KS-1299, KS-1924, KS-1925, KS-1926, KS-1927, KS-1928, KS-1929, KS-1930, KS-1931, KS-6777 AND KS-6778
 REQUIREMENTS AND ADJUSTING PROCEDURES

1. GENERAL

1.01 This section covers KS-1299, KS-1924, KS-1925, KS-1926, KS-1927, KS-1928, KS-1929, KS-1930, KS-1931, KS-6777 and KS-6778 master clocks.
1.02 It is reissued primarily to bring certain requirements and procedures up to date and to change some of the illustrations to agree with the latest manufactured products.
1.03 Reference shall be made to Section 020-010-711 covering General Requirements and Definitions for additional information necessary for the proper application of the requirements listed herein.
1.04 Asterisk: Requirements are marked with an asterisk (*) when to check for them would necessitate the dismantling or dismounting of apparatus, or would affect the adjustment involved or other adjustments. No check need be made for these requirements unless the apparatus or part is made accessible for other reasons or its performance indicates that such a check is advisable.
1.05 One dip of oil for the purpose of this section is the amount of oil retained on a KS-14164 No. 4 Artists Show Card brush after being dipped into the oil to a depth of $3 / 8^{\prime \prime}$ and then scraped on the edge of the container to remove surplus oil. There should not be sufficient oil adhering to the brush to form a drop on the end of the bristles.
1.06 Normal position - motor armature is thet position in which the motor armature resta against the lower banking spring and the normally closed motor contacts are closed.
2.07 Operated position - motor armature is that position in which the motor armature rests against the upper banking apring and the normally closed motor contacts are open.
1.08 Normal position - synchronizing armature 18 that position in which the synchronizing lever rests against the frame stop pin.
1.09 Operated position-synchronizing armature is that position in which, with the synchronizing magnet energized and the synchronizing latch disengaged, the synchro-
nizing arm rests againgt the two point oam of the cannon socket assembly.
1.10 Normal position-circuit closing con-
tacts is that position in which the contact springs rest flat against the hard rubber back stop with the normally open contacts open.
1.11 Oporated position - ciroult closing contacts is that position in which the shorter contact spring has dropped from the tip of the hard rubber ratchet wheel tooth or cam and the longer contact apring rests on the tip of the tooth or cam. In tils position the normally open contacts are closed.
1.12 Time of synchronization as referred to herein has no reference to the aotual time of day. It is a period oocurring once each hour representing the time within which the synchronizing pulse is received by the clook. On clocks per KS-1924, KS1928, KS-1930 and KS-6778 this time extends Iram 12 seconds before to 12 seconds after 15 minutes past the hour. On clocke per KS-1925, KS -1927 , KS-1929 and KS-6777 this time oxtends from 12 seconds before to 12 seconds past the hour.
$1.13 \frac{\text { One full stroke of the pendulum which }}{\text { consists of two beats is the distance }}$ covered by the pendulum when travelling from any given point in its swing beck to the same point again moving in the same direction. This includes two reversels of direction of the motion of the pendulum. on clocks per KS-1924, KS-1925 and KS-1926 which have a 60-beat movement one full stroke is accomplished in 2 seconds while on the other clooks which have a 120 -beat movement one full stroke is accomplished in 1 second.

2. REQUIREMENTS

2.01 Cleaning

(a) Contacts shall becleaned, when necessary, in accordance with the section covering cleaning of relay contacts and parts.
(b) Other parts shall be cleaned, when necessary, in accordance with approved procedures.
(c) Where KS-7860 petroleum spirits is used for cleaning, the movement shall
be allowed to dry and shall then be lubricated.
2.02 Lubrication
(a) The points of the olock insted in requirements (b), (c) and (a) shail be adequately lubricated with KS-6232 0il. When lubrication is necessary, these parts shall be lubricated as fol: lows:
(b) One dip of ca? shall be divided between each 4 or 5 of the following points:

Each shaft bearing of the move= ment and winding motor.
Every tenth tooth on the escapoment wheel.
Both points of contact between the escapement wheol and pallet - Fig. 1 (A).

The point of contact between the motor armature lever pin and the winding lever - Fig. 1 (B).

Fig. 1 - General Asaembly of typioal Meohaniam

2.02 (Continued)

(c) One dip of oil shall be applied to the winding ratchet wheel teath. This oil shall be distributed over the circumference of the weel.
(d) Clocks per KS-19E4, KS-1925, KS-1927, KS-1928, KS-1929, KS-1930, KS-67T7 and KS-bris: In addition to the points listed in requirements (b) and (c) one dip of oll shall bedivided between each 4 or 5 of the following points:

Each bearing of the synchronizing mechanism - including the soconds roller bearing - except bearing "X" (Fig. 1).
Point of "V" piece - Fig. 1 (C).
Rim of each of the two heart shaped cams - Fig. 1 (D).
Point of contact between star wheel ratchet and pawl - Fig. 1 (E).
(e) Recommended Lubrioation Intervals: Arter turnover, it is recommended that the parts of the clock listed above be lubrioated at intervals of two years. This intervel may be ertended if periodic inspections have indioated that local conditions are such that requirement (a) will be met during the extended intervel.
*2.03 siounting - Fig. $2(A):$ The clock shall be mounted so that, when the pendulum is at rest, the pendulum rod is parallel to the back of the case and the lowest point of the pendulum lines up with the center line of

Mg. 2 - Face View (KS-6777 and KS-6778)
the degree oale or the mari on the bottor: of the clock case. Gauge by eye.

Cirouit Closing Contacts

2.04 Spring Clearance: There shall be n horizontal clearance between the adjacent circuit closing contact springs of Min. $1 / 64^{}$
Gauge by eye.
*2.05 Contact Alignment: When the contacts are in the operated position, they shall line up so that their centers are not out of alignment more than 25% of their diameters, and the shorter spring shall not rest against the hard rubber back stop beneath it. Gauge by eye.
*2.06 Clearance Botween Contact Springs and Ratchet Wheol Leoth - Fig. 5 (A): When the synchronizing mechanism operates, there shall be a perceptible clearance between the tips of the oircuit closing contact springs and the teeth of the hard rubber ratchet wheel as the seconds hand is restored to the 60 seconds position. Gauge by eye.

Fig. 3 - Circuit Closing Contacts and Ratchet liheel
*2.07 Contact Soparation-Fig. 3 (B): With the contact springs in the normal poaition there shall be a separation between each pair of contacts of

Min. .012"
Use the No. 74D gauge.

*2.08 Contact Closure Time

(a) On clocks por ES-1299, KS-1924, $\mathrm{KS}-1925, \mathrm{KS}-1926, \mathrm{KS}-192, \quad \mathrm{SS}-1928$ KS-1929, $\mathrm{KS}-1930$ and KS-1931, the cone tacts wilch olose every b seconds to send out pulses to operate the awitohboard position olooks shall have a closure of minimum of sec, and marimum 2.0 sec. Geuge by eye.

*2.08 (Continued)

(b) On olocks par KS-6777 and KS-6778, the contacts whioh close every $1-1 / 2$ seconds to send out pulses to operate the time of day equipment shall have a closure of minimum .35 sec . and maximum .65 sec. Gauge by eye.
2.09 D1al and Hands
(a) The seconds hand shall not drive or slip backwards. Gauge by eye.
(b) The hands shall not interfere with each other or rub against the dial in any position. Gauge by oye.

2.10 Accuracy of clocka

(a) Clocks per KS-1299, KS-1924, KS-1925, KS-1927, KS-1928, KS-1929, KS-1930 and KS-1931: The clock shall not gain or lose more than 30 seconds per day of 24 hours nor more than $1-1 / 4$ seconds in any one hour.
(b) Clocks per KS-6777 and KS-6778: The clock shall not gain or lose more than 12 seconds per day of 24 hours, nor more thar $1 / 2$ second in any one hour.

Winding Circuit Contacts

*2.11 Contact Separation -Fig. 4 (A): The contact separation between the winding circuit contact springs, when in their normal position, shell be

Approrimately $1 / 32^{*}$
Gauge by eye.
*2.12 Alignment of Contact Spring and Concontact sector about to touch the lower contact spring, the tip of the spring shall be approximately even with the edge of the incline of the contact sector. Gauge by eye.

Fig. 4 - Winding Cirouit Contacts
*2.13 Contact Aligament: The contacts shall be approximately contered, and the tips of the springs shall be approximately parallel when the contacts are closed. Gauge by eye.

Motor

*2.14 Electrical Requirement: The motor shall operate to wind the clock on a direot current potential of minimum rovelts.

*2.15 Position of Motor Armature

(a) Fig. 5 (A) - When the armature is in the normal position, the front odge of the armature shall be approximately in line with the lower edge of the magnet core. Gauge by eve.

Fig. 5 - Winding Motor
(b) With the motor armature in the operated position, the upper edge of the armature shall be approximately $1 / 16^{\prime \prime}$ below the upper edge of the magnet core. Gauge by eye.

Motor Contacta

*2.16 Spiral Contact Spring position-Pig. 5 (B) - When the armature is in the normal position the straight portion of the spiral contact spring shall point to approximately the center of the motor magnot core. Gauge by eye.
*2. 27 Contact Alignment - Fig. 5 (C): The contact pln shall approximately conter on the contacting portion of the spiral contact spring. Geuge by eje.

[^0]*2. 19 Contact Separation: With the motor armature in the oparatad position, the separation between the contact pin and the contact on the spirel spring shail be Approximately $1 / 16^{\prime \prime}$
Gauge by eye.
*2. 20 Contact Sequence: Both front and rear motor contacts shall open simultaneously when the armature is operated manually. Gauge by eye.

Synchronizing Mechanism-Clocks per KS-1924, KS-1925, KS-1927, KS-1928, KS-1929, KS-1930, KS-6777 and KS-6778
*2.21 Eleotrical Requirement: The synchronizing mechanism shall function to correct the position of the seconds and minute hands at any time during the time of synchronization when a direct current potential of minimum 18 volts is applied across the torminals of the synchronizing magnets.
*2.22 frmature Air-Gap-Fig. 6 (A): With the armature in the operated position there shall be a clearance between the syochronizing armature and each of the two pole-pieces of

Min. . 010°
Use the NO. 74D gauge.

Fig. 6 - Synchronizing Mechanisin

*2.23 Synchronizing Lever Operation - Fig. 3 (C)

(a) Clocks per KS-1924, KS-1925, KS-1927, KS-1928. KS-6777 and KS-6778: The synchronizing latch shall be locked at all times except 15 seconda before to 15 seconds after the time of synchronization, and it shell be unlocked during the time of synchronization.
(b) Clocks per KS-1928 and KS-1930: The synchronizing latch shall look the aynchronizing mechanism firmly at all
times except for four minutes of each hour. The period during which the synchronizing latch is open shall stert two minutes before and end two minutes after the time of synchronization. Gauge by өye.
*2.24 Clearance betwean Seconds Roller and Cam: There shall be a very silght clearance between the seconds roller and the heart shaped cam when the syachronizing armature is fully operated. Gauge by eye.

Synchronizing Lever Contacts - Clocks per KS-6777 and $\mathrm{KS}-6778$
*2.25 Contact Separation - Fig. 7 (A) and FIg. 8 (A): WIth the contacts in the unoperated position the contact separation shall be

Min. $1 / 64^{n}$
cauge by oye.
*2. 26 Contact Alignment: When the synchron12ing mechanism operates, the synchronizing lever contacts shail make reliebly and the contacts shall be approximately centered. Gauge by eye.
*2.27 Contact Sequence: With the 7-1/2 second eircuit closing contacts closed, the operation of the synchronizing lever shall close the synchronizing contacts before the 7-1/2 second contacts are opened. fauge by eye.

Fig. 7 - Synchronizing Lever Contacts

Fig. 8 - Synchronizing Lever Contacta KS-6777 and KS-6778
3. ADJUSTING PROCEDURES
3.001 List of Tools, Gauges and Materials

Code No.	Description
Tools	
265B	Contact Burnisher
KS-6015	Duck-bill Pliers
-	Tweezers
KS-14164	No. 4 Artists Show Card Brush
-	3-1/2" Cabinet Screw-driver
-	4" Regular Screw-driver
-	6-1/2" P-Long Nose Pliers
-	5" Diagonal Pliers
-	Jewelers' Screw-driver
Gauges	
74 D	Thickness Gauge Nest
Materials	
D-98063	Cloth
KS-6232	Oil
KS-7860	Petroleum Spirits

Code No. Description

- Small Flat Piece of Wood
- Toothpicks, Hardwood, Flat at One End and Pointed at the Other
3.002 No attempt should be made to take the clock movement apart except to the extent covered in 3.01.
3.003 Should it be impossible to readjust the clock so that it will meet its requirements due to broken parts or open coil windings, refer the matter to the supervisor.
3.01 Cleaning (Rq.2.01)
3.02 Lubrication (Rq.2.02)
(1) When cleaning is necessary, first, remove the hands. To remove the minute and hour hands, hold both hands firmly at the hub and remore th"s knurled thumbscrew at the center of the hub of the minute hand. Pull the hands off, grasping them at their hubs and exerting a uniform pressure away from the dial. Then remove the seconds hand if necessary. Some clocks are provided with a large opening in the dial around the seconds arbor making it unnecessary to remove the seconds hand in order to remove the dial. However, when it is necessary to remove the seconds hand this may be done on some clocks by exerting a slight pull on the hand with the fingers while on other clocks the hend is held by means of a screw through its hub, which must be removed with the $3-1 / 2^{\prime \prime}$ cabinet screw-driver or tine jewellers. screw-driver before removing the hand.
(2) Remove the dial mounting screws with the $3-1 / 2^{\prime \prime}$ cabinet screw-driver and then remove the dial.

Caution: on thoseclocks from which
the seconds hand has not been ree
$\frac{\text { mored take care not to damage the }}{\text { seconds hand when removiag the }}$
dial.
(3) Unfasten the connecting wires by loosening the terminal screws with the $3-1 / 2^{\prime \prime}$ cabinet screw-driver and if necessary, label the wires so that they may be replaced correctly. Dismount the pendulum, taking care that the regulating nut on the lower end is not turned while dismounting. Remove the movement mounting scrows with the $4^{\prime \prime}$ regular screwdriver and remove the movement from the cese.
(4) Remove the dial train gears by removing the thumb screw on the lower gear. Ii the movement is equipped with a synvhronizing mechanism, remove the synchronizing lever by remoring the associated thunic
3.01-3.02 (Continued)
screw by hand and removing the pitman screw (See Fig. 7) with the 3-1/2" cabinet screw-driver. Then remove the cannon socket assembly.
(5) Thoroughly clean all bearings, pivots and pivot holes by flushing them with petroleum spirits applied with a toothpick.
(6) Remove all old oil and petroleum spirits from the parts of the clock with a clean D-98063 cloth wrapped around a small flat piece of wood.
(7) Allow the movement to dry and then apply oil to the various parts as required using the $\mathrm{R}-1575$ artists show card brush.
(8) Exercise care when applying the petroleum spirits and oil not to allow them to get on the coils or the armatures. Also see that the case is free from dust, and then reassemble the parts. Take care that the connecting wires are properly connected and that the hands are replaced so that requirement 2.05 is met.
3.03 Mounting (Rq.2.03)
(1) To adjust the position of the clock, loosen the screws at the bottom of the case with the $4^{\prime \prime}$ regular screw-driver and plumb the case as required by means of the pendulum and the marks at the bottom of the case.
(2) Secure the case dirmly to the wall.

Gircuit closing Contacts

3.04	Spring Clearance (Rq. 2.04)
3.05	Contact Allgnment (Rq.2.05)
3.06	Clearance between Contact Springs
	Ratchet Fheel (Rq.2.06)
3.07	Contact Separation (Rq.2.07)
3.08	Contact Closure Tlme (Rq.2.08

(1) Remove the hands and dial as covered in 3.01.
(2) If the clearance between the adjacent contact springs is not as speoified, loosen the circuit closing contact assembly mounting screws with the $3-1 / 2^{\prime \prime}$ cabinet screw-driver and locate the springs as required, taking care not to destroy the contact alignment.
(3) Contacts controlling position clocks and time of day clocks: Manually operate the pendulum until the shorter spring of the contact pair drops from a tooth of the hard rubber ratchet wheel and note the position of the pendulum at which this spring drops. Continue to
operate the pendulum and note that the associated longer spring drops from the hard rubber ratchet whoel within the following lifits:

Note: The pendulum travels listea below while not critical should be estimated as accurately as possible in accordence with the definition given in paragraph 1.13.
(a) Clocks per KS-1924, KS-1925, and KS-1926 - Between one fifth of $\frac{1}{6}$ full stroke and one half of a full stroke after the shorter spring dropped.
(b) Clocks per KS-1299, KS-1927, KS1928, $\mathrm{KS}-1929, \mathrm{KS}-1930$, and $\mathrm{KS}-1931=$ Between two fifths of a full stroke and one full stroke after the shorter spring dropped.
(c) Clocks per $\mathrm{kS}-6777$ and $\mathrm{KS}-6778$ Between one thrrd of a full stroke and two thirds full stroke after the shorter spring dropped.

Check in this manner on each tooth of the hard rubber ratchet wheel and then if necessary loosen the contact assembly mounting screws with the $3-1 / 2^{\prime \prime}$ cabinet screw-driver and shift the location of the tips of the springs as required. In tightening the screws be sure that requirement 2.04 (a) is met.

Rote: If the requirements given in paragraph 2.04 (c) cannot be met by following the above procedures due to a worn condition of the hard rubber ratchet wheel or a ratchet wheel that is not in proper adjustment, refer the matter to the supervisor.
(4) Other circuit closing contacts except contacts controlled by snychronizing lever: Manually operate the pendulum until the shorter spring drops from a tooth of the hard rubber ratchet wheel and note the position of the pendulum at which this spring drops. Continue to operate the pendulum and note that the associated longer spring does not drop from the hard rubber ratohet wheel until the pendulum has completed at least one quarter of a full stroke. Check in this manner on each tooth of the hard rubber ratchet wheel and adjust if necessary as outlined in (3) above.
(5) Manually operate the pendulum until the shorter spring drops from a tooth of the hard rubber ratchet wheel. In this position, the contacts should be operated. If necessary, adjust the cantact springs with the tweezers as shown in Fig. 9.

Fig. 9 - Method of Adjusting Circuit Closing Contacts with Tweezers
(6) II necessary to adjust the position of the hard rubber back stop, adjuat the back stop epring with the KS-6015 duck-bill pliers.
(7) Manually operate the symchronizing armature and note whether the cirouit closing contaot spring clear the hard rubber ratohet whesl teeth as the ratchet wheel is restored. The spring olearance is controlled by the operation of the contact raising arm, wioh In turn, is controlled by the operation of the synchronizing lever. If a satisfactory olearance 18 got obtained, adjust the pin at the base of the contact raising arm as required with the long nose pliers. Exeraise extreme care in making this adjustment so as not to break off the pin.
(8) Clocks per KS-1924, KS-1925 and KS-1926 are equipped with circuit closing contacts which close once every hour and which synchronize other clocks. KS-1927 and KS-1928 clocks may also have program attachments for operating relief bells. The operation of these contacts is controlled by an arm which rests on the edge of the disc on the cannon socket assembly. If the arm fails to drop into the notch in the disc, it is probably due to improper tension of the retractile spring or due to bind. Grasp the spring assembly at the base and rotate it gently a number of times to determine whether or not it is binding on its axis. If it binds, remove the knurled nut and the assembly and clean the pin with a D-98063 cloth which has been moistened with petroleum spirits. Then replace the parts and check to see that the issembly operates properly. If this
does not provide satisfactory operation, remove the retractile spring and cilp off a turn with the diagonal pliers and replace the spring. Recheck for proper operation. ilso, see that the lower end of the arm which orerates these contacts is approximately centered on the edge of the disc on the cannor socket asscmbly. Replace the dial and hands making sure that requirement $\sim . \cup 5$ is Let.

3.09 Dial and Hands (Rq.2.09)

(1) Rotate the minute hand clockwise manually 12 complete revolutions and observe whether it rubs on the hour hand, or whether either hand rubs on the dial at any point. If any interferenoe or binding is observed, ad just themwith the fingers as required. If the dial is warped. remove it fram the clock as outinned in 3.01 and adjust it as required with the hands. If the dial is warped to such an extent that it cannot be straightened replace with a new one.
3.10 Accuracy of Clocks (Rq.2.10)
(1) Clocks per KS-1924, KS-1925, KS-1927, KS-1928, KS -1929 , KS-1930, KS-677t and $\overline{\mathrm{K}}-6778:$ On these clooks the hands must be placed so that the clock will be synchronized to indicate the correot time when the synchronizing pulse operates the synohronizing meohenism. In order to set the hands properly, first, ascertain the time of synchronization for the partioular olock under test, and, as the minute hand is being rotated olockwise manually, Iisten intently for a cliok inside the olock indicating the opening of the synchronizing latch. When the click is heard, stop the rotation and rotate the minute hand in a counterclockwise direction as far as the locking device will permit. The minute hand should now point to the time of synchronization. If not, remove the minute hand as covered in 3.01 and replace it so it points to the time of synohronizat10n.
(2) Turn the minute hand to the number or numeral "12" on the dial and ascortain that the hour hand points directif toward the mark corresponding to a numeral. If not, shift the position of the hour hand as required with the fingers.
(3) From an orternal souroe, ascertein at what time the next synchronizing pulse will be transmitted to the clock, and, with the clook stopped, set the hands to indicate the correot time at the next time of synchronizatione See that the pendulum is not swinging, and at the instant the syohronizing pulse operates the synohronizing meohanism, start the olook and allow it to mm seteral houre.

3.10 (Continued)

(4) Open the circiit to the symchronizing magnet. Shurtly before the following 24 th hour, close the circuit to the synchronizing wagnet. ithen the synchronizing pulse for the 24 th hour comes observe whether or not the clock has gained or lost more than 30 seconds, (12 seconds for clocks per $\mathrm{KS}-6777$ and $\mathrm{kS}-6778$) and if so, note how much it has gained or lost. If necessary to regulate the clock, loosen the check nut, (located just below the regulating nut) if provided, and turn the regulating nut on the lower end of the pendulum. Be sure to tighten the check nut after the regulating nut has been turned. after the clock has been stopped to turn the regulating nut, time comparisons should not be started for several hours, or until the pendulum has had time to settle into its normal arc. If the clock runs fast turn the regulating nut toward the bot tom of the case to slow up the clock and if the clock runs slow turn the nut away from the bottom of the cese to speed up the clock. One full turn of the nut will change the time rate per 24 hours of the clock as follows:

Clocks per KS-1924 and KS-1925	40 sec.
Clocks per KS-1927,	1 min .50 sec .
KS-1928, KS-1929,	
KS-1930, KS-6777	
and KS-6778 (Brass	
bob wood rod pen-	
Clocks per KS-6777 and KS-6778 aquipped	2 min .10 sec .
with invar steol rod	
pendulum	

(5) Clocks per KS-1299 and KS-1931: If the clock gains or loses more than 30 seconds per 24 hours note how much the clock varies. Regulate by turning the pendulum regulating nut. One turn of the nut will affect the rate of the clook 1 minute and 50 seconds per 24 hours.

Note: Any fraction of a complete turn of the regulating nut in clock mentioned in (4) and (5) will affect the time rate in proportion to the above figures.
(6) Clocks per KS-1926: If the clock gains or loses more than 10 seconds per 30 days notehow much it varies. Regulate by turning the pendulum regulating nut as described in (4). One turn of the regulating nut will affect the rate of the clook 30 seconds per 24 hours.

Noti: Where a clock is equipped with a merourial pendulum and has a set of weights for fine regulations,
turning the regulating mut as dasscribed in (4) two divisions will change the rate of the clock about one second per 24 hours. Adding two one gram weights will make the clock gain about one second per 24 hours, and the smaller weights will affect the rate in proportion. Care must be taken when putting on or taking off weights not to disturb the swing of the pendulum as any change of the arc affects the rate of the clock.
(7) When clocks except clock per KS-1926 are regulated as covered in the above procedures to meet their 24 hour accurecy requirement, they should meet their one hour accuracy requirement also. This can be checked by observing the gein or loss of time in one hour. If the one hour requirement is not met the regulating nut shall be turned as described in (4) until the requirement is met. If this procedure is followed it should be observed that the 24 hour requirement is still met.

Winding Circuit Contacts

3.11	Contact Separation (Rq.2.11)
3.12	Aligament of Contact Spring and Con-
	tact Sector (Rq.2.12)
3.13	Contact Alignment (Rq.2.13)
Motor	
3.14	Electrical Requirements (Rq.2.14)
3.15	Position of Yotor Armature (Rq.2.15)
Motor	Contacts
3.16	$\frac{\text { Spiral Contact Spring Position }}{\text { (Rq. } 2.16)}$
3.17	Contact Alignnent (Rq.2.17)
3.18	Spring Tension (Rq.2.18)
3.19	Contact Separation (Rq.2.19)
3.20	Contact Sequence (Rq.2.20)

(1) Operate and reisase the "VIWDING" key located on tile inside of the case manually several times to determine whether the motor will function satisfactorily. If the motor fails to operate, manually close the winding circuit contacts severse times. If the motor oper:tes under this condition, it is an indication that either the circuit to the key is open or else the key contacts are dirty. Clean the contacts with the No. 265 B contact burnisher. Then check the wiring for loose connections and, where necessary, tighten the connections to the binding posts.
(2) If the motor falls to operate whon oither the winding circuit contacts are closed manually or when the key is closed, the trouble is probably due to any one or all of the following defects: Corrosion at the contacting points, im-

3.11-3.20 (Continued)

proper adjustment of the winding motor contacts, broken or distorted driving pawl, open magnet winding, or run down battery.
(3) Remove the hande and dial as outlined in 3.01, apply the potential directly to the motor winding terminals and note whether the motor armature responds. See that the battery potential is within the specified ilmits. If the motor does not funotion, it is an indioation that the windings are open.
(4) If the motor armature operates and releases satisfactorily but does not wind satisfactorily, examine the driving pawl and winding lever. If they are broken or out of edjustment refer the matter to the supervisor.
(0) If the armature does not operate and release continuousiy when the potential is applied by operating the key, but operates only once on each application of potential it is an indioation that the motor contacts do not break when the armature operates. Cheok this and, 11 neoessary, adjust them as outlined in (8) and (7).
(6) If the motor contaots require adjusting it may be necessary to remove the dust cap in front of the contacts requiring adjusting. The front dust cap is removed by removing the lower mounting screw with the $3-1 / 2^{\prime \prime}$ cabinet screw-driver and sliding the dust cap from the groove in atud ${ }^{n} A^{n}$. Adjust the contacts as required with the tweezers as shown in Pig. 10.

Fig. 10 - Method of Adjusting Motor Contacts with Tweezers
(7) Ascertain that the armature banking springs are not broken.
(8) Adjust the winding circuit contact springs as required with the KS-6015 duck-bill pliers.
(9) Operate the winding key manually and if the motor functions satisfactorily reassemble the parts.

Synchronizing Meohanism

(1) If the synchronizing mechanism does not function properly remove the hands and dial as covered in 3.01. Manually turn the cannon socket assembly slowly until the pin on the disc on the cannon socket assembly just unlocks the synchronizing latch. With the latch open, manually operate the synchronizing armature. The seconds roller should move the seconds arbor to the position in which the seconds hand indicates 80 seconds. In this position the synohronizing lever should rest on the two point cam of the cannon socket assembly and the seconds roller should barely olear the heart shaped cam as shown in Fig. 11.
(2) If the armature air gap is not as specified, slight adjustments may be made by turning the armature adjusting acrew with the $3-1 / 2^{\prime \prime}$ cabinet screwdriver. If a satisfaotory adjustment cannot be made in this manner, loosen the yoke adjusting screws with the $3-1 / 2^{\prime \prime}$

Fig. 11-Position of Seconds Roller and Synchronizing Armature Synchronizing Mechanism operated
cabinet screw-driver. Manually operate the synchronizing armature and, while holding the armature in this position, set the magnets so that they just clear the armature. Tighten the yoke adjusting screws. Take care that the proper armature air gap is maintained and that the armature adjusting screw rests firmly against the head of the rear synchronizing magnet.
(3) If the seconds roller does not clear the heart shaped cam as specified, adjust the synchronizing lever as required at a point about one inch below the seconds roller, using the long nose pliers.
(4) If the synchronizing latch does not function properly, first, ascertain that the latch lever is free to move at bearing "X" (shown in Fig. 11). If this bearing binds, clean it as covered in procedure 3.01. Do not attempt to adjust the latch.

Synchronizing Lever Contacts

3.25 Contact Separation (Rq .2 .25)
3.26 Contact Alignment (Rq. 2.26)
3.27 Contact Sequence (Rq .2 .27)
(1) Manually operate the pendulum until
the shorter spring of the $7-1 / 2$ second circuit closing contact pair drops from a tooth of the hard rubber ratchet wheel on the seconds arbor assembly. This will close the $7-1 / 2$ second contacts. Manually turn the cannon socket assembly until the synchronizing latch is unlocked, then manually operate the armature of the synchronizing magnet. Observe that the synchronizing contacts close before the $7-1 / 2$ second contacts are opened. If this requirement is not met, adjust the springs with the KS-6015 duck-bill pliers. When making this adjustment it should be observed the contact clearance requirement is also met.
(6) Reassemble the parts.

[^0]: *2.18 Spring Tonsion: The spiral contact Bping shall be tonsioned slightly against the contact pin. Gauge by feel.

