CHANGES

A. CHANGED AND ADDED FUNCTIONS
A.l No change.
B. CHANGES IN APPARATUS
B. 1 No change.
C. CHANGES IN CIRCUIT REQUIREMENTS OTHER THAN THOSE APPLYING TO ADDED OR REMOVED APPARATUS
C. 1 No change.
D. DESCRIPTION OF CIRCUIT CHANGES
D. 1 Rating changed from "Standard" to "A \& M Only". DEVELOPMAENT

1. PURPOSE OF CIRCUIT
1.1 No change.
2. WORKING LIMITS
2.1 No change.

OPERATION
3. FUNCTIONS
3.1 No change。

```
CD-21043-02 - Issue 1 - App. I-D - Page 2
```

4. CONNECTING GIRCUITS
4.1 No change.

DETAILED DESCRIPTION
No change.

BELL TELEFHONE LABORATORIES, INC.
DEPT. 332-C
MAR)
WHM) $B A$

CIRCUI T DESCRIPTION	CD-21043-02
BELI TEL EPHONE LABORATORIES, INC.	ISSue 1
SYSTEMS DEVEIOPMENT DEPT•, NEW YORK.	March 3, 1927
	PRINTED IN U.S.A.

PANEM MACHINE SWITCHING SYSTEM INCOMING SELECTOR CIRCUIT FROM KEY INDICATOR MANUAL OFFICE 4 PARTY SEMI-SEIECTIVE RINGING

DEVETOPMANT

1. PURPOSE OF CIRCUIT
> 1.1. This circuit is used for establishing a connection between an operator in a key indicator manual office and a subscriber or an operator in a panel machine switching office.
2. WORKIIIG IIMITS
2.1 The external circuit loop for selections shall not exceed 1488 ohms resistance and shall not include more than l2 miles of cable. The insulation resistance of the trunk shall not be less than 30,000 ohms.
3. 2 The external circuit loop resistance for trunk supervision shall not exceed 1390 ohms with 20 volts min. at the manual office, or 2875 ohms with 40 volts min. at the manual office. In either case the insulation resistance of the trank shall not be less than 30,000 ohms.
2.3 The external circuit loop resistance for supervision toward the called sabscriber shall not exceed 900 ohms and the insulation resistiance of the subscriberis line shall not be less then 10,000 ohms.
2.4 Tripping Ranges:

Ringing 20 Cycles Silent Max.Ext.Ckt.Loop for Tripping
 Interval For Ringing For Silent

Voltage	Voltage	Voltage	Interval	Interval
95-103	16-19	46-52	800 ohms	730 ohms
95-110	-	$46=52$	450	730

$$
\text { CD-21043-02 - Iss. } 1 \text { - Page } 2
$$

OPERATION

3. FUNCTIONS
3.01 Recognizes selection.
3.02 Makes brush selection.
3.03. Trips the selected brush
3.04 Makes group selection.
3.05 Selects, and centers the multiple brush on the terminals of the first idle trunk in the selected group.
3.06 Grounds the sleeve terminal of the selected trunk as soon as it is seized and until the switch advances beyond the talking position.
3.07. Closes the "T" conductor of the incoming truak to the "I" conductor of the final selector and connects ground to the "R" conductor of the incoming trunis during the time the final selector is making selections.
3.08 Recognizes the completion of final selections and signals the sender that all selections have been completed.
3.09 Recognizes trunk closure from the operator's cord eircuit or from the key indicator link-circuit.
3.10 closes the ringing oircuit at the proper time for signalling the called station.
3.11 Transmits ringing induction to the calling subsoriber while the ringing oircuit is closed.
3.12 Opens the ringing oirouit whon the recelver is remored from the switchhook at the called station or when the operator releases the trunk.
3.13 Furnishes talking battery to the called station as soon as the ringing oircuit is opened and until the connection is released.
3.14 Signals the operator when the called subsoriber removes the receiver from the switchhook.
3.15 Signals the operator when the called subsoriber replaces the receiver on the switchhook.

$$
\text { CD-21043-02 - Iss. } 1 \text { - Page } 3
$$

3.16 Furnishes repeating coil and condenser transmission during the time the calling and called stations are conneoted.
3.17 Returns the elevator to normal, resets the multiple brush, and advances the sequence switch to normal when released by the operator.
3.18 Registers each revolution of the sequence switch.
3.19 If all of the truniks in the selected group are busy when the selector hunts for an ide trunk, the elevator stops on the top set of terminals in the group (known as the overflow terminals) and the seleotor functions as follows:
(a) Signals the sender that an overilow condition exists.
(b) Recognizes truak closure.
(0) Registers the overflow condition.
(d) Transmits an overflow signal to the operator.
(e) Returns to normal wen released by the operator.
3.20 Then the elevator travels to the top of the frame on a trouble condition (tell tale) the oirouit functions as follows:
(a) Releases the UP-drive magnet.
(b) Signals the sender as on an overflow condition.
(a) Reoognises trank closure.
(d) Transmits an overilow signal to the operator.
(e) Roturns to normal, when released by the operator.
3.21 Retwres to normal if the switoh is adranoed offe normal manually.
3.22 Recognizes a wherout condition as soon as the switoh enters the ringing position, opens the ringing cirouit and returns to normal.

$$
\text { CD-21043-02 - Is8. } 1 \text { - Page } 4
$$

3.23 Uses the same sequence switoh as the corresponding incoming circuit for panel machine switching service in order to permit conversion from manual to panel without changing cams.
4. CONNECTING CIRCUITS This circuit functions with:
4.1 Cord circuits in manual offices equipped with key indicator apparatus and the associated key indicator link and sender oirouits.
4.2 Auxiliary and long O.G. trank circuits.
4.3 Standard finel selector circuits.
4.4. Standard trank oircuits for blank incoming maltiple.
4.5 Standard "Miscellaneous Registers" circuits.
4.6 Standard "Miscellaneous Tones and Interrupters" oirouits.
4.7 Standard test set oircuits for testing incoming selectors.

DETAIIED DESCRIPTION
5. SRIZURE When the trunk to an incoming selector circuit is seized by the key indicator link circuit and the associated sender closes the fundamental circuit for incoming brush selection the (I) relay operates in series with the (STP) "stepping" relay of the sender. The operation of the ($工$) relay oloses a cirouit whioh advances the switoh to position 2.
6. BRUSH SELTCTION With the switoh in position 2, the UP-drive magnet operates, oasing the selector to move upward for brush selection. As the selector moves upward, carrying the commutator brushes over the commutator segments, the A segments and brush intermittently connect ground to the tip side of the fundamental cirouit, alternately closing and opening a short circuit around the stepping relay in the sender cirouit, thus causing the stepping relay to release and reoperate. when sufficient impulses have been sent back to satisfy the sender, the fandamental cirouit is opened by the sender, releasing the (I) relay, and consequently opening the circuit through the UP magnet; which stops the upward movement of the selector, and the switoh advances to position 3 where a circuit is closed for operating the TRIP magnet.

$$
\text { CD-21043-02 - Iss. } 1 \text { - Page } 5
$$

7. GROUP SETECTION When the fundamental circuit is again closed through the sender, the (I) relay operates, advancing the switch to position 4. The UP magnet is again operated and the selector moves upward for group selection tripping the previously selected brush. As the selector moves upward, the B commutator segments and brush intermittently cannect ground to the tip side of the fundamental oircuit, alternately closing and opening a short circuit around the stepping relay in the associated sender circuit, thereby releasing and permitting the reoperation of the stepping relay, until sufficient impulses have been sent back to satisfy the sender. The fundamental circuit is then opened by the sender; releasing the (L) relay which (a) opens the circuit through the UP magnet thereby stopping the upward movement of the selector and (b) advances the switch toyposition 5. As the switch leaves position 4 the TRIP magnet releases?
8. TRUNK HUNTING In position 5, the (L) relay operates through its secondary winding, advancing the switch to position 6. If the first trunk in the group is idle when the switch advances from position 5 l/4 the (L) relay releases and connects ground at cam K to the S terminal of the trunk as a busy condition. The release of the (I) relay advances the switch to position 7. If the first trunk of the group is busy when the switch onters position 6, the (L) relay holds through its primary winding from ground on the busy S terminal and the UP magnet operates, causing the selector to move upward. When an idle trunk is found the holding cirouit through the primary winding of the (I) relay is opened, but the (I) relay does not release immediately because of a circuit closed through the "C" commatator brush and segment. The adjustment of the "C" commutator brush with relation to the tripped sleeve multiple brush, is such that it does not break contact with the "C" commutator segment until slightly after the holding circuit through the primary winding of the (I) relay is opened by the sleeve brush leaving the busy terminal and making contact with the sleeve terminal of the idle trunk. The (I) relay and the (UP) magnet therefore remain operated and the selector continues to travel upward until the "C" commutator brush breaks contact with the metal segment. At this time, the brush is slightly above the.center of the selected set of terminals and the holding pawl enters the notch in the rack attached to the brush support rod. When the circuit to ground at the "C" commutator opens, the (L) relay releases, disconnecting ground from the commutator feed bar "G" and releasing the UP magnet. The selector

$$
\text { CD-21043-02 - Iss. } 1 \text { - Page } 6
$$

then drops back upon the holding pawl, thus centering the brush on the selected terminals. During trunk hunting, ground is connected to the "G" commutator through cam E and the front contact of the (I) relay. This is to prevent the reoperdion of the (L) relay by the closing of a circuit from ground through the "C" commatator brush and segment as the selector drops into place. The release of the (L) relay advances the switch to position 7 .
9. SETRCPION BEYOND - In position 7, the (L) relay operates through its primary winding, advancing the switch to position 8, where the (I) relay holds over the ring side of the trunk to ground in the final selector circuit. The tip of the fundamental is closed through cam Firom the final selector oircuit to the sender and ground through the contact of the (L) relay is connected to the ring thus completing the fundamental circuit.
10. INCOMING ADVANCE - After selection beyond has been completed, the fingl selector circuit functions and removes ground from the ring, causing the (I) relay to release thereby advancing the switch to position 9. The (I) relay reoperates in position 9 over the fundamental circuit and advances the switch to position 10. This time the direction of the current over the tip and ring of the fundamental circuit is reversed. The A cam ground advances the switch to position 11. This causes the associated key indicator sender and link circuits to function. When the key indicator operator inserts the plug into the trunk jack, battery and ground is supplied by the operator's cord circuit over the trunk to operate the (A) relay thereby giving "trunk closure". The (A) relay operated, operates the (D) relay which in turn operates the (L) relay thus advancing the switch to position 12.
11. 4 PARTY SEMI-SELECTIVE RINGING - The P commutator bar of the $3-A$ commutator is so arranged that the subscriber ${ }^{1}$ s lines, which are served by final selectors that terminate as trunks in bank terminals of groups 0 and 2 on the incoming frame, are signalled with a 1 ring code and the lines which are served by final selectors that terminate in groups 1 and 3 are signalled with the 2 ring code.
11.1 NONE RING" RINGING CODE - If the selected trunk is in a group which is signalled by the one ring code, the P commutator ground is absent, and the (I) relay releases when the switch advances from position 11 l/4. With the (L) relay released, thi (PU) relay operates immediately in position 12 and advances the

$$
\text { CD-21043-02 - Iss. } 1 \text { - Page ? }
$$

switch to position 13. The (PU) relay looks under control of the (R) and (D) relays, (the (D) relay being under control of the (A) relay). In position 13 , "one ring" ringting ourrent is supplied for signalling the called subsoriber and ringlag induotion is transmitted to the calling subscriber thru the (A) sondenser. When the receiver is removed from the switchhook at the called station, the (R) relay operates, thereby releasing the (PO) relay which in torn operw ates the (L) relay, thus advancing the switoh to position 14. As the switoh leaves position 13 1/2, the (I) relay releases. In position 14 , ground is supplied thru contacts $2 T$ and $3 T$ of the (I) relay to advance the switch to position 15. In position 15 a path is olosed for advancing the switoh to position 16.

MTWO RING" RINGING CODE - If the selected trank is in a group which is signelled by the two ring code, the P commutator supplies ground for holding the (L) relay operated from position $111 / 2$ to 13. Under this condition, the (L) relay remains operated in position 12 and the (PV) relay operates in position 12 som ground supplied by the "pickeup̃ interrapter. 部e operation of the (PU) relay in this manner insures that both rinds of the initial "two ring" cyele are obtained as well as the sucoseding ringing oyales. When the (PU) relay operates, it lo aks under control of the (R) and (D) relays, (the (D) relay being under control of the (A) relay) and adrances the switoh to position 13. In possition 13 ground is supplied by contaots 17 and $2 T$ of the (I) relay oausing the switoh to adrance to position 14. In position 14, the (I) relay $i s$ loaked operatedinthru contacts $1 T$ and 2T of the (PU) relay and the called subscriber is signalled with two ring ringing ourrent. Ringing induction is transmitted to the oalling subsoriber thru the (A) condenser in position 14. When the receiver is removed from the switchhook at the called station, the (R) relay operates thus releasing the (PO) relay wish in turn releases the (I) relay and advances the switch to position 15. In position 15 a path is closed for advanoing the switch to position 16.

$$
\text { CD-21043-02 - Iss. } 1 \text { - Page } 8
$$

12. TAIKING - The (S) relay operates when the (PO) relay releases either in position 13 or 14 and remains operated until the receiver is replaced upon the switchhook at the called station or until the switoh leaves position 16. When the (S) relay operates, it short-circuits the secondary winding of the (A) relay thus permitting the operation of the supervisory relay in the calling cord at the manual office. The (L) relay holds in position 16 under control of the (A) relay.
13. RETURN TO NORMAL - When the plug of the calling cord is removed from the outgoing trunk jack at the manual office, the (A), (D) and (L) relays release. The release of the (I) relay advances the switch to position 18 , in which position the DOWN magnet is energized returning the elevator to normal. The TRIP magnet is energized in position 17 l/ / /18 to prevent snagging the multiple brush on the trip fingers when the elevator is returning to nomal. When the elevator reaches normal the tripped multiple brush is reset and ground on the Y commutator adrances the switoh to normal.
14. RETURN TO NORMAL ON AN ABANDONED CALL - If the glug of the colling cora is removed from the outgoing trunk Jack at the manual office while the switch is in either of the ringing positions, the (A) and (D) relays release. The release of the (D) relay releases the (L) relay, advancing the switch to position 15. Operation of the (I) relay in position 15 advances the switch to position 16 . The (L) relay releases when the switch advances from position 15. The switch advances to position I8 from which point return to normal is completed as described in paragraph 13.
15. OVERFLOW - If all of the tranks in the group selected test busy when trunk hunting in position 6 , the selector * will continue upward until the multiple brush makes contact With the top set of terminals in the group, known as the overflow terminals. The sleeve commatator bar is open at overflow to prevent grounding the sleeve terminal of the maltiple bank while the switch is moving out of trunk hunting position. The (L) relay releases when this terminal is reached and advances the critch out of the trunk hanting position. The advance of the switch from position 7 to 12 is described in paragraphs 9 and 10 . Ground on the Z commutator advances the switch to position 17. The uverflow register, connected to the tip multiple bank terminal, operates from generator and repeating coil ground as the switoh passes thru position 13/16. Interrupted ground from the Mascellaneous Tones and Interrapters" circuit over lead PB alternately operates

$$
\text { CD-21043 02 - Iss. } 1 \text { - Page } 9
$$

and releases the (S) relay, thereby alternately shortcircuiting, and opening the short circuit around, the secondary winding of the (A) relay. The supervisory relay in the calling cord at the manual office in alternately operated and released, flashing the calling cord supervisory lamp as an overflow signal. When the plug of the oalling cord is memoved Irom the outgoing trank jack at the manual office, the (A), (D) and (I) relays release thereby restoring the selector to normal as described in paragreph 13.
16. TYTIMTALE - If the elevator is driven to the top of the frame (telletale) ingmy of the UPedrive positions, ground on the "X" commatator and contacts $1 T$ and $2 T$ of the (I) relaj will advance the switch to position 9. The (I) relay operates when the sender oloses the fundamental oircuit and the selector returns to normal as described in paragraph 15 except that the overflow register is not oper ated.
17. SELECTOR GROUP REGISTER - Fach time the switoh passes through position 10 grownd is connected to the lead "GR" to the soleotor group register 80 as to record all of the calls whioh are completed through a group of incoming selectors.
18. GROUP BUSY REGISTMR - As long as the switoh is in the nownal position, ground is connected to the PBR lead to the group basy register indicating an idle connection. When all the seleotors in a group are off normal, the group busy register is operated.

BELI TRLEPYONE LABORATORIES, INC.
DHPT. 332-A
AJB)
WHME $)^{\text {LIA }}$

 －reque bxoe gullico orld gutriart qbeaseloz bmo betazeqo

 ms bedrreeob as Camrom of zotooloa anly gmtroteor vdoceat －EF Hestentex

 ut Bedtroans es lemgor of emutnter zoteolea adf jus thro

 －aみoすoeres

 －botarego et restaker vasd

