Western Electric CO. $0_{\text {, }}$ Incorporeted, Fquipment Ingineering Branoh, Hawthorne.

1 Pages, Page 1)
Issue 5 BT-431740 Appendix 筑2 Aori1 17, 1926.

This M. of O. was prepered from Issue NO. 28 of Drawing $\mathrm{F}=431740$.
METHOD OT OP FRATIOK
frwak Test Cirouit - Trouble Desk - Panel Machino Switrining Cirauit

On page \%, change paragraph 14 to read as rollows -
14. "GY" WIRTNG

When "Wh wiring ia used the circuit functions as described in paxae graph 13 excopting thet the operation of the (TG-1) relay lights the (SUP) lamp to notify the test man that the trume test maa bown made. The oircuit boing as followas- Ground thru the operated (TG-1) relay, outer springs cam I , (SUP) lamp to battery. The (L) cam provents the feise lighting of the (SUP) larap wille the switch is in position 2. The lamp remalns lighted until the operator depressea the assigment irey in the trunk, relessing the (TGG) and (TG-1) relays.

Western Slectrio Co. Inoorporated, Equapment Engineering Branch, Hawthorne.
(11 Pages, Page 1)
Isaue 5 新 431740
Juiv 16, 1925.
Roplaoing all previous issues.

This 1. of 0. was propared from Issue No. 27 of 1 -431740.
MEYHOD OF OPETATIOS
Trunk Test Circuit - Troubie Desic - Panel Msohine Switching Syetom.

DEVELORMENT

1. purpose of curcuIT

This circuit is used at the trouble dosk in a full mechancal offioe to test trunks outgoing to duect mechanical offices, distant office ser lectors, direct E.C.1. offices, masual tandem offices and meohanical tandem ofilices.

2. WORKTVG LIMMS

2.1 When testing direct mochanical oircuits, the maximumexternal oirsuit 100 p for trunk test, selections and sxpervision is 2520 ohms with a minimura leak of 30,000 ohms.
2.2 When testing R.C.I. trumk, the maximum external loop for trunk test and supervision is 5790 ohros with a minimum leas of 30,000 ohms.

OpERATION

3. FRINCIPAL FUACHIONS

The principal functions of this circuit are as follows:
3.1 Sender lamp flashes when trunk to be tested is not buay.
3.2 Busy lamp lights if truak to be tested is busy.

Direct Mochanical Truak Pest
3.3 Seleotion of proper incoming brush and group.
3.4 Selection of proper final brush and group.
3.5 Holds trum busy to other aelectors.
3.6 Gives a visible flashing supervisory signal.
3.7 Returns to normal.

```
(11 Pagos, Page 2)
Issue 5 BN 431.740
J01% 16, 1925.
Feplacing all previous
18sues.
```


Distant Office Trunk Test

3.8 Selection of proper olfice brush and group.
3.9 Fiolds trunk busy to other selectors.
3. 10 Gives a visible ilashing supervisory signal.
3.12 Fiotrans to nornal.

Direct R.C.I. Thronk Test
3.12 Ifghts assigmont lamp at the diatant ofice.
3.13 joiginates pulses for distant R.C.I. position.
3.14 Kstablishos the "Ilashing or talung" connaotion.
3.15 Gives a visible flasing supervisozy sigual.
3.16 Returns to normal.

Mochantcal or yannal Tandom Mrunk Test
3.17 Originates impulses for distant tanden ofiloo.
3.18 "stablishes the "flashing or talkine" onaocifon.
3.19 Gives n visible flashing gupervisory migrel.
3. 20 Raturns to normel.

Miscollanedus

3.21 Gives a visible signal when selectors travel to overflow.
4. CONEECNING CIRCUITS

This circait functions with all standard outgoing trunks to direct mechanical direct R,C.I. manal tandem or mechanical tandem offices and with the recording key circuit.

DESCRIPTIOK OF OPERATLON

DIRECE MEGHANICAL MRUNX TwST

5. RRELIMIMARY FUNOTIONS

To test a drect"mechanical trunk, the proper compensating reaistance iey is operated and the plug of the cord is inserted in the testing jeck of the trunix. The plug in the jack of the truak mekes the trunk test busy to hunting selectors, under control of the (DISC) key and sender cam D. The start key (ST) is then operated, operatine the (BY) relay. The (BX) relay operated, looks in series with the (BX-1) relay under control of the disconnect key. The (BY-1) relay operates. When the (DM) zey is operated, the (ST) and (DM) relays operate. The (ST) relay operated, causes the sender lamp to flash and advanoes the sender switoh to position 2.

6. PUNDAMEMTAL CIRCUIT CLOSURE

As the switch enters position 2, a circuit is completed from battery at the distant end of the truak, over the tip side of the trunk, through the (VM), (ST) and (EP) relay contiacts, the (DM) koy, 14,500 ohms resistance, winding of the (TG) ralay, can M, contact of the (DM) kay, contact of (IP) relay, compensating resistance, conteqts of the (ST) and (VI) rolays, out over the ring side of the trunt to ground on the incoming circuit, oparating the (TG) relay. The (TG) relay operatod, operates the (TG-1) relay. The (TG-1) relay operated, advances the sender switch to position 3. As the switch leares position 2, the (TG) relas releases, in turn releasiag the (TG-1) relay. The (TG-1) relay released in position 3, oloses the fundamental circuit through the (STP) and (OFL) relaya. The direction of the current is such that the polarized (OFL) relay will not operate. "Nowiring is the seme as above excepting that the (SUP) lamp lights during the time the (TG-1) relay is operated.
7. SGEECHION - NOTE -

The selection made depends upon the cross-oonnection between the terminals IB, IG, $F B, F G$ and $F U$ and the cownting relay terminals 1, 2, 3, 4, etc. The cross-connections are made as desired by the Telephone Company. Assume the triank test number to be 1111. This number, translated into impuises becomes: incoming brush 3, incoming group 3, final brush 2, tens 2 and umits 2 . These pulses will select the first or 0 incoming brush, third or 2 inooming group, second or 1 final brush, socond group of 10 lines on the finel bank, and the second terminal in that group.

7.1 Brush Selection

The (STP) relay operated; operatos the counting relay 0 . As the selector at the incoming sad of the trunk moves upward, the commutator brush and segment short circuit the (SNP) relay, releasing it. The (STP) relay released, opens the circuit through counting relay 0 , but relay O locks in series with the (FO') and ($B O^{\prime}$) relays in parallel oparating the (FO') and (BO°) relays. The (BO^{\prime}) relay operated, opens the circult through the (STP) relsy, thus preventing its oparation when the short circuit in the inooming circuit is removed, thereby releasing the line relay in the incoming circuit and stopping the up-drive. The (FO') relay operated advances the sender switch to position 4 , the A cam advancing the switch to position 5. As the switch advances out of position 3 , the (BO°), (FO) and 0 relays release.

7.2 G Cok Sishlectyon

As the swito onters position 5 , the fundamental cirouit is again closed for group seloction, operating the (Smp) relay. The (STP) relay oparated, operates the counting relay 2. As the incoming selector mores upward, the commutator brush and segment shortoircuits the (STP) relay when the tripped brush enters the zero group, releasing the (SIP) relay. The (STP) relay released, opens the oircuit through counting relay 2; but relay 2 locks to ground on cam D in series with counting relay 2 which operates. The counting relay 2^{\prime} operated, transiers the countiog circuit to counting relay 1. The (STY) relay reoperates when the short-aircuit is removed, and counting relays 1 and 1 ' function similar to the relays 2 and 2^{\prime}. When the brush onters group 1, the (STP) relay is again short-aircuited and the counting relay oircuit is transferred to relay 0 . As the brush onters group 2, the (STP) relay is again short-circuited and counting relay 0 locks in series with (BO') and (FO') relays in pareilel, which operate. The (BO') relay operated, opens the fundamental circuit, releasing the line relay in the incoming circuit. The (FOP) relay operated, advances the sender switoh to position 6 , the A can advancing the awitch to position 7. As the switch leaves position 5, the operated counting rolays release.

7.3 Insl Selections

After an idie trumk in group 2 has been selected at the incoming circuit, the fundamental clrouit is again closed for final brush
selection. As the final selector moves upward for brush selection, the A comrntator brush and segment short-circuit the (STP) relay as the selector reaches the position to trip the zero brush. The counting circuit is completed through counting ralay 1 , which functions with counting relay ${ }^{\prime \prime}$, transforsing the circuit to counting relay 0 . is the seleotor reaches the position to trip the brush 1, the (STP) relay is again shori-circuited, and releases. The (BO') and (FO') relays function as previously described, opening the fundanental circuit and advancing the switah to position 9, releasing the counting relays. As the switch enters position 9 , the fundamental circuit is closed for tens selection. As the circuit is closed through counting relay 1 and sender can H, the circuit functions as previously described for brush seloction. As the brush onters the second group of 20 11nes in the bank selected, the fundamental circutt is opened and the sender switch is advanced to position 11. As the switch enters position 11. the fundamental circuit is closed for units selection. The counting circuit is again closed through counting relay 1. The circuit functions as previously described for brush selection. As the brush seizes the teminals of the second line in that group, the fundamental circuit is opened, and the 3 ragnet is operated, advancing the switch to position 12.

- OPRMAMICN OF SUPYPVISORY SIGNAL - "WR WIRING

With the switch in position 12, the fundamental circuit is closed through the (SUP) relay and the repeating coil, to acvance the incoming and inal switches. The direction of current flow is such that the polarized (SUP) relay remains non-operated. The particular set of terminals at the final selector are made permanently busy and the busy back intermapter causes the supervisory relay in the incoming oircuit to operate and release intermittently. The supervisory relay operated, reverses the direction of the curxent. The reversal of the ourrent causes the (SUP) relay to operate over the oircuit previously described. The (SUP) relay operated, closes a circuit through the supervisory lamp, which lights. The supervisory lamp flashes in synchroniam with the busy back interrupter. With the switch in position 12, the sender lamp ceases to flash and burns steadily from direct battery on cam F until the switch is returned to normal.

9. OPERALION OF GUPERVISORY SIGKAL - MNM WIRING

When "wn wiring is used, the supervisory feature is the same as for "M" wiring with the oxception of the followine: The (SUP) lanp lights frora ground on the baok contact of the (Sup) relay as soon as the sender switoh

(11 Pages, page 6

Issue 5 BT 431740
JuIV 16. 1925.
Replecing ell previous
issues.
roves into position 12. When the (SUP) velay operates, the (SUP) lamp is extinguished. When the (SUP) relay operates and releases intermittent. 1y, the 'SUP) lamp Plashes.

10. DISCONMECTIOK

When the disoonnect key is dopressed, the circuit through the (BY) and (BY-1) relays is opened, releasing the relays. The (BY-1) relay rem leased, releases the (ST) relay. The (ST) relay released, advances the sender switoh to position 1, thereby restoring the circuit to normel.

11. DISTAM胃 OFEICE TRUTK TEST

To test a distant office trunk, the proper compensating resistance koy is depressed, and the plus of the cord is inserted in the testing jack of the trunk. The start and class koys are operated, causing the circult to function as previously described, but the (DO) relay operates, whem the (DO) key is operated. The (DO) relay operated, connects the counting relays for ofilice brush ana office group selection. The selections for oftice brush and office gromp are completed the same as the incoming brush and incoming group selections previously described under "DIRECT MECHAMICAL CALLS". The office brush selection aan be any number from zero to four and the group selection an be any number from zero to nine. The oross-comeations between the terminals $O B$ and OG and the counting relays are made as desired by the Telephone Company. When the office group selection is completed, the R magnet is energized through the make contact of the FO^{\prime} relay, edvancing the switch to position 6, the A cam advancing the switch to position 7. Es the switch enters position ?, the imadanental circuit is again closed, operating the (STP) relay. The (SIP) relay operated, operates the (ADV) relay. The (ADV) relay oparated, locks to ground on oam D, and advances the switch to position 21. As the switch advances out of position 10, the (ADV) relay releases. The (ADV) relay released, advances the sender switch to pesition 12. From this point the circuit functions as described under "DIRECH MEGHAHCAL TRUKK TEST". paragraphs 8, 9 and 10.

DIRECM R.C.I. TRUNR TEST

12. PRSLIMITARY FUNCT IONS

To test a direct R.C.I. truntr, the proper resistance key is depressed and the plug of the cord is inserted in the testing jack of the trumk. If the group of truaks is made busy by the operation of the rake busy key on the call indicator position at the manual office
(12 Pages, Page 7)
Issue $\frac{5}{3 T} \frac{431740}{\text { July } 16, ~ 1925 .}$
Replacing all previous
issues.
them the "no test" key (NI) mast be operated in order to gend the call over a busy trumix. The "no test" key may be left operated while testing the entire group of busy trunks. The R.C.I. class and start keys are operated, advancing the sender switoh to position 2 as previousiy described.
13. SIGNAL TO DISTANY OFEICE - "MM WIRING

As the sender switch enters position 2 , the fundanental oircuit is closea, operating the (TG) relay, and causing the assigrment lamp to light at the distant office. The (TG) relay operated, closes a circuit through the (2G-1) relay which operates. The (TG-1) relay operated, advances the sender switch to position 3 and short-circuits the inner contacts of cam the the preventing the (TG) relay from releasing when the switch advances from position 2.
"WH" WIRIMG
"WM wring is the same as above excopt that the operation of the (TG-1) relay lights the (SUP) lamp, thus notifying the testman that trunk test has been mado. This lamp remains lighted until the operator depresses the assigment key, releasing the (TG) relays.

15.
 PULSING

When the assigment key at the distant office is depressed, the cirm cuit through the (TG) relay is opened, allowing it to selease. The (TG) relay released, releases the (mG-1) relay. The (TG-1) relay reloased, operates the (FP) relay. the (FP) relay operated, connects the thp and ring of the truak to the impulser cirouft, looks to ground on impulaer aam D, and operates the (EP-1) relay. The (EP-I) relay operated, operates the impriser R megaet, advancing the switch to position 2 , the A Cam advancing the switch to position 8. The (FP-1) relay is slow operating in order to delay the operation of the impulser switch so as to give a complete first pulse. When the switoh reaches position 8, the (FP-1) relay operated, advances the impulser switch to position 9 , the A cam advancing it to position 1. While the impulser switch is advancing through one revolution, positive and negative impulses are sent over either the tip or ring side of the trunk to the distant office, causiag certain relays to operate and locks, diaplaying the test call at the R.C.I. position. As the switch anters position 10, the (ADV) relay operates. The (ADV) selay operated, advances the sender switch to position 21. When the impulser switich advances out of position $20-1 / 4$, the circuits through

```
11. Pages, Page 8)
Issue 5 BR 431740
July 26. 1925.
Roplacing all previous
issuem.
```

the (ADV) and (FP) relays are opened, releasing the reluys. The (ADV) relay released, advances the sendor switch to position 12. The (YP) rew lay released, connects the tip and ring of the trwak to the "flashing' or taiking circuit, and relesses the (FP-1) relsy. Then the plug of the trunk cord is inserted in the busy back at the R.C.I. office, the supervisory lamp Rlashes as described undor "DIRECH MECRANICAL TRUNK Twsp". The circuit is restored to mormal by depressing the disconnect koy, causing the circuit to function as desaribod under nDHECN HECHAMICAL TRUNK TESTM.

16. FLNAL HEAVY + PHLSE FRATURE

16.1 Diroct Fo. L. " $Z^{\prime \prime}$ Wiring

When the R.C.I. Key is operated and the (HP-2) relay operanes, after the TG tost has been made, the (FP), (HP-1) and (FP-1) relays are oparated. The impulser switch advances as described in paragraph 15. As the switch enters position 11, the counting relay (9) operates, and when the switch passes out of position 12, the (9^{\prime}) relay operates and both ralays lock. As the switch enters position 18, the (SP) relay operates and 20cks to impulaer cam U. With the (HP) relay operated, the remainine R.C.I. yrulses sre sent through the V and W cans, the ond of the Isst pulse boing sent at position $20-1 / 4$. As tho switch passes out of position $20-1 / 4$, the (FP) , ($\mathrm{FP}-1$) and (HP-1) relays releate. The impulser switch goes through a second revolution due to the (KP) relay remaining operated. In position 20-3/4 of the V can, a short circuit is placed across the tip and riag for the purpose of discharging the loop preparatory to sending the final hoavy+ pulso. Wen the switoh leaves position 1 , the short circuit is removed and the tip and ring are opened until position $8 / 5$, when the final havy + pulse is sent. As the impulser switch passes out of posithion 10 on the second revolution, the (MP) relay releases and the switch returns to normsl.

26.2 tandem E.C.I.

The oparation for sending a tandem R.C.I. call is similar to the one described in paragraph 16.1 except that one of the tandem keys is operatod instead of the I.C.I. Key, and the switch goes through two revolutions to send the R.C.I. pulses. The (9) and (91) relays operate in positions 28 and 19 of the first revolution. The operation of the (HP) relays occurs in positions 18/19 of the second revolution, the (KP-2) relay being normal. The
hoavy pulses are sent at positions $4 / 5$ of the third revolution as described in paragraph 16.1.

MANOA TANDEM TRUNK TEST

17. GgELIMIMARY FUNCTIONS

To tost a manual tandem trunt, the proper resistance key is operated, and the plug of the cord is inserted in the testing jack of the trunk. The manual tandem class key is operated, and the staxt zey is momentarily depressed. The manal tandem class key operated, energizes the iwpulser If magnet, advancing the impulser switch to position 2 , the A osm advancing it to position 8. The (TG) and (TG-1) relays operate and the sender switch is advanced to position 3 as described wader "DLEECT R.C.I. TRUYK TESTM.

18. OREICE CODE PULSING

When the assigment key at the incoming office is depressed, the (TG) relay releases. The (TG) relay releasod, releases the (TG-1) relay. The (TG-1) relay released, operates the (TAY) relay. The (TAN) relay operated, locks to ground on impulser cam D, and operates the (YR) relay. The (FP) relay operated, locks to ground on impriser can D, connecting the tip and ring of the truxik to the impulser circuit and operates the (FP-1) relay. The (FP-1) relay operated, operates the mpulser I magnet. advancing the switoh to position 9 , the is cam advanoing the switch to position 1. As the impulser switch advances from position 8 to 1 , impulses 10 the tandem office code sent over the trunk go to the R.C.I. position.

19. FLASHING OR TALIKING CIRCUIT

The (ADV) relay operates as the Ampalser switoh enters position 10. The (ADV) relay operated, advances the sender switch to position 22. When the impulser switch advances out of position 20-1/4 and the sender switch has advanced out of position 20 , the (ADV) relay relaases. The (ADV) relay released, energizes the sender 1 magnet, adynncing the sender switch to position 12. The "flashing or talking circuit" is not completed, however, until the (FP) relay releasos.
20. STARIOR AND NTMERICAL DIGIT PULSING

As the impulser switch advances out of position $20-1 / 4$, the locking circuit of the (FP) relays is opened, but the circuit through the relay

Issue 5 BT 431740
July $16,1925$.
Replacing all previous
issues.
is maintained through the make contacts of the (TAN) relay. As the impulser switch advances to position i, the (FP) relay lockee in turn, holds the (PP-1) selay advancing to position 2, the A cam advancing the switch to position 8. As the switch enters position 2, the (FP) rolay again locks to grouna on cam D. is the switch leares position 2, (second revolution), the (TAN) rel知 releases. As the switch enters position B, the (FP-1) relay again energizes the frupulse magnot and the a cam advences the mpulser switoh to position 1 or normal. During the gecond revolution of the impulser switch, the impulses for the stations and mamical digits are created. The oircuit functions the same as described under "R.C.I. TRUNK TESTM", and is restored to moxmal as desoribed under MDIPSCI MEOHAMIOAL MRONHE MESTM.

21. MECHENICAL TANDEM MRUNK TPETS

If the tander code number is the same for manual and mechanical tandem trunics, the circuit functions the same for both the (T-1) and (T-2) relays beinc omitted. II the tandem code number is different, X wring and the $(T-1)$ and (T-2) relays are used. The (T-1) and (x-2) relays operate 1n series under control of the mechanical tandem class key. The (T-1) and (2-2) relays operated, change the cross-connection between the $1,2,3$ and 4 terminals, and the contacts of the cans G and H, thus changing the code nuaber transmitted. The tandem, station and nunerical code numbers are transmitted to the R.C.I. station as previously describad under "MANUAL TADDEM TMUWE TEST". The relays and other apparatus in the mechanical tandem points reapond to the impulses and cause the number to appear on the cordless board. When the mumerlcal and start keys at the oordless board are depressed, the associated district or office sslector selects the terminals of a plashlng circuit, causing the supervisory lamp to 1lash. The circuit is rom stored to nomal as previously described under "DIREON 2FCFEANICLL TRUNK TESTM.
22. MHEN USED IN 2-DIGIT OFFICE

When rsed for a two-digit office where tendem pulses axe required, the (2 an-1) relay and the X cam are addod. The (TAN) and (TAN-1) operste together. The (TAH-1) relay operated, grounds the tip and ring while the palsing switoh passes through the tanden hundred cam cuttings. After the tandem ten and tandem wnit R.C.I. pulses are sent, the swatch movea out of podition 4, thereby releasing the (TAN) and (TAN-1) relays. The (TAN-1) relay released, removes the ground from the tip and ring whon the numerical hundred pulses are going through in the second reTolution.

```
(_12 Pages, Page 11)
Issue 5 BT 431740
Ju\y 16, 1925.
Replacing all previaus
issues.
```


23. TRTEKK BUSX

If the plug of the cord in inserted in the testing jucix of a busy trunk, the (BY) relay operates when the start key is depressed. The (BY) relay operated, locks to ground on the sleeve of the trunk. The (BX-l) relay does not operate because it is short-circuited due to the ground on the sleeve of the trunk. With the (BY-I) relay and start key released, es circuit is closed, lighting the busy lamp. The circuit is restored to normal by removing the plug of the cord from the jack.
24. OVERFLOW Top -Left Contocton ofli ploy ad' open To prevent Release of Inciom OFL.
If the incoming or office selector should travel to overflow with the sender switch in position 7, the direction of the current is reversed in the fundamental circuit and the (OFL) relay operates. Nine (OFI).relay operated, operates the (OFL-I) relay. The (OFL-1) relay operated, adprances the sexier switch to position 26, lighting the (OFL) lamp in a local circuit, and locks to ground through cans E and D.
25. VOLTH

When the test cord is inserted in the jack of an O.G.T. and the (TEST) key in voltmeter test cord circuit is operated, the (WM) relay operates. The (The relay operated, transfers the tip and x ing of the O.G.T. to the voltmeter teat cord circuit. When the key is restored to normal, the (VM) relay releases.
26. RETURT TO PMRAL

The circuit is restored to normal as described under "DIFECM MECHANICAL TRUNK GEST".

ENG: P.E.B. July 16, 1925. EMS

CHE D. BY: G.E.K.

APPDD. BY: E. F. COCK H. Go.

