear retractile spring. Operate the timer electrically.

When the gear has been rotated approximately one half tooth further, but before the spring has slipped over its stop and with the No. 70H gauge applying the specified tension to the armature, release the timer.

Timing Requirements: With the motor op-2.30 erating the driving shaft, the timing interval, as measured from the break of the "A" cam contacts [Fig. 19(G)] until the reclosure of these contacts shall be

Drive	Tim	ing In	ter	val
	Min		<u>Max</u>	
51A	5 min	5 mi	n 5	secs
51C	4 min	4 mi	n 4	secs
52A	5 min	5 mi	n 5	secs
D-99004	5 min	5 mi	n 5	secs
D-179538	4 min	4 mi	n 4	secs

Use the KS-3008 stop watch.

г

L

(a) Checking Timing Requirements

(1) Preparation: Connect one end of each of the 1W13B cords, equipped with the 360-type tool, to the terminals of the bottom cap of the flashlight. Use the flashlight as specified below in making the tests. Closure of contacts will be indicated by lighting the flashlight and opening of contacts by extinguishing the flashlight.

(2) Connect the flashlight to the proper spring terminals at the rear of the timer, as shown in Fig. 20. The flashlight should light. Operate the timer by connecting ground to the right winding terminal connection at the top of the timer. The flashlight will remain lighted for only a short interval after the timer is operated. Begin timing with the KS-3008 stop watch as soon as the lamp is extinguished. At approximately one revolution of the timer gear the "A" cam contacts will close, 'causing the flashlight to light. Cease timing at this closure of the "A" cam contacts.

ISS 4-D, SECTION 030-140-702

3. ADJUSTING	PROCEDURES	Code or	Deceription		
3.001 List of Tools, Gauges, Materials, and		Gauges	<u>beschiption</u>		
Code or		70D	50-0-50 Gram Gauge		
Spec No.	Description	70H	0-30 Gram Gauge		
Tools		70J	0-150 Gram Gauge		
46	3/8-inch Single-end Socket Wrench	74D	Thickness Gauge Nest		
35 3C	Grease Gun (part of No. 1003A tool kit) (must be equipped with	79C	0-200 Gram Push-pull Tension Gauge		
363	a No. 570A straight nozzle) Spring Adjuster	131A	Thickness Gauge Nest (consists of a nest of 132-type gauges)		
417A	1/4- and 3/8-inch Open Double-end Flat Wrench	142A	0.053- and 0.060-inch Thickness Gauge		
4854	Smooth-law Pliers	143A	Off-normal Cam Location Gauge		
505A	Spring Adjuster (for 0.013-inch springs)	KS-3008 (or equiva- lent)	Stop Watch ←		
506A	Spring Adjuster (for 0.023-	<u>Material</u>			
5051	inch springs) Spring Adjuster (for 0.030- inch springs)	KS-6438	Alaska Cylinder Oil		
507A		KS-7860	Petroleum Spirits		
510C (or re- placed 510B)	Test Lamp (must be equipped with a No. 561A straight tip and a	KS-8496	Lubricating Compound No. 3 \leftarrow		
551A	W2CB (24V) or a W2BL (48V) cord) Combination Wrench	KS-14666 (or replaced D-98063)	Cloth		
552A	Oil Gun	WECo	Petrolatum (unmedicated white		
563A	90-degree Offset Screwdriver	57997	vaseline may be used)		
564A	45-degree Offset Screwdriver	-	Hardwood Toothpick, flat on one end, pointed on the other		
KS-6320	Orange Stick	Test Annaratus			
KS-6854	Screwdriver	35 Type	 Test Set		
KS-14164	No. 4 Artist's Show Card Brush	1W13B	Cord (each equipped with a \leftarrow		
KS-14220 List 1 List 7	Wrench Consisting of Sliding T-handle	(2 reqd)	KS-6278 connecting clip in one end)		
List 14	7/16-inch Socket	3.002 While	readjusting to meet some of the		
KS-14250,Ll (or replace flashlight equipped with KS-7742 bottom cap)	Flashlight	requirements specified herein, as for example, requirement 2.04, it will be neces- sary to open the motor circuit by removing th fuse. Checking and adjusting will also be fa cilitated if the setscrew in the motor gear i loosened to permit the driving shaft to be turned manually. After tests, tighten the cetopewer and check that macuirement 2.05(b)			
P-220366	Dental Mirror	senserews and cneck that requirement 2.05(b) is met.			
R-2653	No. 5 Bristo Setscrew Wrench 🔶	3.003 Due to	mounting conditions, it may not		
-	5-inch Diagonal Pliers	be pos ments unless	sible to make some of the adjust- the drive mounting is removed		
-	4-inch Regular Screwdriver	from the frame or the timer is removed from the mounting plate. To remove the driv mounting plate from the frame, remove the locknutz (if provided) frame the server which			
-	5-inch Regular Screwdriver				
-	6-inch Cabinet Screwdriver	attach the mounting plate to the frame using			

SECTION 030-140-702

the KS-14220 wrench. Remove the mounting screws using the 5-inch regular screwdriver. This will permit the mounting plate to be moved forward far enough to give access to some of the parts for adjusting. Take care in moving the plate forward not to put any strain on the wires connecting to the timer terminals. To remove a timer from the mounting plate, first unsolder all leads from the terminals. Remove the positioning screw locknut with the No. 46 wrench and the positioning screw with the 6-inch cabinet screwdriver. Remove the two mounting screws with the 4-inch regular screwdriver, which will free the timer. Whenever the timer is removed for any reason, inspect for all requirements and make all adjustments that appear necessary at this time. After the timer has been properly tested and adjusted, remount it, making sure requirements 2.06, 2.07, 2.10, 2.14, and 2.29(b) are met, and resolder the wires that were removed.

3.01 <u>Cleaning</u> (Rq 2.01)

 (1) Clean the contacts in accordance with the section covering cleaning of relay contacts. Clean other parts in accordance with approved procedures.

3.02 Lubrication (Rq 2.02)

 After lubricating any part of the timer or driving shaft, wipe off excess lubricant with the KS-14666 cloth.

(2) Driving Shaft: To lubricate the shaft at the left and right thrust bearings, remove the bearing mounting screws at the left thrust bearing with the No. 417A wrench. Remove the end plate and move the driving shaft to the left sufficiently so that the No. 570A nozzle of the No. 353C grease gun will fit between the shaft gear and the right thrust bearing. Rotate the shaft until the flat on the shaft at the right thrust bearing is accessible and lubricate the shaft at that point. Lubricate the shaft at the left thrust bearing. Reposition the shaft so that the gears mesh. Remount the end plate and hold the end plate and left thrust bearing as tightly as possible against the locating plate and tighten the bearing mounting screws securely. Check that requirement 2.08 is met. Lubricate the Γ shaft at each support bearing with the No. 570A nozzle of the No. 353C grease gun held to the shaft on each side of the bearing.

(3) <u>Pinion</u>: Drive the shaft around until the slot in the pinion is accessible.
Apply the lubricant to the groove with the No. 570A nozzle of the No. 353C grease gun held approximately perpendicular to the pinion. To lubricate the shaft at the right end of the pinion, first move the pinion to the left so that the pinion will engage with the gear. To lubricate the shaft at the left end of the pinion, first move the pinion to the left end of the pinion, first move the pinion.

(4) Shaft of Timer Gear: To lubricate the shaft of the timer gear, separate the turns of the retractile spring near the middle of the spring with a toothpick in order to insert the No. 570A nozzle of the No. 353C grease gun.

(5) <u>Governor Shaft</u>: To lubricate the governor shaft, use the No. 353C grease gun. Rotate the associated large gear sufficiently to permit the No. 570A nozzle entering between the governor arms. Hold the end of the nozzle against the shaft as close to the right end of the governor gear as possible and apply the lubricant.

(6) Friction Washer: To lubricate the friction washer, insert the curved end of the nozzle of the No. 552A oil gun in the hole in the damping disc and depress the plunger once. Repeat this operation in the other hole in the damping disc. Rotate the gear three or four revolutions, manually, to work in the oil. Wipe off surplus oil with the KS-14666 cloth, using a toothpick or the KS-6320 orange stick to insert the cloth between the frame of adjacent timer and the damping disc.

(7) "C" Cam: Use the KS-14164 brush to apply the lubricant. Rotate the gear forward to obtain access to the rear of the cam when applying the lubricant. After the lubricant has been applied, allow the gear to restore slowly to normal to prevent the lubricant reaching other surfaces where its presence might be objectionable.

(8) Point of Engagement of Timer Gear and <u>Pinion</u>: Rotate the timer gear manually so that the point of pinion engagement is at the front. The reference hole opposite the point of pinion engagement should be used as a guide to determine how far the gear should be turned. Remove any old lubricant from the gear surface with the KS-14666 cloth. Using the KS-14164 brush, apply the lubricant to the face of the gear at the point of pinion engagement. Allow the gear to restore slowly to normal to prevent the lubricant from reaching other surfaces where its presence might be objectionable.

(9) Motor: Where the motor is a nonreoilable type and it appears that lubrication is necessary, remove the motor as follows and substitute a new motor. On recilable type, remove the motor. To do this unsolder the leads to the motor field coil terminals at the front of the motor. Loosen the locknut at the rear of the motor with the No. 417A wrench. Remove the two motor mounting screws with the Nos. 563A and 564A offset screwdrivers. Lift the motor so that the teeth of the motor gear do not engage the teeth of the driving shaft gear and draw the motor forward from the drive. Lubricate the motor in accordance with the procedures covered in the section covering lubricating of Telechron motors. Remount the motor by placing the slot in the motor plate

over the mounting screw at the rear of the plate and sliding the motor toward the rear. Take care that the spacer is properly located between the motor and the mounting plate. Insert the two motor mounting screws loosely and position the motor so that there is the proper amount of backlash between the motor and driving shaft gears. Tighten the motor mounting screws securely and tighten the locknut on the motor mounting screw at the rear of the motor. Reconnect the leads to the motor field coil terminals.

- 3.03 <u>Record of Lubrication</u> (Rq 2.03) (No Procedure)
- 3.04 End Play of Driving Shaft (Rq 2.04)

(1) To adjust the end play of the driving shaft, loosen the setscrew in the driving shaft gear with the R-2653 Bristo setscrew wrench and move the gear to the right or left, as required. Insert the 0.004-inch blade of the No. 74D gauge between the gear and end plate to insure a clearance and position the gear so that the setscrew is above the flat section of the shaft. Be sure in inserting the gauge that the end of the gauge rests against the surface of the driving shaft. With the end play of the shaft taken up to the left and the gear held firmly against the gauge, tighten the gear setscrew securely. Remove the gauge. Check the horizontal position of the gears and, if necessary, shift the motor gear as outlined in 3.05(2).

3.05 <u>Engagement of Motor and Driving Shaft</u> <u>Gears</u> (Rq 2.05)

 to adjust the depth of engagement of the motor and driving shaft gears, loosen the screws and nut which hold the motor with the Nos. 563A and 564A offset screwdrivers and the No. 417A wrench. Position the motor so that the gears mesh properly and tighten the screws and nut securely.

(2) To adjust the alignment of the faces of the teeth of the motor and driving shaft gears, loosen the motor gear setscrews with the R-2653 Bristo setscrew wrench and move the gear to the right or left, as required. Tighten the setscrews securely.

3.06 <u>Mounting of Timers</u> (Rq 2.06) 3.07 <u>Engagement of Shifting Spring Tang and</u> <u>Pinion</u> (Rq 2.07)

 (1) To tighten loose mounting screws, use the 4-inch regular screwdriver. To adjust the positioning screw, use the 6-inch cabinet screwdriver. To tighten the positioning screw locknut, use the No. 46
 wrench.

(2) To adjust the engagement of the timer gear and shifting spring with the pinion, first loosen the positioning screw locknut at the rear of the frame with the No. 46 wrench. Turn the positioning screw

with the 6-inch cabinet screwdriver until the shifting spring and timer gear are properly positioned with respect to the associated pinion. If the shifting spring and gear cannot be adjusted simultaneously with respect to the pinion, loosen the timer mounting screws with the 4-inch regular screwdriver and turn the timer slightly to the left or right, as required, to give satisfactory adjustment but not enough to prevent the mounting bracket being approximately perpendicular to the drive shaft. If the gear and shifting spring still do not mesh properly with the pinion, remove the timer and loosen the shifting spring mounting screw with the KS-6854 screwdriver. Position the shifting spring up or down, as required, to insure its satisfactory engagement with the pinion. Tighten the shifting spring mounting screw securely and remount the timer.

(3) If there is no clearance between the shifting spring tang and the sides of the pinion groove, it may be due to a bent tang or accumulation of dirt in the groove. Use a toothpick to clean out any dirt in the pinion groove. To adjust a bent tang, disengage the shifting spring tang from the pinion groove by loosening the positioning screw locknut with the No. 46 wrench and turning the timer positioning screw with the 6-inch cabinet screwdriver. Straighten the tang with the No. 485A pliers. Readjust the positioning screw until requirements 2.06, 2.07, 2.10, 2.14, and 2.29(b) are met.

- 3.08 Freedom of Shaft Movement (Rq 2.08)
 - Before adjusting a shaft which is tight in its bearings, first disengage the motor gear as covered in 3.002.

(2) To correct a tight shaft, first check that the shifting spring tangs are properly located as covered in requirement 2.07 and determine if any shifting spring tang binds at the pinion. If necessary, adjust the position of the shifting springs as outlined in 3.07.

(3) If the shaft still binds, lubricate in accordance with requirement 2.02.

(4) If, after lubricating, the shaft does not turn freely, loosen the bearing mounting screws of the two middle support bearings with the No. 417A wrench and permit the shaft to assume a free position at the bearings. Tighten the bearing mounting screws securely. If the shaft moves freely, check requirements 2.06, 2.07, and 2.29(b) and insure that the timer gears and shifting springs engage properly with the pinions.

(5) If the shaft still binds, remove the shaft as outlined in (6) and wipe the shaft off with the KS-14666 cloth. Check for burrs at the bearing positions and for a bent shaft. If the shaft is bent or if the bind is not removed after cleaning the shaft and removing all burrs, replace the shaft with a new one.

- (6) To remove the driving shaft, remove the bearing bracket mounting screws, except for the bracket adjacent to the driving shaft gear, with the No. 417A wrench. After cleaning, position the driving shaft and bearing, holding the bearings as tightly as possible against the locating plate. Tighten the bracket mounting screws securely. Lubricate the shaft as covered in 3.02 and make sure that requirements 2.06, 2.07, 2.10, and 2.29(b) are met.
- (7) After adjusting or replacing the driving shaft, check the engagement of the motor and driving shaft gears and, if necessary, adjust as outlined in 3.05.
- 3.09 Tripping Cam Clearance (Rq 2.09)

 If the retractile spring is tripped too soon or there is insufficient clearance between the tripping cam and tripping finger, report the trouble to the supervisor.

- 3.10 <u>Freedom of Pinion Movement and Shifting</u> <u>Spring Tension</u> (Rq 2.10)
 - (1) To adjust for pinion movement, first disengage the associated timer gear and shifting spring from the pinion by loosening the timer positioning screw locknut with the No. 46 wrench and turning the positioning screw with the 6-inch cabinet screwdriver. With the timer disengaged and using the No. 70H gauge, check to see that the pinion will move freely with a force of 25 grams, applied to either end of the pinion. If the pinion does not move freely, lubricate the shaft and pinion as outlined in 3.02.
 - (2) With the timer disengaged, check the tension of the shifting spring. The tension of the spring against the armature should be between 40 and 80 grams. If the tension is not satisfactory, remove the timer and adjust the shifting spring with the No. 507A spring adjuster, applying the spring adjuster near the crook in the spring. If sufficient tension cannot be obtained in this manner, remove the shifting spring mounting screw with the KS-6854 screwdriver and remove the shifting spring. Grasp the spring just back of the crook in the spring and form the spring slightly so that when it is remounted the tension will be within the specified limits. Remount the shifting spring and tighten the mounting screw securely. Check the tension and, if necessary, readjust using the No. 507A spring adjuster. Remount the timer, making sure requirements 2.06, 2.07, 2.10, 2.14, and 2.29(b) are met.
- 3.11 Armature Travel (Rq 2.11)
 - (1) To adjust the armature travel, turn the armature adjusting nut with the No. 551A wrench until the 0.053-inch end of the

No. 142A gauge can be inserted loosely between the armature stop plate and pole piece, as shown in Fig. 21, and the 0.060-inch end of the gauge if it can be inserted without forcing does so with a snug fit.

3.12 <u>Armature Adjusting Screw Clearance</u> (Rq 2.12)

 Before adjusting for clearance between the armature and armature adjusting screw, dismount the timer as covered in 3.003.
 Loosen the armature mounting screws with the KS-6854 screwdriver and move the armature until there is a clearance between the armature and the adjusting screw. Tighten the armature mounting screws securely. Remount the timer, making sure requirements 2.06, 2.07, 2.10, 2.14, and 2.29(b) are met.

- 3.13 Index Finger Position (Rq 2.13)
 - (1) Use the No. 485A pliers to adjust the position of the index finger.
- 3.14 Pinion Position (Rq 2.14)

(1) If it is necessary to change the position of a pinion with respect to its gear, adjust the tip of the shifting spring (Fig. 22) away from the armature with the No. 485A pliers to position the pinion nearer the gear or adjust the tip of the shifting spring toward the armature to position the pinion farther from the gear. After adjusting the tip of the shifting spring, check requirement 2.10 and, if necessary, readjust the shifting spring tension as outlined in 3.10(2). Check that requirements 2.07, 2.10, and 2.29(b) are met.

Fig. 22 - Method of Adjusting Shifting Spring

3.15 Gear Stop Pawl Position (Rq 2.15)

(1) Remove the timer in order to check or adjust the pawl spring tension. Use the No. 485A pliers to change the tension in the pawl spring. If the pawl does not drop freely from the gear stop, increase the ten-sion but not to exceed the tension specified in requirement 2.15(d). If after increasing the tension of the pawl spring, as specified above, requirement 2.15(a) and (b) are not met, clean the pawl by applying a few drops of petroleum spirits at the pawl bearing, between the pawl and the gear and between the pawl and the mounting bracket using a toothpick. If these requirements are still not met, refer the matter to the supervisor. After checking or adjusting, remount the timer and check that requirements 2.06, 2.07, 2.10, 2.14, 2.26, and 2.29(b) are met.

3.16 Gear Stop Spring Position (Rq 2.16)

(1) To adjust the position of the gear stop spring on timers so equipped, first dismount the timer. Adjust the stop spring with the No. 485A pliers applied near the base of the spring. In adjusting the stop spring away from the gear wheel, the pliers should be applied so that they will span both the spring and the frame, thus forcing the spring away from the gear wheel. Remount the timer, making sure requirements 2.06, 2.07, 2.10, 2.14, 2.26, and 2.29(b) are met.

- 3.17 Engagement of Timer Gear and Governor Pinion (Rq 2.17)
 - (1) If there is no backlash between the gear and governor pinion, refer the matter to the supervisor.
- 3.18Contact Alignment(Rq 2.18)3.19Spacer Clearance(Rq 2.19)

(1) If the contacts do not line up properly or the spacers on the solid spring rubs on the bifurcated springs, it is an indication that the springs are twisted or have shifted in the assembly. Straighten twisted springs as outlined in 3.22. If springs are straight or if after straightening twisted springs contacts do not line up properly, it is an indication the springs have shifted in the assembly. In this case, refer the matter to the supervisor.

3.20 Spring Tension (Rq 2.20)

(1) Use the No. 505A, No. 506A, or No. 507A spring adjuster to adjust the springs. Place the adjuster on the spring near the middle and slide it back along the spring to the point where the spring leaves the clamping plate and insulators, as shown in Fig. 23. Adjust the spring to the right or left, as required. Check that requirements 2.18, 2.19, 2.21, 2.22, 2.23, 2.24(b), and 2.26(a) are met.

Fig. 23 - Method of Adjusting Spring Tension

3.21 Contact Separation (Rq 2.21)

(1) The spring studs and washers so space the bifurcated contact springs with respect

to the solid contact springs that no adjustment for contact separation should be necessary, if the springs are straight in accordance with requirement 2.27 and the contacts on the bifurcated contact springs are in approximately the same vertical line.

3.22 Spring Gauging (Rq 2.22)

(1) To adjust for spring gauging or locking contact spring position, adjust the spring tang to the right or left, as required, using the No. 507A spring adjuster. Check that requirements 2.20, 2.21, 2.23, 2.24(b), and 2.26(a) are met.

- (2) If both contacts on the bifurcated springs do not make contact in the closed position of the contacts, it may be due to a twist in the spring or misalignment of the two prongs of the bifurcated spring. Correct for a twisted spring by using the No. 505A or No. 506A spring adjuster applied near the point where the spring leaves the insulators. To correct misalignment of the prongs of the bifurcated spring, use the No. 505A or No. 506A spring adjuster and adjust the upper or lower prong of the bifurcated spring. It is recommended that in adjusting as covered above the two prongs of the bifurcated springs be adjusted to make contact with the opposing contacts L, as near simultaneously as possible.
- 3.23
 "A" Cam Position
 (Rq 2.23)

 3.24
 "C" Cam Position
 (Rq 2.24)

(1) To adjust the position of the "A" cam proceed as follows. Loosen the "A" and "C" cam clamping screws with the No. 551A wrench. Rotate the gear, as required, to obtain access to the setscrews. With the gear rotated from the normal position, insert one end of the No. 143A gauge between the "A" cam and the stud of the A contact spring assembly. Allow the gear to return to its normal position. Then without moving the gear, insert the KS-6854 screwdriver into the slot at the front of the gear. Move the adjusting lever of the "A" cam up or down, as required, with the screwdriver. Remove the screwdriver. Check the adjustment as follows. Insert first one end of the No. 143A gauge and then the other end between the "A" cam and the stud. The cam is correctly located, if regardless of the end inserted, the near end of the gauge lies approximately the same distance from, but on opposite sides of a line, which passes through the end of the stud on the A contact spring assembly and parallel to the gear wheel as shown in Fig. 24.. Tighten the "C" cam clamping screw located just back of the slot in the gear. Rotate the gear and tighten the "A" cam clamping screw. Adjust the "C" cam as outlined in (2).

(2) To adjust the "C" cam after adjujsting the "A" cam, loosen the clamping screw just back of the gear slot, or if only the "C" cam is being adjusted, loosen both "C"

cam clamping screws with the No. 551A wrench. Position the "C" cam with the fingers so that, as seen from the front, the end of the cam embossing is just ahead of the rear edge of the C spring separator, as shown in Fig. 25. Tighten the clamping screw just back of the slot in the gear securely. Check the adjustment of the cam with the armature operated and using the P-220366 dental mirror to view the engagement of the "C" cam and C spring separator from the top of the timer. The No. 510C test lamp may aid in observing the cam position. If necessary, again adjust the cam to obtain the proper position. Tighten both "C" cam clamping screws securely.

Fig. 25 - Method of Adjusting "C" Cam

(3) Adjust the position of the "C" cam with respect to the armature and C spring separator with the No. 363 spring adjuster as shown in Fig. 26. Apply the adjuster near the point where the cam spring joins its base. With the cam adjusted, the face of the cam should be approximately parallel to the gear.

 (4) To check that the C spring separator overlaps the flat surface of the "C" cam the required amount, rotate the timer gear approximately 3/4 of a revolution and then operate the armature. Observe that the C spring separator satisfactorily overlaps the flat on the surface of the "C" cam for the full length of the cam. If the overlapping is insufficient, check that the legs supporting the "C" cam are not kinked or bowed. If necessary, straighten them using the No. 485A pliers taking care to maintain the adjustment made in (3). If the condition is not corrected by adjusting in this manner, replace the timer.

3.25 <u>Timer Gear Retractile Spring Clearance</u> (Rq 2.25)

 If there is insufficient clearance between the end of the retractile spring which protrudes through the timer gear and the timer frame, rotate the gear until the end of the spring is accessible and cut the end off as close to the gear as possible with the 5-inch diagonal pliers.

Fig. 26 - Method of Adjusting "C" Cam

3.26 <u>Timer Gear Retractile Spring Tension</u> (Rq 2.26)

(1) If the gear fails to restore to normal against the specified tension when moved from six to eight teeth from the normal position, lubricate the shaft of the timer gear as covered in 3.02. If after the shaft has been lubricated the gear still fails to return to normal, it is an indication that the tension of the retractile spring is too low in which case refer the question to the supervisor.

(2) If the gear fails to return to the normal position as the pawl passes over the gear stop, it is an indication that the tension of the pawl spring is excessive. Remove the timer from its mounting as covered in 3.003 and check the tension of the pawl

spring as the gear stop is passing under the end of the pawl. To do this, use the No. 70D gauge applied to the front end of the pawl when the pawl is lifted to its highest point by the gear stop. If the tension of the pawl spring measured in this manner exceeds 40 grams, readjust the pawl spring using the No. 485A pliers so that there is a slight clearance between the pawl spring and the pawl when the pawl is resting against the pawl stop. This clearance should not exceed the value specified in requirement 2.15(c). In case the tension of the pawl spring is less than 40 grams, reduce the tension of the pawl spring using the No. 485A pliers. In this case, however, the end of the spring should rest on the pawl when the pawl is resting against the pawl stop. Remount the timer as covered in 3.003.

3.27Straightness of Springs(Rq 2.27)3.28Separation Between Springs(Rq 2.28)

(1) If the springs are not straight or there is insufficient clearance between the springs, correct by adjusting the springs where they are bent or where the clearance is insufficient with the No. 505A, No. 506A, or No. 507A spring adjuster. If necessary, dismount the timer in order to obtain access to the part of a spring needing adjustment. Check that requirements 2.18, 2.19, 2.20, 2.21, 2.22, 2.24(b), and 2.26(a) are met.

(2) <u>Kinked Springs</u>: Do not straighten kinked springs unless the kink interferes with proper adjustment of the spring assembly. Removing kinks tends to weaken the spring and to shorten the life of the spring assembly. Normally straight springs that have been adjusted should have no sharp bends due to adjustment. A gradual bow, however, is permissible.

3.29 Electrical Requirements (Rq 2.29)

 (1) If the timer does not operate on the specified operate current, adjust as follows, checking for timer operation after each adjustment.

- (a) Decrease the tension of the armature tension spring toward a minimum.
- (b) Decrease the tension of the shifting spring toward a minimum.

If the timer still does not operate, refer the matter to the supervisor.

(2) If the release requirement is not met, increase the tension of the armature spring but not sufficiently to prevent the operation of the timer. If the timer still does not release, check that requirements
2.06 and 2.07 are met and, if necessary, reposition the timer and adjust the engagement of the shifting spring with the pinion. If the timer still does not release, refer the matter to the supervisor.

SECTION 030-140-702

- 3.30 Timing Requirements (Rq 2.30)
 - (1) If the timing requirements are not met, recheck all mechanical requirements and make adjustments as required. If the timing requirements are still not met, it is an indication that the motor requires lubrication or is defective. In this case, relubricate the motor as covered in 3.02. If the requirement is still not met, replace the motor.

REASONS FOR REISSUE

- 1. To add the Nos. 51C, 52A, and D-179538 drives.
- 2. To revise the requirement for lubricating the motor [2.02(e)].
- To revise the requirement for the recommended lubrication intervals [2.02(f)].
- To add freedom of shaft movement requirement for the Nos. 51C, 52A, and D-179538 drives (2.08).
- 5. To revise the requirement for checking the pinion position (2.14).

 To add contact alignment requirement for timers equipped with heavy contacts (2.18 and associated Fig. 12). Ϋ́

- 7. To revise the requirement for spring gauging [2.22(a) and (c), previously covered in 2.18].
- 8. To revise the requirement for timer gear retractile spring tension (2.26).
- To add timing requirements for the Nos. 51C, 52A, and D-179538 drives (2.30 and associated Fig. 20).
- To revise the list of tools, gauges, materials, and test apparatus (3.001).
- To add procedure for replacing nonreoilable motors [3.02(9)].
- To add procedure for adjusting twisted springs or misalignment of the prongs of the bifurcated springs [3.22(2) previously covered in 3.18 and 3.19].