558A PRIVATE BRANCH EXCHANGE DESCRIPTION OF SYSTEM OPERATION

CONTENTS PAGE

1. INTRODUCTION2
GENERAL 2
CAPACITY 2
OPERATING RANGES 2
OPERATING FEATURES 3
OPTIONAL OPERATING FEATURE 3
CALLING 3
2. EQUIPMENT ARRANGEMENT 4
GENERAL 4
POWER 4
3. SWITCHING PLAN WITH TRUNK AND LINE ASSIGNMENTS (Fig. 4) 4
A. Crossbar Switch 4
B. Link Circuit 6
4. CIRCUIT FUNCTIONS (Fig. 5) 6
A. General 6
B. Station Line Circuit 6
C. Central Office Trunk Circuit 6
D. Common Control Circuit 6
E. Select Magnet Control Circuit 7
F. Alarm and Transfer Circuit 7
G. Ringing and Power Circuits 7
5. TYPES OF CALLS 8
A. Station-to-Station 8
B. Station-to-Trunk 8
C. Trunk-to-Station 8
D. Incoming Central Office Trunk Call with
All Paths Busy $. \quad . \quad . \quad . \quad . \quad . \quad$.
8
E. Night Service Connections 8
F. Power Failure Transfer Connections . 8
G. Attendant Recall 8
6. TEST CONSOLE CONNECTIONS 8

FIGURES
Fig. 1-558A PBX Switching Cabinet . 2
Fig. 2-Attendant Console for Use with the 558A PBX

Fig. 3-558A PBX - Equipment Arrangement

Fig. 4-558A PBX - Switching Plan with Trunk and Line Assignments

9

Fig. 5-558A PBX - Functional Block Diagram 11

Fig. 6-558A PBX - Station-to-Station Call

Fig. 7-558A PBX - Station-to-Central Office Trunk Call 15

Fig. 8-558A PBX - Central Office Trunk-to-Station Call17

Fig. 9-558A PBX—Incoming Central Office Trunk Call with All Paths Busy

CONTENTS

PAGE

Fig. 10-558A PBX - Night Service Connection - Typical Example21

Fig. 11-558A PBX - Power Failure Transfer Connections 23

1. INTRODUCTION

GENERAL

1.01 This section describes the 40 -line, 10 -trunk, 558A manual crossbar private branch exchange (PBX) that uses a 29A2-type console as the attendant facility.
1.02 The PBX switching equipment is quiet in operation and is housed in a single module (cabinet). This cabinet (Fig. 1) is designed to blend with most general office furniture. Therefore, this PBX equipment may be located in general office space on customer premises, thus eliminating the need for a separate equipment room or enclosure.
1.03 The attendant facility is a cordless rotary dial (29A2R) or a TOUCH-TONE ${ }^{\circledR}$ (29A2T) telephone console (Fig. 2). This console is attractive in design and may be ordered in one of four colors (green, white, beige, or gray).
1.04 Power for the 558A PBX is derived from a batteryless power supply that is located in the switching cabinet.
1.05 For more information on the 558A PBX, reference should be made to the following Bell System Practices:
(a) Section 536-580-210 (Identification, Installation, and Connections - SD-5E060-01).
(b) Section 536-580-310 (Attendant Console, 29A2-Type Console - Method of Operation).
(c) Section 536-580-510 (Manual Tests).

CAPACITY

1.06 The capacity of the 558A PBX is as follows:
(a) Station lines - 40
(b) Central office trunks - 10
(c) Links -10 .

Fig. 1-558A PBX Switching Cabinet

OPERATING RANGES

1.07 The maximum conductor loop resistance (including the telephone set) for the station

Fig. 2-Attendant Console for Use with the 558A PBX
lines is 1200 ohms under normal PBX power supply conditions.
1.08 The trunk conductor loop resistance plus the maximum station loop resistance shall not exceed the central office customer conductor loop range of the connecting central office less 25 ohms.

OPERATING FEATURES

1.09 The 558A PBX with the attendant facility provides the following operating features for the 40 -line installation:
(a) A station key and lamp for each of the forty station lines.
(b) A trunk key and lamp for each of the ten central office trunks.
(c) Visual and audible signals for trunk and station incoming and visual signals for outgoing calls.
(d) Automatic ringing on a called station.
(e) Recall from a called station on an incoming trunk-to-station call.
(f) Flexible night connections that are set up by the attendant.
(g) Power failure transfer that connects designated central office trunks to certain station lines when loss of power is experienced.
(h) Visual signals for trouble and all paths busy alarms.

OPTIONAL OPERATING FEATURE

1.10 The 558A PBX with the attendant facility provides the following optional feature:
(a) Station originated second central office call without attendant assistance.

CALLING

1.11 In the normal mode of operation, all calls in the system are answered and completed by the attendant by means of console key operations. The connections for the calls are established by
means of: (1) a station key field for the forty stations; and (2) a trunk key field for the ten trunks. Only two connections are allowed for each call as follows: (1) station-to-station; (2) station-to-trunk; and (3) trunk-to-station. Only one connection can be established by the attendant at one time.
1.12 The 558A PBX with the attendant facility allows an attendant to handle the following types of calls:
(a) Station-to-attendant call.
(b) Station-to-station call.
(c) Station to central office trunk call.
(d) Central office trunk-to-attendant call.
(e) Central office trunk-to-station call.
(f) Incoming central office trunk call to attendant with all paths busy.
(g) Attendant-to-station call.
(h) Attendant-to-central office call.
(i) Attendant to central office call with all paths busy.
1.13 When a commercial power failure occurs, the 558A PBX installation is provided with five power failure connections on an automatic basis. When a power failure occurs, station lines 10,11 , 12,13 , and 14 are automatically connected to central office trunks $0,1,2,3$, and 4 , respectively. Station lines 10 through 14 now have dialing capabilities.
1.14 The attendant may establish a night connection between any idle station line and any idle central office trunk. Thus, the idle station line selected for the night connection may directly originate calls to the central office or receive incoming calls from the central office. A maximum of ten night connections may be established.

2. EQUIPMENT ARRANGEMENT

GENERAL

2.01 The one switching cabinet for the 558A PBX installation consists of three slides (Fig.
3) on which are mounted the switching equipment.
2.02 The slides are constructed so that only one slide can be withdrawn at any one time. The cabinet is equipped with snap-on type front and end panels. To withdraw a slide: (1) the front end cover must be removed; and (2) the friction locking device at the top front of the slide must be released.
2.03 The three slides are interconnected by an interslide cable.
2.04 Cabling from the PBX is terminated on 66 -type connecting blocks located at the top of slide one.

POWER

2.05 The batteryless power supply (see slide one of the cabinet) is equipped with a 3-conductor cable for connection to a 105 - to 125 -volt ac, 60 -cycle; single-phase commercial power source.
2.06 The commercial power source must be an individually fused 15 amperes circuit.

3. SWITCHING PLAN WITH TRUNK AND LINE ASSIGNMENTS (Fig. 4)

A. Crossbar Switch

3.01 General: One of the basic elements of the 558 A PBX installation is the 100 -point, 6 -wire crossbar switch. The crossbar switch is essentially a relay mechanism. For this installation, the crossbar switch consists of ten horizontal paths and ten vertical paths. Any horizontal path can be connected to any vertical path by means of contacts controlled by the operation of relay magnets. The points of connection are known as crosspoints.
3.02 Horizontal Paths: There are five horizontal selecting bars mounted across the face of each switch. Each selecting bar has flexible selecting fingers attached to it, one finger for each vertical path. The bars are rotated slightly by the operation

Fig. 3-558A Equipment Arrangement
of a selecting magnet to cause the select fingers to go either up or down.
3.03 Vertical Paths: Ten vertical units are mounted on the switch and each unit forms one vertical path. Each unit operates under control of a holding magnet and has ten groups of contacts (one for each horizontal path). Each group of contacts consists of six pairs of contact springs.

3.04 Use of the Crossbar Switches for Station Line Circuits: Four crossbar switches

(switches 1 through 4) are used for connection to the forty station line circuits. These forty line circuits appear on the forty verticals of the four switches. The ten horizontal paths are used as ten 6 -wire links.
3.05 Use of the Crossbar Switch for Trunk Circuits: One crossbar switch (switch 0) is used for the ten central office trunk circuits. These ten trunks appear on the ten verticals of the switch. The ten horizontal paths are used as ten 6 -wire links.

B. Link Circuit

3.06 General: Another essential element of the 558 A PBX installation is the 6 -wire link circuit. The link circuit is basically a relay controlled circuit. Ten 6-wire link circuits are available for use.
3.07 Talking Connections: Relay circuitry is provided to make possible the following types of talking connections:
(1) Two stations with or without an attendant.
(2) A station and a trunk with or without an attendant.
(3) Attendant and a station.
(4) Attendant and a trunk.
3.08 Supervision: Relay circuitry is also provided for: (1) trunk and station line supervision;
(2) ringing conditions; and (3) trunk lamp flashing.
3.09 Station Line Access to Links: The horizontals on the four crossbar line switches are wired so that each of the forty station lines has access to each of the ten link circuits.
3.10 Central Office Trunk Access to Links:

The horizontals on the crossbar trunk switch are wired so that each of the ten central office trunk circuits has access to each of the ten link circuits.
3.11 Link Selection: Link selection is controlled by the select magnet control circuit. The sequence of link selection begins with link 0 . Therefore, link 0 will be selected unless it is busy. If link 0 is busy, link 1 will be selected, etc.

4. CIRCUIT FUNCTIONS (Fig. 5)

A. General

4.01 Figure 5 is a functional block diagram of the 558A PBX.

B. Station Line Circuit

4.02 Each of the forty station line circuits functions to:
(1) Flash the station lamp at 60 ipm and operate the attendant's audible signal when a station lifts the receiver.
(2) Light the station lamp steadily when the station line is seized by the attendant.
(3) Transfer the tip, ring, and sleeve leads of the station line circuit from the terminating verticals of the crossbar switch to the originating verticals if the station is requesting service.
(4) Transfer the tip, ring, and sleeve leads of the station line circuit from the terminating verticals of the crossbar switch to the originating verticals if the station is to be night connected.

C. Central Office Trunk Circuit

4.03 Each of the ten central office trunk circuits functions to:
(1) Flash the trunk lamp at 60 ipm and operate the attendant's audible signal when central office ringing is received.
(2) Transfer the trunk lamp from steady to a 120 ipm wink when the trunk is placed on hold.
(3) Connect directly to the attendant's telephone circuit when the attendant answers a trunk request for service while all paths are busy.
(4) Transmit a signal to the common control circuit when the attendant answers a trunk request for service while all paths are busy.

D. Common Control Circuit

4.04 The common control circuit functions to:
(1) Provide talking battery to a calling station when that station is connected to the attendant.
(2) Prevent the attendant from extending a call to a station requesting service.
(3) Prevent the attendant from obtaining a multiple connection by operating two or more station or two or more trunk keys simultaneously.
(4) Prevent the attendant from adding another connection to an existing station-to-station, station-to-trunk, or trunk-to-station connection.
(5) Exclude a calling station from the connection when the attendant extends a station request for service to a central office trunk.
(6) Prevent the attendant from answering a recall signal until released from the present connection.
(7) Recognize an all-paths-busy condition.
(8) Light an all-paths-busy lamp at the console.
(9) Transmit busy tone to all idle stations while all paths are busy.
(10) Prepare the central office trunk circuits to allow the attendant to answer requests for service from central office trunks while al. paths are busy.
(11) Recognize when the crosspoints close between a link circuit and a station line circuit requesting service.
(12) Provide a means for making the link circuits busy on an individual basis.
(13) Prepare the station line circuits, link circuits, and the central office trunk circuits for flexible night connections when the night service key is operated.
(14) Light an attendant dial lamp at the console when the attendant extends a station to a central office trunk.
(15) Permit the attendant to reconnect the excluded station after the central office is seized on station to central office trunk call.

E. Select Magnet Control Circuit

4.05 The select magnet control circuit functions to:
(1) Allow the selection of the first idle link circuit on a bid for a link.
(2) Busy a link circuit to any subsequent bids for a link.
(3) Allow the attendant to return to an established central office trunk connection by the operation of the associated trunk key.

F. Alarm and Transfer Circuit

4.06 The alarm and transfer circuit functions to:
(1) Transmit an alarm signal to the console when any of the fuses in the PBX operate.
(2) Automatically transfer five station lines directly to the central office in the event of a commercial power failure.
(3) Disable the attendant's console when the handset/headset is removed from the console jack.
(4) Transmit an alarm signal to the console when a power failure disconnects the flexible night connections.

G. Ringing and Power Circuits

4.07 The ringing and power circuits function to provide:
(1) - 48 volt battery through the battery cutoff relay to trunk lamps, station lamps, and miscellaneous lamps (NITE, ALL PATHS BUSY, ATND DIAL).
(2) -48 volt battery to the PBX circuits for talking battery and relay operation.
(3) Ground to the PBX circuits.
(4) Busy tone signals.
(5) Ringing battery alarm signal.
(6) A 10 -volt ac alarm signal.

5. TYPES OF CALLS

A. Station-to-Station

5.01 Figure 6 provides a description and a block diagram of a station-to-station call.

B. Station-to-Trunk

5.02 Figure 7 provides a description and a block diagram of a station-to-trunk call.

C. Trunk-to-Station

5.03 Figure 8 provides a description and a block diagram of a trunk-to-station call.

D. Incoming Central Office Trunk Call with All Paths

 Busy5.04 Figure 9 provides a description and a block diagram of an incoming central office trunk call with all paths busy.

E. Night Service Connections

5.05 Figure 10 provides a description and a block diagram of the night service connections.

F. Power Failure Transfer Connections

5.06 Figure 11 provides a description and a block diagram of the connections required to establish a talking path between certain station lines and certain central office trunks when a commercial power failure occurs.

G. Attendant Recall

5.07 Called Station Flashes Switchhook to Recall Attendant: Attendant recall is possible only on a central office trunk-to-station call. The called station may recall the attendant back to the connection by a switchhook flash. This action transfers the TRK- lamp from steady to a 120 ipm flash. Also, a 60 ipm audible tone is transmitted to the attendant. Thus, the attendant recognizes the 120 ipm flashing trunk lamp and the 60 ipm audible tone as a station recall.

5.08 Attendant Responds to Recall Signal:

The attendant responds to the recall signal by operating the trunk key associated with the 120 ipm flashing trunk lamp. When the TRK- lamp changes from a 120 ipm flash to steady, the attendant may release the TRK- key. Operation of the TRK- key as described establishes a three-way talking connection between the central office party, the called station, and the attendant. The attendant may again release from the connection at any time by operating the POS RLS key.

5.09 Called Station Requests Attendant to Reconnect Central Office Trunk to Another

Station: If the attendant, upon returning to the connection as described in 5.08 , is requested by the called party to reconnect the central office party to another station, the STA RLS (station release) key must be operated. When the station lamp associated with the called stain in extinguished, the attendant may release the STA RLS key.

Note: If the called station remains off-hook after the attendant has operated the STA RLS key, the associated lamp will not extinguish but will change from steady to 60 ipm . This action also activates the audible signal at the console. This condition exists until the called station goes on-hook.

5.10 Called Party Requests Transfer to a Station

That Is Busy: If the called party requests a transfer to a station that is busy, the attendant: (1) may place the central office trunk on hold by operating the TRK HOLD key; or (2) release the connection completely by operating the POS RLS key.
5.11 Called Party Requests Transfer to a Station That Is Idle: If the called party requests a transfer to a station that is idle, the attendant may connect the trunk to the idle station by operating the associated station key.

6. TEST CONSOLE CONNECTIONS

6.01 Connectors are provided at the PBX switching cabinet for connection to a console. These connections parallel the connections made for the attendant's console and provide a means for connecting the console at the PBX switching cabinet for ease in installation and maintenance testing.

Fig. 4-558A PBX-Switching Plan with Trunk and Line Assignments

Fig. 5-558A PBX Functional Block Diagram

Notes: for this example, the following assumptions are made:
(A) CENTRAL OfFiCE TRUNK 0 IS IDLE.
(B) LINK CIRCUIT O IS IOLE.
 ATTENDANT DIALS THE CO PARTY DESIRED, ADOS THE
CALLING STATION TO THE CONNECTION AND RELEASES.
2. imen station 10 lifts the receiver to make a call:
(A) LINE RELAY 10 OPERATES.
(B) STATION LAMP 10 AT CONSLE FLASHES AT 60 IPM.
(C) SIG RELAY IN COMMON CONTROL CIRCUIT OPERATES TO SIG RELAY IN COMMON CONTROL CIRCUIT OPERATES
PROVIDE AUOIBLE 60 IPM SIGNAL AT CONSOLE.
3. When the attendant operates the station key associated
3. WHEN THE ATTENDANT OPERATES THE
WITH THE 60 IPM FLASHING LAMP:
(A) SELECT MAGNETS ASSOCIATED WITH LINK 0 OPERATE.
(B) THE OPERATED SELECT MAGNETS ACTIVATE LINK CIBCUT
(A) THE OPERATED SELECT MAGEETS ACTIVATE LINK CIRCUIT O
WHICH SIGNALS THE COMGON CONTROL CIRCUIT TO OPERATE WHICH SIGNALS THE COMMON CONTROL CIRCCIT TO
THE HOLD MAGETS ASSOCIATED WITH STATION 10 .
(c) talking path is now esmablished between the attendant AND STATION IO. TALKING BATTERY FOR ORIGINAT ING STATION 10 IS SUPPLIED BY THE COMMON CONTROL CIRCUIT. TALKING
FOR THE ATTENOANT IS SUPLLIED BY THE LINK CIRCUIT.
4. hhen the attendant operates trunk key o to exteno the call to entral office trunk o:
 LINK CIRCUIT O. LANK CIRCUIT O FUNCTIRNS TO SPLIT TATATION TO From the attenoant ano central office trunk o.
Central off ice responos to the loor start ano retunns dial
(c) CENTRAL OFF ICE RESPONO.
(D) ATtenoan dials the numeer of the co party.

ATTENDANT ADDS CALLING STATION 10 .
atNo dial key. 3 -way conversation.
(f) AATTENDANT OISCONWECTS BY OPERATING POS RLS KEY.

CALLING SNAT ION 1 O IS CONNECTED TO THE CO PARY THROUGH LINE
SWITCH ONE, LINK CIRCUIT O, TRUNK SWI TCH OAND CENTRAL OFFICE SWITCH ONE, LINK CIRCUIT O, TRUNK SWITCH OO AND CENTRAL OFFICE
TRUNK O. 2 -WAY CONVERSATION. DISCONNECT SUPERVISION IS PROVIDED TRUNK 0 . 2 -WAY CONVERSATION. DISCONNECT SUPRRVIIION IS PROVIDED
Br CALLING STATION IO. TALKING BaTTERY IS SUPLIIED BY THE CENTRAL office.
5. other attenoant actions on a station to central office call:
(A) WHEN ATEENDANT RECE IUES CENTRAL OFFICE DIAL TONE, ATtENDAN MAY OPE RATE POS RLS KEY. OPERATION OF POS RLS KEY CONNECTS CALLING STATION IO TO CENTRAL OFFICE TRUNK O AND DISCONNECTS
ATTENDANT. CALING STATION IO DALS THE CALLED NUMEER.
(B) WHEN ATTENDANT COMPLETES DIALING CALLED NUMBER, ATTENDAN
 TRUNK.
(c) attenomt mar reenter a station to central office call at attendint may renter a station to central offict
any time by operating the associated tuink key.

notes:
f. for this example, the following assumptions are made
(A) LINK CIRCUITO IS IDLE.
(c) ATtENOANT RELLASES AS SOON AS THE CONNECTION FROM

Station 10 TO CENTRAL OFFICE TRUNK O IS MADE.
2. When the ring-up bridge in central office trunk circuit - detects central office ringing:
(A) attendant is alerted to the request for service a THE 60 IPM FLASHING TRUNK LAMP AND THE 60 IPM audible signal.
3. When the attenoant operates the trunk key associated with the

60 IPM FLASHING LAMP:
(A) SELECT MAGNETS ASSOCIATED WITH LINK CIRCUIT O OPERAT
(B) THE OPERATED SELECT MAGNETS ACTIVATE LINK CIRCUITO THE OPERATED SELEC MAGEETS ACTVVALE LINK CIRCUTTO
WHICH SIGALS HE COMMON CONTRL CIRCUIT TO OPERATI THE HOLD MAGNETS AS
LAMP 0 GOES STEADY.
(c) talking path is now established from the attendant THROUGH THE COMMON CONTROL CIRCUIT, LINK CIRCUIT O, and trunk sim the atiendant is supplied by the central office
4. When the atrendantoprrates station ker to to exteno
the call to station 10:
(A) hold magnet associated with station line 10
(8) operated hold magnet connects station 10
(c) AUTINAT IC R RINGING IS APPLIEO TO STATION LINE
IO. TRUNK LAMP O CHANGES FROM STEADY TO 30 IPM
(0) Station 10 answers. Talking path is now established from station to through line switch i, Link Circuit O. TRUNK SWITCH O. ANO CENTRAL OFFICE TRUNK CIRCU LiNk CIRCUIT. DISCONNECT SUPERVISION IS UNDER Link Circuit. disconnect supy
control of called station 10.

Fig. 8-558A PBX-Central Office Trunk-To-Station Call

votes:
(a) tis example, the following assumptions are made:

(A) THE ALL PATHS BUSY LAMP AT THE CONSOLE IS LIGHTED TO alert the attenoant that the ststem has reached | maximuma |
| :--- |
| Busy |

(B) A call is incoming from the central office on trunk
(B) A CALL is INCOMING from the central offic.
5. THis Call is intenoed for station io.
(c) station 10 is idle when a link becomes available.
2. FOR THIS CALL, THE FOLLOWING ACTIONS OCCUR:
(A) the attendant answers trunk 5 request for service by OPERAT NG TRUNK KEY 5. WITH ALL PATHS BUSY, OPERATION OF TRUNK KEE 5 RESULTS IN OPERATION OF CERRAIN RELAYS
IN TRUNK CIRUIT 5 THAT RESULT IN THE OPERATION OF relay actis. operation of relay acts removes the trunk TRUN S SANO CUTS LEADS AF, AR DIRECTLY TO THE
ATTENANT THROUGH THE COMMON CONTROL CIRCUIT.
2. (CONT)

NOTE: A LINK OR A LINK CIRCUIT IS NOT USED FOR THIS CONNECTION. a talking connection is now established from the console hrough trunk 5 to the central office. talking batiery
(B) attenoant may:
(1) Place trunk 5 on holo. operation of trk hold key APPLIES A holoing brioge in trunk circuit 5, RUNE LAMP 5 FROM STEAOP TO A 120 IPM WIIN, AND RELEASES ATTENOANT FROM CONNECTION. ATTENDANT MAY NOW
HANOLE OTHER TRAFFIC UNTIL THE CALL CAN BE COMPLETED. attenoant mar also return to trunk 5 at any time during the all paths gusy conolition by operating trunk ker 5 .
(2) operate pos rls key ano drop the connection.
2. (Cont
(c) When one of the ten links becomes avallable, the TRUNK KEY 5 THIS ACTO CONNECTS ATRENOAN OPERATE
 THE ATTENDANT NOW COMPLETES THE CALL TO STATION 10
BY OPERTING SITITION KEY IO. WHEN STATION IO ANSWERS BY operating station key io.
a 3 -war conversation exists.
(d) attendant may now operate the pos rls key and be removed from the connection. a 2 -way conversation NOW EXISTS BETWEEN STATION IO AND TRUNK 5 . DISCONNECT SUPERVISION IS UNDER CONTROL OF STATION
IO.

Page 21/22
commercial power failure transfer connections - one of five

notes:

1. power failure relays pf ano pfa are normally operated.
2. THE TIP AND RING conouctors for station lines $10,11,12$ 13, AND 14 ARE RUN TO LINE CIRCUITS 10, $11,12,13$, ANO 14
RESPECTIVELY VIA POWER FAILURE (PF) RELAY OPERATED IN THE alark and transfer circuit.
3. THE TIP AND RING CONOUCTORS FOR CENTRAL OFFICE TRUNKS
$0,1,2,3$, AND 4 ARE RUN TO CENTRAL OFF ICE TRUNK CIRCUITS $0,1,2,3$, and 4 RESPECTIVELY via power fallure (pFa)
relar operated in the alarm and transfer circuit.
4. WHEN A COMMERCIAL POWER FAILURE OCCURS, STATION LINES 10, 11, 12,13 , AND 14 ARE DIRECTLY CONNECTED VIA THE PF
ANO PFA RELAYS RELEASED TO
CENTRAL OFFICE TRUNKS $0,1,2$ 3, AND 4 RESPECTIVELY. THUS ALL FIVE DESIGNATED STATION LINES MAY PLACE CALLS TO THE CENTRAL OFFICE. EACH STATION
MAY GET EITHER CENTRAL OFFICE DIAL TONE OR AN OPERATOR BY MAY GET EITHER CENTRAL OFFICE DIAL TONE OR AN OPERATOR BY
GOING OFF-HOOK.
5. When commercial power is restored, two possible pbx circuit
ctions may occur as indicated:
(A) $\frac{\text { IF POWER FALLURE OCCURRED WHILE THE PBX WAS NOT ON NIGHT }}{\text { SERVICE (NIGHT SERVICE CONNECTIONS NOT IN EFFECT): }}$ (i) Power fallure connections released. (2) PBX CIRCUITRY RETURNED TO NNRMAL. THAT IS, THE
TIP ANO RING CONOUCTORS OF AML STATION LINES AND (I)
TR AND RING CONOUCTORS OF ALL STATON LINES AND
TRUNS ARE CONECTED THROUGH THE PBX SWITCH TRAIN
(B) $\frac{1 F}{\text { POWLER FAILURE OCCURRED WHILE THE PBX WAS IN THE NIGH }}$ MOOE OF OPERA
(1) RELAYS PF AND PFA REMAIN RELEASED,
POWER FILLURE CONETINS.
(2) TR AND TREL ALM AMPS
(2) PTR AND TBEL ALL LAMPS ARE L LGHTED.
(3) THEREFORE, WHEN THE ATTENDANT RETUU

The tr and trel lamps are lighted and to the console, THE TR ANO TRBL LAMPS ARE LIGHTED AND WHEN THE HEADSET
HANSET IS CONNECTED, THE NITE LAMP IS LIGHTED, AND TRUNK AND STATION LAMPS OF THE NIGHT CONNECTIONS ARE DARK. TO RELEASE THE POWER FALLURE CONNECTIONS
ITE KEY MUST BE RELEASED. WHEN THE NITE KEY RELEASED, THE POWER FAILURE RELAYS OPE RATE, THE TR AND TRBL ALM LAMPS EXTI NGUSH, ANO CENTRAL OFFICE TRUNKS O THROUGH 4 ANO
ARE RESTORED TO NORMAL

