

METHOD OD OPERATIOM

```
Avtomstie Routin* Teat of Final Selectors - Automatic Routine Selector geat
Sxame - Panel Systen.
```

Prge 40
Change Paragraph 6.35 to read as followsin
minith the (COM) key at normals grounded capacity, etco

Festarn Electric Cod, Incorporated, Equipmont Enginoering Branch, Hawthorne.
(41 Pages. Page 1)
Issue 1 BT-514023
January 17. 1928.

This Wothod of Operation was prepared from Issue 1 of Drawing m-514023:
y Mryod of opmbation

Abstract

Autcratic Routine Test of Final Selectors - Automatic Routine Selector Test Prame - Panel System。

DEVFLOPMFNT

1. PURPOSE OF CIRCUIT

1.1 This circuit is designed to test final selectors which operate with ground on the cut-off relay. By the operation of the ($\$ T$) and (TRA) keys in the test circuit an incoming selector which is associated with the test circuit is connected to the final som lector that is to be tested. The incoming selector having been connected to the-test circuit by means of a connector switch, is connected to the final selector which in turn is directed to either one of two test lines and "PBX" hunts to the third test line. The terminals 97 and 98 are busy PBX lines while the sleeve condition of terminal \#99 is changed to agree with the class of test made, this being determined by the setting of the class sequence switch in the test circuit. When this connection is established, a series circuit is closed indicating that the final selector is functioning properly. The toét then advances and in turn advances the incoming selsctor used as a connecting circuit to the next final selector to be tested. The testing of the Iinal selectors will progress autom matically until all final solectors have beon tested, after which a Bignal known as "ind of Cycle" signal will be given indicating the completion of the test on all pinal selectore.
I. 2 If trouble is oncountered at any time an alarm signal is giveno
1.3 In order to reach all innal selectors, connector switches in the test cireuit are used so that sufficiont incoming selectors may be used to connect to every final solector working off the multiple of the incoming frames. The number of selectors. Will depend on the manner in which the final selectors are multipled on the incoming frames.
1.4 By means of a particular oircuit feature any particular group of final selectors can be tested by means of directing the test circuit to any incoming selector used as a connector and in turn directing this selector to the incoming group in which the final selector is located. In order to test a particular final selector

```
(41 Pages, Pago 2)
Issue 1 BTw514023
January 17. 1928.
Sa0t the incoming seloctor must be raised manually to the terminal in
that particular incoming group where the final is locatedo
1.5 A repeat test feature is provided so that tests may be rew
peated on any final selector.
1．6 In the case whers the final selector happens to be busy an ＂Automatic or llanual＂pass－busy feature is provided．
1．7 Continuity tests may be made of the bruskes which do not have accese to the test lines．

\section*{2．TORKING LIMITS}

2al \(\operatorname{mis}\) circuit is designed to operate with the central office battery between 48.5 and 50 volts．

\section*{OPPRATION}

3．PRINCIPAI FUNCTIONS
3．01 This circuit automatically tests all final seloctore in offices where line circuits have ground on the cut－off relaye．

3,02 Hal This circuit is arranged to test for busy，the required in coming selectors which have access to all the final selectors．

3．03 This circuit may be directed to any particular group of \(11=\) nal selectore．

3．04 oulob The incaming selectors used for connecting purposes are busy to service when used for test purposes．Twowire incoming sem lectors（except repeating incoming selectors）that are used as locel selectors，amy also be used as test selectors．

3．O5 This circuit is arranged to distinguish between busy and idls aslsctors and to wait for a particular selector to become ide after which it will proceed with the testa or if desirede a pasam busy \({ }^{10}\) zey may be operated which will cause the test oircuit to pass by the final selectors which are busy at the time the tost oircuit encounters them。
\begin{tabular}{|c|c|}
\hline & This circuit will give an alarm in the event trouble is encountered. An alarm will also be received after a definite interval in the vent an incoming selector is busy too long and also if the final selector is busy too long an interval if the pass busy key is not operated. \\
\hline 3.07 & Registers are provided to indicate the number of siagle test (ST), the number of multiple teste made (MT) and the number of times the trouble alarm is brought in (ALM; \\
\hline & This oirouit is arranged to apply a current flow hald test on the primary winding of the (L) relay. \\
\hline 3.09 & This circuit is arranged to apply a currerit flow release test on the primary winding of the (L) relay. \\
\hline 3.10 & This circuit is arranged to apply a speed operate and nonmoper ate test on the PBX relay. \\
\hline 3.11 & This circuit is arranged to appiy a speed operate test of the (TB) relay。 \\
\hline 3.12 & This circuit is arranged to test the spoed operate and release of the ( \(L\) ) relay during final selection. \\
\hline 3 & This eircuit is arranged to test the capability of the final selector to select an idie line. This is accomplished by directing the final for brush group and unit selections to a test line, in this case terminal 99. \\
\hline & This circuit is arranged to test the capability of the final to make a direct line busy test. This is accomplished by directing the final to torminal 99 where a busy condition is furnished on this particular lino. \\
\hline & This circuit is arranged to make a mirst PBX line idle testm last PBX line idio test last PBX line busy test Mintermediate \\
\hline & PBX line ide test" and "no test". These tests are made by directing the final selector to texminal 97 or 99 , as determined by the sotting of the class sequence switch, in a similar manner as described in paragraphs 3.13 and 3.140 \\
\hline 3.16 & This circuit is arranged so that in the event of trouble ther in the teat circuit or the circuit under test, by the \\
\hline
\end{tabular}
```

(41 Pages, Page 4)
Issue 1 BTm514023
January 17. 1928.
operation of the (CA) key the apparatus may be advanced to a
point where a ropeat test may be made or the test circuit may be
advanced to the next selector. With the (CA) key operated the
test sequence switch will not return to normal.
3.17 (TST) condenser is provided as a means for testing (AH) re-
lay.
3.18 This circuit is arranged to tive a visual signal in case the
test line, (line 99), is seized on a test call or thru orror.
3.19 The following tests are applied to the final selector:
3.191 Commutator resistance test.
3.192 Test of immediate line make busy path.
3.193 Mon-operate toet of (PBX) relay over ring.
3.194 Teet of off-normal ground.
3.195 Test of return to normal.
3.196 Brush continuity tost.
3.197 Time measure release test.
3.20 The circuit is arranged so that the "control advance" reature
may be controlled from all final frames.
3.21 The (TRA) key is operated to close the test line thru to the
test circuit, the test line is held busy except for a short in-
terval after units solection*

```

\section*{4. CONNGCTHM CTRCUIRS}
```

4.1 This circuit will fanction with panel machine switching system incoming circuite and panel machine switching inal cirouits which operate with ground on cut-opf relays.

```

\section*{DESCRIPTION OF OPSRATION}

\section*{5. APPARATUS AND RUNCTIONS}

\subsection*{5.01 Connoctor sequence Switches (RelA). (Re1B) Ftc.}
```

These connector sequence switches are used to connect the

```
test circuit to the different incomingelectors. One connector serves to connect the test circuit to 3 different incomings. The wires to the different selectors are indicated by the numerals 1 . 2. 3 etc. Where more than 3 incoming selectors are required for comnecting purposes two or more connector sequence switches must be used, Only one incoming selector is connected to the test circuit at any one time.

Directine Silitches
Associated with crossuconnection terminals are one or more 200 type selector switches. These switches serve . lst - to control the brush and group selections of the incoming used for connecting purposes.

2nd a They determine wich incoming selector will be used for connecting purposes.

3rd - They set the overflow terminal counter to indicate how many overflow terminals are to be passed before returning the elevator.
5.03 Incomine Control sytch (IC)

Associated with the connector control sequance switch is a \#200 type sel ector which determines how many overfl ow terminals are to be passed before the incoming elevator should be restored.
5.04 Connector Control Sequence Suitch (Be2)

This switch controls incoming selectors directing them to the proper group of final selectors and restoring the incomings after tests have been mado. It is a two cycle switch, that is the second half of a revolution eerves the same purpose as the first half of the revolution.
5.05 Test Sequence sitch (R-4)

This switoh controls the selections of the final selector and controls the test condition imposed on the selector.
5.06 Trouble Timing Sritch (TBL)

This switch in conjunction with an interrupter atarts countm ing time when the circuit to be tested becomes idio. The awitch
```

(}41\mathrm{ Pages, Page }
Issue 1 BT"514023
January 17. 1928.

```
takes one stop for each closure of the interrupter and the desirad time is secured by passing the desired number of terminals on the bank before the entch stops on the trouble alarm terminal. On time measure release tests a longer time is counted off.
5.07 Buay mimine switch (BY)

This switch in conjunction with an interrupter starts counting time when the test begins. The switch takes l step for each closure of the interrupter and the desired time is secured by passing the desired number of terminals on the bank before the switch stops on the terminal assigned for busy alarm.
5.08 Start Kev (ST)

The operation of this key starts the automptic tast which continues until all the final selectors have been tested. If other koys are operated, the operation of the start koy starts a special test as determined by the koys operated. The release of the (ST) key stops the test circuit at the conclusion of the particular test in progress.
5.09 Ratum to Normal Key (RN)

The operation of this key causes all the test circuit apparatus to return to normal when (ST) koy is released.
5.10 Control Advance Key (CA)

Thie key is operated when the test circuit fails to complete its cycle due to a fault in itself or in the ofreuit under test. The operation of this key advances the test awitch to position 16 and when relessed advances it to position 1 to test the next circuit or the same one in oase the (RFP) key is operated.
5.11 Time Alarm Key (TA)

The operation of this key restes the timing awitches and holds up progression of the test circuit to another final until the key is restored. The circuit will continue to test the same circuit however if the (RRP) key is operated.

\subsection*{5.12 Repeat KeV (RNP)}

The operation of this key causes the test circuit to ropeat the particular cycle of tests being made on any selector as long as the key is operated. A single ropeat eycle of tests is made by momen tarily operating the key.

\subsection*{5.13 Antomatic Pe'se Buay Key (APB)}

The operation of this key causes the test circuit to automatically pass all finale that are busy.
5.14 Panual Base Busy Kev (YPB)

The operation of this key steps the ineoming el evator from a busy terminal to the next terminal, which may or may not be busy. The test does not procesd until the key is restored to nomal. Dy repeated operations of the key successive busy finals may be passed.
5.15 Particular Circuit Ker (PC)

The operation of this key in combination with other keys onumerated below causes the apparatus to make a tes̆t on a particular group of final selectors. The particular test does not procesd until the key is released. If it is desired to tost a particular final selector of a group, first the proper group is selected, then the elevator is raised to the desired terminal by hando for the purpose of testing a particular group or groupe, this circuit is provided with a tons and a row of units keys to select any desired termanal on the directing selectors, one or more twontios keys (TWA), (TWB) otc each of which controle a particular directing elector switchs Group number keys (GN) O to 3 inclusive, to guide the incoming olevator to the particular groups to be testeds overfiow Count keys (OC) 0 to 3 inclusive which determine the number of overfiow terminals to be passed before the incomigg olevator is restored to normal.
5.16 Remote Control Jack

The purpose of this jack in connection with a make busy plug or the \(32-A\) test set is to make it possible for a man to watch the performance of the selector under test at the time the (CA) feature is brought into play.
```

(41 Pages, Page 8)
Issue 1 BTw514023
January 17. 1928.

```

\subsection*{5.17 Byusk Continuity Toat Key (BC)}

With this key operated, a brush continuity test is made. The partioular ine selected is determined by the jacks in (B), (T) and (U) rows which are plugged up.

Are used as keys by inserting a make busy" plug in one jack in each row, to direct the final selector to any deaired tarminal when making brush continuity tests.

\subsection*{5.19 Multi-Test Kev (XT)}

When this key is operated, a sories of tests is made of each final selector before progressing to the next final selector.
5.20 Time Reasure Release Koy (TMR)

When this koy is operated a test of the time measure release feature of final selectors is made when (R3) switch is in position 5.

\subsection*{5.21 Commutator Test Key (COV)}

When this key is operated the resistance of the fundamental circuit is reduced in order to dotect excessive resistance between commatators and their brushes.
5.22 Transfer Key (TRA)

This key, when operated in one direction, connects the test line (line 99) to the automatic test circuit; when operated in the opposite direction, connecte the test line to the jacks at the inal frames for use with the portable test circuit.
5.23 Class Sequence fintch ( \(\mathrm{R}-3\) )

The purpose of this switch is to change the test conditions as required to simulate different line conditions and to cause the test circuit to advance to the next final when all the doe sired tests have been made.
5.24 Sincle Test Meter (ST)

This meter counts for every test call passed or attempted to be passed.
5.25 Multi~Test Meter (XI)

This motor operates each time a multi-tost of a selsctor is completed.
5.26 Alammeter (ATM)

This meter counts each time the trouble alarm is brought in.
5.27 Busy Incomine Iamp (BI)

This lamp lights when a busy incoming is oncountered.
5.28 Busy Final Lamp (BF)

This lamp lights when a busy final is encountered.
5.29 Bnd of Cycle Iamp (Te)

This lamp lights when the test circuit completes a routine tost of all finals.
5.30 Busy Alaym Iamp (BX)

This lamp lights in case a final remains busy for too long an interval when the test circuit is waiting to make a test.
5.31 Trouble Alarm Iamp (TNBL)

This lamp lights when trouble is encountered in the final selector under test or in the test circuit during the test.
5.32 Busy Back Iamp (BB)

This lamp flashes on brush continuity test if the line called is busy.
5.33 Interceptine Iamp (IN)

The lighting of this lamg on a brush cont inuity test may indicate that the lino called is intercopted or that the sleove is open.

\subsection*{5.34 Beush Continuity Switch (BC)}

This switch controls the progress of a brush continuity test.
6. GTRCUTT OPEBATION
6.01 Start of Tost

The (ST) and (TBA) or (BC) keys are operated to start the test. The (ST) key operated, operates the (3T) relay under con.e trol of the ( 0 ) cam of each connector switch. Should any connector ewitch be off normal, the (ST) relay will not operate. The (ST) relay operated, locks under control of the (ST) key when the connector sequence switch advances and operates the stopping magnet associated with the (ImA) brush assomblyo Circuit: battery, winding of the magnet. (TRA) rolay nomal, brush and normal terminal (I-Al). (TW) keys (ST) relay operatod, (TRA) or (BC) key operated, to ground. The (T) relay does not oper ate at this time as its winding is short-cirouited. Tho stopm ping magnot onergizedo opens ite circuit, roleases and advances the ( \(I \omega_{A}\) ) brush assembly to terminal \(l_{\text {a }}\). Wen terminals on the (I) switches are not connected for a tost, the terminals of arc A are connected to ground camsing the stepping magnet to oner gize imediatoly upon the advance of the switch to that terminal. When the ( \(I m A\) ) brush assembly advances to a torminal whioh is connected for test the (T) relay operates in series with the stepping magnet. The stopping magnot does not operate due to the high resiatance in the circuit. The (T) relay operated, operates the (CON) relay. The (CON) relay operatede locks under control of the (ST) key, and advances the ( \(R=1 A\) ) switch to the succeeding or test for busy position. For the first test this Will be position 2. Circuits Battery, ( \(\mathrm{R}-1 \mathrm{~A}\) ) magnet, cam ( \(B-1 A\) ), orose connection block \(6-\times\) lead 1 , brush and terminal 1 of arc (ImA6. (CON) relay operated, to ground. there more than one connector is required to test all the final eirouits in an exchange, each succeading connoctor cannot be moved out of normal until the preceding one used has roturned to normal. For instance, it is assumed that the second connector shown in the Schematic is the last of a series of comnector units. Connsctor 1 can only be moved out of position 1 or 10 after the last connsctor is restored to position 1 or 10 . The ofrouft for restoring the last connector or any suoceading connector, is from ground on the (CON) relay operated, brush 6 and some terminal of the (I) switch cross conm nection on tris \(6_{q}\) cam \(P\) of last connector used. cam \(C\) to bettery thru the (R) magnet. If one of the connector units is not
returned to normal. the ofrouit ceases to function and the alarm operates as hereinafter described.

\subsection*{6.02 Tost Incomine for Busy}

With (R-1A) switch in position 2, (TI) relay operates on its primary winding, the circuit being thru (R) cam of ( \(R-1 A\) ) switch, cross connection block ( \(5-\Sigma\) ), arc (5) of (INA) switch and front contacts of (T) relay. (TI) rolay operatod, lights (BI) lamp and advances ( \(\mathrm{B}-2\) ) switch from 1 to 2 . In position \(13 / 4\) battery thru the secondary winding and front contacts of (TI) relay is connected to (TK-1) lead. (TK-1) lead may comect to (TK) lead on the sleeve of a threemire local incoming solector or to the associated sleeve terminal at the district or office multiple of a twe-wire incoming seleotor used as a local incoming selector. If the incoming sem lector is normal, thore will be no ground on the sleeve and (TI) relay should rolease whon ( \(R 2\) ) witch leaves position \(11 / 2\). If the incoming selector is busy (TI) relay will lock over (TX-1) lead and (BI) lamp will romain lighted.

When the incoming becomes free (II) relay should release. (TI) relay released connects ground to (TX) lead to hold the incoming solector busy, extinguishes (BI) lamp and connects (TY -1 ) lead thru to (AV) interrupter, When (TYM1) lead becomes grounded and (AV) interrupter makes, (3) rolay operates; when (AV) interruptor breaks (3') rolay operates; whon (AV) interrupter makes (2) relay operates; when (AV) interrupter breaks (2*) relay operatess won (Av) interrupter makes (1) relay operates; when (AV) interrupter breaks (1*) relay operates; when (AV) interrupter makes (0) relay operates; when (AV) interrupter breaks ( \(O^{\prime}\) ) rolay operates. ( \(0^{\circ}\) ) rolay operated advances (R2). witch from 2 to 3. The purpose of the delay occasioned by running down the counting relays is because (TY-1) lead is momentarily grounded by the sequence switch advancing paths, bofore the down-drive tas takon place. On leaving pow sition 2 the counting relays are released.

\subsection*{6.03 Settine Incomine Control Sefitch}

When the (R-2) switch entexs position 3. the (R-1A) switoh advances to position 3 , the (IC) stepping magnet is energized thru the ( \(S T\) ) key, and the ( \(R S-2\) ) rolay oporates. With the ( \(R-1 A\) ) switch in position 3. the (TK-1) lead is connected to ground thru the break contact of the (PG) relay. The (RS-2) relay operated, operates the (TF) relay and advances the ( \(R-2\) ) switch to position 4. The (TF) relay operated, operates the (TF-1) relay whon the (IC) switch is in odd positions and opens the operating circuit
for the (TR) relay, thus holding the (T) and (R) leads open. The (Trel) relay performs no useful function at this timea ine (IC) stopping magnot energized, opens its circuit and releases, advancing the (IC) brush assembly. The position of the (IC) switch determines the number of overflow terminals the income ing el vator muat pass by before it is restored to normal, and thus determines the number of groups to be tested. With the schome of croseconnection show on the drawing and with the brushes of the (IA) switch resting on terminal 1 , group 0 to 3 inclusive in the first frame are tested. As determined by the crosscoonnection of the (IA) switch and terminal strip 4, the (IC) magnet is short-circuited whon its brush assembly rests on terminal 1. Circuits ground on the (PC) sey, brush 4 and torminal 1 of (IA) Bwitoh, crosswconnection or tesminal etrip 4. lead 4, to terminal lof arc (IC-2). On the setting just made, the incoming elevator returns to normal wen the olevator briches have stopped to the fourth set of overflow terminals.

6,04 Incoming Brush Solection
With the (R-2) switch in position 4, the (UP) magnot in the incoming selector is enorgized by ground from the break contact of the ( \(O^{\prime \prime}\) ) relay, cam ( \(Q-2\) ). (RS-2) relay operated, cam ( \(D-2\) ) over the (TU-1) load, causing the elevator to ascond for incoming brush selection. The brush selected is controlled by the setting of the (IA) switch. Ith the (IA) switch on terminal 1 and with the cross-conne ction shown, the ( 0 ) brush will be selected, As the incoming brush olevator asconds, ground from the (A) commutater over the ( \((2 A-1)\) lead thru arc 2 of the (IA) switch and cross-connecting strip 2, operates counting relay ( 0 ). When the brush of the (A) commatator makes contact with an insulated segment of the commutator, the ( \(0 *\) ) relay operates. The ( 0.0 relay operated, opons the circuit to tho (UP) magnet. stopping the
 (R-2) ewitch in position 5, the (TN) magnet is onergized over lead ( \(\mathrm{M}-1\) ) for tripping the brushe As the (Rn-2) Ewitch leaves position \(4-1 / 4\) the \((0)\) and \(\left(O^{\prime \prime}\right)\) relays release. Ground on the contact of the ( \(0^{\circ}\) ) relay normal advances the ( \(R-2\) ) switch to position 6.

\subsection*{6.05 Incoming Group Selection}

With the ( \(R-2\) ) switch in position \(\sigma_{0}\) the (UP) magnet in the incoming is again energized causing the olevator to ascond for
incoming group eelection. The (w) magnet operated, tripa the solected brush. Intermittent ground from the incoming (B) commutator over lead ( \(T 3-1\) ) and thru arc 3 of the (IA) switch and crossiconnecting block 3, operates the (0) relay for the given position of the (IA) switoh and the crosseconnection shown). The ( \(0^{5}\) ) relay operates when the ground is removed from the ( 0 ) lead by the functioning of the commutator. The ( \(0^{0}\) ) relay operated. stops the elevator again and advances the ( \(\mathrm{R}-2\) ) switch to position 7. As the \((R-2)\) witch leaves position \(61 / 4\) the \((0)\) and \((01)\) relays release. As the awitoh leaves position 6, the (RS-2) and (T) relays release. the ( \(\pi s-2\) ) relay released, opem the circuit through the 1000 ohm winding of the (TF) rolay.

\section*{\(6 』 06\)}

Einal Busy Tost
If the final selpotor seized is busy there is ground, on the (s) leadn whon the incoming seizes a final which is busy the (TF) relay holds through its 800 ohw winding over lead (28-1) and the (DT) lamp is lighted. If the final when seized is free, or Then it becomes free, the (wn) relay releases. The (TY) relay roleased and the ( \(\mathrm{TF}-1\) ) relay romaining operated, operates the (TR) relay, thru odd torminals of (5) are of (IC) switch and back contacts of (ZC) rolay, The (TY) rolay roleased. connocts ground thru its back contacts to the sleave of the final holding it busy.

If the final selector which is seized is busy and is of the type that has the time measure release feature, there is a possibility of the final selector (TK) relay reoperating while the final is restoring to normal and locking to ground thru back contacts of (TF) relay. Onder this condition the final will advance to its busy back position.
6.061 Fith (IR) reiay operated and (AN) awitch in position \(l_{0}\) (IT) relay is connected to the ring, and should be operated and released by the busy back pulses. The first operation of (YT) rolay operates (YTA) rolay in turn oparating (YI2) relay which locks undor control of (IR) relay in position 1 of (R4) witch. Then (YT) rolay releases, (YT2) relay releases and a oifcuit is closed from sound, (G) cam of (RH) switoh, back contacts of (XTI) rolay and front contacts of (YT2) relay operating (TF) rolay (TF) rolay operated disconnects ground from the final sleeve allowing the final (TKK) rolay to rolease and roleasing (TR) relay. (TR) relay released releases (YT2) relay. (TW) relay locks to ground on the final sleove until the final has restored to normal.

\subsection*{6.07 Advance of Test 8 witoh}
6.071 (TR) relay operated, connects the tig and ring leads from the innal to the test oircuit. (R4) switch boing In position 1, battery thru the winding of (YT) relay is connected to the ring and (YT) relay should operate from the 40 ohm ground on the final ring when the final selector is ain the normal positione (YT) relay operated locks over the inal ring and operates (YT-1) relay, wich closes ground thru the winding of (TG) relay to the tip of the final and operates (YT-2) relaye (3G) relay should operate from the battery thru the winding of the final (L) relay, but the (L) relay should not operate on account of the high resistance of (TG) relay. (TG) relay operated, operates (TG1) relay which advances (R4) switch from 1 to 2. On leaving position 2 , (YT2). (TG) and (TG1) relays release and the operating circuit of (YT) relay is broken.

\subsection*{6.08 Einal Brush selection}

In position 2, the findamental oircuit for final brush eslootion is clofed and (STP) relay operates in series with the final (I) relay, (STP) relay operated, operates (SO), (1), (2), (3) or (4) counting relay, the partieular counting relay operated depending upon the bank in which the test linos are located if (BC) key is normal and upon the jack in (B) row in which a make busy" plug is inserted if (BC) key is operatede Impuises from the final (A) commutator, short oircuit and releaso (STP) relay, allowing the prime relay corresponding to the operated counting relay to operate. The operation of the prime relay transfers the pulaing lead to the nextcounting relay. The impulses from the final seleotor circuit continue until (so) counting relay operates. Whon (STP) rolay releases, (BO") and (FO") relays operato. The operation of (BO) relay opens the fundamental circuit, causing the final circuit to advance. The operation of (FOP) relay advances (矿) sequence switch from 2 to 3 . on leaving postion 2, the battery supply to the counting relays is broken releasing theme ( \(\mathrm{FO}^{2}\) ) relay roleased, advances (Rt) witch from 3 to 4.

\subsection*{6.09 Pinal Tens Solection}

In position 4* the fundamental circuit for final tens selection is closed and (STP) relay operates, operating (9) counting relay if (BC) key is normal or the counting relay corresponding to the jack in (T) row in which a "make busy" plug is inserted

\begin{abstract}
if (BC) key is operated. As pulses are received the successive counting rolays operate; when (BO') and (FO?) relays operate, the fundamental circuit is broken advancing the final seloctor and advancing (肘) switch from 4 to 5 . on leaving position 4 , the battery supply to the counting relays is broken releasing theme ( \(\mathrm{FO}^{\circ}\) ) relay roleased advances (R4) awitch from 5 to 6.
\end{abstract}

\section*{6. 10 Jinal Unita Solcietion}

In position 6 , the fundamental elrouit for final unite selection is closed and (STP) relay operates, operating (7) or (9)
gounting relay deponding upon the position of (R3) switch if (BC) key is normal or the counting relay corresponding to the jack in (v) row in which a "make busy" plug is inserted if (BC) key is gperated. As pulses are received the succeseive counting relays -hy gperated. As pulses are (FO") relays operate, the fundamental cir YLfnoperate; when (BOV) and (FOt) relays operate, the fundamental cir-
4) Struepit is broken advancing the final soloctor and advancing (fit) tanforitch from 6 to 7 . On leaving position 6 , the battery supply to the counting relays is broken releasing themo (FO!) relay roleased jes advances ( FH ) switch from 7 to 8 .
(Hh) In position 6, battery from (J) cam of (RH) switch is closed a (6) thru to (18) relay, The winding of (NB) rolay is ishort circuited r3cisby ground thru back contacts of (SO) relay, so that it does not - Sajoperate until (80) relay operates. (MB) relay operated, romains crit operated until (R4) switch advances out of 9 and until (TKR) relay nidinfoleases. (NB) relay operated, switches the sleove of the test is filine from a busy condition to the test circuit. En cicos
6at\% Idle Line Terte
-reo +

\section*{Idle Line Conditions}

With (R3) switoh in position i., the test ine (inno 99) rosombles an idle direct line, and the final sel ector is directed to it.

With (R3) switch in position 5, the test line, (lind 99) resembles an idie lowfi life dria PoBoXogroup, and the final solsetor is dirscted to Hit。

With (R3) switth in perition 7, the fest line, (Ine 99) resembles an idlo last linge of a PaBols group, and the final selector is directed to fine 97 and PoBoXo hunts to line 99.

With ( \(B 3\) ) yyito in poiffion Pry the test line, (line 99) resembles an idte fower line of apgex. group, and the final

```

 (41 Pages, Page 16)
 Issue 1. BT-514023
 January 17. 1928.
    ```
            6. 112 Pinal Advance
6. 1121 The final advances after units selodtyon disconnecting ground from the ring, releasing (YT) relay in turn releasing (YT1) rolay/ (XT) (YT1) relay released connects ground to the ring of the test inne. When the final stops on line 99 after testing it for busy, it connects bâtery thru a resistance to the sloeve, operating (IL) rolay, lighting (TL) lamp and also oporating (SLV) or (SLVI) relay ciosing a circuit thru back contacts of (YTS) relay to operato (BL) rilay. (SL) relay operated. locks indopenidently of (XIS) relay. When the final advancestrurther. the ring is closed thru and a olrouit isizlosed from ground, from cam (E) of (Rit) switoh back contacts of (YTA) relay, the ring of theltast ine, the ring of the final, cam (I) of (R4) switch, back contacts of (YT) rolay, cam (Q) of (R3) switche winding of (YT3) rolay to beftory, operating (YT3) relay. (YTS) relay operáted, opens the operating oircuit of (sI) rolap; this - Luoris for the purpose of preventing the oporation of (SL) relay and blocking the test circifit in case the immediate make busy path of the calla ine is open. With (YTS) and (SL) relayo opd \(\mathrm{r}^{2}\) ated, a circuit is closed thru their front contacts to advance (Rt ) switch from 8 to 9) on ofis . leavingaposition 8. (YTH) relay releases. - ís lise evall

\section*{Test operntions}

\subsection*{6.113}

Mif bre. quote
With (AM) sMitch in position 9. (SUB) relay is bridgod across the top and fing of the test lines battery thru - orlf teath winding get. (TKP) relay is conneoted to the ring of bra, quothe final and ground is connected to the tip of the fi-
 should operate in serites with (SUB) relay and should lock faosthry frant contactap or (SLV) or (SLVI) rolay; (SUB) relay wo ryme ogparate but inif 50 . ingediately shunted by the ground to abligh (IKR) räay orols. (TKR) relay operated, oper-
 lay was oporated in position 6 of (R4) switch, thru back contacte of (2K1) relay, it opirated (PR) relay. on ieaving position 8 the operating oircuit of (SR) relay
( 41 Pages, Page 17)
Issue 3 BT-514023
January 17. 1928.
was broken but it rimained locked thru back contacte of (IKI) relay. (IKKI) rolay operated, operates (IK2) relay, which locks thru (F) cam of (R \(\mathrm{H}_{4}\) ) witch. The operation of (TKI) relay also disconnects ground from the final sleeve and awitohos the locking circuit of (SR) relay from ground to the final sleove. Then ground is disconnected from the final sleove, the final (TK) relay should releaso and connect ground to the sleeve thru it back contacts: this ground should hold (SR) relay operated. Should the ground not be connected to the sleeve by the release of the final (TX) reelay, (SR) relay would release, releasing (FR) rilay opening the operating olrcuit of (CH) relay, blocking the test circuit in position 25. The final should advance to its "awaiting called subscriber*s release" position. The final (L) relay should hold in series with (SUB) relay, operating (SUB) relay, (SUB) relay operated, operates (III) relay in turn operating (MTI) relay which advanoes (R4) switch from 9 to 10. The operating circuit of (MT) relay in positions 9 and 11 is thru front contacts of (TKR) relay, (TKR) relay is hold thre front contactis of (SLV) or (SLM) relay. This is for the purpose of detecting a cross betweon the tip and slaeve of the final brush, as a cross of this type would cause (SLV) or (SLVI) relay to be shunted and roleased from the ground on the final tip in the talking position and the "awaiting" called subscriber's release position, and the ade vance of the test circuit would be blocked. On leaving pom sition 9 (MI) relay releases, releasing (MTI) solay and advancing ( R 4 ) switoh from 10 to 11 . In position \(11_{\text {, if }}\) if the final (L) relay is still holding as it shoulds (SUB) relay should etill be operated and (MT) relay should operate, operating (MIL) relay. If the final (L) relay fails on its hold test (SUB) relay should be released and the test circuit should block in position 9 or.11. (MI2) relay operated looks to ground on (J) cam of (R4) awltch and advancee (Rlt) swatch from 11 to 12. on leaving position 11 (ivi) row lay releases advancing ( \(\mathrm{R}_{\mathrm{t}}\) ) ewitoh from 12 to 13 . On leav. ing position 12, the circuit thru (suB) relay io openeds however. ground from (E) cam of (RH) ewitch thru resistances is left connected to the ring of the test line, applying a release test to the final (L) rolay. In poaition 13. (MT) relay should operate in local oircuit, closing a circuit from ground thru its front contactis and front contacts of (MII) relay to advance ( 34 ) witch from 13 to 14 on leav. ing position 13 (MT) relay releases. In position 14, (SUB) relay is again bridged across the tip and ring of the test

12ne. This is for the purpose of holding the final ( 5 ) relay in case it has falled to meet its release tost. In position 14, a oircuit is closed from ground thru back contact of (MT) relay, (W) cam of (RH) awitch, (DL) in torrupter, (R) cam of (R3) switch, (1) rolay to battery: operating (1) relay when (DL) interruptor closes. When (DL) Intorrupter opens (1") relay should operate, when (DL) interrupter again oloses (SO) relay should operate, and whon (DL) interrupter again opens, (BO") and (FO") row laye operats. (FOV) relay operated, advancod (pit) switch from 14 to 15 . On loaving position 14 the counting rem lays are released. In poisition 15, if the final (L) rem lay has failed to release (SUB) relay will be operated and (MT) relay will oparate in turn operating (MT1) relay which looks and blocks the test circuit in position 15 . If the final (L) relay meets its release test the final will advance and disconnect battery from the leave of the test inno, reloasing (IL) relay which oxtinguishes (IL) lamp and roloasing (SLV) or (SLV) relay in turn raco loaaing (SL) and (TKR) relays. (TKR) rolay roleasod, row leases (TK) and (NB) relayse (TKN) relay roleased. witcher the final sloeve from the locking circuit of (SR) reley to the locking circuit of (FR) relay. (SR) relay reloases but (FR) relay should lock to ground on the final diove. A circuit is closed from ground thru back contacts of (SR) rolay and front contacts of (FR) relay to operato (CB) relay. This is for the purpose of chacking the locking ciroult of (FR) relay. (CH) relay operated, locks to ground on (E) cam of ( \(\mathrm{A} / 4\) ) switch. When the final selector has restored to normal. it will disconnect ground from the sleve, roleasing (TR) rolay. (FR) rolay released. conm neets ground to the final sleove to hold the final selector buey and a circutt is closed fram ground thru back contacts of (MMI) relay in parallel thru contacts of (TXR) xey normal and contacte of (N) cam of (R3) switch in position 6 to 4 back contacts of (SUB) rolay, iront contacte of (CH) relay. back contacts of (FR) rolay and (W) cam of (R4) switoh, advancing (RH) switch from 15 to 16.

\subsection*{6.12 Bugy Jine Terte}

Tits (R3) switoh in position 3, the test line (ine 99) resombles a busy dirsct line whon the final selector is testing it. and the Inal selector is directed to it.

With (R3) switch in position 9, the test line (ine 99) resembles a busy last line of a PoBoXe group, when the ilnal sel actor is teeting it, and the final is directad to line 97 and PoBoX. hunt to line 99.

On both of these tests when (R4) switch reaches position 6 . battery thru resistances is connected to the sleeve of the test line holding it busy and operating (SLV) or (SLVI) relay in turn operating (SL) relay. When the final advances after units selection, it disconnects ground from the ring releasing (YT) relay, in turn roleasing (YTI) relay. (YTI) relay roleased, advances (R4) switch from 8 to 9. The final selector tests the line and finding it busy, the elevator should restore to normal and the final ehould advance to the busy back position. Busy back pulses, interrupted ground, over the ring should operate and release (BB) relay. The first operation of (BB) relay should operate (2) relay, the release of (BB) relay permitting (2『) relay to operate, the next operation of (BB) relay should oparate (1) relay, the release of (BB) rolay permitting (1") relay to operate, the next operation of (BB) relay should operate (SO) rolay, the release of (BB) relay permitting ( \(\mathrm{BO}^{\circ}\) ) and (FOt) rolays to operate. (FO") relay operated, advancts (R4) switch from 9 to 10. On leaving position 9 battery is disconnected from the sleeve of the test line releasing (SLV) or (SLV1) relay in turn releasing (SL) relay and (BB) relay is disconnected from the ring and the counting rolays are released. In position 10 (CAI) relay operates, advancing (R4) switch from 10 to 16. With (CAI) rolay operated, the ground is disconnected from the sleeve as (R4) switch advances from pow sition 15 to position 16. This should permit the final (TK) rew lay to release and the final to restore to normal.

\subsection*{6.13 No Test calls}

With (R3) switoh in position 13 , the test line (line 99) resembles a busy direct line when seized by the final selector, and the final selector is directed to the test line on a "no test" besis. The "no test" indication is transmitted to the final over the ring by the low resistance shunt around the winding of (YT) rolay; this should cause the operation of the final (PBX) relay when the final advances after units selection. When (R4) switch reaches position 6, battery thru rosistances is connected to the sleove of the test line holding it busy and operating (SLV) or (SLVI) relay in turn operating (SL) relay. When the final advances after units selection, it disconnects ground from the ring, releasing (YT) rolay, in turn releasing (YTI) relay. The final selector
should stop on the test line in spite of ite busy condition and should advance closing through the ring and a circuit is closed from ground from (I ) cam of (R3) switch, back contadte of (YTM) ralay, the ring of the toat line, the ring of the final, cam (I) of (此) switeh, back contacts of (YT) relay, cam (Q) of (RS) switch, wineing of (YT3) relay to battery, operating (YTS) relay. With (YTS) and (SL) relays operated, a circuit is closed through their fromt contacts to advance (R4) awitch from 8 to 90 on leaving position 8, (YTS) relay releases. (NT) relay is connected to the tip of the test line, and when the final reaches the talking position it should operate from ground from (W) cam of (R4) switohe in position 9s over the tip of the final selector. (NT) relay operated, connects (TKR) relay to the final ringe

Where It wring is used, in poaitions 9 to 15 of ( \(24 t\) ) awitoh. ground from (D) cam of (RJ) switch through the winding of (SUB) relay, (V) cam of (af) switch and (f) cam of (R3) awitch is conw Bected to the ring of the teat lino. there \(\mathrm{g}^{m}\) Wirimg is used. in position 9 of (aH). ground from (D) cam of (B3) switoh through (V) cam of (Tif) awitch and (F) cam of (R3) switch is connected to the ring of the tost lines (TKR) rolay should operato and should. lock through front contacts of (SLV) or (SLVI) relay. (TKR) rem lay operated operates (IXI) relay and holds (MB) relay operated. (SR) relay was operated in position 6 of (Pft) switoh, through bact contacts of (TKC) rolay, it operated (FR) relay. on laving position 3 the oparating oircuit of (SR) relay was broken but it ramained locked through back contacts of (TKC) relay. (TKI) relay operated, operetes (Ix2) rolay, which locks through (p) oam of (R4) Emitch. The operation of (TKC) relay also disconnects ground from the inal sleove, and switches the locking circuit of (SR) relay from ground to the final. sleeve, Whon ground is disconnected from the final sleeve, the fínal (IK) relay should release and connect ground to the sleeve thru its back contacts; this ground should hold (8R) rolay operated. Should the ground not be connected to the sleeve by the release of the final (TKX) relay, (SR) relay would release releasing (FR) relay opening the operating circuit of (CB) relay, blocking the test circuit in position 15. (TK2) relay operated, advances (R4) switch from 9 to 15. On leaving position 9, the battery suppliod to the leove of the tast ine from (Y) oam of (R4) switch is disconnected. The inal should advance from the talking position. where I" wiring 10 used, grourd thru the winding of (SUB) relay is connected to the ring, but the finals which are arranged not to await the sallod subscriberts rolease on no test calls should not be held by this grounde However, if this feature of a final selector is inoperative, the final (I) relay may lock in serioe with (SUB)
rolay, operating (SUB) rolay, in turn operating (MT) rolay in position 15. in turn operating (MII) relay which locks thru (J) cam of (R4) switch and prevents (R4) switch from advancing from 15 to 16. Where "J" wiring is used the ground is disconnected from the ring When (RH) Ewitch loves position 9, this wiring is used where there are final selectors which await the called subseriberts release on no test calls as well as on other calls. The advance of the final disconnects bettery from the sleove of the test line, releasing (SLV) or (SLV) rolay in turn roleasing (SL) and (TKR) rolays. (TKR) relay roleasod, releases (TKL) and (MB) relayse (TKI) rolay released, switches the final sloove from the locking circuit of (SR) relay to the locking circuit of (FR) relay. (AR) rolay roleases but (FR) relay should lock to ground on the linal sleeve. A circuit is closed Prom ground thru back contacts of (SR) relay and front contact of (FR) relay to operate (CH) relay, this is for the purpose of checking the locking circuit of (FR) relay. (CJ) relay operated, locks to ground on (E) cam of (RH) switch. When the final selector has, restored to normal it will disconnect ground from the sleeve, releasing (FR) relay, (FR) relay rem leased, connocts ground to the final sleeve to hold the final solector busy and a circuit is closed from ground thru back contacts of (MTI) rolay, contacts of (N) cam of (RS) switch, back contacts of (SUB) relay, front contacts of (CB) relay, back contacts of (PR) rolay and (W) cam of (Ft) ewitch, advanoing (BH) switoh from 15 to 16.

\subsection*{6.14 TIme Measure Release Test}

With (RJ) in position 5 if (TMR) "time measure releason key is operated, a test of the time measure rolease feature is made on disconnection. The test proceseds as described in par. \(\sigma_{a} 113\) until (R4) switch leaves position 12, except that (SUB) relay is bridged directiy acress the tip and ring of the test line and is not in series with resistances, and when (R4) switch leaves position 12 this circuit is not broken, this prevents the final from advanoing out of the "awaiting called subscriberts rolease" position. The test circuit advances to position 15 as described in par. \(6,113\). (SUB) relay ahould remain operated, this should operate (MT) rolay in position 15 , in turn operating (MTI) rolay, which locks thru (J) cam of (RH) switch. After a period of time the final selector should be advanced by means of interrupters out of the "awaiting called subscriber's release" positions, releasing (SUB) rolay in turn releasing (MT) relay, and also disconnecting battery from the sleeve releasing (SLV) or (SLV1) rolay in turn releasing (SL) and (TKR) relays. (IKR) relay released, roleases (TKI) and (MB)
( 41 Pages, Page 22)
Issue 1 BT-514023
January 17, 1928.
rolays. (TKI) relay released, switches the final sloeve from the locking circuit of (SR) relay to the locking circuit of (FR) relay. (SR) relay releases but ( FR ) relay should lock to ground on the final sleeve. A circuit is closed from ground thru back contacts of (SR) relay and front contacts of (FR) relay to operate (CH) relay, this is for the purpose of checking the locking circuit of (FR) relay. (CH) relay operated, locks to ground on (E) cam of (R F ) switch. When the final solector has restored to normal, it will disconnect ground from the sleeve, releasing (FR) relay. (FR) relay released, connecte ground to the final sleove to hold the pinal selector busy and a circuit is closed from ground from (J) cam of (RH) switch, front contacts of (MTL) relay, (N) cam of (RS) switch contacts of (TMR) sey operated, back contacts of (SUB) relay, front contacts of (CB) relay, back contacts of (FR) relay and ( V ) cam of (R4) switch, advancing (R4) switch from 15 to 16.

\subsection*{6.15 Multi-Test Operation}
vith (MT), "multi-test", key operated, a series of.teste is made on each final selector, the first with ( \(R 3\) ) switch in position 1. On the completion of this test (R4) switch will be in position 16. A circuit will be closed from ground from (E) cam of (P4) back contacts of (CA) and (BC) rolays contacts of (MT) Ley operated, (B) cam of (R3) ewitch advancing ( \(B 3\) ) switch from 1 to 2. Ground from (C) cam of (R3) switch advances (RH) switch from 16 to 17. Ground thru contacts of (ST) key operated, advances (R4) switch from 17 to 1 . Each time (R4) switch advances from position 17 to position 1 , (ST) message register operates, counting the number of single tests made. Ground from (F) cam of (RH) switch advances ( \(F\) S ) switch from 2 to 3. With ( \(R 3\) ) *Witch in position 3 the next test of the final is made and when (R4) switch reaches position 16 (RS) switch will advance from \(3^{\circ}\) to 4, causing (RH) switch to restore to normal advancing (R3) witch from 4 to 5. In like manner the tests are made with (RS) switch in positions 5, 7, 9, 11 and 13. With (F3) ewitch in 13. whon (N4) switch reachos position 16 , (RS) switch is advanced from 13 to 15 and is advanced by the ( A ) cam from 15 to 18 . In position 18 of (R8) switch a circuit is closed from ground, (D) cam of (RS) switch, contacts of (MT) key operated, beck contacts of (RIP) relay, contacts of (TA) Loy nomal, winding of (RS3) relay to battery, operating (RS3) relayo (RS3) relay operated. locks through back contacts of (RS4) relay and advances (R4) switch from 16 to 17 . Ground through contacte of (ST) key oper ated, advances (R4) switch from 17 to 1. As (RO) switch advances
from position 17 to position \(1_{\text {, ( }}\) (MT) message register operates, counting the number of multi-tests made a Ground from ( \(F\) ) cam of (R4) switch advances (RJ) switch from 18 to 1.

\subsection*{6.16 Single Tost Operation}

With (MT) key normal, a single test is made on a final selector and then the final selector is released and anothor final selector is tested. The particular test made will depend upon the position of (R3) awitch, which may be set by hand in any desired test position. At the completion of every successful test (R4) ewitch will be in position 16 and a circuit will be cloaed from ground, (E) cam of (RH) back contacts of (CA) and (BC) rolays contacts of ( \(M T\) ) key normal, back contacts of (REP) relay. contacts of (TA) key normal winding of (RS3) relay to battery, operating (RS3) relay。 (RS3) relay operated, locks through back contacts of (RS4) relay and advances (Rt) awitch from 16 to 17. Ground through contacts of (ST) key oporated, advances ( \(\mathrm{FH}_{\mathrm{H}}\) ) switch from 17 to \(I_{0}\) As (RH) switch advances from position 17 to position \(l_{*}(S T)\) measage rogister operates, counting the number of single tests made.

\subsection*{6.17 Brush Continuity Test}

\subsection*{6.171 Operation of Test}

The brush continuity test is provided to test the continuity of brushes not having access to the test innes. The brush continuity test cannot be made as part of a multi tedt so that (MT) key should be normal during the progress of a brush continuity test. Whon making brush continuity tests (TRA) key need not be operated to close the teat line, (line 99) to the test circuit, as the tost line is not utilized. (BC) key is operated and make busy" plugs are inserted in on jack in (B) row in one jack in (T) row and in one jack in (V) row. The jacks in which the make busy" plugs are inserted control the final bruch, ters and units selections. Numbers should be set up to test the desired brush by directing the final selector to some working line in the bank. The operation of (BC) key causes (R3) switch to advance to position 11, in which position it should romain. The test will proceed as deseribed in paragraphs 6.07 to 6.10 until position 8 of (Rt) ewitoh except that (MB) relay does not operate, Ground thru contacts of (BC) key operated, advances (RH) switch from 8 to 9. In position 0 (BC) rolay operates through back
contacts of (AC) and (AC1) relays. (BC) relay operated, locks through back contacts of ( \(C A-1\) ) relay. ( \(B C\) ) relay operated; causes (BC) selector switch to advance from position 1. its normal position, under control of (BC) interrupter. In position 2, (CT) rolay operates, connecting ringing current through windings of the ropeat coil. closing the final tip through the repeat coil and (AC) relay and operating (ACl) relay. (ACl) relay operated, connects battery to the winding of (AH) relay. The purpose of the delay in closing the circuit to (AH) relay is to prevent operating ( AH ) rolay, should ( AC ) relay momentarily operate due to a surge. (BC) switch advances from position to position under control of (BC) intorrupter.
6. 172 O.K. Operation

If the line to which the final selector is directed is ide and is a working line, the final selector will stop on \(1 t_{\text {. }}\) operate the cut-off relay or any other relay that is controlled over the sleeve and adva.: 3 os its talking position, closing the tip and ring conductors through to the multiple brushes. (AC) relay should operate provided the tip and ring are closed through the multiple brushes and there is a bridge across the tip and ring walch will pass ringing current. A bridge of this type will be present on various types of lines as follows
1. Direct subscriber's line, ringer and condenser in series bridged across the line*
2. 2 party line or 4 party semi-selective line (except were only partially equipped) tip and ring both connected to ground through ringer and condonser in serles.
3. 4 party selective line, relays in sub-sets in serios whth condensers bridged across tip and ring.
4. PoBoX. line, ring-down relay in series with a condensor bridged across the tip and ring.
5. Central office desk or switchboard line arranged for ring-down operation, ring-down relay in series with a condenser bridged across the tip and ring.

The induced ringing current applied across the line is of such a small value that it should not tap a ringer nor operate a ring-down relay, but should operate (AC) relay, in turn operating (AB) rolay in turn operating (OK) relay which locks thru (4) arc of (BC) switch. The purpose of operating (AE) relay is that ( \(A C\) ) relay will have very low contact pressure and will follow the A.C. pulses but (AH) relay operating in local circult should have sufficient contact pressure and its time of operation should be sufficient to operate (OK) relay. The row sistance which is in parallol with (AH) relay is provided to slow the release of (AH) relay, (OK) relay operated, switches the advancing eircuit of (BC) selector switch from control of (BC) interruptor and causes it to advance by solif interrupe tions to position 10. On leaving position 5, (CT) relay releases. In position 7 (CII) relay operates. With (CTI) relay operated, the tip is connected thru the winding of (IN) relay to battery and the ring is conneoted thru the winding of (BL) relay to battery. On 0 aK. tests neither of these relays should operate. (BC) awitch advances from position 10 to position 12 under control of (BC) interrupter, on leaving position 11 (CII) relay releases.

In position 12, (BC1) relay operates, advancing (R4) switch from 9 to 15 , connecting bettery thru the winding of (BC2) relay to the tip and operating (TKZ) rolay. (SR) rom lay was operated in position 6 of (FH) switch, thru back contacts of (TKC) rolay, it operated (FR) relay, when (R4) switch left position 8 the operating circuit of (gin) relay was broken but it romained locked thru back contacts of (TKI) relay. (TKC) relay operated, oporates (TK2) relay, which locks thru (F) cam of (Rt) switch. Tho operation of (TKI) relay also disconneote ground from the final sleeve and Bwitches the locking circuit of (SR) relay from ground to the final sleeve. When ground is disconnected from the final sleeve; the final (TK) relay should relsase and connect ground to the sleeve thru its back contacts; this ground should hold (SR) relay operated. The Inal should advance and on leaving the talking position should connect ground to the tip, this stiould operate (BC2) rolay. Whon the final has advanced further ground will be disconnscted from the tip. permitting (BC3) relay to oporate in serien with (BC2) relay. (BC3) relay operated, relpases (TKC) relay (TKI) rolay roleased switches the final sleove from the locking circuit of (SR) relay to the locking circuit of (PR) relayo (SR) relay roleases but (FR) rolay should lock to ground on the final
sleeve When the innal has restored to normal, it will
dieconnect ground from the eloeve releasing (PR) relay.
(FR) rolay reloasod, connocts ground to the final sloeve
to hold the final seloctor busy and a oircuit is closed
srom ground, front contacts of (BC1) and (BC3) relays and
back contacts of (PR) rolay to advance (Bu) switch from
15 to 16. A cirouit is closed from ground an (E) cam of
(R4) switch, beiok contacts of (CA) rolay, front contacts
of (OK) rolay back contacts of (INI) and (BLI) rolays.
contacts of (MT) key normal. back contacts of (RMP) relay.
contacte of (TA) koy normal. winding of (RS3) relay to
battery, operating (RS3) rolay. (RS3) relay operated.
locks thru back contacts of (RS4) relay and advancee (AN)
witch froil 16 to 17 . On leaving position 16 , (BC) rele
roleases, relaaing (BC1) relay in turn relasing (BC2)
and (BC3) rolaya and advancing (BC) awitich from position
12 to position le its normal position on loaving posi-
tion 12 (OK) relay releasese Ground thru contacte of
(sT) Ley operatad. advances (㔚) awitch from 17 to 20
6.173 Trouble Conditions
6.1731 Open Tip or ping

In case no brush is tripped of in caso - ither tip or ring is apen or in case the line on winioh the innal seloctor stops has no bridge capable of passing ringing current. (AC) rolay oannot operato. In any of these caseB, the test circuit will function as follows. (BC) switch will advance from position to position under control of (BC) intorruptor. On leaving position 5 (CT) relay roleases. In position 6 a circuit is closed from ground thru (5) are of (BC) switch and back contacts of (OK) relay to the trouble alarm lamp and register, giving a trouble indication. In position 7. (CIT) relay operates. With (CI2) relay operated, the tip is connected thru the winding of (IN) rolay to battery and the ring is comneted thru the winding of (BL) relay to battery. However, under any of the above conditions there should be no cireuit for operating either of these relays. (BC) switch should advance to position 12. On leaving position 11. (CII) relay releases. In position 12, (BC1)
relay operates, advancing (R/4) awitch from 9 to 15, connocting battery thru the winding of (BC2) rolay to the tip and operating (TKC) relay. The final selector should restore to normal and the bect circuit should function as described in paragraph 6.172 until (R4) switoh reaches position 16, when the test circuit will block.

\section*{Open Sleave}

If the sleove is open of if for any other reac son the sleeve relay of the line called fails to operate, (AC) relay may operate thru the back conm tacts of the sleeve relay. This would cause (ABS) and (OK) relays to operato and (BC) switoh to advance under self interruptions to position 10. on leaving position 5, (CT) relay releases. In position 7. (CT1) relay operatesa (CTI) relay operated, connects the tip thru the winding of (DN) relay to battery and the ring thru the winding of (BL) relay to battery. Ground thru back contacts of the sleeve relay will operate either (BL) or (IN) rolay, dopending upon how the tip and ring of the line are connected. (ground is usually conm nected to the tip, but on party lines some of the terminals will be reversed). Depending on the connection, ither (BL) or (IN) relay ahould operate. In case (IN) relay operates, (IN-1) relay operates and looks thru (4) arc of (BC) writch and (IN) lamp is lighted. In case (BL) relay operatea, (BL-1) relay is operated. In sither aase a circuit to the trouble alarm lamp and register will be closed, giving a trouble indication. (BC) switch should advance to position 12. On leaving position 11. (CII) relay releases, this will rolease (IN) or (BL) rolay.
(BL) rolay roleased, will light (BB) lamp and will permit (BL-2) rolay to operato if (BL-1) relay is operated. In position 12 ( \(\mathrm{BC}-1\) ) relay operates. advancing (R4) switch from 9 to 15 , connecting the winding of ( \(B C-2\) ) rolay to the tip and operating (TKI) relay. The final selector should restore to normal and the teat circuit should function as doscribed in paragraph \(6,172_{\text {, until ( }}\) (RH) switch ream ches position 16 when the test circuit will block.

\subsection*{6.1733 Interepted Line}

\subsection*{6.17331 Operator Does Not Answer}

In case the line on which the final is resting is an intercepted line and is not of the "ring-down" varioty, there will be no circuit to operato (AC) relay until the operator answers. If the operator does not answer until after (BC) switch hat reachod position 12, no lamp signal other than the trouble alarm will be given and the cirouit will funce tion as deaoribed in paragraph 6.1731.

\subsection*{6.17332 Oparator Anawers Botore Passing Posi=} tion 5

In case the operator answors the call beflore (BC) switch has passed position 5. (AC) rolay may oporete oporating (AB) rem lay in turn operating (OK) rolay. (OK) relay operatod, witches the advancing circuit of (BC) aslactor awitch from control of (BC) Interrupter and causos it to advance by alf interrupters to position 10. On leaving position 5. (CT) relay releasese In position ? (CT-1) relay oper ates. Ith (CT-1) relay operated, the tip is connected thru the winding of (IN) rem lay to battery and the ring is comnectod thru the winding of (BL) relay to battery. (IN) relay should operate from 24 volt battery on tip of the intercepted opere ator's cord circuit. (IN) relay oporated. operates (INm1) relay which looke thru (4) aro of (BC) solector awitch. lights (IN) lamp and closes a cirouit to the trouble lamp and register, giving a trouble indication. (BL) relay may operate from the tripping path in turn oper ating ( \(B L-1\) ) relay, and whon the tripping oircuit is broken (BL~2) relay will operate, however, with (IN) relay operatad, the circuit for advancing (BC) switch is
\begin{tabular}{|c|c|}
\hline & independent of the path thru back contacts of (BL2) relay. (BC) switch advances from position 10 to position 12 under control of (BC) interrupter, On leaving position 11. (CTI) rolay releases, releasing (IN) relay and (BL) relay if operated. The release of (BL) rolay will cause (BL2) rolay to operate in series with (BLI) relay. In position 12 (BCL) relay oporates, advancing ( \(\mathrm{R}-4\) ) switch from 9 to 25 , connecting the winding of ( \(\mathrm{BC}-2\) ) relay to the tip and operating (TKL) relay. The final should restore to normal and the test circuit should function as described in paragraph 6.172 until (R4) switch reaches position 16, when the test circuit will block. \\
\hline 6.17333 & operator Answors Aftor Passing Position 5 \\
\hline
\end{tabular}

In case the operator answer the call after (BC) switch has passed position 5 sut before it has passed position 11, (AC) relay will not operate and (OK) relay w 11 not operate. In position 6 a circuit is istosed from ground thru (5) arc of (BC) switch and back contacts of (OK) relay to the trouble alarm lamp and register, give ing a trouble indlcation. In position 7. (GII) relay operates. With (CTI). relay operated, the tip is connected thru the winding of (IN) relay to battery and the ring is connected thru the winding of (BL) relay to battery. (IN) relay operates and the test circuit and final should fusction as described in paragraph 6.17332.

\subsection*{6.174 Buey Line}

In case the line called is busy, there will be no, cirouit for operating (AC) relay and the test cirouit will function as described in paragraph 6.1731 until (BC) switch has reached position 7 and (CTI) relay has operated. The Pinal should advance to its busy back position and busy back pulses, interrupted ground on the ringo should operate
and rolease (BL) relay The P1ret operation of (BL) rew lay operates (BLI) relay. The first release of (BL) relay permita (BL2) relay to operato in earies with (BLI) relay. (BL2) relay operated opens the advancing cirouit of (BC) selsetor switcho causing it to stop in come position bow tweon 7 and 12. The test circuit will block and with (BL1) relay operated, the operation and rolease of (BL) relay from the busy back pulses will 11ash (BB) lampo
6. 175 Restoring on Trouble Conditions

In order to advance the test oircuit in case of trouble on brush continuity testw (CA) kay should be operated. (CA) key operated, operates (CA) rolay in turn operating (CAl) relay. (CAl) relay locks thru (C.) sam of (RH) awitch advances (RH) Ewitch to position 16 if it is not already there and roleases (BC) rolay. (BC) relay relsased advances (BC) seleotor switoh from any position it may be in to position 1 , its nermal position, and all relays, operated or locked thru ares of (BC) switch, are relsased. If the trouble encountered was due to a busy trouble, intercopted or partially oquipped condition of the ine called or if the line callea hae no bridged ringer or relay the plugs in (T) and (U) rowe of jacks should be reset to direct the 12nal elector to a difforent line and the test mould be ropeated, by operating (REP) koy and then roleasing (CA) key.

\subsection*{6.18 Adrancing Incoming Salector}

CuA2 oaus blued Then (RS3) relay operates at the conclusion of the test of a Pinal selector it locks thra back contacts of (RS4) relay and advances ( \(\mathrm{a}_{\mathrm{t}}\) ) bwitch from 16 to 17 as described in paragraphs 6.15 and 6.16 it also operates (RS2) relay and (RS) rolay when (R4) switch reaches position in A circuit is olosed thru the outer winding of (RSL) relay but there is notsuffictent current to oporate (RS1) relay. (RS2) relay operated, operates (TF) relay on 1 ts primary windingsa (RS2) and (RS) rolays operated, connect ground to the (UP) magnet in the incoming, over lead (TU-1) causing the incoming elevator to ascend, As the elevator meves upward, ground from the (C) commutator holds (RS) relay operated and operates (RS1) relay then the incoming brush oon ters on the terminals of the next final the (c) conmutator brush breaks contact with the metal segment of the (C) commutator.

This causes (RS) rolay to release but (Rsi) relay will hold through its secondary winding. (RS) relay released, stops the incoming elevator on the terminals of the next final and connects ground thru 1ts back contacts, thru front contaots of (RSI) and (RS3) rolays, operating (RS4), relay: (RS4) relay operated, releases (RS3) relay, (RS3) relay released, releases (RSI), (RS2) and (RS4) rom lays. When (RS2) relay releases, the secondary winding of the (TF) relay is put under sole control of the sleave and a busy test of the selected ifinal is made in the same manner as described in paragraph 6.06.
6.19 Pase By Oxerflow Terminale

In order to test all of the finals, the incoming elevator must pass by the overflow terminala of one group to the first trunk terminal of the next. As the incoming brush makes contaot with the overflow terminal of a group, ground on the (2) commutator over lead (TAl) operates the (ZC) relay. (ZC) relay locks thru front contacts of (RSH) relay; this is to hold (gC) relay as the cirouit to the (2) commutator may be momentarily broken as the selector rides past the terminal until it settles backe The (zo) relay operated, onergizes the stepping magnet associated with the (IC) switch. The (IC) switch is advanced to terminal 2 . On terminal 2 the (ZC) relay releases. The (2C) relay released, operated the (RS3) rolay thru torminai 2 and brushlarc (IC). The (RS3) rolay operated, operates the (RS2) and (RS) rolays. The (RS). (RSI). (RS2), (RS3) and (RS4) relays function as described in paragraph 6.18 for advancing the incoming brush to the terminals of the noxt trunk. The (RS4) relay operated, advances the (IC) switch to position 3. With the (IC) switch in position 3, the finals associatad with the second incoming group are tested. In a similar manner the Ingls in the third and fourth incoming groups are tested in positions 5 and 7 respectively of the (IC) suritche At the and of the test on the fourth group the incoming brush is resting on the overflow terminal at the top of the group.

6,20 Incomine Flevator Down Deive
The (zC) relay operates over lead (TA-1) to ground on the (z) commutator. The (ZC) relay operated, advances the (IC) switch to. pasition 8. With the ( XC ) witch in position 8 , the ( ZC ) relay releases. The ( ZC ) relay released, advances the ( \(\mathrm{R}-\mathrm{C}\) ) switch to position 8. The (TRIP) magnet of the incoming selector is enorgized when (R2) switch reaches position \(7-3 / 4\). In position 8 of the (R-2) s witch the (DOWN) magnot in the incoming is onergized
over load (TD-1) causing the incoming olevator to descand. When the elevator is returned to the normal position, ground thru the (Y) commutator in the incoming over lead ( \(T \mathrm{~T}-1\) ) advances the (R-2) switch to position 9. On leaving position 8 the (TRIP) magnet of the incoming selector is roleased. As the \((R-2)\) switch passes through position \(8-3 / 4\) to 9 . ground on the (ex) koy oper ated thru cam ( \(8-2\) ) energizes the IA magnet and as the \(R 2\) switch leaves position 9, the IA switch advances to position 2. In poo sition 9 of (R2) switch, circuit is closed to stop (IC) switch from 8 to 9 , and whila (IC) switch is in position 8 , a olrcuit is closed to advance (R2) switch from 9 to 10. At this time (R2) switch may advance from 9 to 10 and (IC) switch may advance from 8 to 9. If (IC) switch does not have time to advance while (R2) switch is in position 9 , it will remain in position 8 until (R2) switch reaches 3 or 12 , and (TF1) and (RS1) rolays will be hold operated, and when (R2) switch reaches position 3 or 12 (IC) switch will advance thru its normal position and procesd to take its regular sotting. If (IC) switch advances out of pow sition 8 before (R2) switoh leaver poeition 9. (IC) iswitoh will advance to position 12 and with (IC) switch in position 12 (R2) switch is advanced from 9 to 10.

\subsection*{6.21 Tosting In \(2,2,3\) and 4 Incoming Banke}

When all of the finals associated with the (0) incoming brush (as determined by the crose connsotions) have beon tested and the incoming elovator returned to normal the test ciroult prom cosde to tort the sinals associated with the \(2,2,3\) and 4 brushes in a mannor similar to that dosoribed for the ( 0 ) brusho According to the given crosswcomection scheme all four groups in the 1, 2, 3 and 4 banks of the first incoming frame will be teated. At the ond of the testing of each incoming bank the (IA) switch advances to the next torminal wired for testo

\subsection*{6.22 Second Incomine mlevator Seleoted}

Assuming that when the (IA) aritch reaches terminal 6 all inals accessible through the incoming selector used above, have been tested. With the (IA) switch on terminal 6 and the (CON) relay still operated, the ( \(\mathrm{R}-1 \mathrm{~A}\) ) switch advances to poe sition 4 , connecting the test circuit to the second incoming selector. As the switch enters position 3-1/4, the (FG) rolay operates in a circuit from ground on cam ( \(A-1 A\) ) thru cam ( \(S=1 A\) ) to battery. The operation of the (PG) relay removes ground from the (IXK-1) lead, thereby permitting the immediate use of
the associated incoming elevator when necessary in rogular trafice When the switch passes position \(3-1 / 2\), the (PG) relay roleases. The test circuit functions from this point on in a aimilar manner to that before described. The second incoming seloctor may not test all the banks or all the groups in the banks. Those tested will depend on the arrangement of the incoming and final frames and are governed by the crossmconnections at the arcs of the (IA) switch. With the cross-connection schome shown, the second incoming sem lector tests finals in groups \(O\) and 1 of bank 0 , (terminal 6 of (IA) switch) group 0,1 (terminal 7) and 3 of bank 1 (terminal 8) and 0 to 3 of bank 2 (torminal 9). The inooming 1 s advanced by the test circuit thru consecutive groups without being restored to nor mal, but when terting groups 1 and 3 , the test circuit must solect brush 1 and group 0 first, then return the incoming to normal, advance the (IA) switch one terminal and select brush 1 and group 3 .

\subsection*{6.23 Advancine Second Connector}

Assuming that the brushes of the (IA) switch rest on terminal 15 at the completion of the test of finals through the third incoming the ( \(\mathrm{R}-1 \mathrm{~A}\) ) switch is advanced to position 8 or 17 by ground from the (CON) relay operated, terminal 15 and brush \(F\) (ImA), lead 4, cam ( \(P-1 A\) ) cam ( \(C=1 A\) ) to battery thru the (RmIA) magnet, the A cam advanoing the switoh to normal position 1 or 10. With the (IA) switch in position 15 and the ( \(R 1 A\) ) switch in position 1 or 10 , the (R1B) switch is advanced to position 2 thru cams ( \(B \sim 1 B\) ) and ( \(P-1 A\) ) over the same circult. Prom this point on the test sot functions as described for connector \(l^{\circ}\)

\subsection*{6.24 (IB) Switch}

Should the terminals of the (IA) switch be insufficiont to test all of the finals in an office, a second switch (IB) is prom vided. When the (IA) switch reaches terminal 21 , the (ACA) relay operates thru the primary windinge The (ACA) relay operated, operates the (TRA) relay. The (TRA) relay operated, operates the (RN) relay and transfers the control leads from the (IA) switch to the (IB) switoha The (TRA) relay operated, advances the (IB) A switch to terminal l. From this point on the test circuit functions in a similar manner to that before described.

\subsection*{6.25 Conclusion of Routine Teat}

Upon the conclusion of a routine test when the last (I) switch reaches 21, (EC) lamp lights as an indication that the cycla of


To facilitate the testing of a particular group of finals or a particular final, a chart is provided on the final test irame showing the groups of ifnal trunks available to a brush on an incoring irame, and what keys to operate in conjunction with the (ST), (TRA) or (BC) and (PC) keys to cause an (I) switch to stop to a terminal which permits the test of a particular group of trunks. The (GN) key operated. dotermines the incoming group
 (I) switch which is used to reach that incomingo The (T) and (U) Keys operated determine which terminal the (I) switch is stepped \(t 0_{\%}\) the (OC) key operated, determines the number of groups to be tosted. The (ST) key operated starts the testo NO koys in (GN) and (OC) rows need be operated if it is desiced to testall the finals that are accesalble Irom the terminal to which the directing selector ia directed. The (ST) key operated, operates the (ST) relay. The (ST) relay and the (TwA) key if operated, energize the (IA) magnet and causs the associated brush assambly to advance off normal. The selector continues to advance by means of ground from the (PC) key operated through the contacts of the normal (U) keys. When the (IA) awitch has advancod to the position to which the ontact of the operatsd (J) key is
wired it stops due to the circuit being open through the operated key. Should the final group dasired be accessible through (IB) switoh, the (TWB) koy operated, operatos its aasociated (ACA) rolay thru the secondary winding. The (ACA) relay operated, operates the corresponding (TRA) relay and (RN) rolay. The (TRA) relay operated, advances the associated (IB) switch off normal. (IB) switch advances in the same manner as described for (IA) switch to the position determined by the operated (V) key, The (x) relay operates when the (IA) or (IB) switch makes contact with the opon contact, through the operated (U) key. From this point on the test circuit functions in a manner before described with the following excoptions:
(1) When the (I) awitch reaches the preselocted torminalg the connector switch takes ite setting advancing from normal to the position required for the desired test. For instance suppose the (IA) witch to be used etopped on terminal 6。 When the switch makes contact with terminal 6 . the ( \(R-I A\) ) switoh advances from nomsel to position 40 As the ( \(R\)-IA) switoh onters position 1-1/2 the associated (PG) relay operatos and remains operated as long as the rotary magnet ie energized (until the switch onters position 4 in the assumed case). Circuit: from the ground which advances the ( \(R-I A\) ) switch, cam ( \(B-I A\) ) winding of the ( \(P G\) ) relay, cam (S-IA). (PG) koy operated. cam ( \(5-2\) ) to battery. The (PG) relay operated, prevents the incomings which are passed by, from being made busy.
(2) When the \((\mathrm{R}-2)\) switch enters position 3 , the (IC) switch Is sot under control of the (OC) kay operatad.
(3) When ( \(\mathrm{R}-2\) ) awitch is in poition 6 and inooning group selection has been complated, (FC) key should be roleasod, permitting the advance of \((\mathbb{R}-2)\) switoh.
(8) When the (R-2) switch reachos position 7 and (KR) interrupter makes, the key release magneta of (U), (GN) and (OC) rows of koy operate and relesse the operated keys. The key release magnets roleas when (KR) interruptor breaks.

\section*{Particular circuit reat}
- tost for particular circuit is the am for particuiar gro bxcop thet the incoming levator used for teat is raisod by hand to connsct with the terminals of a deaised final in the selectod group after group eslaction is completed and baiore (RC) key in roleased.
```

(41 Pagas Pege 36)

```

Issua. 1 2T-534023
January 27 . 19280

\section*{}

With (SN) Koy operated and (BY) antoh nomal a oircuit is closed thru (J) cam of (Rul4) mitch in position 1 to operate (BY) relay. (BY) relay operated, looks thru contacts of (ST) koy operated as long as (Re-4) awitch is in position 1 and olosoe the circuit to permit (3Y) witch to akvanoe under control of (TM) Intexmpter. (THE) interruptor advances (BY) switch one stop overy 30 seconds where "Z" Wiring is used or one stop a minute where wy wiring is usada should (R-4) switch still be In position 1 when (BY) switch rwaches tominal 10, the (BY) lamp lights and the alaim functions. The speration of (TA) key relvases the (BY) relay whioh extinguishes (BY) lamp, stops ths alarm and advences. (BY) switch to ite next normal positiona. 39 (R-4) switch advances from position 1 before the alarm is brought ing. (BY) rolay is roleaced advancing (BY) switch to its next normal position.

With (R-4) switch in any position except lo and (TBL) switch normal a circuit is cloeed to operate (TBL) relay. (TBL) relay oporated, locks as long ae ( \(\mathrm{R}-4\) ) switch 10 opf normal and closes a oircuit to permit (TBi) switch to advance under control of (TII) Interrupter (TH) interrupter advances (TBL) switch one etep Frery 30 seconde.
-Ith (R-3) smitch in any poeition oxcopt 5 or with (Rm3) suitch in position 5 and (TNR) key normal if (R-4) emitch is still norral when (2BL) witch reaches position 3. (TBL) lamp 1ighte, the register operates and the adarm functions. With (rej) ewitch in position 5 with (THR) key operated the alanm - 111 not be brought in unitil. (TBL) switch reaches position 11. thie inereased time is in order to pravent false indications of trouble on "time measure release teste. Tho operation of (IA) tey operates (TML -1 ) relay whick looks as long as ( \(n-4\) ) muttch is off normal and releases (TVL) rolayo (TBL) relay roleased, stinguishes (2nL) lamp, etops the alarm and steps (TBL) switch to. 1ts next normal positione If (R-4) ewitch restores to normal before the alarm is brought in, (TBL) relay ia roleased, advancing (TBS) switch to its next normal positione

As dascribed in paragraph 6.17 (TBL) lamp may bo lighted and the alarm brought in by failure on "brush continuity tests". oven before (TEL) switah has advanced to its trouble positiono The operation of (TA) key extinguishos (TBL) lamp and stops the alarm when brought in by a "brush continuity" test.
(TA) koy is locking so that in cases of trouble whioh require considerable time to run down, ropeated alarms will not bs brought ine With (TA) key operatod, it is imposaible to progrsse to another final selector.

\subsection*{6.22 Control Advance Feature}

If trouble develops in the circuit under test or in the test circuit the time or trouble alarm functions as explained in paragraph 6.28.

If it is dasired to restore the innal selector and advance the tost circuit (CA) key is operated. If (REP) key is operated. a make busy plug inserted in the associated jack at the inal selector frame or the operation of one of the buttons of a (32A) test set plugged into this jack will cause the circuit to function In the same manner as the operation of (CA) key. (CA) ksy operated, operates (CA) relay in turn operating (CA1) relay. (CAl) relay operated locks thru position 2 to 16 of ( \(\mathrm{R}-4\) ) switch independently of (CA) relay, and advances (R-li) switch from any off normal position below 16 to position 16 a When advancing from pow sition 15 to 16 ground is disconnectad from the final eiseve, this should release the final (TK) relay if operated, restoring the final selector to normal if it is off normal. The test circuit cannot progress to the next final selector, advance ( \(R-3\) ) switch or repeat on the same final until (CA) key is released, reloasing (CA) rolayo

\section*{6,30 Revosting Test (REP) Key}

To repeat a test on a certain final the (REP) koy is operatsd. The (RWP) key operated, operates the (REP) relay winich locks to ground on cam (J-4) if a single test is being made, or thru the (MT) key operated to ground on cam (D-3) if a multi-test is being made.

If (MT) key is normal, the (REP) relay operatsd, advances the (R-4) switch from position 16 to 17 , and ground on the contact of the (ST) key advances it to position 10. With the (R-4) switch in position 1 . the test on the final is repeated. should the (REP) key romain operated, the test will be repeatod until the key is released and when relsased the test in progress is not affected and one ropeat test is made after this on the same final seloctor before progressing to the next final selector should the (RMP) key be operated only momentarily the (RDP) relay is locked from position 2 to 1 to ground on cam (J-4). Under this condition the (RGP) relay releases when the (r-4) awitch ontere position 1 or 2 at the end of a test, however, one repeat test is made before prow gressing to the next final selector.

If (KI) Key 18 operatod, the (RFP) relay oparated, will not affect the progress of a multi-test. but when (R-3) switch reaches position 18 , (R-4) switch will be advanced from position 16 to 17 . and ground on the contact of the (ST) key advances it to position 1 .

The complete multi-test is repeated. Should the (RISP) key remain operated, multi-tests will be repeated on the same linal selector until the rey is released, and when released the multi-tost in progress is comploted and one complete multi-test after this is made on the same final selector before progressing to the next 11nal selector. Should the (RAP) key be operated only momentarily the (RTP) rolay is locked fron position 2 to \(181 / 4\) of ( \(\mathrm{R}-3\) ) ewitch. Under this condition (REP) rolay reloases whon (R-3) avitch aters poaition 1 at the ond of a multi-testo however, one rejeat tost is made before progressing to the next final selector.

If (BC) and (RRP) kays are both operated, the test cirouit will block in position 16, until (CA) key is oporated and reo lased. The oporation of (CA) koy operates (CA) rolay in turn operating (CAI) relay which looks thru (G) oam of (R-4) switch. Then (CA) key is released (CA) relay rel easeso \({ }^{(1)}\) th (RMP) and (CAl) rolays operated and (CA) rolay rolersed, a circult is closed to advance (R-4) awd toh from 16 to 17 and the rapeat tost procesds as bofore described. For succossive repeat tests (CA) key muat be operated and released for each testh This feature is to prevont undue interforence with a subscriber's line which might rosult if unrestriosed ropeat tests were permitted on brush continusty tosts.

\subsection*{6.31 Automatio Pass Busy (APB) Koy}

Should it bo deeirad to pase by buey finals automatically during the test, the (APB) koy is operated. The (APB) key oper ated, removes the short circuit from the winding of the (FB) relay allowing the (PB) relay to operate in cerles with the 800 ohm Winding of the (TF) ralay should the final tolt buey relay operated, operates the (Rs-3) relaya The (Rs-3) relay operated, operatos the (RS) and (RS-2) ralaye. The (RS) relay oporated, auses the incoming ol vvator to ascend to the next free final torminals.

The (Rs-2) relay is made slow releasing to provent the premature reloase of the (TT) relay when the momentua of the incoming levator carries the brushes beyond the last of a series of busy terminals to an idio terminal. The premature relioase of the (TT) relay would release the (PB) relay thus causing the incoming selector to remain on the terminals of the busy final. Should the incoming elevator step to an overll ow position with the (APB) koy operated the (TF) and (EB) relays releaso and the (ZC) relay operates. The (ZC) relay operated, advances the (IC) witch to an oven numbered terminal, from which it advances to
the rext odd torminal. Where the (2C) relay releases. The (RSM 3) ond, its associated relays operate, as heretofore deacribed, and edvance the incoming to the first trunk in the noxt groupe If the first trunk in the next group is busy the test circuit functions as before described. When the (MT) key is operated, (APB) kev will not be offective unless ( \(R 3\) ) switch is in position 1 . Therefore, before starting the test circuit with theso two keys operated, (R3) switch should bo placed in position i by hand, in order to pass by the first final, if busy.

\subsection*{6.32 Nanual Pass Busy (MPB) Key}

When a busy condition on a pinal is encountered the (BF) lamp Blworlights in parallel with the 800 ohm winding of the (TF) relay. If - ro it be desired to pass by this particular final, the (MPB) koy is Henll operated. The (MPB) key operated, extinguishes the (BF) lamp and operates the (PB) rolay. The (PB) rolay functions as desired in paragraph 6.31. The (RS-2) relay operated, operates the (MPB) row lay and holds the (TF) relay operated. The (RS-3) ralay operated, functions as described in paragraph 6.31. The (MPB) relay operated, locks under control of the (MPB) key and prevents the reoperation of the ( \(\mathrm{R} S-3\) ) relay should the next terminals test busy and cause the (PB) relay to operate. When the (MPB) key is released the (MPB) relay releases and the test of the free final proceeds.

\section*{To Stop Teat}

To stop an automatic test at any point. (ST) key is released. If the test elrcuit is waiting for a busy incoming connector to become idle, the off normal (RI) switch will be restored to normal. releasing (ST) and (CON) relays. (CON) relay released advances (R2) switch to 9. If a test is in progress it will proceed until (R-4) switch reaches position 17 and with (ST) key released (Rol4) switch is advanced to 18, advancing ( \(\mathrm{R}-2\) ) switch from 7 to 8 . With ( \(R-2\) ) switch in position 8 , down-drive takes place in the associated incoming selector. When the downcdrive is completed, ground from the (Y) commatator advarices ( \(\mathrm{R}-2\) ) switch from 8 to 9e (IC) switch arvances to nomal, advancing ( \(R-2\) ) switch from 9 to normal, in turn advancing ( \(R-4\) ) switch from 18 to 1 . With ( \(R-2\) ) switch in positions 9 to 11 or 18 to 2 , the ( \(R-1\) ewitohes are restored to normal. When all of the ( \(\mathrm{R}-1\) ) switches are normal. (ST) and (CON) relays rolease. If (ACA), (TRA) and (RN) relays are operated they will remain operated and the directing switches will remain in the positions that they are left. (TRA) key, if operated, should be
released if the test is to be stopped for any considerable length of time.

If the ( \(8 T\) ) Key is again operated before (RN) key is operated. and (TRA) or (BC) Key ie operated, (ST) (T) and (CON) relay cooperate and the test proceeds, connecting to the bottonitinal in the group directed to by the directing ewitohes in trevibosithong that they were lett

If with (ST) key released (RN) key is operated, (RN-IPIzelay operates and locke under control of (rN) relay, if opeatthe. Th locking clrouste of (ACA) and (RN) relays are mainteriget directly under control of (RN) key operated, when (RNI) Treas operates . Eth ( \(\mathrm{R}-2\) ) witch normal and (con) relay rolsaeed, (IA) switch spins to 21 if in any other off normal positide, \$s. 3 if (IA) wittol is normal or in position 21, (IB) switch spins to 21 If in any other off normal position . With (IA) switch in 21 , (RN-1) relay looks independently of (RND) relate (RN) key ghouls remain operated until the directing witches which are offinorHel are advanced to 21. (rN) key should then be role based. Thorn (RN) key is released, the release magnet of (T) row of keys is operated if any of the keys in the row are operated, an 1 on s as (NW-L) relay is operated and the operated keys in (?) row should release then (RN) and (TVB) keys are released, (ACA); (TA) and (RN) relays, if operated. release and the directing Bitches

\section*{6,34 Interceptive operator}

Ifine 97.98 and 99 are used for tet purposes only shoved ubobelone of these limes be selected falsely, lines 9 ? and 98 teat -ad of Tobuey, and line 99 will route the all to the intercepting per - farronatorife the line is not under to et and (TRA) key is e normal. goon Under this condition (IL) relay should operate 11 ghting (2N) Lhtaus blempo

\section*{Fundarentil ctrouit Gincity}

The (cos key ie operated, grounded capacity is connected to the tip of the fundamental ofrcuit when (r es) switch is in positions 1. 3 and 50. this hat tho effect of a trunk loop in making the final ( L ) relay how in releasing The making of proper selections and dozing the teat lino oheck the proper release of the final (L) relay and the adjustment of the (A) (D) and (U) commute tor brushes.

\author{
（ 41 Pages，Page 41） \\ Is aue 1 BT－514023 January 17．1928．
}

\subsection*{6.36 Computator Resistance Tent}

The operation of（COM）key roduces the resistance of the fund－ amental circuit and disconnects the capacity from the tip．With the resistance of the fundamental oircuit reduced，any resistance between the final selector commutator segments（ \(A\) ）．（B）and（U） and the associated brushos will be more pronouncod as it will give a greater drop in potential across the stopping relay during the closed interval of the brush than is obtained over the regular fundamental circuit．The making of proper selections and seizing the test line chocks the proper functioning of the cirouit．if any other line is seized due to false selections，the trouble may have been caused by oxcessive comutator resistance．

This test can be made in conjunction with any other test except Time Measure Release Tests．It should not however be made in con－ junotion with＂brush continuity＂tests as wrong selections would be passed as OMK．This test had best be made with（ \(\mathrm{R}-3\) ）switch in positions 1 ． 5 or 13 as in these positions false selections on brush tens or units selections will be detected．

FMN：F．S．G． CHKD．BY：D．C．留。 January 17． 1928 BMR

APPD，BY：工，T．MARKS J 。 \(\mathrm{N}{ }_{4} \mathrm{C}\) 。
```

 %
 4