Weotern Flectric Company，Inco．
Equifment Ingineering Branch，Hawthorne。
（ 24 Pages，Page 1）
Iseue 4 Brin01457
Tovember 10， 1923 （ ${ }^{(2)}$
Roplacing all prefiona
issues。（＊）

This Ko of O．was prepared from issue 27 of T－50145\％．
MATROD OF OPGRATION
Routine Test of Subscribers District Selectors；Line Finder Type－Automatic Routine Selector Test Prame－Panel Machine Switching System。

DEVIELOPYMET

1．PURPOSE OF CIRCUIT
1.1 This circuit is used to automatically test subscriber district selector circuits which are used in connection with panel line finders．This circuit is arranged to test either one or two－party message registers，coin collect and flat rate type of district cir－ cuits．

2．WORKISC LIHITS
2．1 When uking this circuit，the battery voltage must be mainteined at 48.5 to 50 volts for 48 volts battery and at 24 to 25 volts for 24 volt battery．

OPRRATIOK

5．FAITGIPAL FUTOTIONS
S． 1 This circuit is used to test each and every district selector circuit and consists of making a parifcular brush and group seloc－ tion and trwik hunting for a particular set of torminals and of re－ turning the district seleotor to normal upon a successiul conclusion of the teet．The circuit makes use of line finders which are a part of the equipment of the exchanges．These line finders are in turn selected by master and group connectors which form a part of the automaic test circuit．The prineipal functions of this oircuit are to－test for：

S． 11 Ide or buey condition of district．
3． 12 Proper election of teminals by the district．
3．15 Operation and release of both mpervisory relays．
3．14 Proper charging of calls．
3． 15 Return to nommal of district．

Noveraber 10, 1923 (*)
Replacing all previous
issues. (*)

4. COMNROLIMG CIROUITS

4. 1 This test circuit will function with subscribers district eom lector circuits that are used in connection with panel line finders. These district selectore may be of the one or two-party message register type or coin collect and liat rate type.

DESCRIPTION OF OPGRATIOK

(HOTE) TWO AUTOMATIC TRST SETS IN SANE OPFICE

When two automatic district test circuits are uaed in the same office, the same test line code and the same group of truaks are used. The i- , rem lay of figure 3 is used with the tast circuit which is amociated with the test line on the third ot of terminals, and the (BLK) relay of pigure 4 is used with the test circuit which is associated with the test line on the Sourth eot of terminals. This arragement will prevent simultaneous hunting by the district or office selector for the district test lins. If the test circuit associated with test line 3 gets into the position for priming the sender before the teat circuit associated with test line than the (BLK) relay of figure 3 operates from a make contact on the (PC) relayo The operation of the (BLK) relay of figure 3 opens the operating path of the (BLK) relay of 1 igure 4 proventing the test circuit associated with test lin 4 from priming the sender until the district of office selector reaches the test line associated on the third set of terminals and vice verake The (BLK) relay of eigure \& operated prevent the (BLK) relay of ilgure 3 from operating until the distriot or office seloctor reaches the test line comnceted to the fourth eet of terminals. When the selector reaches the teet line terminals the IC relay operates allowing the (BLK) relay to release whioh in turn sllows the (BLK) relay of the other test circuit to oparate and lock until the distriot selector reache its tent line。

5. START TESTS

The operation of the (ST) key, (a) advancea the (R-1) ewitoh to position 2, (b) operates the (ST) relay and (c) operates the (TA) relay if the time alary meaure switch is normal. The function of the (TA) relay is explained under "time Yeasure reature". In position 2, growad through (SS-1). (PISE), (PMG) and (FM) relays normal. cams (I) and (J). Winding of the (STP-2) relay, (STP) brumh, (EC) rolay normal and (STP) brush, Winding of the (SM) relay, operates both the (STP -2) and (SM) rew lays. The (MA) and (MB) magnets operato, in a circuit from ground on cam ($0-1$) through the contacta of the olass relays. (FR) relay, (CA). (REP) and (PO) keys. ($\mathrm{EC}-1$) and (SPM-1) ralay, can (U), (SM) relsy, windinge of the reater magnets to bettary. The primary winding of the (Sye)

relay is short-cirouited through the (STP-Z) relay operated, cam (U) and (SM) relay and mater magnets contacts to cam (T).

STLEPS HASTHR SELECTOR

When the master magnots operate, the shunt is removed from the (SNP) relay, which operates Ground on cams (L-3) and (K-5) through the (SLFM) relay, (PC) key, (SPM), (STR) and (DMB) relays normal to cam (B), advances the (Rel) switch to position 3. As the switch leaves position 2, the (STP-2). (STP) and (SM) relays and the (MA) and (MB) magnets rem lease, stepping the brush assembly of the msister connector to terminal 1. The operation of the (SM) relay also operates the (MON) relay which lighte the (MON) lamp if the (HAMP) key is operated, indicating that the mastar switch is being stepped off-normal.
7. GROUP SEIECTOR

In position 3, the (SM) relay releases but the (MON) relay holds through the (CO) arc and inmer winding of (G-l-ON) relay which operates. The (G-1-ON) relay operated connects battery to the ($G-1-0 N$) lamp and the (GON) relaye The (GON) relay does not receive enough current to operate. Whe (SG-1) and (STP-2) relays operate in position 5. With the $(S G-1)$ relay operated, the $(G-2-A)$ and the $(G-1-B)$ magnets operate in parallel to ground on cam ($Q-1$) . The (SG-1) relay operated, shortcircuits the (STP) relay through the back contact of the ($G-1$) magnets. When the $(G-1)$ magnets operates the short circuit is removed and the (SPP) relay oparates, adrancing the switch to position 4 .

8. LINE FINDMR SELECTOR

As the awitch leaves position 3, the (SMP) (STP-2) and (SG-1) rem lays and the $(G-1-A)$ and the $(G-1-B)$ magrets release, tepping the brush assemblie of the two group connectore to terminal 10 With the brush assembly of the group connectors on terminal 1 , the (L Pwl 1) and (RTS) relays operete in series with the outer winding of the ($G-1-0 \mathrm{~N}$) relay through the (CO) brush. The (RIS) relay operated, operates the (PM) relay . Whe ($\mathrm{GLF-l}$) and ($\mathrm{SMP}-1$) relays operate in series through the (P) brush to ground on the (SS-1) relay normsi. Ground on cam (Q-I) through the (SLP-1) relay operated, operates the (LF-1) magnet. When the (IF-1) magnet contacts break, the (STP) relay operates, advancing the ($\mathrm{R}-1$) witch to position 5 . The operation of the (LIF-1) relay lighte the associated lamp if the (IAMP) key is operated indicating that the first line finder connector has been associated with the group mwitch and is off normal. As the switch leaves position 4, the (SMP), (SMP-1) nin (SLP-1) relays and the (LF-1) magnet reloase. The release of the

124 Pagas, Page 4)
4 Bave 4 BT 501457
November 10. 2923 (*)
Roplacing al1 previous
isะues. (*)
(LF-1) magnet steps ite brushes to terminal 1.

9. SETTIHG OF CLASS CIRCUIT

The (CL) relay operates in position 5 , through eam V, (B) arc and brush of the class switch, (SR-1) relay, cam ($M-3$) to ground. The same ground through the (B) brushes and terminals of the ($M B)$ ($G-1-B)$ and (LF-1) connectors, over leads A. B, C or D, contact of the (CL) relay. and winding of the proper alass relay, winding of the (\mathbb{N}) relay to battery on the class switch operates the proper clase relay and the (N) relay in serion. The operation of the (II) relay opens the (RI) lead to the class selector frame, preventing the class selector from being returned to normal, prematurely. The oparated olass relay locke to ground on the (RIM) keyo The class relay operated, closes a circult from ground through the break contact of the (DB) relays, cam ($\mathrm{E}-1$) and ($\mathrm{F}-\mathrm{I}$), advancing the $(\mathrm{R}-3)$ switch to position 2,5 , or 8 , depending upon which clase relay is operated. The (DSS) relay operates in parallel with the ($\mathrm{R}-\mathrm{z}$) magnets thus preventing the $(\mathrm{B}-1)$ switch from moving out of position 5 prematurely. When the ($\mathrm{R}-3$) switch is set, the (DMS) relay releases. As the $(R-1)$ switch enters position 5 the (SLP-1) and (STP-1) relays operate. With the (SLP-1) relay operated, and the (DPS) relay normal. the (LP-1) magnet operates through the contacts of the particular class relay operated to ground on the (DB-1) relay. When the selector contacts break, the (STP) relay operates, adrancing the ($R-1$) switch to position 6. In position 2, 5 or 8 of the $(\mathrm{R}-3)$ switch the "first testh lamp is lighted if the (LAMP) key is operated. As the (R-1). switch advances from position 5 , the (LF-1) magnet releases, moving the brush assembly to terminal zo perminals 2 to 21 inclusive and the (PMG) are are grounded and operate the (PMC) relay. In position 6, the (SLF-1). (SMP-1), (SMP) and (CL) relays release.

10. SPARE LINE FIMDFR TGRMIMAIS

The spare terminals on the (c) are of the line finder connector are connected to lead (I). When the (C) brugh maise contact with the spare terminals, the (SLIFT) relay operates and looks to ground on cam No 䟵e (SLFT) operated, operates the (DB) relay and advances the (R-1) switch to position 18. The (DB) relay operated, lights the (BLF) 1 amp and operates the (DB-1) and (TR) relayso The (DB-1) and (TR) relay perform no useful function at this time. In position 18, the (STP-1) and (SLP-1) relays operate in series to ground on cam J and the (SLFT) and (DB) relays releaseo The (DB) ralay released, extinguishos the (BLF) lamp and releases the ($D B-1$) and (TR) roleys. The (DB) relay released, operate the (Lr-1) magnet, thereby moving the line finder selector to the next terminal and operating the (STP) relay. The (STP relay, advances the ($\mathrm{R}-1$) switch to position 1. As the witoh leaves position 18, the (SLF-1).

$$
\begin{aligned}
& \left(\frac{24 \text { Pages, Page 5) }}{\text { Issue } 3 \% ~ 501457}\right. \\
& \text { Hovember } 10,1923 \text { (*) } \\
& \text { Replacing all previous } \\
& \text { 1ssues. (\%) }
\end{aligned}
$$

(STP) and (STPM1) relays release The (ST) key operated advancee the ($\mathrm{R}-1$) switch to position 2 , the (PMG) relay operated, advances it to position 6 from ground through the contacts of the (SS-1), (PLPS) and (PMG) relays, and oam (B) . The next terminal is then teated for apare, busy or idle oomditions.

11.
 BUSY LITR FIMDRA

When the (B) brush of the line finder comector finds a busy terminal, ground over lead (B) operates the (B) relay through cam (V), in position $51 / 2$ indicating that the line finder is hunting for a line. When the line finder under test has actually been made busy, ground is connected to the (DB) lead, operating the (DB) relay as the ($\mathrm{R}-1$) switch advances to position 6. With either the (B) or (DB) relay operated, the circuit through the (IDL) relay is opened, preventing its operation and the advancement of the ($\mathrm{R}-1$) switch from position 6. The operation of the (DB) relay also operates the (DB-1) and (TR) relays and lights the (BLT) lamp. The (TR) relay operated opens the tip, ring and sleeve leads, preventing objectionable clicks in the subscriber's receiver. The (DB-1) relay performs no useful function at this time. The test oircuit remains in position 6 until the busy condition is removed from the line pinder or until the time alarm operates.

IDIS LINR FIFDIAR
When a line finder circuit is idie, ground is not conneoted to the (B) or (DB) leads and the (B) and (DB) relays remain normal. The (IDL) relay operates to battery on cam ($\mathrm{X}-1$) e The (IDL) relay operated, connects ground to the (Dis) lead making the district buay, advances the ($\mathrm{R}-\mathrm{I}$) switch to position 7 , operates the (ST) register and (CT) relay. The (CT) relay operated, operates the (CT) regieter, Ground on the (DB) relays normal, through came (G) and (F), (TR) relay. (S) bruah of the master connector and lead (S) operated the \& (ST) relayo Hote - (ST). (TR) and (LT) refer to the start, trip and line finder circuits respectively. The A (ST) relay, operated operates the B (ST) relay. The B (ST) relay, operated, operates the (C), ($C-1$) and I (ST) and (LC) re1ays. The (LC) relay operáted disconnect ground from (DB) 1ead. The I (ST) relay operated, operates the BA (IR) relay. The I (ST) and (BA) (TR) relays operated conneat battery to the (H) lead. The BA (ITR) and (C-1) (ST) relays operated, operate the TR (TR) relay. The TR (TR). relay operated, locks through the C (ST) relay operated, and operates the (ST-A) (ST) relay. The (ST-A) (ST) relay operated operates the D (ST) relay and conneots ground to lead (Z) through the C (ST) relay operated. With the (LC) relay operated, ground on the (Z) lead is connected to the (LF) lead operating the LF (LF) relay. From this point
(24 pages. Page 6)
Issue \& BT 501457
Yovember 10,1923 (*)
Replacing all previous

on the trip, start, line finder and district selector circuita function as for a regular call buntiag the teat line and an idie semder and relaasing the trip and start circuits. When the (ST-A) (ST) relay releases, the E (ST) relay operatese The E (ST) relay operated, releases the C and ($0-1$) ST relays. The B, D and E (ST) relays are locked under control of the A (ST) relay which remains operated untll the ($\mathrm{A}-1$) advances to position 18 or the (TR) relay operates. When the tost 11 ne and an fale sender are found battery and ground are connected to the ring and tip leads operating the (PC) relay. The (PC) relay operated, advances the $(B-1)$ switch to position 8 . The (SC) relay operates in position f from ground on the (DB) relays normal and locks under control of the (EC) and (RI) keys. The (EC) relay operated, closes an operating circuit for the ($\mathrm{EC}=1$) relay when the master switch retwems to normale

13.

TESTS POR MON-SLARY OF LINE FINDER
-Wile in position 7, ground is connected to the (z) Lead, operating the (HEF) relay ana the inne inder relay in the ine inindero If the operation of the line finder relay falls to start the up arive, the circuit functions as follows: The first closure of the interrupter controts, operates the (MLF-2) relay. The (NLF-2) relay opersted. locks in series with the (MLe-3) relay which operates when the interrupter contacts break The operation of the (MLT-3) relay in turn opereses the (NLB-4) relay mpon the next closure of the intermpter contacts. The (ILFHu4) relay operated. locke to ground on the (DB) relay, operates tho (TR) and (DB-1) relaye and lights the (NLS) lamp as an indioation that the line ilnder relay has falled to start the up-driveo The operation of the (TR) relay opens the tipe ring and sleeve terminal from the tart circuit, thas holding the test circuit 12 position 7 o The (DB-1) relay perform no useiul function at this time The circuit remins in this position as trouble condition If the operation of the ine finder relay tarts the upodrive. the (GA) reday in the start circult operates and removes grovad from the (z) lead, thua removing the ehort circuit from the (ymp-1) relay which operates in serien with the (NLis) relay to ground on the (DV) relayse The (NLPM1) relay opersted. removes ground from the interrupter contacts, preventing the (NLF-2). (MLF-g) and (MLPmen) relay from operating and the test proceodso

TEST POR OVERSTVEP OF LIME FIMDHR

In position 7, with the (IC) reley operated, when the olevator reaches the (M) segment, ground is connected to the (B) leade operating the (OS) relay. The (OS) relay operated. in turn operates the (OS-2) relay which preverts the operation of the (OS-3) relay. When the line
finder relay releases, ground is removed from the (B) lead, removing the short-circuit from the ($0 S-1$) relay, which operates. The ($0 S-1$) relay operated. releases the ($0 S-2$) relay. The release of the (OS-2) relay is very slow, sufficient time is allowed for the sender selector to humt over 7 terminals and the teet switch to be moved out of position 7 before the ($0 S-3$) relay can be operated. Should the line finder overetepe the tip and ring leads will not be connected through to the sender and the (PC) relay will not be operated, holding the ($\mathrm{R}-1$) avitch in position f and the (OS-3) relay operates. The (PC) relay operated in a norm mal call releases the operated (OS) relays. The ($05-3$) relay operated, 12ghts the (OS) lamy indicating that the line finder has overstepped and operates the (TR) and (DB-1) relays. The (TR) relay opens the tip, ring and sleeve terminals of the etart circuit, holding the test circuit in position 7 cantil the operation of the (RNT) key to reatore the circuit to normal. The (DB-1) relay operated performs no useful fonction at this time.

15.

As the ($\mathrm{R}-1$) switch leaves position 7 , the (IDL) relay releases, but the (LO) relay is held until the switch leaves position $71 / 2_{0}$ During this short interval of time, ground through the (IDL) relay. (DB) and (B) relays normal, (OS) relay, ($O S-1$) relay nommal and (LC) relay operated is connected to lead (B). With the (AB) relay in line finder operated, ground on lead (B) places a bad non-operate condition on the (F) relay (lize finder circuit). Should the (F) relay operate a false palse will be sent to the sender.

16. DIALING OT THRRES DIGIT CODE

With the ($\mathrm{R}-1$) switch in position 8, ground on the (DB) relays normal advances the ($\mathbb{R}-2$) switch out of position i_{0}, the (B) cam carrying it for one complete revolution. As the ($\mathrm{R}-1$) witch is advancing out of position \%, the tip and ring sides of the group test line are closed through to the 100 ohm resistance in the pulse circuit der leads (A) and (B) and cam ($\mathrm{B}-2$) to hold the sender. As the ($\mathrm{R}-2$) switch rotates, the ($\mathrm{E}-2$) cam sends pulses to the sender until it reaches position $51 / 2$, when cam $(J-2)$ and lead ($(\mathbf{}-1)$ shunts cam ($\mathrm{E}-2$) preventing further pulses from belag sent. When the dial pulse sequence switch reaches position $16 \mathrm{l} / 2$, the (CE-1) relay operates and when in position $1 / \frac{1}{1} \mathrm{~d} / 2$, the (OK) relay operates and both relays lock to ground on the (DB) relays normad through cam $(G-2)$. The $(0,-1)$ relay operated, in turn opens the energizing circuit through the ($\mathrm{R}-2$) magnet, thus preventing the ($\mathrm{R}-2$) switch from making a second revolution until the ($\mathrm{R}-1$) switch has adranced

Issue \& BT 501457 November 20 : 1923 (*)
Eoplsoing ell previous 1ระนยะ (*)
to position 9. The (CK) relay operated, advances the (R-1) ewitch to position 90 When the $(R-2)$ switch leaves position 8 , the (GK) and (OK-1) relays release, savanoing the $(R-2)$ switch out of position 2. The second digit of the three digit code is sent during the second revolution of the $(B-E)$ switoh over leads (A) and (B), matil shunted by the $(M-2)$ lead and lead (K) A Ane (R-2) enters position $161 / 2$ on the second revolution, the (CX-1) relay reoperates, performing the same function as just described and the (CK) relay operated, advances the (R-1) switch to position 10. In position 10, the (CK) and (CK-1) relays release. Also in position 10, the (FR) relay operates over the (BB) laad, and locked to the same ground under control of the (DB-1) relsy, The (FR) relay, operated, opens the circuits for operating the (STP) relay and for sdvancing the ($\mathrm{R}-1$) switch from position $L_{\text {。 }}$

DIAFIMG OR OTHER MHAY THREE DIGIT CODE

When only one or two digits are required to satisfy the sender assooiated with the district solector circuit under test, the ifrst digit is sent in position 8 in the same maner as the ifret digit of a three digit code. In position 9, ground on cam (G-1), using "Zn wixinge advances the $(\mathrm{R}-1)$ switch to position 10 . The ($\mathrm{R}-1$) switch adrances to position 11 by ground through cam $(5-1)$ using "Ww wiringo When two digits are required to satisfy the senderg they are sent in positions 8 and 9 described for the three digit code. In position 20, 1t 18 advaneed by using "Wo viring and ground on cem ($\mathrm{P}-1$).

18.
 TRSTE FOR LIME CLOSURE

A8 the $(\mathrm{R}-1)$ switch advances to position 11 , the $(18-\mathrm{V})$ resistance romaing across the tip and ring leads over laads (A) and (B) holding the (I) relay in the sender. The sender makes distriot brush and group selections. The first two sleeve terminals in the selected group are grounded, by the operation of the (GS) relay which operates in position 11. so that the third terminals in the group are selected. The sem lected terminsls are connected to cans $(R-1)$. $(Q-1)$ and $(P-1)$. The tranalation of the code used in such that the office selections are skipped and the fundemental circuit is closed for trunk test operating the (TC) relay. The (TC) relay operated, operates the (TC-2) relay which locks in seriea with the (TC-1) relay. When the sender advances to make talking selection the (TC) relay releases allowing the (TC-l) relay to operate in series with the (TC-2) relay. Whe (TC-1) relay operated, frounds the (S) lead making the trunk terminals busyo. Wen talking selection is completed the (TC) relay reoperates. The (TC) and $(T \mathrm{C}-1)$ relayg, operated, advances the $(\mathrm{R}-1)$ switch to position 12. When the switch advances Irom position 11, the ground to the (S) lead of the
test circuit is transferrad from the make contact of the (TC-1) relay to the break contact of the (RO) relay, and the (TC), (TC-2). (TC-2) and (OS) relay relaase.
qust or supgrvisory gray (sc) mpe wratmo
With the switch in position 12, the 20 ohm resistance (Y) is bridged across the tip and ring for soaking the suparvisory relay in the district. When the (I) contacts of the interrupter close, the (SK) relay operates and locke. When the (B) contant of the interrupter makes. the (se-1) relay operate and loeles. On the next make of the (F) contact, the $(\mathrm{R}-1)$ witch adranees to position 13 , the (A) cam carrying It to position 140 The (sx) velaye release as the $(\mathrm{R}-1)$ switch leaves position 12. In position 14, the (SE) relay operates, and looks to ground on cos (M-3) . While in position 12 , the (PSX) relay operates srom ground on oam ($\mathrm{F}=1$) : and battery on the (SR-2) relay The (PSK) Pelay, operated, connects battery and ground through the (SK) resistance to the tip and ring sides of the test line to operate the (CB) relay in the district circuit. The polarized (CS) relay in the district circuit operates and sdrances the distriot to the "talking to operator" position. When the switch leaves position 12, the (PSK) relay releases and in position 14, the (CS) relay operates through the resistance as specified by the Telephone Company, through the (PSK) and (BB) relays normal, over the ring side of the district seleotor circuit through the master switohes, (TR) relay, cans ($M(-1$) and ($0-1$) contacts of the (REL) relay, (Y) resistance (20 ohms), can ($\mathrm{K}-1$) and ($\mathrm{K}-3$) to ground. The (C8) relay operated, operates the (I) relay over the tip side of the ine. The (I) relay locke through its make contact and operates the (RO) relay, when the (IV) contacts of the interrupter make. The (RO) relay operated, locks and opens the sleeve circuit through cam (P) allowing the district to advance from its "talking to operator" position which releases the (CS) relay in the test circuit. The (CS) relay released, releases the (I) relay. The (RO) relay operated and the (I) relay released advances the ($\mathrm{R}-\mathrm{d}$) switch to position 25. If the district circuit has failed to advance to the "talling to operator" position, the (CS) (I) and (RO) relays fall to operate and blook the (R-1) switch in position 14.

TEST OF SUPERVISORY RELAY (DC) nPN WIRING
As the test witch passes from position 14 to 15 , the 20 ohm soaking circuit is held across the tip and ring sides of the test circuit, soaicing the supervisory relay (DC). With the switch in position 15, the (SK) and (SK-1) relays reoperate mader control of interrupter contacts (F) and (B) o The operation of the (SK-2) relay removes the ghort oircuit

Issue 4 BT 501457
November 20,1923 (*)
Roplacing 811 previous
issues. (")
from around the (S) : $(U)_{:}(V),(W)$ and (X) resistances and the (RBL-D) relay bridging them in series with the (Y) resistance across the tip and ring sides of the group teat line, thereby releasing the supervisory (DC) relay in the district circuito The (RGL-L) relay operates over this circuit as soon as the district releases the line so that 48 volts is connected through the line relay to the (R) load and advances the $(\mathrm{R}-1)$ witoh to position 16. The (RRL-1) relay is given special adjustment to take oare of an inductive kick from the repeat coil. The (SK), (SK-1) and (RRL-1) relays release as the switch adivances to position 16. With the $(\mathrm{R}-1)$ awitch in position 16 , the $(\mathrm{R}-\mathrm{C})$ switch advances to the next position from ground on oam (H-1) . With the (R-2) switch in position 3, 6 or 9 , ground on cam ($\Psi=1$) through cam ($G-3$) advances the $(\mathrm{R}-1)$ switoh to position 17. Ground on the (SR-2) relsy normal. advanoes the $(\mathrm{R}-1)$ switch to position 18 . With the ($\mathrm{R}-3$) witoh in position 3, the (SR-S) relay operates through the contacts of the (SR-2) relay, (SR) and (MR-S) relays. (RRP) key, cam ($P-3$) and (ST) relays to ground on can (I-1) © The operation of the (SR-3) relay advances the $(R-3)$ switch to position 1 , and comsects ground to the (SR-2) relay, causing it to operate and lock in eories with the (SR-3) relay as the $(\mathrm{R}-1)$ switch advances from position 18.
Notes for Q wiring see paragraph 5D.
21. LALSE REVOLUSION OF DISTRICT

Should the (OS) relay in the district fall to release the district sequence switch will rotate until the (CS) relay releases. Under such a condition ground will be removed from the (DB) lead in positions 13 1/4 to $21 / 2$ of the district switcho The (FR) relays are slow release relay and are used to cover this condition, but they are not slow enough hence under extrome conditions the test circuit will not test for a rotating distriot. Should the (IR) relays hold under this condition, the $(\mathrm{R}-1)$ switch will remain in position 1 until the distriot stops rotating or it will give a trouble alarm. If the district under test is restored to normal, the (IR) relay release, advancing the ($\mathrm{R}-1$) switch to position 2 of its second revolutions.

SECOMD THST OF DISTRICT CIRCUIT - REPEATIHM COIL IH

22. SBCOMD REYOLUTION

With the (R-1) switch in position 2 (sseond revolution) ground on the (SS-1) relay through the contacts of the (PLRS) (PMG) and (DTS) relays through oam (B) advances the switch to position 6. The switon functions in positions 6 to 10 inciusive in the same manner as described for the first revolution of the switch, with the exception thst the digit code sent is such that it will stop the diatrict circuit in a taiking positiono

1

In position 11 ，the（ 18 mU ）resistance is bridged across the tip and ring holding the sender，and the（TC）relay operates during trunk test by the sender the party test is now made by the district first party normal line）．When the district is advanced to a talking position the （TC）relay reoperates and the（DC）relay in the district is operated． The（GS），（TC），（TC－1）and（TC－2）relays function as described in para－ graph 18 to adrance the $(R-1)$ switch to position 12 ．With the $(R-1)$ switch in position 12，the（DC）relay in the district is given soak－ ing current，the（Y）resistance being connected across the tip and ring of the group test line．Also the（CS）relays in both the test and dis－ trict circuits are operated．The（CS）fistrict relay，operated，oharges the call．The（CS）relay is held operated and in position 14 operates the（0）relay a the（SK）（SK－1）and（SK－2）relays operate，under con－ trol of the（ F ）and（B）contacts of the interrupter，and advance the （R－1）switch to position 13，the（A）cam advances it to position 140 As the $(R-1)$ switch enters position 13，ground on cam $(Y-1)$ operates the （REL）relay which locks to ground through cam（ $F-1$ ），and removes the shunt around the（X），（W），（V），（U）and（S）resistances and fRaL 1 ）re－ lay，the（REL－1）relay does not operate。 The（DC）relay in the district cirouit releases due to the high resistance connected in series with the （RELmi）relay but the district is not immediately released being held by the（D）relay in the district．The（O）relay operated in position 14．locies and connects ground to the（I）relay which operstes when the interrupter contacts make．the operation of the（0）relay also shunts the（RaL－1）relay or（Z）resistance and the（S），（U），（V），（W）and a portion of the（X）resistance，allowing the upervisory（DC）relay in the district to operate over a condition which simulates a short loopo the interval of time between the release of the（DC）relay in the district in position 13 of the $(R-1)$ switch and the reoperation in position 14 is such that the dietrict circuit is not released，due to the slow release of the（D）relay．the（I）relay locks and operates the（RO）relay the （RO）relay operated locks and operates，the（SO）relay．When the（IV） contact of the interrupter makes，it adrances the test switch to posi－ tion 15．The（SO）relay operated advances the（R－l）switch to position 16．With the switoh in position 16．ground on cam $(Y-1)$ ．advances the switch to position 17．The tip and ring of the group ine is opened as the switch advances from position 25 ，releasing the（DC）relay in the district allowing the district to advance to the message register or coin collect position or return to normal．

PTAT RATE

When testing llat rate district circuit the（PL）relay operates in position 5 of the irst revolittion of the（R－1）switcho The（EL）relay operated sets the $(R-B)$ switch in position 8 。 The $(R-8)$ switch is moved to position 9 when the $(R-1)$ ewitoh is in position 16 of the lst revolu－ tion．The circuit functions as has previously been described up to

Issue 4 BT 501457
yovembor 10,1925 (*)
Replacing all previous issues. (*)
position 17 of the ($\mathrm{R}-1$) switch (2nd revolution). The ($\mathrm{R}-1$) switch is advanced to position 18 by ground on cam ($K-3$) o ts the ($\mathrm{K}-\mathrm{d}$) switoh leaves position 17, the (RO) (SO) (O), (REL) and (I) relays release.

ADVANCE TO MEXT DISTRICT
The (SR-1) relay now (position 18) operates from ground on cam (I-1). The ($\mathrm{SR}-1$) relay operated, advances the ($\mathrm{R}-3$) switch to position 10 when the $(S R),(S R-1),(S R-2)$ and (SR-S) relays release. The (SLI-1) and (STP-1) relays operate in position 18. The (FL) relay operated (see paragraphs 25 and 9) advances the ($\mathrm{R}-3$) awitoh to position 17 . With the $(R-\mathbb{Z})$ switch in position 17, the (SLF-1) relay operated and the (FR) re1ay normal (the district having returned to normal, the (LP-1) magnet operates. The operation of the (LT-1) magnet allows the (STP) relay to operate, which advances the ($\mathrm{R}-1$) switch to position 10 when the ($\mathrm{R}-1$) switch advances from position 18, the (SLP-1), (STP) and (STP-1) relays release and the (LF-1) magnet releases stepping the (LF) selector to the next terninals. The circuit is now ready to test the next district.
25. MESSAGE RBGISTER OMB-PARTY

The (M R-1) relay operates and locks in position 5 of the (R-1) switch, and when the (LF) selector rests on torminal do the (MR-1) relay operated advances the (R-3) switch to position 2 . The circuit functions as described in paragraphs 11 to 22 inclusive advancing the ($\mathrm{R}-1$) switch to position 17 of the and revolution. At this time the district has advanced to the register position and connects battery to the (MZ) lead (the call having been charged) which operates the (R) relay. This battery is connected through three (18 -ANi) resistances in parallel in the distriot, if one or two of thase resistances are open the (R) relay will not operate, 12 these resistances are short-circuited the (BX) relay operates as well as the (R) relay. The (R) relay operated, operates the (WD-1) relay. in turn operates the (WD) relay. The (WD) relay operated locks and the (WD-1) relay releases as soon as the district advances discounecting battery from the (MZ) lead. The (R-1) witch is advanced to position 17 from ground on the (BX) relay normel through the (WD-1) relay normal and (WD) relay, operated. Should the (BX) relky operate, or khould the (R) relay not operate, the ($\mathrm{R}-\mathrm{L}$) switch will be held in position 17 as a trouble condition. When the ($\mathrm{R}-1$) witoh leaves position 17 , the (RO), (SO), (O), (REL) and (I) relaye release. The circuit functions in position 18 as described in paregraph 24.

MESSAGE REGISTER TWO-PARTY
When testing two party message register district the (MaR-2) relay operates in position 5 of the ($R-1$) switch and with the (LF) selector
resting on terminal 1 . The (MR-2) relay operated locks and advances the ($\mathrm{R}-3$) relay to position 2o When the (SR-2) rolay operates as the ($R-1$) switch starts on its second revolution, it operates the (MR-3) relay. The ($M R-3$) relay operated, operates the ($\mathbb{M} R-4$) relay instead of the ($\mathrm{SR}-1$) relay es the $(\mathrm{R}-1)$ switch advances to position 18 of the second revolution, The ($\mathbb{M}(\mathrm{m}-4)$ relay, operated, advances the ($\mathrm{R}-1$) switch to position l_{0} in turn operating the (MR-5) relay. The (MR-4) and $(\mathbb{M}-5)$ relays operated lock to cam $(\mathbb{M}-3)$. Otherwise the circuit functions as described in paragraphs 11 to 22 inclusive and 25.

27. THIRD BEVOLUTION

The ($\mathrm{R}-1$) switch is required to make a third revolution and the class awitch does not change positions. If the district circuit has not been seized by another line finder when returning to normal, the ground is removed from the (DB) lead, releasing the (FR) relays thus advancing the ($\mathrm{R}-1$) switch to position 2 . In positions 1 to 16 of the third revolution are passed through in a similar manner to the corresponding positions in the second revolution, the same digit code being sent by the ($\mathrm{R}-\mathrm{Z}$) switch in this revolution as in the previous one. When the test switch advances to position 11 on its thirc revolution it waits until the district makes party test. The distriat selector oircuit before making party test, connects battery to the tip side of the group test line, and operating the (PT) relay to ground on cam ($M-3$). The (PT) relay operated, opens the circuit for adrancing the (R-1) switch from position 18 and operates and locics the (PT-1) relay. The (PT-1) relay operated, disconnects ground through 1000 ohms to the (T) lead to the distriet and connects it to 24 volts battery through the (GS) relay operated. When message register current is again connected to the test line in position 17 , the (R) relay operates, in turn operating the (WD-1) and (WD) relays which adrance the switch to position 28. In position 18 of the third revolution, the ($\mathrm{SR}-1$) relay opsrates and locks, advancing the (R-3) switch to position 10 or next normal positiono as the (R-3) switoh returns to normal all the (PT) and (SR) relays release in turn releasing the (MR) relays. The (R-S) switch is reset, the (LF) connector is advanced one step and the ($\mathrm{R}-1$) switch is adranced to position 1 . in a hanner similar to that described in paragraph 24.

28.

CLASS SELECTOR
Each time the (R-8) switch advances to position 2, 5 or 8 , the circuit is closed through the winding of the (CL) stepping magnet and cam ($\mathrm{A}-\mathrm{B}$) to ground on cam ($Y(-1)$ in position 5 , energizing the magnet. Whon the ($R-1$) witch leaves position 5, the (CL) magnet releases, stepping the brush assembly of the selector switch: to the next terminal,
extinguishing the previous lamp and lighting the successive lamps $l_{0} 2$ or 3 etc. under control of the (bAMP) key. The lighted lamp indicates which distriot selector is being tested. As the class switoh brush assembly stepa from terminal to terminal, lamps 1 to 20 will light indicating the progress of the test. Thus the class selector follows the movement of the line finder connector and is able to change its setting whon stopped from terminal 21 and when the next line finder comector is used. When the brush assembly of the class selector switsh reaches torminal 22 , the holding circuit through the operated class relay and (N) relay is opened, releasing the relsys. The (R-3) witch is returned to normsi with the $(\mathrm{R}-1)$ switch in position 2 to 17 g and the (DB) or (DB-1) and class relays normal.

SITEP MASTER COXRTECNOR SWISOH

After the 400 aistriot selector circuits associated with a tempinal of the master connector switch have been tested, the brush assembly of the group connector switch being released steps off terminal 21_{0} and the associated (RTS) relay releases, in tum releasing the (PM) relay, The (PM) relay released, operates the (SM) and (STP-2) relays in position 2 of the ($R-1$) switch. The (SM) relay operated, operates the (MA) and (MB) magnets. When the (MA) and (MB) magnets operate, the (STP) relay operates. The operation of the (STP) relay advances the $(R-1)$ switoh to position 3 , and in so doing, releases the (MB) and (MA) magnetis moving the brush assemblies of the master switch to the next teminal. From this point on, the test proceeds in the same manner as with the group connector associated with the first terminai.

31.

STGEP GROUP COMNECMOR SWITCH

In order to tsst the district selector associated with another ine finder connector switch, it is necessary to step the brush assembly of the group connector one terminal. When the ilne finder connector just used, leaves terminal 21, the (MG) relay releases and the (R-I) switch is advanced to position 2 when the (FR) relays release。 The (PM) relay operated, advances the ($\mathrm{B}-1$) switoh to position 3. The.group selector is advanced, another line ilnder selector being seized and advanced, the cisss relays are sot and another test is started as describod in paragraphs 7 to 10 inclusive.

As explained in paragraph 12, the (EC) relay operates when the ($\mathrm{R}-\mathrm{I}$) switch enters position 7 at the beginning of e routine test。 When all the district seleotor cirouits have been tested by this cirouit, the
master connector switch steps from terminal 21 to normal operating the ($E C-1$) and (SM) relays. The (SC-1) relay operated, operates the (SLFT) and (PR) relays, lights the (BC) lamp and opens the operating circuits of the (MB) and (MA) stopping nagaets. The (SLFT) relay locks through cam ($\mathbb{N}-1$), advancing the ($\mathrm{R}-1$) switoh to position 18. and operates (DB) relay in turn the (DB-1) and (TR) relays. The operation of the (DB) relays removes ground from cans (F) and (G), preventing the relays under control of these cams from operatingome ($D B$) ($D B-1$) (TR) and (SLIT) relays release as the awitch advances from position 2%. The ($\mathrm{R}-1$) switch is advanced to position 1 by the (RTS) relays normal. The (ER) relay operated prevents the (R-1) switch from advancing out of position $l_{\text {. If another cycle of test is not do- }}^{\text {de }}$ sired, the (RII) key is operated and the (ST) key reles.eed. The operation of the (RN) key relenses all operated relays lock through the break contacts of the (RTS) key. The (EC) relay released, releases the (SM) and (EC-1) relays, in turn the (FR) relay, restoring the circuit to normal.

BETURN TO MORMAL (RN) KEY

When it is deaired to restore the test circuit to normal from any position, the (RN) key is operated. The (RM) key, operated. (a) relesses the (TA) relay, if operated, returning the time measure switch to normal. (b) releases the class relays, (c) opens the circuit to the (GON) relays, (d) operates the (DBT relay in turn the (DB-1) and (TR) relays which function as described in paragraph 31. (e) advances the (R-I) switch to position 1 and (f) resets the master, group and line findar selectors. The (DB), ($\mathrm{DB}-1$) and (TR) relays release as the ($\mathrm{R}-1$) leaves position 17. With the ($\mathrm{R}-1$) switch in position 2 , and the (DB) and clase relays mormel. the ($\mathrm{R}-3$) switch is advanced to the next normal position, With the ($\mathrm{R}-1$) switch in position 1 , the (SM) relay (if the master switches are off normal) operates in seriss with the (STP-1) relay through the (MON) relay operated. The (SiM) and (Sypmi) relays operated, the master selector magnets operate allowing the (STP) relay to operate. The (STP) relay operated operates the (RM) ralay. The operation of the (EN) relay releases the selector magnets allowing the brush assembly to step one terminal. When the magnets release they short-circuit the (STP) relay, releasing the (RII) relay. The (RN) rem lay released, permit the (SM), (STP-1) relays and the selector magnets to function stepping the brush assembly one more step. Whis magnet continues to operate and release stepping the master selsctor to normal at which time the (MON) relay releases. The (MON) relay, normal, transfers the circuit from the (SM) relay to a (SG) relay where the cirm cuit funotions as has just been described stepping any off normal group pages, Page 16)
1s8ue 4 BT 501457
Movermber 10,1923 (\%)
Replacing all previous
issues. (*)
selector to normal. When the group selectors are all normal the opere ated (G-1-ON) (RTY) and (LF) relays release. With the (LF) relays normal any (LF) selector that is off normsl will be returned to normal. .

BPARE MERNMHAL ON MASTER AND GROUP SWITCH
OThen the master switch stepa to s apare terminal, the $(\mathbb{F}-1)$ switch being in position 3 , the (SPM) reiay operates. The (SPT) relay opere ated, openg the dead for advancing the (R-1) switch watil all spare torminala have beon passed anu operates ${ }^{\circ}$ the ($S P T-1$) rolay, as soon as the (SMP) relay operates as uescribed is paragraphs 6 and $\%$. The (SPF-1) reday opens the ground lead to the master magnet, allowing the master magnet to rolease and step the brushos to the next terminal. As the magnets release the (STP) relay releases in turn releas ing the (SPT-1) relay. The cycle is repeated until a worining terminal is found When the group selector steps to a spare terminal the $(\mathrm{R}-1)$ switoh has advanced to position 4 and the selector in stepped to the next working terminal as just described for the master selectoro

卫IME MEASURE MEATURE
As stated in paragraph 5, the operation of the (ST) key operates ans the (TA) relay whloh locks to ground on oam (N-1). Should trouble develop either in the test circuit or in the district circuit under tast or shonjd sufficient time not be left after the return of the district circuit to permit the completion of a test, the time alarm oirouit operates, lighting the lamps and operating the (Allu) register. Ground trarough the 152 interrupter, azd the (STP) arc operates the (Ta) mago net. When the interrupter contacts break, the (TA) magnet releases stepping the brush assembly of the (24) switch to the next terminal. This oyele is repeated unt 11 the brushes rest on terminsi 16 . If this securs before the (R-1) switch has passed position 18 on its second or third revolution through the rake coatact of the (TA) relay, operates the (ALM) regiater and lights the lamp. The brushes remain on ter. minal 16 until the operation of the (TA) key. The operation of the key releases the (TA) relay which steps the (TM) awitch to normsi.

SEPARATE BUSY TIME ALARM AND TROUBLE ATARM

When figure 2 is specified, the operation of the (gT) key operates the (BX) relay, which locke over lead (B). The operation of the (BY) reley connects the (200 - F) selector magmet to ground through the 152 type interrupter. \&s the interrupter contacts make and break the selector magnst follows, stopping the brush assembly of the (BY) switcho

When the (AL brush oncountere terminal 16, the circuit is closed from ground on the (BY) relay to the (BY) lamp which lighte, indicating that a busy district selector cireuit has been encountered. The oircuit remains in this position until the pperation of the (TA) key, which operates the (HA) relay. The (HA) relay locks through cam ($\mathrm{H}-1$) and releases the (BY) relay, the latter relay stepping the brush assembly of the (BY) switch to normal. Should trouble develop in the test circuit or be encountered in the distriot circuit under test, it is advisable to decrease the time before the alarm is operated. The operation of the (IDL) relay as described under paragraph 22, operates the (TBL) relay which locks to cam ($\mathrm{N}-1$) 。 The (TBL) relay operated, connects the 152 type interrupter through the (STP) arc of the (TBL) switch to the (TBL) magnet. causing it to operate and release in sequency with the interrupter. The operation and release of the magnet, moves the bruch assembly of the (TEL) switch to terminal 3 or 4 as determined by the wiring used. When the brush assembly of the switoh has stepped to the third or fourth terminal, the (TBL) lamp lights and the (TBL) register operates. The cirouit remains in this position until the operation of the (MA) rey which performs the same function as described in the first of the paragraph 34. When no trouble is encountered, the circuit is opened through cam (M-1) in position 18 of the ($\mathrm{R}-1$) awitch, releasing the (TBL) relay. The (TBL) relay released iteps the selector to the next normal terminal.

SND OF CYOLF (XC) KRY
When the master connector has stepped from terminal 21 to normal, the (SM) and (FC-1) relays operate in series and function as described under paragraph 51. When the second cyole of routine test is desired, the (FC) key is pperated, releasing the (ric) relay which in turn releases the (KC-1) relay and (8M) relay. The (EC-1) relay releases the (IR) relay, allowing the (R-1) switch to advance to position 2, starting the second cyole of routine test.
87.

COFIROL ADVAYCR (CA) XEY
If tronble develops in the test circuit or in the district seleotor circuit under test after position 5 of the test stritch, the time alarm lights as described under "Tining Features". If after the (MA) key is opersted, the circuit does not continue to function, the (CA) key is operated. The operation of the (CA) key operatea the (DB) relay, advances the ($\mathrm{K}-1$) mwitch to position 28 opens the circuit for advancing the (R-1) switch out of position 1 and opens the circuit for operating (LF) magnet. The (DB) relay operated, lights the (LF) lamp and operates the (DB-1) and (TR) relays. The (DB-1) relay, operated, releases the (IR) relay. The (TR) relay, operated, opens the (T), (R), and (S) leads
releasing the district and start circuit. The $(\mathbb{R}-1)$ switch will advance to position 1 if the trouble ocourred in the first revolution and awaits the release of the (CA) keyo Otherwise the (R-1) switch remains in position 18 until the release of the (CA) keys. When the (CA) key is released the routine testing proceeds in the usual manner.

PORTABLE KEYS

(32-A Teat Set). When trouble occure before position 6 of a first revolution of the test switoh: it is due to lack of synchronism between the (MA) and (MB) master connectora, or the (GA) and (GB) group comectors. Trouble of this sort cannot be corrected by the operation of the (OA) key. The portable key is inserted in the jack associated with the connector switch whioh is out of synchroniam. The operation of the white button steps the (A) selector, the operation of the red button eteps the (B) selector. The proper button is operated and the selectors are tepped into phase with one another. The portable key is then withdrawn from the jaok associated with the comector awitch and the test continues in the usual mamor.

39.
 TWO GROUP SELTOTORS OFY FORMAL

Should two group switches stop off nornal or get off normal at the same time, battery through the 600 ohm rasistance in parallel assoolatod with each group connector, operates the (GON) relay. The (GON) relay d.oes not operate in series with one 600 ohm resistance. The (GON) relay operated, lights the (GON) lamp, and operates the (GONT-1) relay. The (GON-1) relay operated, (a) locks (b) sdrances the (R-1) switch to position $l_{\text {, }}(0)$ prevents the switch from advancing out of position 1. (d) releases the (GOM) relay and lights the (GOM) lamp. To continue the test, the (RN) key is operated, restoring the apparatus to normal.0 If it is not desired to repeat the routine test up to the point where trouble was oncountered, the number of the pirst alstrict circuit is dialed with the (PC) ley operated. When the line finder connector step: to the proper terminals, the cirouit proceeds to test the district as described under "partioular Circuit". With the relasse of the (PC) key, the test continues to function and test the remaining district selectors on a routine test basis.

PAISE CHARGE TESTS

40. MESSAGE REGISTER OITE-PARTY

The district circuit is tested for a no charge call by operating the (FGH) Koy. The cirenit functions the seme as described for charged
calls with the following exceptions. When the $(\mathrm{R}-1)$ switch enters position 14 of the second revolution the (0) relay operates (see paragraph 22) in turn operating the ($B B$) and ($B B-1$) relays through the (FCH) koy operated. The (BB-1) relay operated holds the (R-1) switch in position 14 longer than for a charged call under control of the (w) and (Z) relays. The (0) relay operated operates the (I) relay. The (I) relay, operated, operates the (W) relay under control of the (A) interrupter. When the interrupter contacts break, the (2) relay operm ates. The next closure of the interrupter releases the (W) relay in turn operating the (RO) relay. When the interrupter contacts break the (Z) relay releases. The next closure and break of the interrupter operates the (W) and (Z) relay. The (SO) relay now operates under control of the (B) interrupter. With the (I): (RO) and (SO) relays operated the $(R-1)$ switeh is advanced to position 15, when interrupter contacts are closed. The (SO) rolay operated advance the switch to position 16, and ground on cam $(y-1)$ advances it to position 1%. During the time the $(\mathrm{R}-1)$ switch is held in position 14 , the (BB) relay operated operates the (DR) relay, holds the (CS) relay operated and connects battery through 1000 ohms resistance to (R-3) lead. The (DR) relay operated transfers the (T-3) lead from direct ground to interrupted ground thus testing the (CS) relay in the district. The (CS) relay in the district follows the pulses of the interrupter (if it is properly adjusted) and the time interval is not sufficient to charge the call. The (DR) rem lay, operated, also transfers the (KZ) lead from the (R) relay to the (IX) relay. When the ($\mathrm{R}-\mathrm{I}$) switch leaves position 25 the (T) and (R) leads are opened releasing the district circuit. When the district cirm cuit returns to normal ground is removed from the (DB) lead releasing the (IR) relay. The (DR) rolay released, advances the (R-1) switoh to position 18. The (0) relay releases as the switch advances from position 17, in turn releasing the ($B B$) , ($B B-1$) and (Z) and (W) relays, if operated.

FAISE CHMRGE

Should the (CS) relay in the district fail to release, the call will be charged and consequently the district will stop in the message register position and register the call. Under such conditions the (MX) relay operates in position 27 over the (MZ) lead. The (NX) relay, operated, operates the (FCH) relay. When battery is removed from the (MZ) lead due to the district advancing the (MX) relay, releases allowing the (FCH-1) relay to operate and lock in series with the (PCH) rem lay. The (FCH) relays operated, open the circuit for advancing the (R-1) awitch from position 27, light the (FCH) lamp and operate the (IR) and ($D B-1$) relays. The ($D B-1$) relay releases the (FR), and (DR) relays. The (TR) opens the (T), (R), and (S) leads releasing the associated line. The test switch remains in position 17 as a trouble condition.
（24 pages，Page 20）
Iระทㄴ 4 B 501457
Yovamber 10， 1923 （＊）
Replacing all previous
issuese（＊）

42
PAISE GROUND TWO－PARTY
During the third revolution（see paragraphs 26 and 27）with the （FOK）key operated，a test is made to determine whether the twomarty distriot recognize a Ialse ground on the tip side and prevent the distriot charging a call on either register．When the test switch arrives in position 12 and the（PT）relay is connsoted to the tip which causes the district circuit in the district selector test cir－ ouit to be stepped for charging orer the（3－2）lead．Whe district is held for a sufficient time to set up a charge condition and when the test switch arrives in position 17 ，the district cirouit under test will be in position 16 and the（P吿）relay is again operated orer the tip which should cause the（T）relay in the district circuit to operate．The（T）relay in the district circuit would cause the operation of the（I）relay，preventing the party selector pron stepo ping until the relay is released．The test and distriot circuits are held until the（FG）and（FG－2）relays operate The（INT）relay oper－ ates in position 14 of the thira revolution of the $(R-1)$ switch under control of the（O）relay．These relays are held operated unt 31 the switch leaves position 17 ．When the（PT）relay operates in position 17．the $(F G)$ and（ $F G-1)$ relays operated under control of the（C）in－ terrupter：The（FG）relay locks under control of the（INT）relay and the（F3－1）relay locks to can（Hew）。 The（TG－1）relay，operated． opens the (m) lead to the（ P P $)$ relay，releasing it and the $\langle T\rangle$ and （I）relays in the district，and short－cirouits the（INT）relay releas－ ing ite The party test switch in the district now advances and sends out register current over the（M－2）lead，operating the（R）relay and moving the test switch in the regular manaer．When the（INT）relay is operated，it connects the（MX）relay to the（M－2）lead and also closer a circuit from the（MX）ammature to the（FOH）relay．Should the district not recognize the false ground and register a call over the（M－2）lead，the（MX）relay operates．The（MX）relay，operated operates the（FCH）relays whtch function as described in paragraph \＆l． In the case that the district under test does not recognize the false ground on the tip side of the cireuit in position $\lambda 1$ ，and Iails to set the district for charging over the（ $14-2$ ）lead，and for the same weason did not recognize it for retest，the charging current is sent out over the（MZ）leac．The（MZ）lead being open at the（MR－5）relay， no relas is operated，thus the test switch is stopped in position i7．

COIN DISTRICT

On coin district，the surrent to the（CS）relay in the district is interrypted in the same manner as for the message regiater distric象， but in this case，the（CR）relay is added to operate on making coin
return test and moves the test switch out of position 17 in the usual manner when the (CS) relay district has functioned properly. The (CN) and (CB) relays are connected in aultiple when the (PCH) key is operated, and should the (CS) relay stick, the charge relays in the district operate, causing the sender to send positive coin current which operates the (CNT) relay in turn causing the (FCH) and (FCH-l) relays to operate. The ($\mathrm{FCH}-1$) relay operated; performs the same function as described in the paragraph 41.

TEST PARTICULAR DISTRICT

To test a particular district, the (PC) and (ST) keys are operated In the order named. The (ST) key operated advances the ($\mathrm{R}-1$) switch to position 2. The (PC) key, operated, (a) opens the regular circuite for advancing the $(\mathrm{R}-2)$ switch out of position 2, 3, 4 and 5 and for operating the selector magnets, (b) provides a circuit for operating the selector magnets under control of the dial, (c) operates the (PUL) and (PLIS) relays and steps the class selector switch in unison with (LF) selector. In position 2 the (SM) relay operates and the dial is operated. The operation of the dial releases and reoperates the (PUL) relay which in turn operates and release the master selector magnet thus stepping the selector around to the desired termingl. The (STP) key is now operated operating the (SS) relay, when the (STP) key is released the (SS-1) relay operates and locks in series with the (SS) relay. The ($\mathrm{SS}-1$) relay operated, advances the $(\mathrm{R}-1)$ switah to position 3. As the ($\mathrm{R}-1$) switch leaves position 2 the (SS) relays relesse. The (PLFS) relay operated closes a circuit for operating the (SG) or (SLF) relays in positions 3,4 and 5 of the ($\mathrm{I}_{\mathrm{q}}-1$) switch and also opens the operating cirouit for the (SLFT) relay. The (SG) relay, corresponding to the selected master selector terminal, operates in position 3. The group selector is stepped to the desired group by the operation of the dial and (R-l) switch is adranced to position 4 by the operation of the (STP) key. In position 4 the (LF) selector is advanced one step for class setting. The (STP) key is again operated, advanoing the ($\mathrm{R}-\mathrm{l}$) switch to position 5 . In position 5, the (LF) selector is stepped around to the desired district by the operation of the dial. At the same time the (STFP CL) selector is stepped around so that it will keop in step with the particular (LF) selector. The (R-l) switch is advanced to position 6 by the operation of the (STP) key. Otherwise the circuit functions in the usual manner as has been described. If it is desired to continue the routine test from this particular circuit on the (PC) key (after the ($\mathrm{R}-1$) switch leaves position 5) is returned to normal otherwise the circuit returns to position 18 and awaits the testman. When a spare terminal is selected, the ($\mathrm{R}-1$) switch may be returned to position 18 by the operation of the (CA) koy.

45. REPEAT XEY (RKP) FIRST THST

When it is desired to repeat the test upon a oertain district selector circuit, one of the repeat keys is operated depending upan which revolution it is desired to repeat the test. The operation of the "REP" First mest" key, (a) opens the circuit through the ($\mathrm{R}-3$) switch, preventing the class circuit from advancing to next position, (b) opens the circuit through the atepping magnet of the line finder connector, preventing the lipe finder brush, from stepping to the next terminal. (c) opens the circuit for stepping the class selector, (d) closes circuits for advancing the ($\mathrm{R}-1$) switch from positiona 16 and 28 , and (e) opens the circuit through the (OT) relay preventing its reoperation on the repeat test. Otherwise the circuit functions in the usual maneer testing the circuit repeatedly as described for the first revolution of the ($\mathrm{R}-1$) switoh.
47. RRAPEAT KRY THIRD TEEST

The operation of the "REP" Third Test" key, (a) closes a circuit to adrance the ($\mathrm{R}-1$) witch from position 18 , (b) opens the circuit through the stepping magnet associated with the ine finder connector, preventing its operation and (c) prevents the (R -3) awitch from being advanced by opening the operating circuit of the (SR-1) relay. The third revolution test is repeated in the usual manner. When the operated (RKP) key is released the circuit continues making routine tests.

STOP AUTOMATIC TESS
The release of the (ST) key advances the (R-l) switch to normal, stopping the automatic test of the district circuit and prevents the $(\mathrm{R}-1)$ switch from adrancing out of position lo If it is desired to restore the test circuit to mormal after the release of the (ST) key.
(24 Pages, Page 2s)
Issue 4 BT 501457
$\frac{\text { Hovember } 10,1923(*)}{\text { Replacing ali previous }}$
issues. (${ }^{(1)}$
the (RII) key is operated' When a particular circuit test is being made to stop the test, the (ST) and (PC) keys are released, and the (RIT) kes operated.

PASS BUSY (PB) KEY

When it is desired to pass by all busy district, the (PB) key is operated. The test circuit may also be released when held by a busy district by the operation of the (PB) key. When the (LF) selector steps to terminals connected to a busy diatrict the (DB) relays operate (see paragraph 11). The (DB), (DB-1) arc (TR) relays operated, lock when the (PB) key is operated, until the (R-I) switoh advarces from position 17. With the (DB) relays and the (PB) key operated, (a) the (BSY) register operates registering the number of busy districts passed, (b) adrances the ($\mathrm{B}-1$) switoh to position 18 and (c) in position 18 advances the (LF) selector one terminal as described in paragraph 24, the (FR) relay being released by the operation of the (DB-1) relay, and the $(R-3)$ switch remains in the 2,5 or 8 position as the case may bea the $(\mathrm{R}-\mathrm{I})$ switch is advanced to position 1 as described In paragraph 24 and the circuit tests another district. Should the district under test be allotted and made busy by a calling subscriber between the 1st and 2nd or 2nd and 3rd revolutions of the ($\mathrm{R}-1$) switoh, the (DE) relays are operated in position 6 of the ($R-1$) switch. The (DB) relays and the (PB) key operated, perform the functions as just described and also operate the (SR-1) relay. The circuit then functions as described in paragraph 24. Should the ine finder over stepg or fail to start, or should the district make a false charge, the (OS) (NLF). or (FCH) relays function operating the ($D B$) ($D B-1$) and (TR) relayso The $(D B)$. ($D B-1$) and (TR) relays operated lock until the switch advances to position 18. The ($D B-1$) relay adrances the (R-I) switch to position 18. This circuit then functions as has just been described advancing the (LF) selector to test another district disregarding any of the trouble condition, over stepping or failure to gtart of the line finder, or a false charge by the district. When the (OS) relays are operated, they are released as the ($2-1$) switch leaves position 7 . When the (NLP) or (FCH) relays are operated, they release as soon as the (DB) relays operate. The repeat keys should not be operated while the (PB) key is operated.

TEST OF SUPERVISORY RELAYS Q WIRIMO

With the $(R-1)$ switch in position 12 of theirst revolution, the circuit functions as described in paragraph 19 with the following exception. The ($5 K-1$) relay operated, operates the (SK-2) relay instead
(24 Pages, 1早ge 24)
Issue 4 Bri 501457
Replacing all previous
issues. (*)

Abstract

of advancing the ($\mathrm{R}-1$) switch to position 13 . The ($\mathrm{SK}-2$) relay, operated, advances the $(\mathrm{R}-1)$ switoh to position 13 . In position 15 the (SK). (SK-1) and (SK-2) relays, operate and lock. The (SK-2) relay operated removes the short circuit from around the (S), (V). (V), (W), (X) and (Z) resistances, thus increasing the resistance across the (T) and (R) leads 80 as to release the aupervisory (DC) relay in the district cirouit. The (SX-2) relay, operated. replaces the (2) resistance by the (RRL-I) relay. There is an interval of time between the operation of the (SK-1) and (SK-2) relays so that the inductive surge from the repeat colls in the district will be absorbed before the (REL-1) relay operates when the district releases the test linea Otherwise。 the circuit functions as described in paragraph 20 p

