technical manual
76-829662
rev B

# 9662 4Wire E\&M SF Signaling Set with Gain 

contents
section 1
section 2
section 3
section 4
section 5
section 6
section 7
section 7
general description
application
installation
circuit description
block diagram
specifications
testing and troubleshooting

page 1 page 2<br>page 6 page 8 page 10 page 8 page 12

1. general description
1.01 The Tellabs 9662 4Wire E\&M SF Signaling Set module with Gain (figure 1) provides signaling and transmission interface between a 4wire transmission facility and a 4 wire trunk circuit. The 9662 provides level control in both the transmit and receive paths, bidirectional amplitude equalization, and full-duplex signaling conversion between SF signaling on the transmission facility and the E\&M signaling of a trunk circuit associated with a twoway dial/supervisory telephone circuit. Conventional 2600 Hz SF tone is standard; other frequencies are optionally available. The 9662 differs from conventional 4wire E\&M SF signaling sets in that it contains integral amplifiers to accommodate a variety of facility interface levels.
1.02 This Practice section is reissued to cover changes to the 9662 module resulting in the Issue 2 version (Tellabs part number 829662). The Issue 1 version contains an integral equalizer in the receive channel only. Equalization in the Issue 2 version is provided by the optional Tellabs 9908A Active Slope Equalizer plug-on subassembly. The 9662 accommodates two 9908A's so that equalization can be provided in the transmit channel, the receive channel, or both. The Issue 29662 also contains an SX ONLY/MTM-1/2/MTM-2/S option switch not present on the Issue 1 version.
1.03 Features and options of the 9662 include the following: precision amplifiers and attenuators; optional transmit-channel and receive-channel active equalizers; switch selection of all options; an internal SF oscillator; switchable normal or inverted $M$ lead signaling; switchable E-lead contact configuration for Type I, II, or III signaling interface; switchable SX ONLY, MTM-1/2, or MTM-2/S MFT configuration; and transmit and receive minimum-break pulse correction. Front-panel LED's indicate E-lead and M -lead busy status, and front-panel test points access facility-side transmit and receive ports.
1.04 Level coordination in the transmit channel is provided by precision attenuators on the terminal side and precision level-control circuitry (providing either gain or loss) on the facility side. The terminalside attenuators can be prescription-set to provide from 0 to 24 dB of loss in discrete 0.1 dB increments. The facility-side level-control circuitry can

be switch-optioned to provide a fixed $+5,+3,0$, or -16 transmission level point (TLP) with respect to a conventional transmit TLP of -16.
1.05 Level coordination in the receive channel is provided by a precision amplifier on the facility side and precision level-control circuitry (providing either gain or loss) on the terminal side. The facilityside amplifier can be prescription-set to provide from 0 to 24 dB of gain in discrete 0.1 dB increments. The terminal-side level-control circuitry can be switch-optioned to provide a $-2,0,+2$, or +7 TLP with respect to a conventional receive TLP of +7 .
1.06 Equalization for nonloaded cable can be optionally provided in either or both channels via one or two Tellabs 9908A Active Slope Equalizer subassemblies. The 9908A provides up to 7.5 dB of slope equalization at 3000 Hz (re 1000 Hz ) in 0.5 dB increments. The subassemblies plug physically and electrically into four-pin connectors located on the 9662's printed circuit board.
1.07 Transformer coupling with fixed, balanced 600 -ohm terminating impedance is provided in both channels on the terminal side of the 9662. Transformer coupling with balanced, switch-selectable 150 , 600 -, or 1200 -ohm terminating impedance is provided in both channels on the 9662's facility side. In addition, the terminal-side transformers are center-tapped to derive balanced simplex leads.
1.08 In the transmit channel the 9662 converts local M-lead inputs to outgoing SF tone signals. A minimum-break pulse corrector ensures transmission of recognizable tone pulses. A transmission path cut circuit with a nominal 15 ms pre-cut delay interval prevents transient interference with outgoing signaling tones. An option switch is provided for M-lead signaling-state inversion.
1.09 The receive portion of the 9662 converts incoming SF signaling tones to local E-lead states. A minimum-break pulse corrector ensures transmission of recognizable E-lead pulses. Recognition delays prevent response to spurious SF tone bursts and to momentary tone interruptions.
1.10 The 9662 module is a member of Tellabs' 9600 family of Metallic-Facility-Terminal (MFT)configured modules. It is electrically and mechanically compatible with the other modules in the 9600 family and with the Western Electric MFT modules.
1.11 The 9662 module mounts in one position of a Western Electric MFT single-module (MTM-1), MFT double-module (MTM-2/S or MTM-2), or Customer-Premises Facility Terminal (CPFT) Shelf. The MTM-1, MTM-2/S, and MTM-2 Shelves are designed for 23 -inch relay rack installation, while the CPFT Shelf is designed for customer-premises applications. The module plugs physically and electrically into a 40 -pin connector located at the rear of the Shelf. Refer to paragraph 3.02 for specific mounting information.

## 2. application

2.01 The main application of the 9662 4Wire E\&M SF Signaling Set module with Gain is as a stand-alone module used to interface a 4wire E\&M trunk circuit in a variety of E\&M SF signaling applications (e.g., toll and tie line). Figure 2 shows a typical application of this type. The 9662 provides full-duplex signaling conversion between the transmission facility and an E\&M trunk circuit associated with a two-way dial/supervisory telephone circuit. When used in this application, the 9662 mounts in a Western Electric MTM-1 or MTM-2 MFT mounting shelf. Another application of the 9662 is in an intermediate location requiring an associated DX signaling set. In this application, the 9662 interfaces a 4 wire metallic facility (using DX signaling) on its terminal side with a 4wire metallic or carrier facility (using SF signaling) on its facility side.

figure 2. 9662 terminal application
Figure 3 shows a typical application of this type. When used in this application, the 9662 mounts in a Western Electric MTM-2/S MFT mounting shelf. The 9662 can also be optioned (in MTM-1 mounted applications) to provide access to the simplex leads
on pins 4 and 7 instead of the E\&M leads. This feature provides direct compatibility with the Western Electric J99343SF MFT module.
In the paragraphs that follow, the descriptions apply specifically to the main application of the 9662 described above.

figure 3. 9662 intermediate application

## terminal interface

2.02 The 9662 interfaces the local (terminalside) 4wire E\&M trunk circuit via prescriptionset transmit-channel attenuators, receive-channel level-control circuitry that provides either gain or loss, and transformers that provide fixed 600 -ohm terminating impedance at both the transmit and receive ports. Transient protection is provided at both ports. Each of the two terminal-side transformers is center-tapped to derive a balanced simplex lead.

## facility interface

2.03 The 9662 interfaces the 4 wire transmission facility via a prescription-set receive-channel amplifier, transmit-channel level-control circuitry that provides either gain or loss, and transformers that can be switch-optioned for a balanced impedance match of 1200 ohms (for loaded cable), 600 ohms (for nonloaded cable or carrier), or 150 ohms (to provide a small degree of slope equalization for nonloaded cable through a deliberate impedance mismatch).

## level control

2.04 Precision level-control circuitry in both channels of the 9662 provides for interfacing transmit and receive facility-side levels with terminal-side levels in accordance with good transmission design. Integral amplifiers allow the 9662 to accommodate a variety of facility-side interface levels rather than only the conventional -16 transmit and +7 receive TLP's to which SF units without amplifiers are generally limited. In the transmit channel, facilityside level-control switches can be set to provide a $+5,+3,0$, or -16 TLP with respect to the conventional -16 transmit TLP, and terminal-side attenuation switches can be prescription-set to provide from 0 to 24 dB of loss in 0.1 dB increments. In the receive channel, facility-side gain switches can be prescription-set to provide from 0 to 24 dB of gain in 0.1 dB increments, and terminal-side level-control switches can be set to provide a $-2,0,+2$, or +7 T LP with respect to the conventional +7 receive TLP. The two TLP-selection switches are four-position DIP switches located on the 9662's printed circuit
transmit-attenuation and receive-gain switches are eight-position DIP switches located on the 9662's front panel. The latter two switches are cumulative; the amount of transmit loss or receive gain is the sum of that channel's switch positions set to $I N$.
2.05 If transmit output and receive input levels other than those available via the 9662's TLPselection switches are required, these levels can be provided through the use of printed-circuit-board potentiometers associated with the TLP-selection switches. With the receive TLP switch set for a +7 TLP, the receive output level is variable between +7 and -20 dBm with respect to a +7 TLP. With the transmit TLP switch set for a +5 TLP, the transmit output level is variable between +5 and -20 dBm with respect to a -16 TLP. Figure 4 summarizes both level-control and terminating-impedance selections at all four of the module's ports. See paragraphs 3.09 through 3.11 for details on setting levels.

figure 4. Facility-side and terminal-side interfaces

## amplitude equalization

2.06 To compensate for the frequency response of nonloaded cable, slope equalization can be optionally provided in either or both channels via one
or two Tellabs 9908A Active Slope Equalizer subassemblies. The 9908A introduces up to 7.5 dB of slope equalization at 2804 Hz (re 1000 Hz with 0 dB gain) in 0.5 dB increments. Frequency response of the 9908A is shown graphically in figure 5 and in tabular form in table 1.

figure 5. Typical response curves for 9908A Equalizer subassembly

## operating modes

2.07 In typical (Type 1) E\&M SF signaling applications, the 9662 's receive channel provides an E-lead output that is open when SF tone is present at the receive input port and that is at circuit ground when no SF tone is present. In the transmit channei, the 9662 transmits SF tone when the local $M$ lead is either open or at ground potential and ceases SF tone transmission when the M lead is at local negative battery potential.
2.08 The E-lead output from the 9662 is derived via a mercury-wetted contact relay with a normally

| 9908A <br> switch <br> setting <br> (in dB) | frequency |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 300Hz | 400Hz | 500 Hz | 800 Hz | 1000 Hz | 1500 Hz | 1800 Hz | 2500 Hz | 2804 Hz | 3000 Hz | 3200 Hz |
| 0 | -0.2 | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.5 | -0.5 | -0.4 | -0.3 | -0.1 | 0.0 | +0.2 | +0.3 | +0.4 | +0.5 | +0.5 | +0.5 |
| 1.0 | -0.8 | -0.7 | -0.6 | -0.2 | 0.0 | +0.4 | +0.6 | +0.9 | +1.0 | +1.0 | +1.0 |
| 1.5 | -1.1 | -0.9 | -0.8 | -0.2 | 0.0 | +0.6 | +0.9 | +1.3 | +1.4 | +1.5 | +1.5 |
| 2.0 | -0.8 | -0.6 | -0.5 | -0.2 | 0.0 | +0.4 | +0.7 | +1.5 | +1.9 | +2.2 | +2.5 |
| 2.5 | -1.1 | -0.9 | -0.7 | --0.2 | 0.0 | +0.6 | +1.0 | +2.0 | +2.4 | +2.7 | +3.0 |
| 3.0 | -1.5 | -1.2 | -1.0 | -0.3 | 0.0 | +0.8 | +1.3 | +2.4 | +2.9 | +3.2 | +3.5 |
| 3.5 | -1.8 | -1.5 | -1.2 | -0.4 | 0.0 | +1.0 | +1.6 | +2.8 | +3.4 | +3.7 | +4.7 |
| 4.0 | -1.8 | -1.5 | -1.1 | -0.4 | 0.0 | +1.1 | +1.8 | +3.4 | +4.1 | +4.5 | +4.9 |
| 4.5 | -2.2 | -1.7 | -1.4 | -0.5 | 0.0 | +1.3 | +2.1 | +3.9 | +4.6 | +5.1 | +5.4 |
| 5.0 | -2.5 | -2.0 | -1.6 | -0.6 | 0.0 | +1.5 | +2.4 | +4.3 | +5.1 | +5.5 | +5.9 |
| 5.5 | -2.8 | -2.3 | -1.8 | -0.6 | 0.0 | +1.7 | +2.7 | +4.7 | +5.5 | +6.0 | +6.5 |
| 6.0 | -2.5 | -2.0 | -1.6 | -0.6 | 0.0 | +1.5 | +2.5 | +5.0 | +6.0 | +6.7 | +7.4 |
| 6.5 | -2.8 | -2.2 | -1.8 | -0.6 | 0.0 | +1.7 | +2.8 | +5.4 | +6.5 | +7.2 | +7.9 |
| 7.0 | -3.2 | -2.5 | -2.0 | -0.7 | 0.0 | +1.9 | +3.1 | +5.8 | +7.0 | +7.7 | +8.4 |
| 7.5 | -3.5 | -2.8 | -2.3 | -0.8 | 0.0 | +2.1 | +3.4 | +6.3 | +7.5 | +8.2 | +8.9 |

open ( $E$ ) contact. This contact can be switch optioned to provide Type I, II, or III E\&M signalinglead interface. (Refer to paragraph 2.10 for additional information.) Regardless of the signaling format, however, the relay is energized when the 9662 senses no SF tone present at the receive input port and is de-energized when SF tone is detected. The minimum-break receive pulse corrector is arranged to control the pulsing relay such that, following tone recognition, the relay is de-energized for a minimum time interval of 50 ms . After this 50 ms input break interval, the relay will energize upon absence of tone.
2.09 An M-lead option switch allows the 9662 to accommodate either normal or inverted M-lead signaling states. In the normal state, the 9662 transmits SF tone when the local M lead is either open or at ground potential and removes SF tone when the local M lead is at negative battery potential. In the inverted state, the 9662 transmits SF tone when the $M$ lead is at negative battery potential and removes SF tone when a ground potential or open is applied to the $M$ lead. (In either case, the minimum-break transmit pulse corrector ensures that the minimum duration of any outgoing tone pulse will be 50 ms .) When the 9662 's M-lead inversion capability is used, the 9662 can be arranged back-to-back with another $\mathrm{E} \& \mathrm{M}$ signaling device, at an intermediate location, without the need for an intermediate pulse link repeater.

## E\&M signaling interface

2.10 The 9662 accommodates both single-lead and looped-signaling-lead E\&M interfaces. The conventional single-lead (Type 1) format is used in electromechanical switching system environments, while the newer looped formats (Type II and Type III interfaces) are used in electronic switching system environments. Figure 6 shows the connections required for Type I, II, and III E\&M signaling interfaces.

## incoming tone detection

2.11 The 9662 is designed to interface the receive side of the 4 wire transmission facility (via the receive in port) at a programmed TLP of +7 to -17 ; thus, idle SF tone is received at a nominal level of $-20 \mathrm{dBm0}$. An augmented level of $-8 \mathrm{dBm0}$ is typically received during break portions of dial pulses and for about 400 milliseconds at the beginning of each tone interval. The 9662's receiver will reliably detect SF tone levels as low as $-31 \mathrm{dBm0}$, provided that the SF tone energy is at least 10 dB above the level of all other signals simultaneously present at the receive input. The SF tone detector is actually a signal-to-guard ratio comparator that compares energy in a narrow band of frequencies centered at the SF tone frequency with energy in the entire voice band. This detection arrangement aids significantly in prevention of talk-off, but it places an upper bound on allowable circuit noise. In general, received noise in excess of 58 dBrnC may interfere with detection of low-level signaling tones.
2.12 Within approximately 13 milliseconds of detection of received SF tone, a band-elimination

figure 6. E\&M signaling interfaces
filter (BEF) is inserted into the receive transmission path to prevent propagation of SF tone beyond the local SF unit. An internal timing circuit ensures that the filter remains inserted during dial pulsing and during momentary losses of tone continuity. (See tables 2 and 3 for details covering BEF insertion.)
2.13 The minimum-break pulse corrector in the receive path is designed to ignore momentary losses of SF tone up to 50 milliseconds in duration. This corrector also ensures that E-lead breaks have a minimum duration of 50 ms . The 9662 recognizes signaling-state changes in the receive direction independent of the local M-lead state.

## transmit-direction signaling

2.14 The 9662 is designed to interface the transmit side of the transmission facility at a programmed TLP of -16 to +8 , and to transmit SF tone at

| circuit condition | sf tone |  | local condition of xmt path cut |  |  | local rev path BEF state |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x m t$ | $r c v$ | before | change | after |  |
| idle | on | on | cut | none | cut | inserted |
| seizure | on/off transition | on | cut | stays cut $125 \pm 50 \mathrm{~ms}$ after seizure. | not cut | inserted |
| distant end returns dialing delay | off | on/off transition | not cut | none | not cut | removed $50 \pm 5 \mathrm{~ms}$ after cessation of tone. |
| distant end sends start dial | off | off/on transition | not cut | none | not cut | inserted $13 \pm 8 \mathrm{~ms}$ after receipt of tone |
| local end dialing | off/on-on/off transitions, ending with on/off transition. | on | not cut | precut $18 \pm 5 \mathrm{~ms}$, remains cut as long as M-lead make/break transitions are less than $125 \pm 25 \mathrm{~ms}$ apart; remains cut $125 \pm 50 \mathrm{~ms}$ after last break/make transition. | not cut | inserted |
| distant end answers (free call) | off | on | not cut | none | not cut | inserted |
| distant end answers (toll call) | off | on/off transition | not cut | none | not cut | removed $50 \pm 5 \mathrm{~ms}$ after cessation of tone. |
| talking | off | off | not cut | none | not cut | out of circuit |
| disconnect, local end first | off/on transition | off | not cut | precut $18 \pm 5 \mathrm{~ms}$, cut $625 \pm 125 \mathrm{~ms}$ after M-lead transition from battery to ground. | not cut | out of circuit |
| disconnect, distant end | on | off/on transition | not cut | cut within 35 ms | cut | inserted $13 \pm 8 \mathrm{~ms}$ after receipt of tone |
| idle | on | on | cut | none | cut | inserted |

table 2. SF tone state, transmit cut, and receive BE户ं insertion conditions - local call origination

| circuit condition | sf tone |  | local condition of xmt path cut |  |  | local rev path BEF state |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | xmt | rev | before | change | after |  |
| idle | on | on | cut | none | cut | inserted |
| seizure, distant end | on | on/off transition | cut | remains cut $625 \pm 125 \mathrm{~ms}$ after cessation of sf tone | not cut | removed $50 \pm 5 \mathrm{~ms}$ after cessation of sf tone |
| local end returns delay dial signal | on/off transition | off | not cut | cut $125 \pm 50 \mathrm{~ms}$ after $M$-lead transition from ground to battery. | not cut | out of circuit |
| local end returns start dia/ signal | off/on transition | off | not cut | precut $18 \pm 5 \mathrm{~ms}$, remains cut $625 \pm 125 \mathrm{~ms}$ after $M$-lead transition from battery to ground | not cut | out of circuit |
| distant end transmits dial pulses | on | off/on-on/ off transitions, ending with on/ off transition | not cut | cut within 35 ms of receipt of first tone pulse; remains cut as long as incoming break/make transitions are less than $625 \pm 125 \mathrm{~ms}$ after last incoming on/off transition. | not cut | inserted $13 \pm 8 \mathrm{~ms}$ after receipt of first tone pulse; remains in circuit until $50 \pm 5 \mathrm{~ms}$ after last incoming on/off transition or $225 \pm 50 \mathrm{~ms}$, whichever is longer. |
| local end answers (free call) | on | off | not cut | none | not cut | out of circuit |
| local end answers (toll call) | on/off transition | off | not cut | cut $125 \pm 50 \mathrm{~ms}$ after M-lead transition from ground to battery. | not cut | out of circuit |
| disconnect, distant end | off | off/on transition | not cut | none | not cut | inserted $13 \pm 8 \mathrm{~ms}$ after receipt of sf tone. |
| talking | off | off | not cut | none | not cut | out of circuit |
| disconnect, local end | off/on transition | on | not cut | precut $18 \pm 5 \mathrm{~ms}$ then continuously cut | cut | inserted |
| idle | on | on | cut | none | cut | inserted |

table 3. SF tone state, transmit cut, and receive BEF insertion conditions - distant-location call origination
either of two levels. Specifically, SF tone is transmitted at $-20 \mathrm{dBm0}$ during idle and at an augmented level of -8 dBm 0 during dial pulsing and for approximately 400 ms each time tone is applied to the facility. This momentarily increased tone level aids in detection of supervisory-state changes and incoming dial pulsing.

## delay circuit and transmit pulse correction

2.15 A symmetrical delay of approximately 20 milliseconds is provided between the input M lead and the tone transmission gate. This delay prevents inadvertent transmission or interruption of SF tone in response to momentary M-lead transitions. This delay is also instrumental in prevention of transient interference with tone transmission, as noted in paragraph 2.18.
2.16 A minimum-break pulse corrector is used in the transmit path to ensure a 50 -millisecond minimum-break duration during dialing. This type of pulse correction does not interfere with super-
visory winks and momentary signaling-state changes and helps to ensure that recognizable pulses are transmitted. The pulse corrector does not alter the duration of tone intervals resulting from M-lead state changes longer than 50 milliseconds.

## transmit path cut

2.17 The transmit-channel voice transmission path through the 9662 is cut (opened) during idle circuit conditions, and is not cut when the local M lead is in the busy condition. The path is cut during dialing in either direction and is momentarily cut in response to any transition of the M lead while the $E$ lead is in the off-hook state. These path cuts prevent transmission of noise, transients, speech, and other interfering signals during critical signaling intervals.
2.18 The transmit path cut is inserted within 5 milliseconds of an M-lead state change. Tone transmissions in response to M -lead state changes are delayed approximately 20 milliseconds, resulting
in a nominal pre-cut interval of 15 milliseconds. This ensures that any transients associated with signaling state changes in the local trunk circuit will not affect signaling tone transmission. Details concerning insertion and removal of the transmit path cut are provided in tables 2 and 3.
tone source
2.19 The 9662 contains an integral 2600 Hz SF tone oscillator and therefore does not require an external SF tone supply. No leads are supplied for an external SF tone supply.

## power

2.20 The 9662 module is designed to operate on filtered input potentials between -42 to -56 Vdc , ground referenced. The positive side of the dc power supply should be connected to earth ground. Current requirements range from 45 mA at idle to a maximum of 65 mA .

## 3. installation

## inspection

3.01 The 9662 4Wire E\&M SF Signaling Set module with Gain should be visually inspected upon arrival to find possible damage incurred during shipment. If damage is noted, a claim should immediately be filed with the carrier. If stored, the module should be visually inspected again prior to installation.
mounting
Caution: The 9662 uses a mercury-wetted relay for E-lead output. Before installation, the module should be held in an upright position and tapped gently on a hard surface to ensure that the mercury is properly positioned within the relay. Once tapped, the module should be kept in an upright position until installation and installed in a vertical, upright position.
3.02 As an MFT-configured module, the 9662 mounts in one position of a Western Electric MFT single-module (MTM-1), MFT double-module(MTM2/S or MTM-2), or Customer-Premises Facility Terminal (CPFT) Shelf. The MTM-1 is a 12 -position central-office-type shelf that is factory-wired to accept up to 12 MFT-configured units such as the 9662. The MTM-2/S is a 12-position central-officetype shelf that is factory-wired to accept up to six MFT-configured transmission units and up to six companion signaling units. The MTM-2 is a $12-$ position central-office-type shelf that is factorywired to accept up to six MFT-configured transmission/signaling modules in a stand-alone application. The MTM-1, MTM-2/S, and MTM-2 are designed for 23 -inch relay rack installation. For smaller, customer-premises installations, a Western Electric CPFT Shelf is also available. Each module plugs physically and electrically into a 40-pin connector at the rear of the mounting shelf position. A locking catch on the front panel of each module ensures secure mounting in the MFT shelf.

## installer connections

3.03 Before making any connections to the mounting shelf, make sure that power is off and
modules are removed. Modules should be put into place only after they are properly optioned and after wiring is completed.
3.04 Table 4 lists external connections to the 9662 module. All connections are made via wire wrapping at the 40 -pin connector at the rear of each module's mounting shelf position. Pin numbers are found on the body of the connector.

| connect: | to pin: |
| :---: | :---: |
| 4W RCV IN T (4wire receive input tip) |  |
| 4W RCV IN R (4wire receive input ring) |  |
| 4W RCV OUT T1 (4wire receive output tip). |  |
| 4W RCV OUT R1 (4wire receive output ring) |  |
| 4W XMT OUT T1 (4wire transmit output tip). |  |
| 4W XMT OUT R1 (4wire transmit output ring). |  |
| 4W XMT IN T (4wire transmit input tip) | 17 |
| 4W XMT IN R (4wire transmit input ring) |  |
| E1 (E lead, normally open contact). | 23, 24 |
| M ( M lead) | 25, 26 |
| -48 Vdc (filtered, ground-referenced) |  |
| GND (ground) |  |
| SXR (receive simplex lead) |  |
| SXT (transmit simplex lead) | 15 |
| CH GND (chassis ground) |  |
| EG/SG (E ground) (SX ONLY and MTM-1/2) or |  |
| SXR1 (MTM-2/S) |  |
| MB (MB lead for looped M-lead operation) |  |
| (SX ONLY and MTM-1/2) or SXT1 |  |
| (MTM-2/S) . . . . . . . . . . . . . . . . . | 10 |
| SXT2 (MTM-2/S) |  |
| SXR2 (MTM-2/S) |  |
| M (MTM-1/2 and MTM-2/S) or |  |
| SXR (SX ONLY). |  |
| E (MTM-1/2 and MTM-2/S) or |  |
| SXT (SX ONLY) . |  |

table 4. External connections to 9662

## option selection

3.05 All options on the 9662 module are selected via slide switches or DIP switches located as shown in figure 7. Table 5 lists all options and indicates the option choices, which are explained in the following paragraphs. The 9662 should be completely optioned and its optioning checked before alignment is attempted.


## facility-side impedance options

3.06 Facility-side impedance-matching transformers (transmit and receive) may be switch-optioned via switch S1 for either 150-, 600-, or 1200 -ohm balanced terminating impedance. Determine the type of transmission facility the 9662 module interfaces on its facility side, and set switch S1 to the 150,600 , or 1200 position as required.

| section of 9662 | switch or potentiometer | option | function |
| :---: | :---: | :---: | :---: |
| facility impedance (xmt and rev) | S1 | 150,600 or 1200 ohms | selects facility-side impedance of 150 ohms (nonloaded cable), 600 ohms (nonloaded cable or CXR), or 1200 ohms (loaded cable) |
| SF signaling, M lead | S2 | NORM or INV | selects normal (NORM position) or inverted (INV position) M-lead operation |
| MFT mounting configuration | S3 | SX ONLY, MTM-1/2, MTM-2/S | selects simplex leads only (SX ONLY), single-module or double-module (MTM-1/2), or double-module with signaling set (MTM-2/S) mounting configuration |
| receive output adjust (terminal level) | $\begin{aligned} & \text { S4-1 thru } \\ & \text { S4-4 } \end{aligned}$ | $-2,0,+2$, or +7 TLP | selects receive output TLP |
| receive output adjust (terminal level) | R6 | continuously adjustable | when $S 4$ is in +7 position, $R 6$ provides a +7 to -20 dBm range with respect to a +7 TLP |
| transmit output adjust (facility level) | S5-1 thru S5-4 | $+5,+3,0$, or -16 TLP | selects transmit output TLP |
| transmit output adjust (facility level) | R5 | continuously adjustable | when $S 5$ is in +7 position, $R 5$ provides a +5 to -20 dBm range with respect to a $-16 T$ LP |
| E-lead signaling option | S6 | I/III, or It | configures the module for Type I, II, or III E\&M signaling interface |
| xmt (in loss) | front-panel xmt (in loss) attenuation switches | 0 to 24 dB attenuation in 0.1 dB increments (cumulative as labeled) | selects transmit-channel attenuation (0.1dB increments) |
| rcv (in gain) | front-panel rcv (in gain) switches | 0 to 24 dB gain in 0.1 dB increments (cumulative as labeled) | selects receive-channel gain ( 0.1 dB increments) |
| 9908A equalizer <br> subassembly <br> (optional xmt and rev) | S1 on 9908A subassembly | 0.5 to 7.5 dB equalization (cumulative as labeled) | selects up to 7.5 dB (in 0.5 dB increments) of slope equalization at 2804 Hz (re 1000 Hz ) |

Note: In order to install the two 9908A subassemblies, two straps (one for the transmit and one for the receive channel) must be removed. These straps are plug-on jumpers located on female connectors J1 and J2 on the printed circuit board.

## table 5. Options on 9662 module

## SF signaling options

3.07 In the 9662 module's SF signaling section, switch S2 selects normal or inverted M-lead operation. Set $S 2$ to the NORM position for normal Mlead operation or to the INV position when inverted M -lead operation is desired. Switch S6 configures the 9662 for Type I, II or III E\&M signaling interface. Determine the type of signaling format required, and set switch $S 6$ to the ///I/ or // position.

## MFT mounting options

3.08 Switch S3 conditions the 9662 for any one of four MFT mounting configurations: SX ONLY (for MTM-1 mounted applications requiring access to the simplex leads instead of the E\&M leads on pins 4 and 7), MTM-1 or 2, or MTM-2/S. Determine the MFT configuration in which the 9662 is being mounted, and set switch S3 to the SX ONLY, MTM-1/2, or MTM-2/S position as required. (Select the MTM-2/S position when the 9662 is used with a companion signaling module, such as a DX set.)

## alignment

3.09 Alignment of the 9662 consists of adjusting the transmit-channel attenuation and TLPselection switches and the receive-channel gain and TLP-selection switches to accommodate the desired
facility-side and terminal-side levels. In addition, potentiometers (located on the printed circuit board) associated with both the transmit-channel and receive-channel TLP-selection switches permit selection of nonstandard TLP's. Before aligning the 9662 , verify that the 9662 is properly optioned for the correct facility impedance of 150,600 , or 1200 ohms. Facility-side (transmit output and receive input) test points are provided on the 9662 for alignment and testing purposes. Access to the terminalside (transmit input and receive output) ports of the 9662 must be provided by an associated jackfield or at the module's 40-pin connector. If the connector pins are used as measurement points, care must be taken to avoid double terminations.

## receive channel

3.10 Alignment of the receive channel consists of the following: setting of the TLP-selection switches and, if required, the associated potentiometer to provide the specified receive-channel output level; adjustment of the front-panel rcv (in gain) switches to derive the receive channel's internal level of +7TLP; and adjustment of the optional 9908A Equalizer subassembly to provide the required amount of slope equalization. Align the receive channel as indicated below:
A. Connect the receive portion of a properly bridged transmission measuring set (TMS) to the front-panel rcv in test points. Request the distant facility-side location to send 1000 Hz and 2804 Hz tones at a 0 dBm 0 level. Measure and record the level at which each tone is received.
B. Determine the CLR-specified receive-channel output TLP and set TLP-selection switch $S 4$ to the $-2,0,+2$ or +7 position. Disconnect the receive portion of the TMS from the frontpanel rcv in test points and connect it to the receive output port via an external jackfield, or to connector pins 5 and 6.
C. Request the distant facility-side location to again send 1000 Hz tone at 0 dBmO . Set the proper combination of front-panel rcv (in gain) switches to the $I N$ position until the receive output level corresponds to the level selected via TLP-selection switch S4.
D. If a nonstandard TLP is required, set $S 4$ to the +7 position and adjust $R 6$ for the desired TLP. The achievable range is from +7 to -20 dBm with respect to a +7 TLP .
E. Optional equalization (via the 9908A Equalizer subassembly): Determine the difference between the 1000 Hz and 2804 Hz tone levels measured in step A. Referring to table 5 and figure 7, set to $O N$ the proper combination of switch positions on the receive channel 9908A subassembly's four-position DIP switch S1 that adds up to this difference (i.e., the amount of equalization required).

## transmit channel

3.11 Alignment of the transmit channel consists of the following: setting of the TLP-selection switches and, if required, the associated potentiometer to provide the specified transmit-channel output level; adjustment of the front-panel xmt (in loss) switches to derive the transmit channel's internal level of -16 TLP; and adjustment of the optional 9908A Equalizer subassembly to provide the required amount of slope equalization. Align the transmit channel as indicated below:
A. Before alignment of the transmit channel, the transmit speech path cut must be removed. This can be done either by seizing the circuit from the local trunk or by temporarily placing battery on the 9662's $M$ lead by removing incoming SF tone. As an alternative, the transmit path cut may be removed by setting switch S2 to the INV position with the local M lead at ground potential.
B. Determine the specified transmit channel output TLP and set level-control switch $S 5$ to the $-16,0,+3$ or +5 position.
C. Set switch S1 to the 600 -ohm position. Condition the transmit portion of the TMS for 1000 Hz tone output at the level and impedance specified on the CLR for the 4 wire transmit
terminal interface. Connect this signal to the transmit channel's input port via an external jackfield or via connector pins 17 and 19.
D. Condition the receive portion of the TMS for $600-\mathrm{ohm}$ bridged measurement, and measure the signal level at the front-panel xmt out test points. Set the proper combination of front-panel xmt (in loss) switches to the $I N$ position so that the output level corresponds to the level selected via TLP-selection switch $S 5$.
E. If a nonstandard TLP is required, set $S 5$ to the +5 position and adjust $R 5$ for the desired TLP. The achievable range is from +5 to -20 dBm with respect to a -16 T LP.
F. Reset switch S1 for the specified facilityside transmit impedance.
G. Optional equalization (via the 9908A Equalizer subassembly): Refer to the CLR card for the specified transmit-channel output level (facility side) at 2804 Hz . Referring to table 5 and figure 7, set to $O N$ the proper combination of switch positions on the transmit channel 9908A subassembly's four-position DIP switch S1 that adds up to the desired equalization at 2804 Hz (re 1000 Hz ).

## 4. circuit description

4.01 To provide the clearest possible understanding of the operation of the 9662 4Wire E\&M SF Signaling Set module with Gain, function sequence charts (figures 8 and 9) that illustrate sequential operation of the module on incoming and outgoing calls are presented in lieu of a more conventional circuit description. Horizontal paths identify events occurring simultaneously, and vertical paths denote sequential events. Dotted lines indicate elapsed time. These charts may be used to determine whether a module is performing normally by observing the module's response and comparing it to that shown in the chart. Reference to the 9662 block diagram (section 5 of this Practice) may aid in understanding the sequence charts.
4.02 The sequence charts are intended to familiarize you with the operation of the 9662 for engineering, application, and troubleshooting purposes. However, attempts to test or troubleshoot the 9662 internally are not recommended and may void your warranty. Procedures for recommended testing and troubleshooting in the field should be limited to those prescribed in section 7 of this Practice.

## 6. specifications

common specifications

## receive gain

0 to 24 dB in 0.1 dB increments
receive output adjust
$-2,0,+2$, and +7TLP via DIP switch; +7 to -20 dBm via
potentiometer

figure 8. Function sequence chart, incoming call
figure 9. Function sequence chart, outgoing call

5. block diagram
transmit attenuation
0 to 24 dB in 0.1 dB increments
transmit output adjust
$+5,+3,0$, and -16 TLP via DIP switch; +5 to -20 dBm via potentiometer
optional transmit and/or receive equalization
0 to 7.5 dB in 0.5 dB increments
accuracy
$\pm 0.05 \mathrm{~dB}$ for $0.1,0.2,0.4$, and 0.8 dB steps, $\pm 0.1 \mathrm{~dB}$ for
$1.5,3,6$, and 12 dB steps
terminal impedance
600 ohms balanced, $\mathbf{3 0 0}$ to $\mathbf{4 0 0 0 H z}$
facility impedance
switchable, 150, 600, or 1200 ohms balanced 300
to 4000 Hz
terminal return loss
ERL greater than 20 dB
facility return loss
impedance $\quad 150$ ohms $\quad 600$ ohms $\quad 1200$ ohms

ERL $>15 \mathrm{~dB}>20 \mathrm{~dB}>18 \mathrm{~dB}$
overload point noise (xmt and rcv) greater than $+5 \mathrm{dBm0} \quad 20 \mathrm{dBrnC}$ maximum, 0 gainor loss
delay distortion
less than $20 \mu \mathrm{~s}, 400$ to $\mathbf{4 0 0 0 \mathrm { Hz }}$, without equalizer; with 7.5 dB equalization, less than $225 \mu \mathrm{~s}, 400$ to 4000 Hz re 1800 Hz
longitudinal balance (xmt and rcv)
greater than $60 \mathrm{~dB}, 200$ to $\mathbf{4 0 0 0 \mathrm { Hz }}$
harmonic distortion
less than 1\% at OdBm0
insertion loss
$\pm 0.15 \mathrm{~dB}$ re $1000 \mathrm{~Hz}, 0$ gain orloss
cross coupling
less than 75 dB at 1000 and $\mathbf{3 0 0 0 H z}$
crosstalk between adjacent modules in shelf
less than 95 dB at 1000 and $\mathbf{3 0 0 0 H z}$
frequency response
300 to 500 Hz : insertion loss $\pm 0.5 \mathrm{~dB}$ (re 1000 Hz )
500 to $\mathbf{3 0 0 0 H z}$ : insertion loss $\pm 0.3 \mathrm{~dB}$ (re 1000 Hz )
insertion loss (due to impedance change)
$\pm 0.7 \mathrm{~dB}, 1200$ ohms
$\pm 0.95 \mathrm{~dB}, 150$ ohms
input power
input voltage: $\mathbf{- 4 2}$ to -56 Vdc , filtered, ground-referenced input current: idle, $\mathbf{4 5 m A}$; busy, 65 mA
simplex current
100 mA maximum; 3 mA maximum unbalanced

## signaling - transmit section

$M$-lead delay
$18 \pm 5 \mathrm{~ms}$ delay between M -lead state change and SF
tone state change
SF tone states
idle: tone transmitted
busy: no tone
dialing: tone transmitted during breaks of dial pulses

| augmented SF level | idle SF level |
| :--- | :--- |
| $-8 \pm 2 \mathrm{dBm0}$ | $-20 \pm 1 \mathrm{dBm} 0$ |

$M$-lead signaling states, normal mode
idle: open or ground
busy: negative battery
$M$-lead signaling states, inverted mode
idle: negative battery
busy: open or ground
augmented level timing
high-level tone is transmitted for $\mathbf{4 0 0} \pm 100 \mathrm{~ms}$ following each off-hook-to-on-hook transition of M-lead

## minimum break

M-lead on-hook pulses less than the M-lead delay are not recognized

M-lead pulse corrector
input on-hook intervals of a duration between that of the M-lead delay and 50 ms are transmitted as tone bursts of $50 \pm 2 \mathrm{~ms}$; input breaks longer than 50 ms are transmitted as tone bursts equal in duration to the input break duration $\pm 2 \mathrm{~ms}$
internal SF oscillator frequency and stability
$\mathbf{2 6 0 0} \pm \mathbf{2 H z}$ for 6 months, $2600 \pm 5 \mathrm{~Hz}$ for life of unit
(other frequencies are optionally available)
transmit path cut
transmit speech path is cut $18 \pm 5 \mathrm{~ms}$ before any
transmission of SF tone; see tables 2 and 3

> signaling - receive section

SF tone frequency
$2600 \mathrm{~Hz} \pm 0.3 \%$; other frequencies must be specified at time of order
SF tone threshold
$-26.5 \pm 2.5 \mathrm{dBm}$
SF tone rejection
55 dB minimum, 2590 to $\mathbf{2 6 1 0 H z}$
signaling bandwidths
high guard state, 75 Hz nominal
low guard state, 300 Hz nominal
signal to guard ratio
$10 \pm 2 \mathrm{~dB}$
maximum line noise
58 dBrnC (at 0 dB gain)
guard circuit transition timing
high-to-low, $225 \pm 60 \mathrm{~ms}$
low-to-high, $\mathbf{5 0} \pm 10 \mathrm{~ms}$
band-elimination filter (BEF)
insertion delay: $13 \pm 7 \mathrm{~ms}$
removal time: either $225 \pm 50 \mathrm{~ms}$ or receive tone duration $50 \pm 10 \mathrm{~ms}$, whichever is longer
SF to $E$ lead
pulse rate input break ratio
8pps 32 to $80 \%$
10pps $\quad 38$ to $79 \%$
12pps $\quad 44$ to $76 \%$
input breaks of a duration between that of the E-lead seizure delay and 50 ms are transmitted as breaks of $50 \pm 2 \mathrm{~ms}$. input breaks longer than 50 ms are transmitted as breaks equal in duration to the input break duration $\pm 2 \mathrm{~ms}$.
seizure delay - removal of SF to E-lead ground
$60 \pm 20 \mathrm{~ms}$
release delay - application of SF to E-lead open
$33 \pm 3 \mathrm{~ms}$
E-lead contact rating
contact resistance: $\mathbf{2 0}$ milliohms maximum
current: 1A maximum
voltage: 200 Vdc maximum
contact protection: external transient protection required with inductive loads.

## physical

operating environment
$20^{\circ}$ to $130^{\circ} \mathrm{F}\left(-7^{\circ}\right.$ to $\left.+54^{\circ} \mathrm{C}\right)$, humidity to $95 \%$
(no condensation)
dimensions
7.91 inches ( 20.1 cm ) high
1.70 inches $(4.32 \mathrm{~cm})$ wide
9.76 inches ( 24.8 cm ) deep (excludes locking catch)
weight
27 ounces ( 765 grams)

## mounting

relay rack via one position of Western Electric MTM-1,
MTM-2, MTM-2/S, or CPFT Shelf

## 7. testing and troubleshooting

7.01 The Testing Guide Checklist in this section may be used to assist in the installation, testing, or troubleshooting of the 9662 4Wire E\&M SF Signaling Set module with Gain. The Checklist is intended as an aid in the localization of trouble to a specific module. If a module is suspected of being defective, a new one should be substituted and the test conducted again. If the substitute module operates correctly, the original module should be considered defective and returned to Tellabs for repair or replacement. We strongly recommend that no internal (component-level) testing or repairs be attempted on the 9662 module. Unauthorized testing or repairs may void the module's warranty.
7.02 If a situation arises that is not covered in the Checklist, contact Tellabs Customer Service at your Tellabs Regional Office or at our Lisle, Illinois, or Mississauga, Ontario, Headquarters. Telephone numbers are as follows:

US central region: (312) 969-8800
US northeast region: (412) 787-7860
US southeast region: (305) 645-5888
US western region: (213) 595-7071
Lisle Headquarters: (312) 969-8800
Mississauga Headquarters: (416) 624-0052
7.03 If a 9662 is diagnosed as defective, the situation may be remedied by either replacement or repair and return. Because it is more expedient, the replacement procedure should be followed whenever time is a critical factor (e.g., service outages, etc.).

## replacement

7.04 To obtain a replacement 9662 module, notify Tellabs via letter (see addresses below), telephone (see numbers above), or twx (910-695-3530 in the USA, 610-492-4387 in Canada). Be sure to provide all relevant information, including the $8 \times 9662$ part number that indicates the issue of the module in question. Upon notification, we shall ship a replacement module to you. If the module in question is in warranty, the replacement will be shipped at no charge. Pack the defective 9662 in the replacement module's carton, sign the packing slip included with the replacement, and enclose it with the defective module (this is your return authorization). Affix the preaddressed label provided with the replacement module to the carton being returned, and ship the module prepaid to Tellabs.
repair and return
7.05 Return the defective 9662 module, shipment prepaid, to Tellabs (attn: repair and return).
in the USA: Tellabs Incorporated
4951 Indiana Avenue
Lisle, Illinois 60532
in Canada: Tellabs Communications Canada, Ltd. 1200 Aerowood Drive, Unit 11 Mississauga, Ontario, Canada L4W 2S7
Enclose an explanation of the module's malfunction. Follow your company's standard procedure with regard to administrative paperwork. Tellabs will repair the module and ship it back to you. If the module is in warranty, no invoice will be issued.

## testing guide checklist

Note 1: The testing procedure for the 9662 4Wire E\&M SF Signaling Set module with Gain is most conveniently performed when an external jackfield is used to provide access to the appropriate points in the module. In view of this, the following procedure is based on the assumption that such a jackfield will be used.
Note 2: Certain of the following tests require that an option switch or an alignment control be adjusted to a specific setting to perform the test. Be sure that all option switches and alignment controls are returned to the required settings for your particular application at the conclusion of the test.
Note 3: To be certain that improper positioning of mercury within the 9662's mercury-wetted E-lead output relay will not be a cause of malfunction, ensure that the module has been tapped gently on a hard surface and kept upright until installation as directed in the caution notice on page 6.

| test | test procedure | normal result | if normal conditions are not met, verify: |
| :---: | :---: | :---: | :---: |
| receive channel (E lead) idle (S3 in MTM-1 or MTM-2 position) | Connect pulsing test set arranged to transmit 2600 Hz tone at $-20 \mathrm{dBm0}$ to receive input port (pins 2 and 3 ). Connect receive portion of pulsing test set to pin 23 and arrange test set to monitor E lead. Set switch S1 to 600ohm position, set switch S2 to NORM, and set switch $S 6$ to //I/I position. | With tone present, front-panel $E$ busy LED extinguished $\square$. Pulsing test set indicates E-lead open $\square$. | Power $\square$. Tone level ( $-20 \mathrm{dBm0}$ ) <br> $\square$. Tone frequency $(2600 \pm 10 \mathrm{~Hz})$ <br> $\square$. Test set connections $\square$. <br> Switch S1 set to 600 -ohm position $\square$. Switches S2 and S6 set to the required positions $\square$. Replace module and retest $\square$. |
| receive channel ( E lead) busy | Remove 2600 Hz tone. | With tone absent, front-panel $E$ busy LED lighted $\square$. Pulsing test set indicates E-lead ground $\square$. | Power $\square$. Ground present on connector pin 12 (EG/SG lead) $\square$. Test set connections $\square$. Replace module and retest $\square$. |
| receive channel (E lead) pulsing | Arrange pulsing test set to transmit dial pulses $(2600 \mathrm{~Hz}$ tone bursts) at -8 dBmO and at various speeds and percent breaks, and connect it to receive input port (pins 2 and 3 ). | Input tone bursts between 36 and 50 ms corrected to $50 \pm 2 \mathrm{~ms}$ E-lead outputs $\square$. Input tone bursts greater than 50 ms are repeated as breaks equal in duration to input tone bursts $\pm 2 \mathrm{~ms} \square$. | Power $\square$. Tone level ( $-8 \mathrm{dBm0}$ ) ㅁ. Tone frequency ( $2600 \pm 10 \mathrm{~Hz}$ ) $\square$. Ground present on connector pin 12 (EG/SG lead) $\square$. Test set connections $\square$. Replace module and retest $\square$. |
| receivechannel transmission | Disconnect pulsing test set from receive input port (pins 2 and 3). Connect transmit portion of TMS, arranged for 1004 Hz output at 0 dBm and 600 ohms, to receive input port (pins 2 and 3 ). Connect receive portion of TMS, arranged for 600 -ohm terminated measurement, to receive output port (pins 5 and 6). Set module's front-panel rcv (in gain) and PCB-mounted receive TLP-selection switches to 0 dB . | TMS indicates $0 \pm 0.2 \mathrm{dBm} \square$. | Power $\square$. Front-panel rcv fin gain) switches set for OdB loss $\square$. Input tone level $\square$. Wiring $\square$. Proper TMS termination $\square$. Switch S1 set to 600 -ohm position $\square$. Replace module and retest $\square$. |
|  | To verify level control, introduce gain via front-panel rcv (in gain) switches and note TMS reading. | TMS indicates comparable increase in level $\square$. | Replace module and retest $\square$. |
| transmitchannel (M lead) idle | Connect pulsing test set arranged to transmit M-lead signals (idle $=$ ground, busy $=$ battery) to pin 25. Connect TMS to transmit output port (pins 14 and 13), remove negative battery potential from $M$ lead (pin 25), and apply ground to M lead. | After application of M -lead ground, tone level of $-36 \pm 2 \mathrm{dBm}$ is observed and remains at this level for duration of M-lead ground $\square$. Front-panel $M$ busy LED extinguished $\square$. | Power $\square$. Test set connections $\square$. Proper termination of SF section of pulsing test set $\square$. Switch S2 set to NORM $\square$. Switch S1 set to 600 -ohm position $\square$. Replace module and retest $\square$. |


| test | test procedure | normal result | if normal conditions are not met, verify: |
| :---: | :---: | :---: | :---: |
| transmitchannel (M lead) busy | Maintain connections as above but apply battery ( -48 Vdc ) to M lead (pin 25). | No SF tone present at frontpanel xmt out test points $\square$. Front-panel $M$ busy LED lighted $\square$. | Power $\square$. Test set connections $\square$. Switch S2 properly set $\square$. Replace module and retest $\square$. |
| transmitchannel (M lead) pulsing | Maintain connections as above but arrange pulsing test set to transmit M-lead dial pulses at various speeds and percent breaks. | Input breaks between 28 and 50 ms corrected to $50 \pm 2 \mathrm{~ms}$ tone bursts $\square$. Input breaks between 50 and 80 ms repeated as tone bursts equal in duration to input breaks $\pm 2 \mathrm{~ms} \square$. | Same as above $\square$. |
| transmit path cut | Arrange transmit portion of TMS for 2600 Hz tone output at -20 dBmO , and connect this signal to receive input port (pins 2 and 3). Connect pulsing test set arranged to transmit M-lead signals (idle $=$ ground, busy $=$ battery) to pin 25. Arrange transmit portion of second TMS for 1004 Hz tone output at -16 dBm and connect this signal to transmit input port (pins 17 and 19). Connect receive portion of TMS arranged for 600 -ohm terminated measurement to front-panel $x m t$ out test points. Set module's front-panel xmt (in loss) and PCB mounted transmit TLPselection switches to OdB. Send M-lead signals (via pulsing test set) as indicated above. | Tone level of $-36 \pm 2 \mathrm{dBm}$ observed after M-lead transition to ground $\square$. When M lead changes to battery potential, signal level at $x m t$ out test points increases to $0 \pm 0.2 \mathrm{dBm}$ at 1004 Hz , indicating removal of path cut $\square$. While pulsing $M$ lead at 10 pps and $50 \%$ break, path is cut and signal level of -30 dBm is observed $\square$. | Power $\square$. Wiring $\square$. Test set connections $\square$. Switch $S 2$ set to NORM $\square$. Tone applied to receive input port (pins 2 and 3) at $2600 \pm 10 \mathrm{~Hz}$ and -20 dBmO . PCB-mounted transmit TLPselection switches set for OdB loss $\square$. Proper impedance terminations on test equipment $\square$. Front-panel xmt (in loss) switches set for OdB $\square$. Switch S1 set to 600 -ohm position $\square$. Replace module and retest $\square$. |
|  | Verify level control with M lead at battery as follows: introduce loss via front-panel xmt (in loss) switches and note TMS reading. | TMS indicates comparable decrease in level $\square$. | Replace module and retest $\square$. |
|  | Disconnect 2600 Hz TMS from receive input port (pins 2 and 3 ). Change M-lead state from ground to battery and vice versa. | As M-lead transitions occur, path is momentarily cut, resulting in signal level change from -36 dBm to $0 \mathrm{dBm} \square$. | Same as first step of transmit path cut test $\square$. |

