The No. 1 Electronic Switching System
Contents

PAGE

194 Introduction W. A. Mac Nair
Presenting an issue on the No. 1 Electronic Switching System and the technological and scientific climate in which it was conceived.

196 The Evolution of Telephone Switching W. Keister
Seemingly a revolution in telephone systems, No. 1 ESS is actually squarely in the tradition of common control switching systems.

204 From Morris to Succasunna R. W. Kitchledge
All the vast changes separating the Morris trial from the Succasunna office were made to enhance stored program control.

210 Features and Service J. J. Yorkpille
The stored program brings new services to Bell System customers and adds new flexibility to many traditional system features.

214 The Stored Program E. H. Siegel, Jr. and S. Silber
Many functional programs, building blocks of the stored program, guide each step the system takes in processing calls and performing automatic maintenance.

222 The Control Unit A. H. Doblmather
The executive part of the system, it interprets instructions and data from the stores and generally keeps things running.

228 Memory Devices R. H. Meinken and L. W. Stammerjohn
Two magnetic memory devices, the permanent magnet twistor and the ferrite sheet, store the operating intelligence of the system.

236 The Switching Network A. Feiner
A very flexible network, it is actually a cross between electromechanical and electronic, rather than fully electronic, technique.

241 Mechanical Design D. H. Wetherell
Because its great flexibility stems from the stored program, No. 1 ESS needs fewer equipment options than any present system.

246 Power System and Ringing and Tone Plants J. W. Osmun and J. R. Montana
Solid state devices help simplify the power system and lead to the introduction of precision dial tones and call progress tones.

251 A New Approach to System Maintenance R. L. Campbell and W. Thomis
Automatic maintenance programs comprise over half the contents of the stored program and make No. 1 ESS a “do-it-yourself” machine.

257 Some Magnetic Materials D. H. Wenny
A new alloy was created whole cloth for the ferrited switch while two older ones got an entirely new magnetic dress for the twistor memory.

262 Semiconductor Devices M. L. Embree and J. Sevick
There are hundreds of thousands of transistors and diodes in the system, but a mere handful of basic types serve all system functions.

268 Testing the System R. S. Cooper
Before No. 1 ESS can be tried for the simplest kind of call, it must be tested and evaluated as a machine for executing programs.

274 Cut-Over at Succasunna
On May 30, 1965 in Succasunna, New Jersey, 20 years of research and development were realized in the Bell System’s first commercial electronic central office.

Cover

Devices on this month’s cover are all components of the sole subject of this issue: The No. 1 Electronic Switching System. From the ferrited switch and the ferrite sheet (large and very small squares at the right) to the logic circuit (extreme left) and the ferrit sensor, all are unique devices in telephone switching. A part of the twistor memory occupies the center of the picture. This device holds the stored program, a set of instructions that shapes the system’s responses to the requests of telephone customers. (Cover painting by Paul Lehr.)
Electronic Switching

A Score of Years of Organized Attack

It was inevitable that modern electronic technology would be applied to the switching machines of the telephone plant as it has to the transmission network. There is nothing casual or haphazard, however, in the form that electronic switching has taken in the Bell System nor in the date of its appearance as an operating office serving telephone customers. This program has been the largest sustained Bell System development effort toward a single goal ever undertaken by Bell Laboratories.

Prior to World War II various individuals had given thought to the possibility of an electronic switching system. Note that this was years before the transistor was invented or named. Immediately after the war, we organized a switching research effort to explore ways in which the evolving technology could be usefully applied to the problem of switching telephone calls. In 1953 an electronic switching organization was formed in the Development Area, hopefully looking toward a practical electronic switching telephone office. The 12 years since 1953 divide into two periods of a half dozen years each. The first culminated in the Morris, Illinois, experimental trial office; the second, in the Succasunna, New Jersey, office, giving commercial service. Thus, we come to the fruition of 20 years of Bell System organized effort directed toward an electronic switching system.

The final phase of the effort—the creation of the detailed design information, fabrication of the first models, tests of the hardware and software—was started in 1958. In the fall of that year, we set the goal of mid-1965 as the date for the first cutover. Bell Laboratories people engaged in this project, view with some pride and much satisfaction the successful meeting of this schedule date.

The unique characteristics of No. 1 ESS and its solutions of technical problems will unfold as you read the articles in this issue of the Rec or d. There is an over-all uniqueness of the system to which your attention is directed for a moment. Compare No. 1 ESS with earlier switching systems.

The manual telephone switchboard was designed on the prior decision that switching would be accomplished by a human operator manipulating plugs, jacks, and keys. Step-by-step switching was based on the prior decision that switching would be accomplished with step-by-step switches controlled directly by the pulses generated as the customer dialed. Likewise, panel and crossbar switches were chosen as the central building blocks for those systems. In the case of electronic switching systems, no such prior decision was made. Compare one aspect of No. 101 ESS (Record, February 1963) and No. 1 ESS. Both systems use much common type of equipment. But No. 101 ESS uses time division switches, and No. 1 ESS space division.

When work on electronic switching started, we understood the principles of common control and its huge advantages. We believed that electronic circuits would operate with such high speed that a single control would serve even a large office, and we saw the advantage in this, as distinct from a multimeter arrangement where competition arises between them. Further, we clearly recognized the usefulness of large memories with short access times. But the important decision to use memory to store the system logic evolved as the development work progressed.

There are two new and fundamental characteristics of electronic switching: the high speed electronic central control, and the use of memory to store the system logic which in turn determines, in detail, how the office will perform its functions. And so, electronic switching came into being without a single piece of apparatus being prechosen as the preferred solution to any particular problem. In the final phase of No. 1 ESS development, our partnership with Western Electric has grown steadily broader and deeper as WE has produced, in hardware, Bell Laboratories’ designs of apparatus and equipment, and delivered on tough schedules to meet close deadlines. The understanding, the give-and-take, and the real cooperation in this undertaking have been marvelous to behold.

While the big effort of the operating companies in the use of electronic switching offices to serve our customers better is yet to come, many operating company people have made individual contributions to the development and design effort. Others are preparing themselves to plan and operate No. 1 ESS offices in their territories. The significant contribution of the operating companies to date has been the coordinated planning to install No. 1 ESS offices throughout the country as fast as equipment is made available by the Western Electric Company.

There is no better example of the necessity for and the benefits derived from the association of the research and development people, the manufacturing and installation groups, and operating company people than this Bell System achievement of a common goal of better telephone service in timely fashion.

This post-war score of years has brought rapid progress in switching technology. Not the least is a kind of intellectual and organizational maturity which allows the designer to proceed in orderly fashion from the requirements to be met to the choice of system and apparatus to meet the stated objectives. Service to our customers will benefit greatly from this maturity.

W. A. MacNair
Vice President
Transmission and Switching Development

June 1965
The opening of the No. 1 Electronic Switching System office at Succasunna, New Jersey in May, 1965 was the culmination of the largest single development project ever undertaken by Bell Laboratories for the Bell System. Because millions of man hours have been spent on this one development, it would appear, at first glance, that nothing less than a revolution in telephone switching has been in the making. In one sense it is a revolution, or at least the first stage of one: Electronic switching systems, in the next few decades, will replace all existing Bell System switching systems. But in a deeper sense, the No. 1 Electronic Switching System (henceforth ESS) is the product of years of accretion of experience along many lines in the evolution of telephone switching systems.
Among the most significant trends have been a functional separation of switching actions and the actions that control them, a clarification of the roles of logic and memory in telephone switching, and the introduction of solid state electronics technology into an array of extremely high-speed, versatile devices which opened new areas in switching techniques. As all these trends matured they made the development of No. 1 ESS not merely feasible, but in some inevitable.

Technically speaking, the ancestry of No. 1 ESS runs back through crossbar systems to panel systems. Both of these are strictly electromechanical systems, but both are definite stages along the road to common, or centralized, control which reaches its highest present development in No. 1 ESS. The basis of this technique is that actual switching actions can be separated from the actions that control them, and call connections through a switching network can be directed for many lines by one “common” group of control equipment. The control equipment routes a call through the network and then releases it to other calls.

The concept was first tried in the panel system about 40 years ago. It was developed through early crossbar systems, and came to full maturity in the No. 5 crossbar system. In modern crossbar systems the network has no control function at all; control is the exclusive function of specialized equipment. However, in order to handle traffic demands effectively, the No. 5 crossbar system requires a number of duplicated groups of control equipment to serve one office. Electronic speeds allow No. 1 ESS to operate with only one control for an entire office.

Control was not born with “automatic” switching systems. The first automatic system, the step-by-step system, is designed for direct control. Contact arms select terminals on the switch in direct response to the dialed digits. Because telephone numbers must correspond to the telephone number, a factor that overcomes many constraints in the layout of the switch, and hence it can be designed purely in terms of traffic requirements. This singular freedom stems from the new device, the “marker”. In addition to translating dialed digits, as the panel system decoder does, the marker locates idle trunks and directs the network to them. If traffic congestion imposes the first attempt to find a connecting path through the network, the marker makes a second attempt. Similarly, if all trunks are busy on the direct route to a desired central office, the marker chooses an alternate route via another office. The philosophy behind these valuable features is that the marker can be made to examine the system to see if certain components are busy or idle. On the basis of its findings and the information represented by the dialed digits, it can then determine the most efficient way to make a desired connection.

Originating and terminating networks are separate in the No. 1 crossbar system. Each has its own marker to translate between telephone numbers (i.e., dialed digits) and control numbers. The terminating marker is assisted by a number group translator which can select a particular line from a group on an equipment frame in the central office. The line number on the equipment frame need not correspond to the telephone number, a factor that overcomes many constraints in the layout of the network and permits the network engineer to take account of the variation in the traffic load between individual customers.

A further improvement of these principles is embodied in the No. 5 crossbar system, first put in

These diagrams show how the concept of common control and the concept of the roles played by logic and memory have evolved through the major switching systems from panel to No. 1 ESS. A major trend is the removal of any control function from the network. Notice how in the panel system sender links are part of the network, as they are in the No. 1 crossbar system. Also, these two systems have both terminating and originating networks. In No. 1 crossbar, and in No. 1 ESS, the networks have become strictly passive elements in terms of control. Notice how memory and logic in No. 1 ESS, are entirely discrete functions.
service in 1947. A single network controlled by a single marker serves both originating and terminating traffic. The marker handles outgoing and incoming calls.

A number of parallel evolutionary trends in telephone system design emerged during these 40 years. We have been describing the major one, the evolution of common control systems themselves. It was accompanied by an equally significant evolution in switching devices and apparatus. Originally, the panel system used motor-driven shafts, clutches, cams, and innumerable other mechanical devices. But these were difficult to maintain, and as relays became more reliable they took the place of much of the mechanics. Crossbar systems, meanwhile, skirted the mechanical hazards with the relay-like crossbar switch and with control circuits that were almost exclusively relays.

During this time circuit designers began to look at their product in a wholly new light. They saw that they were not designing electrical circuits as much as logic circuits and that the intricate logic patterns between relay contacts needed to establish a talking path between telephones could be viewed as the stage-by-stage progression of the simple logical relations AND and OR. For example, consider a lamp plugged into a wall socket controlled by a wall switch. The lamp will not light unless both the lamp switch AND the wall switch are turned on. On the other hand, take the action of the dome light of an automobile which lights if one of the front doors OR the other is opened. Relays can be wired to open or close contacts in the same fashion and these simple logical relations can be repeated as often as necessary to form a highly complex system that decides complicated logical questions. (See the drawing on this page.)

All this was taking place within an all-encompassing change of the business and social environments that telephone systems served. Businesses expanded and decentralized; populations clustered around the large urban centers. This created demands not only for more telephone service, but for different kinds of services, and telephone system designers began to think of systems that would perform these services and could be adapted to new services as the need arose. Circuitry, which began to grow more sophisticated and more complex to meet the exigencies of the new types of services reached a point where the operating speed of relays became inadequate. Even crossbar systems, the last word in electromechanical systems, were reaching a practical limit in what they could be made to do. A new direction was needed.

Electronic switching techniques first came into their own in digital computers that operated succefully in many weapons systems during the second World War. Studies made at Bell Laboratories soon after the war indicated that these high-speed electronic techniques could be pointing that new direction. But electronic technology, at that time, rested squarely on vacuum tubes which fell far short of the cost and reliability requirements of a practical telephone system. The last barrier was turned with the invention of the transistor; an electronic system could now be built that would be compatible with electromechanical systems.

One dilemma remained: A system design usually is current for 10 to 15 years, its service life may be very much longer. New technical advances are made during a system's "design life," and social changes create new demands for features and services that the system is not equipped to handle. Often, the best way to effect these features and services is to design a new system to replace the old one, but the long service life imposes a more costly solution. Existing offices must be modernized and adapted to changing service requirements even while new installations of a more modern system are taking place. It often requires a greater effort to redesign an old system than to design a new one. And it often costs more to modify the old system for new features than to provide these features with a new system. Now, how do you design a system so flexible that it can be adapted to features that are not even foreseen at the time? Electronics had the answer—stored program operation.

The idea of a stored program system sprang from a close consideration of the roles of logic and memory, the twin operators that play such an important part in every telephone system. Memory is information, what to do. Logic is the decision-maker, how to do it. Memory knows what telephone to connect; logic decides what path to take between them. In the panel system, the sender provides memory and shares logic functions with the decoder. In crossbar systems, the two are more clearly defined: the senders and registers provide memory, the markers make the logical decisions.

In No. 1 ESS, the logic procedures for making telephone connections are written in the form of a stored program which is placed in a changeable memory. And therein lies the system's great flexibility. Logic was "written" in copper wire in the

Wired logic. This intricate pattern of wires in a No. 5 crossbar system connects the many relays that perform the complex memory and logic functions required of the marker in directing telephone calls through the maze of a switching system.
Programmed logic, in this description, wears the same discursive mantle that was attributed to formal logic. Actual program instructions, however, are not written in this way but are cast in machine language and its alphabet of binary symbols. The operations performed on the binary instructions by wired logic in the central control are the same as are used in most information processing machines. They consist of, for example, shifting information from one register to another where it may be compared with the contents of a third, while the difference is stored in another register, and read out in still another. A number of special instructions are highly relevant to call processing that would be valueless in conventional computing. For example, the busy and idle states of trunks can be represented as a binary "1" and a binary "0", respectively. If the state of a group of trunks is stored in a register, then an instruction to "find the rightmost zero" locates an idle trunk for a call in progress.

Translation and interpretation of the program instructions is handled by the wired logic of central control. This component of No. 1 ESS is the most far-reaching development of the concept of common control in present switching systems. It is concerned only with the basic information processing operations, not with the telephone switching logic which is all contained in the stored program. Logic and memory are thus completely separated from the switching network and the trunk equipment which are essentially passive parts of the system.

Only one central control processes telephone calls at any given time, while in a crossbar system it is common to furnish up to ten markers. For greater reliability, every No. 1 ESS office has a duplicate central control which is kept up to the moment on the progress of all calls in the system, but this is only for reliability. Electronic speeds, three or four orders of magnitude above the speed of electromechanical components, allow one central control to handle all calls in the system. It works on only one call at a time, but at such speed that it appears to handle all calls simultaneously.

Stored program control had its first trial with the Electronic Central Office in Morris, Illinois in 1960, where it was proved completely feasible. In fact, the stored program concept was the only thing that emerged from the trial unscathed. The components, the system organization, the operation of the program itself, all have been changed and improved for the Suacasunna office of No. 1 ESS. In a sense, then, an evolutionary trend in electronic switching has been foreshadowed. In the next article, we will examine some significant details of that trend.
A milestone in telephony, the Morris trial proved beyond doubt the validity of the stored program concept. But on the level of hardware nothing is left from Morris; Succasunna is a new office grown out of four years of intensive development.

From Morris to Succasunna

R. W. Ketchledge

The electronic central office in Morris, Illinois was a pivotal point in the history of telephone switching. Turning back to electromechanical systems, we can see the Morris office as the highest point in the evolution of the concept of common control. Turning ahead to a switching future that is clearly committed to electronic techniques, we can view it as an archetype whose basic outlines may be shadowed in a number of future systems, but whose actual components already have been transformed into the much different components of No. 1 ESS. Although no components have survived the Morris office in their original form, No. 1 ESS embodies the basic idea of the trial system and the changes in components were made because they served the idea more effectively. That idea—stored program control—will become as familiar in the Bell System as the telephone itself.

It would have been a trivial application of electronic technology if the Morris office had been developed merely as an attempt to "modernize" telephone switching by substituting electronic techniques for electromechanical ones. The motive behind it was far broader, being nothing less than the desire to develop the most flexible telephone system that could be conceived. The design of such a system would, clearly, have to take full advantage of the most reliable and versatile devices and techniques available. This conception inevitably led away from thinking of electronic circuits as a way to perform familiar functions faster, and into considering how their unique characteristics could be channeled into performing new kinds of functions for a new kind of system.

For example, from the point of view of a telephone customer a switching system that operates in tenths of seconds gives perfectly satisfactory service. Therefore, it would be pointless to control the switching network in millionths or even thousandths of a second if the object were only to make connections at astonishing speed. But suppose a cycle of time for the system were sliced into infinitesimally small pieces, or slots. In one slot the system could handle all network connections that had to be made, in the next slot it might diagnose its own internal condition, in the succeeding one it could direct an intricate new service. In the twelve seconds it takes the average person to dial a seven digit number, the system would perform millions upon millions of separate tasks involving a host of logical operations. Time, and the manner in which it is used,
is thus one of the most intricate problems in the design of an electronic switching system. It would not be difficult to design each component in the office to operate at the highest speed that can be achieved electronically, but it might be prohibitively expensive and somewhat pointless. A more exacting task is to define the range of speed needed in each of the various components, and then to design the office so that they all work synergistically. The memory devices, for example, must operate in microseconds because of the great number of instructions that must be read from the program and converted to control information that is sent to the switching network. The network itself, however, does not have to match the operating speed of the memories. If it operates in milliseconds, or even in fractions of seconds, there is only a remote possibility that it will be overpowered by traffic demands. The judicious use of buffers to hold information until the network is ready to act upon it helps to synchronize the very high speed memories and the slower network.

One of the most important lessons learned during the Morris trial was that the components of an electronic switching system should be designed to perform a particular function; speed of operation is only a characteristic of that function, it is not an end in itself. To illustrate this more explicitly, we will discuss, in turn, three examples of the changes made between Morris and Succasunna in which different decisions were made in terms of speed. In the first example, the memory devices, speed remained essentially the same but other considerations influenced the decision to develop a new type of device for Succasunna. The second example is the switching network at Succasunna which is inherently slower than the network at Morris. Finally, the method of switching between duplicate control systems is an operation that was made much faster for Succasunna because the Morris trial showed that faster operation in this case was necessary for completely reliable service.

A heavy burden is placed on the system's memory devices. Their reliability cannot be overstressed; they must have large storage capacity in the form of volume, and information stored in them must be efficiently arranged and readily accessible. In the Morris office, the memories were electron beam devices; the semiconductor (or program store) memory was the flying spot store, and the temporary (or call store) memory was the barrier grid store. In the Succasunna office these have been replaced by solid-state devices; the program memory is the permanent magnet twistor, the temporary memory is the ferrite sheet.

The design to develop the solid-state devices was not made lightly. The flying spot store and the barrier grid tube operated quite successfully in the Morris office, and although the ferrite sheet has clear advantages over the barrier grid tube in size and in accessibility of information, the flying spot store is quite competitive with the permanent magnet twistor in these characteristics. In all, the really clear area of choice was in the greater reliability of the solid-state devices.

When the design of the Morris central office began, solid-state technology could not yet offer the range of reliable devices needed in a telephone office. Therefore, sections of the Morris system, such as the switching network, were composed of magnetic memory devices, while components of the electron tubes even though the limitations of this technology were well known. Electron tubes were judged to be adequate for a trial that would last little more than one year, but in terms of the long life predicted for commercial telephone systems designers were already thinking ahead to the development of highly reliable solid-state devices. Thus, when after the Morris trial, the development of a solid-state memory was shown to be feasible, the decision was, in a sense, already made.

In other areas of comparison, however, the distinction between the flying spot store and the twistor was not at all clearly drawn. In the matter of capacity and physical size, for example, each has advantages and disadvantages. The capacity of the store used at Morris was under five million bits, but Morris was a small office serving only 450 lines. The smallest size planned for a No. 1 ESS office is about 50,000 lines and it has the capacity to grow to 65,000 lines. Yasm amounts of memory are needed to control an office at its ultimate size.

Two proposals were made. One was for a flying spot store with a capacity of 25 million bits, the other for a permanent magnet twistor of 6 million bits. The permanent magnet twistor was chosen because it eliminated the problems inherent in the high voltages and hot cathodes of the electron tube device, it required less development (at the time it was proposed) than the flying spot store, and it offered the superior reliability of a fully solid-state memory. In the competition between the temporary memory devices—the barrier grid store and the ferrite sheet—the choice was clearer. The ferrite sheet memory can store a longer word than the barrier grid store, it is a more economical device, and again, it is a fully solid-state device.

The switching network of the Morris office represented the first study of fully electronic switching under conditions closely resembling commercial operation. From this point of view, the Morris network was a technical success, but it had certain drawbacks. One of the most serious was the inability of gas tubes to carry either high amplitude 20-cycle ringing signals or direct current from the telephone lines. In keeping with the inclination toward solid-state devices, a PNPN diode that had many of the characteristics of gas tubes was considered for commercial applications. However, a study of the operation of a remote line concentrator which employed the PNPN diode showed that it had the same difficulty with ringing signals and direct current. DC switching through the concentrator was proposed and this led to the consideration of switching devices with metallic contacts. These can handle wideband signals including dc signals, they have only negligible transmission losses, and they can handle higher power than either gas tubes or diodes. All these properties are even more valuable in switching network crosspoints than they are in a line concentrator. Thus, the invention of the ferrered crosspoint, the basic element in the No. 1 ESS switching network, grew out of these remote line concentrator studies.

The ferrered consists essentially of two magnetic reeds sealed in glass envelopes separated between plates of a two-state magnetic alloy. The alloy can be very rapidly switched from one state to the other with a small change in the state of current, and it has the property of high remanence—it will remain magnetically saturated until another pulse switches it back to the first state. The switching can be done in milliseconds, as it actually is, or even in microseconds, so it is much faster than an ordinary electro-mechanical switch. It is, however, slower than switching performed by gas tubes or diodes, one reason being that the inertia of the reeds must be overcome each time the device is switched. However, as we have noted, the switching network is one place in the system where some speed should be traded for other characteristics, so the ferrered crosspoint switch was developed for No. 1 ESS.

Control techniques of a ferrered switch are quite different from those of diodes and gas tubes and the new techniques necessitated changes in the
The ferrod, a magnetic current sensing device, is the basic element of ESS line scanners. Each telephone line is connected to a ferrod sensor. Ferrods are arranged in 64 rows, 16 to a row. Every one tenth of a second, control center instructs the sensor to check all the ferrods in a single row simultaneously. The device is introduced at Succasunna.

Overall view of part of the switching network at Morris. The dots of light at right are tubes that were being used in talking connections when this picture was taken.

The gas tubes used in the switching network at Morris. The system contained more than 23,000 of these tubes which operated successfully throughout the year’s trial.

A new control device grew out of the problem of line scanning. The ferrod gives the switching network the ability to extend the metallic wire path from a customer’s telephone to any part of the central office. To start this action, the system must sense the presence or absence of current in the customer’s line which indicates if the telephone is off-hook or on-hook. A fast scanning device is needed to examine all the lines in the office at frequent intervals so that a customer does not wait for service. Furthermore, for transmission reasons the line must remain balanced and undisturbed by the scanning action.

The ferrod—actually a saturable core transformer—grew out of these requirements. It consists of a rectangular ferrite stick surrounded by two solenoid windings connected in a balanced arrangement on each side of a customer’s line. Two single turn loops pass through two small holes in the center of the stick. If the customer’s telephone receiver is on-hook, there is no current flow in the line, and a pulse applied to one winding produces a corresponding pulse in the other. However, if the receiver is taken off the hook, current flows in the line and saturates the ferrite stick. Thus, when the pulse is applied, the saturation blocks the output pulse and the telephone is known to be off-hook.

The basic 8-by-8 crosspoint array of ferrods switches that make up the switching network at Succasunna. To connect two customer’s lines for a telephone call eight of the individual ferrods in the array close in a specified pattern and they remain closed without any holding power.

No. 1 ESS has gone about as far as it is possible to go with common control: Only one group of control circuits in the system is used to give telephone service at any time. However, to guard against loss of service in the event of a failure, each office has twin control systems. Both are easily extended to new equipment that may be added as the office grows. There is no question that electronic switching has come of age. Indeed, the myriad changes between Morris and Succasunna almost justify that this article be subtitled The Evolution of Electronic Switching. In Morris, electronic techniques were used as widely as possible to explore all their potential. The experience showed where the techniques were superior to electromechanical techniques, where they were inadequate, and where they just were not necessary. In the following articles we will turn from the ancestry and history of electronic systems to a direct consideration of No. 1 ESS itself.
Although No. 1 ESS brings many new features and services to telephone customers, it must also compete with existing systems. Stored program control puts No. 1 ESS ahead of today's systems in many ways by expanding established services and giving them a new versatility.

Features and Services

J. J. Yostville

From the principles of telephony discovered in a Boston laboratory 90 years ago, to the investigations leading to the development of No. 1 ESS, the progress of the communications industry has been linked tightly to research. We have seen how various streams of research came together in No. 1 ESS to produce, at their confluence, a switching system that embodies a major conceptual advance in telephony—stored program operation. What are the practical results?

To the Bell System customer, No. 1 ESS may mean a whole new range of optional services depending on the results of customer trials. With these services he can reach a 7- or 10-digit number by dialing only 2 or 3 digits, he can arrange a telephone conference simply by dialing two or three other conferences, he can have calls routed from his own telephone to any other nearby telephone by dialing a short code. To the Telephone Operating Company, these and other services will discuss in this article are commercial assets, and they are only the public face of No. 1 ESS. Behind that number usually with a 2 or 3-digit code. A customer had dialed it, and directs the system to store program operation lies in the flexibility it derives primarily from the high-speed central control which is directed by the program.

Maintenance and administration are more easily performed than on any other system. Guided by maintenance programs, the system continually checks its own internal condition and, over a tele­typewriter, reports any discovered faults and their locations. Most maintenance jobs are thereby reduced to a matter of replacing faulty circuit packages. Administrative personnel can communicate with the machine over the tele ­typewriter, reports any discovered faults and their locations. Most maintenance jobs are thereby reduced to a matter of replacing faulty circuit packages. Administrative personnel can communicate with the machine over the tele­typewriter, instruct it to change, cancel, or add to information in its memory that is pertinent to growth or additions to an office.

In all these features, the program can be viewed as the moderator in a dialogue between the customer and the system, and between maintenance or administrative people and the system. Each special service, for example, is delineated in a sequence of actions in the program. A customer starts the sequence by dialing a 2- or 3-digit code which is referred to the program by central control. The code is recognized as the signal for a special routine and central control, directed by the program, sets in motion. Some routines are started by a momentary "flash" of the switchhook instead of the prefix followed by the third digit as an Abbreviated Dialing code. Alternatively, it recognizes the multifrequency TOUCH-TONE signal of the (eleventh) button to replace the first 2 digits of the code digit. The program begins by dialed a 2-way conversation into a 3-way conference. A momentary "flash" of the switchhook brings dial tone and the customer dials the code digit "2" and the number he wishes to "add-on". His first call is automatically held and all three lines are connected in a conference trunk.

Automatic Transfer and Preset Automatic Transfer, variations on one theme, permit a customer who is visiting friends for the evening, or making a business call, to reroute incoming calls from his telephone to his host's or his colleague's telephone if it is in the same local area. For Automatic Transfer, the customer dials a code and the number he wishes calls transferred to. For Preset Automatic Transfer, he has a list of eight numbers, each represented by an abbreviated code. To transfer calls to any number on the list, he merely dials the appropriate code.

There are only a few samples of the many services No. 1 ESS can provide. Their execution is based on a continuous exchange of information between the switching network and central control, and between central control and the temporary and semipermanent memories. For example, abbreviated codes are not contractions of the actual telephone numbers, but consist of the 2-digit prefix "11", and any third digit. When the customer dials the code, it is stored in the temporary memory. (See the drawing on page 213.) Central control is then directed by the program to examine and interpret the code. The program, recognizes the prefix followed by the third digit as an Abbreviated Dialing code. Alternatively, it recognizes the multifrequency TOUCH-TONE signal of the (eleventh) button as equivalent to the prefix. A list stored in the memory translates between the code and the wanted telephone number. Central control takes the full number from the semipermanent (program store) memory, transfers it to the temporary (call store) memory as if the customer had dialed it, and directs the system to "dial" or output the complete number.

In the case of transfer service, a record of the customer's transfer request is stored in the temporary memory together with the number he wishes calls transferred to. The system refers to the temporary memory when a call comes in to the customer's number, and instead of completing a call there it reroutes it to the transfer number.

If a customer with Add-on flashes his switchhook for a period less than 1.5 seconds while he is in a talking connection the system interprets it as a request for this service. Central control, under direction of the program, then connects the customer who flashed to a dial pulse receiver and holds the second party. The customer then dials the party he wishes to add and the system establishes a 3-way connection in the network. These special services can be arranged in electromechanical offices by adding special equipment which, in some cases, may be electronic. Possibly an even better measure of the versatility of stored program operation lies in the flexibility it provides for some of the most commonplace features of a telephone switching system. Take the example of an answering machine. This is a familiar service found in most business and PBX systems in which an incoming call that encounters a busy line is routed to another line, to answer it if the second is busy, and so on until a connection is made or all lines in the group are found busy.

In electromechanical systems, this is a wired equipment function and, therefore, it has certain limitations. A hunting group is usually restricted to certain blocks of lines and the hunting sequence is arranged consecutively. In other words, if the first telephone number in the group, or block, is number 1111, the second is number 1112, the third
Any telephone call through No. 1 ESS involves a constant exchange of information between central control and the two memory blocks. Abbreviated dialing is illustrated here. The abbreviated number "113" dialed by the customer is stored in the call store memory. Central control then refers the number to the program memory, which checks it against a list of eight possible numbers. The full number represented by the call store number is then sent through the switching network to outgoing trunks to the distant office just as if the customer had dialed 113.

Diagrams showing the bilateral exchange between the central control and the two memory blocks. Abbreviated dialing is illustrated here. The abbreviated number "113" dialed by the customer is stored in the call store memory. Central control then refers the number to the program memory, which checks it against a list of eight possible numbers. The full number represented by the call store number is then sent through the switching network to outgoing trunks to the distant office just as if the customer had dialed 113.

A simplified diagram of the No. 1 ESS system showing the bilateral exchange between the central control and the other elements.

Any telephone call through No. 1 ESS involves a constant exchange of information between central control and the two memory blocks. Abbreviated dialing is illustrated here. The abbreviated number "113" dialed by the customer is stored in the call store memory. Central control then refers the number to the program memory, which checks it against a list of eight possible numbers. The full number represented by the call store number is then sent through the switching network to outgoing trunks to the distant office just as if the customer had dialed 113.