> Western Electric Company, Inc., Equivent Engineering Zach, Hawthorne.
(28 Pages) Page \#1. Issue 2-BT-431434. June 29, 1923. (*)

IETHOD OF OPERATION
Line Finder And District Selector Circuit Including Line Circuit, Trip Circuit, Starting Circuit, Time Alarm Circuit - Panel Machine Switcining System.

DEVELOPMENT

Ground cutoff

1. PURPOSE OF CITCUIT
1.1 This circuit is arranged to Route calls, start Line Finders,
Find Calling Subscribers Line, and connect it with various switch-
ing apparatus necessary to Complete a call.
2. WORKING IMMITS
2.1 This circuit has Maximum external trunk Supervisory loop range of 5010 ohms. It is also used with Subscribers loops of 900 ohm Maximum and a Minimum leak of 10,000 Ohms.

OPERATION
3. PRINCIPAL FUNCTIONS
3.1. Cause Starting Circuit Function.
3.2 Route Calls. $>$
3.3 Find Calling Line.
3.4 Start Sender Selector.
3.5 Establish Talking Connection.
3.6 Provide Timing Alarm Feature.
4. CONNECIING CIROUITS
4.1 Any Standard Incoming Circuit.

DESCRIPTION OF OPERATION
5.

This common panel line finder and district selector circuit is used for passing calls originated by a dial subscriber on a flat or individual message rate line. It consists of six functionally connected cir-
(28 Pages) Page \#2. Issue 2 - BI-431434. June 29, 1923. (*)
5.1 (00), and a message register, one line circuit for each subscriber's line. When the receiver at a calling station is removed from the switchiook, battery is connected to the hunting (H) lead of the calling line and the essociated apparatus functions and starts a line finder selector hunting for the battery on the hunting lead. When the calling line is found, battery and orround from the line circuit is disconnected from the tip and ring of the line, which awaits the closure of talking battery from the associated district circuit. The associated trip circuit is also released, thus permitting another call to start in that half of the group.

A TRIP circuit is provided for each bank of 30 lines, thus making 15 trip circuits on a panel line firder frame of 300 lines. Each trip circuit is divided into two units, trip unit A, having access to the first 10 lines in a bank, and trip unit B, having access to the last 10 lines in a bank. The trip circuit mechanically trips the selector brushes of the particular bank in which the terminais of its associated lines appear and connects to a starting circuit. Nach trip circuit is equipped with an emergency plug and jack, by means of which a derective trip circuit can be imnediately replaced by an emergency circuit.
5.3 The STARTING circuit controls the sending of calls to the respective line finder selectors and starts an idle selector hunting over the line terminals for the calling line. It also at the same time releases a trip relay in the associated trip unit, thus permitiong another call to start in any other group. There is one . starting circuit for each frame of 300 lines. The circuit consists of three 200 type distributing selectors, one of which permits the distributing of this circuit so as to give each line group an equal preference. The other two distributing selectors, distribute the calls uniformly to the respective line finder selectors. Each regular starting circuit is provided with means for testing any line: finder circuit and is equipped with an emergency plug and jack for immediately replacing the regular circuit with an emergency circuit at any time.

The LINE FINDER circuit is arranged to find the calling subscriber's line and connect it with the various switching apparatus necessary to complete a call. Each line finder circuit is perma nently comnected to a district selector circuit and consists of a power driven selector having 15 sets of contact brushes wired in multiple, one set of brushes associated with each line bani. At the same time the line finder selector starts upward hunting for the calling line, the associated district circuit functions and selects an idle sender. This circuit also includes a. MAKE BUSY jack and a TEST jack.
5.5 The DISTRICT SELECTOR CIRCUIT, which is the other end of the line finder selector, is prorided with a magnet driven selector switoin, by neans of which an idie sender is sejected and associated with the district until all selecvions have been completad, when the sender is discharped. The district circuit is selector ented and selects and comeots to thie procer outgoing trunt, unajr the controi of sender, for the completion of an originating call. It also supplies talking battery to the caliing station, connects battery for the operation of the message register in the line circuit on a charged call, and connects the busy tone to the calling station, if required.
5.6 The L NME FINDER TIME ALARU circuit is for the purpose of giving visual and avdible signals to the attendant winen an originating call is not connected to a line finder in a specified time period.

PANEL IINE FINDERR PRAME

6. A panel line finder frame consists of 15 banks (at times known as panOls) of line terminals, each baniz consisting of 20 sets of multiple line terminals, making a total capacity of 300 lines. The nultiple terminals appear on both sides of the bank and each set consists of four terminals, namely; tip (T), ring (R), sleeve (S) and hunting (F). Each frame and bank has a capacity of 60 line finder selectors, 30 selectors mounted on the front of the frame and the other 30 selectors mounted on the rear of the frame. Phis number of selectors for each 300 lines may be reduced to 40 or 28 selectors. The arrangement of the selectors may be accomplished by splitting the line multiple banirs of a frame in the following manner:-
6.1 Each 60 selector bank on a frame is split in the center and arranged for a cross connecting cable, so that the first or bottom line on one side of the solit will connect to and appear at the last or . top line on the other half of the bank. This practice is used where 60 line finder selectors are required for each 300 lines.
6.2 Each 60 selector bank on a frame is split into three sections of 20 selectors eacin, two of the sections to be arranged for cross connecting to each cther, the other section to be cross connected to a corresponding bank section on another frame. This practice is used where 40 selectors are required for each 300 lines, thus permitting 900 lines to be accommoded on two frames.
6.3 A 56 selector bank split into four sections of 14 selectors each, the first and second sections to be arranged fer cross connecting to each other and the third and fourth sections arranged for cross
(28 Pages) Page \#4. Issue 2 - BT-451434. June 29, 1923. (*)
connecting to each other. This practice is used where 28 selectors are reouired for eacin 300 lines, thus permitting 600 lines, to be accommodated on the one frame.
7. Each group of selectors for each 300 lines is divided into two subgroups, "A" and "B". The "A" sub-group of selectors is on one side of the transposition split and the "B" sub-group is on the other side of the transposition split. By this method, a call originating in a group of 20 lines causes a selector in the "A" or "B" sub-group to start hunting, the sub-group depending upon the calling line being in the first or last 10 lines of the group. Should two calls in the same group originate at the same time, one being in the first 10 lines and the other being in the last 10 lines, two selectors will start, one selector in sub-group "A", the other in sub-group "B". Should all line finders in a sub-group be busy, a call originating within the corresponding 10 lines will start a selector in the adjacent sub-group.
8. When both sub-groups of selectors for 300 lines are on the same frame, two TRIP magnets are used, one magnet on the front and the other magnet on the rear of the frame. When both sub-groups of selectors are on separate frames, form IRIP magnets shail be used, one on the front and one on the rear of each frame.

DETAILED DESCRIPTION OF OPERATION

ORIGINATING CAII

9. The operation for a call originating in the first 10 lines of a group is as follows:- When the receiver is removed from the switchiook at the calling station, the (L) relay in the line circuit operates over a circuit from battery through the winding of the (I) relay, break contact of the (CO) relay, over the ring side of the line, through the subscriber's $100 p$, back over the tip sids to ground on the armature of the (CO) relay. The line (I) relay operated, connects battery to the (H) terminal of the line at the line finder multiple bank and operates the (BA) relay through its inner winding. The (BA) relay operated, operates the (TR) relay over a circuit from ground on the armature of the (BA) relay, break contacts of the (0) and (K) relays, 700 onm winding of the (TR) relay, break contacts of the (A.) (ST-A,) and (SI-B) relays, to battery on the armature of the (STP-G) magnet. The (TR) relay operated, performs the following functions:- (a) operates the two TRIP magnets from ground on its armature (b) opens the locking series circuit through the (TF) relays in the other bank groups, as hereinafter described, (c) locks in a circuit from ground through its 600 ohm winding and make contact, terminal 1 and brush of the (G) group distributor selector, break contacts of the (C), (CA), and (SB) relays, to battery through the 18 BH Res. in parallel with
the winding of the (ST-A) relay, which operates. Each TRIP magnet operates its trip rod, thus tripping the corresponding group brushes of the associated selectors on its respective side of the frame. The (SI-A) relay operated, functions as follows:- (a) closes a circuit from ground on its left inmer armature, to battery through the winding of the (STP-G) magnet, which operates and remeins operated until the (ST-A) relay releases, (b) short circuits the 500 ohm winding of the (CA) relay, pre venting. it from operating and starting a line finder in sub-group "B", as described in paragraph 35 , while a call is poing through, (c) operates the (II) relay over a circuit from battery through the winding of the (K) relay, make contact of the (TR) relay, to ground on the armature of the (ST-A) relay, (a) closes a circuit, operating the (IF) relay in the line finder circuit. This circuit is traced from ground on the right outer armature and inner make contact of the (ST-A) relay, througin the break contact of the (GA), and (C) relays, the Al bridging brush and terminal of the A selector, over lead $(S T)$, break contact of the (NB) relay in the line finder circuit, break springs of the TEST jack, to battery through the 1000 ohm winding of the (IF) relay. The (K) relay operated, (a) locks to ground on the ammature of the (BA) relay througin its make contact and the break contact of the (0) retay, (b) opens the circuit through the 7000 mm winding of the (IT), relay, this preventing another line finder selector from being started by the call, (c), cioses a circuit from ground on its make contact through the 1500 ohm. winding of the (0) relay, but the (0) relay does not operate at this time on account of insufficient amount of current through the winding. The (IF) relay operated, (a) locks to ground on the break contact and armature of the (H) relay, through its make contact and both windings in series; (b) closes a circuit operating the (GA) relay in the starting circuit from ground on M the break springs of the Make Busy jack, make contact of the (IF) relay, break contact of the (Mib) relay, lead Y, to battery through the break contact and winding of the (GA) relay, (c) operates the UP magnet from ground on the \mathbb{N} commatator brush and segment, ceusing the line finder selector to travel upward and hunt for the terminals of the calling line to which battery is connected, as hareinarter described, (d) closes a circuit from the same ground on the \mathbb{N} commtator brush and segment, through the break contact of the line finder (E) relay, to battery tinrough the inner winding of the (CI) relay, operatins the (CI) relay., The (GA) relay operated, removes ground from lead ST , locks to ground on the armature of the ST-A relay and closes a circuit operating the STP-A magnet and closes thru the K lead. This circuit is traced from ground on the armature and inner make contact of the (ST-A) relay, make contact of the (GA) relay, terminal and brush of the A-3 arc of the A selector, to battery through the winding of the STP-A magnet. The STP-A magnet remains operated until the release of the (ST-A) relay.
(28 Pages) Page \#6. Issue 2-BT-431431.
June 29, 1923. (*)
10. ... As the line finder selector starts upward hunting for the calling line, a circuit is closed through the M commatar slightly after the brushes and segment operates the line finder E relay. The E relay operated, (a) operates the MB relay from ground on its armature, through the break springs of the M.3. jack to battery through the inner winding of the $M B$ relay, (b) closes a circuit from ground on the upper inmer contact-of Icam 4, make contact of the E relay, to battery through the inner winding of the D relay, operating the D relay, (c) opens the operating circuit of the OI relay, thus permitting the relay to release, should the TEST brush of the sender selector be making contact with the TEST terminal of an idle sender. If the TEST brush of the sender selector is making contact with the TEST terminal of a busy sender, the CI relay locks through its outer winding, the lower contacts of cam S, make contact of the relay, to ground on the TEST brush of the sender selector. With the ci relay held operated, the operation of the line finder E relay also closes a circuit operating the F relay in the line finder circuit and the district selector STP magnet. This circuit is traced from battery through the 1000 ohm winding of the F relay and through the winding and break contact of the $S T P$ magnet, make contacts of the CI and E relays, to ground on the lower outer contact of cam H, whereby stepping the sender selector brushes one step on its back stroke. If the next sender circuit is ide, the CI relay releases, in turn stopping the selector, but if the next terminal is busy, the CI relay remains operated and the sender selector continues to step until an idle sender is found. When the CI relay releases, the TEST teminal of the selected sender is immediately made busy to all hunting sender selectors by ground connected to the TEST brush from the lower outer contact of cam H, through the make contact of the E relay and the break contact of the CI relay. This busy ground is connected until the switch advances from position $11 / 4$. The operation of the F relay opens the tip and ring leads between the line finder commutator and the district circuit and prevents the district (I) relay from operating and advancing the district switch from normal, should the line finder selector connect to the terminals of the calling line before the sender selector selects an idle sender.
11. The MB relay operated; (a) locks from ground on the armature and outer make contact of the ST-A relay, lead X, make contact and outer winding of the MB relay, to battery on the break contact and armature of the SL relay, so that the $M B$ relay will not release should the selector return to normal while another call is going througin (b) closes a circuit from ground through the breek springs of the nalyak, make contacts of the IF and IB relays, to battery through the 800 hm winding of the F relay, which operates if the relay was not previously operated, (c) connects ground on its armature to the series circuit through the $1 B$ relays of the other selectors in the same group, thus permitting the operation, over lead CH of the CA or CB relays, in the starting circuit when all line finder selectors in the group are
off-normal, (e) transfers the ST lead to the next line finder, which if busy, transfers the call over the ST lead in the same manner until an idle line finder is found.

As the line finder selector continues upward, at the end of the tripping tone, ground on the K commitator brush and segment, short circuits the 600 ohr winding of the $\mathbb{T R}$ relay through the break contact of the DS relay, over lead I make contact of GA relay, and through the break contact of the SA relay, thus releașing the TR relay. The ST-A relay remains operated from the same ground until the K brush moves off the K commatator segment, when the circuit through the winding of the ST-A relay is opened, releasing the relay. This is before the brushes of the line finders selector have reached the first set of iine terminals. The (TR) reley released, closes the locking series circuit through the TR relays in the other grounds and opens the circuit through the two TRIP magnets, which release. The (STA) relay released, (a) opens the locizing circuit through the GA relay, which releases, (b) opens the circuit through the locking (outer) winding of the MB relay, but the relay does not release as it is held operated over its opexating circuit, (c) opens the circuit through the SMP-G magnet, which releases and stops the brushes of the Ggroup distributor selector to the next terminals, (α) opens the circuit throwg the STP-A magnet, which releases and steps the orushes of the A group distributor selector to the next terminals, (e) removes the short circuit from the 500 ohm winding of the $C A$ relay, winich does not operate unless all selectors in the group are busy, as described in paragraph 35.
13. When the selector brushes make contact with the terminals associated with the calling line, battery on the H terminal operates the 0 relay in the trip circuit and the H relay in the line finder circuit. This circuit is traced from battery in the trip circuit through the 500 ohm winding of the 0 relay and 500 ohms resistance connected in parallel, broak contact of the CO relay, make contact of the I relay, over lead; H, through the H multiple terminal and brush, H commatator brush and segment, outer contacts of cam Y, winding of the H relay, to ground on the break contact and armature of the DS relay. With the H relay operated, a 50 ohm non-inductive shunt is connected around its winding to ground, on its armature for the purpose of increasing the amourit of current through the 500 ohm winding of the 0 relay, thus speeding its operation. This is necessary on account of the very short time period when the H brush makes contact with the F terminal before the circuit over lead H, is opened by the overtinrow of the selector. The H relay operated, opens the circuit which holds the IF relay operated, fut the IF relay does not release immediately on account of a circuit being closed from ground thrcugh the commatator trush and segment, to battery through both wine ings of the IF relay in series. The IF relay is tinus held operated until the britishes are centered on the terminals of the calling
line. When the circuit through the commutator segment is opened, the LF relay releases. The LF relay released, (a) opens the circuit through the UP magnet, which stops the selector brashes on the terminals of the calling line, (b) opens the circuit through the 800 ohm winding of the Frelay, so that when the circuit through its 1,000 olm winding is opened, by the release of the CI relay when the district sender selector seizes an idle sender, the F relay releases, (c) closes a circuit operating the SL relay. This circuit is traced from ground through the M Freantect springs of the MB jack, break contact of the LF relay, make contact of the E relay, winding of the SL relay, imer contacts of cam T, make contacts of the D relay, to battery on the break contact of the DS relay.

As the switch advances from position 1 , the circuit through the I and CH relays is opened, releasing the relays. In position $1-1 / 2$ to 2 , the associated sender is held busy by ground through cams H and C. The CH relay performs no useful function if the district advances to position 2. Should the district stick in position 1, the CH relay operated, closes a circuit from ground on cam H, break contact of the CS relay, make contact of the CH relay, to battery through the selector time alarm circuit (not shown), which functions, giving a visual and audible signal.
13.1 The adjustment of the 0 commutator brusin, with relation to the tripped H multiple brush, is such that does not break contact with the C comnutator segment until slightly after the holding circuit through both windings of the LIF relay is opened by the operation of the H relay when the H brush makes contact with the H terminal to which battery is connected. The UP magnet, therefore, remains operated and the selector continues to trevel upward until the brushes are carried slightly above the center of the line terminals, allowing the locking pawl to enter the notch on the rack attached to the brush support rod. At this time the holding circuit through both mindings of the LF relay is opened at the Commutator, releasing the relay. The LF relay released, releases the UP magnet. The selector then drops into place, thus centering the brushes on the line terminals.
14. The 0 relay operated, opens the locking circuit of the K relay. The K relay is very slow in releasing to hold the 0 relay operated through its 1500 ohm winding, in order to permit the BA relay to release before the 0 relay, otherwise another line inder may be started by this call.

The SI relay operated, closes a circuit which operates the co relay in the line circuit from battery on its armeture, through the two 110 ohm resistances (A and B) in series, over lead S, to ground through one or both windings of the CO relay in series. This same battery is connected to the multiple ssleeve terminals of the line at the final frame;
making the line test busy to all hunting final selectors on a terminating call. The CO relay, operated, releases the line I relay which in turn releases the BA relay, which opens the circuit through the 0 and H relays, which releases. Another call may now start within this same group of 10 lines if the starting cirquit is ready for the call. The operation for a cail originating in the last 10 lines of a group of 20 will be similar to that already described Ior the first 10 lines, except that the $B A-1, \mathrm{~K}-1,0-1, T R-1, S T-B$, and GB relays are involved instead of the $B A, K, O, T R$, ST-A, and GA relays.
15.1

If either the STA or the STB relay remains operated, due to failure of the TR or. TR-1 relay in the trip circuit to be shinted out and released the KF relay operates as soon as the interrupter contacts I, III and V close, and locks under control of the STA or STB relay in the starting circuit. If, it remains locked for two seconds, interrupter contacts II and IV close from ground through either the Th or TR-1 relay in the trip circuit, (depending upon whether the call is through the A or B sub-group), releasing the TR or TR-I relay. When ground is removed by the opening of the interrupter contacts II or IV, the STA or the STB relay releases, releasing the KF relay and restoring the circuit to normal.
15.2 The closure of the interrupter contact VI which closes at the same time contacts II and IV are closed, while the KF relay is operated, operates the KA relay. The KA reley operated, (a) locks up under control of the key at the trouble desk, (b) lights a lamp at the trouble desk, individual to the line finder frame and (c) operates an alarm. The operation of the key releases the KA relay, extinguishing the lamp and silencing the slarm.

If there is a simultaneous call in both the first and 1 ast 10 lines of a sroup of 20 lines, the relays af both sub-groups will operate as already described, starting two I lne finder selectors in different subgroups at the same time. In this case, the inner windings of the 0 and 0-1 relays are comnected together through the make contacts of the $B A$; and $B A-1$ relays. The 0 and $0-1$ relays vill therefore operate in parallel when the H brush of either or both line finder selectors make contact with the H terminal of the calling line.
17. The operation of the SLrelay also closes a circuit operating the district I and CH relays. This circuit is traced from ground on the N commutator brush and segment, through the break contact of the Felay, make contact of the SI relay, lower inner and upper outer contacts of cam 0 , to battery through the 600 olm winding of the CH relay.
(28 Pages) Page \#10. Issuie $2-\mathrm{BT}-431434$. June 29, 1923. (*)

This same ground is connected through the inner contacts of cam 0 , upper outer and lower inner contacts of cam R, to battery throush the 800: ohin winding of the district (I) relay. The (CH) relay operated, closes a circuit from ground on the upper outer contact of cam I, break contact of the (CS) relay make contact of the (OH) relay, to battery through the selector time alarm circuit (not shown), which porforms no function at this time. The (I) relay operated, closes a circuit advancing the district switch to position 2. This oircuit is triced from battery through the R magnet, lower outer contagt of cam B, maire contact of the (L) relay, to ground" through the lower contacts of cam M. As the switch advances from position 1 , the circuit through the (L) and (CH) relay's is opened, releasing the relays and disconnecting the selector time alem circuit. In position $1-1 / 2$ to 2, the associated sender is held busy by sround through the upper outer contact of cam H, and the outer contacts of cam C.
18. With the switch in position 2, the tip and ring leads are closed from the calling line to the T and A leads of the associated sender circuit, thus permitting a dialing tone to je transmitted back over the dialing circuit from the associated sender, as an indication that the apparatus is ready to receive the call by the operation of the station dial. The tip side of the dialing circuit is closed from the T lead of the line, through the break contact of the (F) relay, inner contacts of cam P to the T brush of the sender selector. The ring side of the dialing circuit is closed from the R lead of the line, through the break contact of the (F) relay, winding of the (DC) relay, inner contacts of can Q, to the R brush of the sender selector. In position 2, the (CI) relay operates through its outer winding to ground on cam I, and remains operated until the switch advances from position 10. The (CI) relay operated, (a) connects ground through the inner contacts of cam S to the TEST brush of the sender selector, thus making the associated sender test busy after the switch advances to position 2 , (b) closes the tip side of the fundamental circuit through to the sender, (c) closes the sender control (SC) lead through the lower contacts of cam V, lower inner and upper outer contacts of cam U, to battery through the outer winding of the (D) relay. After the sender functions the fundamental circuit is established for the operation of the district (I) relay and the stepping relay in the sender. This circuit is traced from ground in the sender cirouit, through the FT brush, make contact of the (CI) relay, inner contacts of cam L, to battery through the 1200 ohm winding of the (L) relay, which operates. The (L) relay operated, locks through its 1200 ohm winding and make contact through the upper contacts of cam \& to the same ground over the PT lead and advances the switch to position 3 from groind on cam M. In position 3, ground through the lover inner contact of cam H is connected to the FR lead, thus permitting the sender to function. The 500 ohm winding
of the (CH) relay is also connected through the lower contacts of cam U , in parallel with the winding oi the (D) relay; to the SC lead previously described. Should the (CI) relay operate at this time, due to a high resistance ground in the sencier circuit, no userul function will be performed.

DISTRICT BRISH AND GROUP SDLEOMLONS

19.

With the switch in position 3, the UP magnet is operated for brush selection over a circuit traced from battery through the winding of the magnet, inner contacts of cani G, make contact of the (I) relay, to ground through the lower contacts of camM. As the selector movas upward in position 3, carrying the commtator beushes over the commutator segments, the A segment and brush intermittently connects ground to the tip side of the fundamental circuit through cams K and J, holding the (L) relay operated, but the successively short circuiting tie stepping relay in the associated sender circutt, thus releasing and permitting its reoperation until the proper has been solected. When sufficient impralses have been sent back to sotis fy the sender, the fundamental circuit is opened, releasing the (I) relay. The (I) relay released, opens the circuit through the UP magnat, thereby stepping the upward movement of the selector and advances the switch to position 4 . This circuit is traced from ground through the lower contacts of cam M, break contacts of the (L) relay, upper outer contact of cam B, to battery through the R nagnet. When a digit senders are used with this circuit, the advanse of the sendor replaces the high resistance ground on the sj lead with 2.500 ohm ground, thus insuring the operation of the (CI) relay. In position 4, the trip masnet (TM) is operated from ground tharogh the upper contacts of can S, and the (L) relay is operated and lociced to ground over the fundamental circuit previously described, advancing the switch to position 5 .

With the switch in position 5 , the UP magnet is reoperated and the trip magnet being operated, canses the previously selected set of brushes to trip when the selector starts upward as the set of brushes engage the trip finger which was previously operated by the trip magnet. As the selector moves upward for group selection, carpying the brushes over the commatator segments, the B segment and brusi: intermittently comnects ground to the tip side of the fundamental circuit through cam I, holding the district (I) relay operated, but successively short circuiting the stepping relay in the associated sender circuit, thus releasing and permitting its re-operation until the proper group has been selected. When sufficient impulses heve been sent back to satisiy the sender, the fundemental circuit is opened, releasing the ($L_{\text {I }}$) relay which in turn opens the circuit througii tiie US magnet and advances the switch to position 6. When 3 digit: senders are used with this
circuit, the advance of the sender replaces the high resistance ground
in the SC lead with a 500 ohm winding, thas insuring the operation of
the (CH) relay. With the switch in position δ, a circuit is closcd.
from ground on the line finder $7 T$, commatai brush and segment, throtigh
the break contact of the (F) relay, make contact of the (SJ) relay,
inner contacts of cam 0 , upper outer and lower imer contacts of cam R,
to bettery through the 800 ohm winding of the (I) relay, operating the
relay. The (I_{1}) relay operated, advances the switch to position 7 in a
circuit traced from battery through the R magnet, lower outer contact
of cam B, make contact of the (I) relay, inner contacts of cam M, make
contact of the (D) relay, to sround through the lower outer contact
of cam I.

TRUNK HUNTING

21. Should the first trunk in the group in which the selector is hunting be idle, the (L) relay releases as the switch leaves position $61 / 4$. When the switch enters position $61 / 2$, ground is connected to the sleeve of the selected trunk through thie outer contacts of cam M, break contact of the (I) relay, lower outer and upper inner contacts of cam E, as a busy condition until the switch edvances to position ? $3 / 4$.
22. Should the first trunk in the gromp in which the selector is hunting be busy, the (i) relay is held operated in a circuit from battery through its inner winding and maise contact, lower outer and upper inner contacts of cam E, to ground on the sleeve teminal of the busy trunk. With the switch in position 7, the UP magnet is reoperated from ground on cam M under control of the (L) relay and the selector travels upward until an idle trunk is found. When an idle trunk is found, the locking circuit through the inner winding of the (L) relay is opened, but the relay does not release immediatcly due to a circuit beins closed from battery through its outer winding inner contacts of cam B , to ground through the C commutato: brush and segment. When the brushes are centered on the trunk terminals, the circuit through the C comutator segment is opened and the (I) relay releases, in turn opening the aircuit through the tiP magnet, which steps the selector brushes on the teminals of the selected trunk. The (L) relay released also advancos the switch to position 8 .

"C" COMMTTATOR

22.1 The adjustment of the C comutator brush, with relation to the tripped sleeve multiple brusin, is such that it does not break contact with the C comutator segment unili slightly after the holding circuit through the inner winding of the (i) relay is openta, by the sleeve brush leaving the busy terminal and matrins contact with the sleeve terminal of the idle trunk. The UP magnet,

Abstract

therefore, remains operated and the seloctor continues to travel upwarc. until the brushos are carried slightly above the center of the trunk teminals, allowing the iocking pawl to enter the notch on the recir atteched to the brush support rou. At this tinue the other holding circuit througiz the outer winding of the (5) relay is opened at the commtator, releasing the relay, which disconnects ground from the commtator fech bar (G), and releases the UP magnet. Tho selector then drops into place, thus entering the baruses on the trunk terminals. During trunic hunting, in position 7 only, the commtator feed ground is supp? ied from ground on cem M, uncer control of the (T) rolay. This is to prevent the reoperation of the (I) relay by the closing of a circuit between the © commatar brush and segment, on the overthrow of the selector, as it drops into place.

 (CH) relay, throngh the lower outer sind uper ime: contactis of cam 0 , upper outer and lower inner contacts of cam R, to battery through the outer winding of the (u) relay, which operates, advancing the switch to position 9. In position 9, the tip and ring sides of the outgoing fuxdanten circuit sure closed to the tip and ring terminals of the selected trunk for selection beyond, through the Frs and $F R$ brushes of the sondor selector and cans F, and G, respectively. Apter selection beyond has been completed, ground in the sender is renoved from the SC lea, releasing the (CH) rolay, in turn roleasiag the (L) relay. The (L) reley released, advances the switch to position 10. As the switch leaves position $91 / 2$, the disling circuit is opened at the upper imer contact of cams P, and Q, and in position $93 / 4$, the tip and ring leads from the line finder are closed through the lower contacts of cams P, and a, respectively, to $2 A$ volt battery and ground in the district, holding the ($D C$) relay operated under the control of the station switchhook. With the (DC) relay operated, a locking circuit is clesed for the (D) relay after the switch advances from position 10. This circuit is traced from battery through the inner winding of the (D) relay, make contact of the (DC) relay, make contact of the (D) relay, to ground through the lower outer contact of cam I. The (D) relay (178 -AK) is made slow in releasing in order that the comection may not be lost if the switchhook at the called station is momentarily dupressed. With the switch in position 10, the sender circuit fucctions and connects ground to the FP lead, causing the (I) relay to operate and lock through its imer winding over the tip of the fundamental circuit previonsly described. The (I) relay operated, advances the switch for talking(28 Pageș) Page \#14. Issue: 2 - BT-431434. June 29, 1923. (*)
selection until the relay is released by the operation of the sender circuit. As the switch advames, ground is intemittently connected to the tip side of the fundanentel circuit through the outer contacts Oi cam E, holding the (L) relay operated, but sncoessively short circuiting end permitting the reoperation of tie sjepping rolay in the sender circuit. When sufficient impulses heve been sent bact to satisiy the sender, the fundenental cirouit is opened, releasins the (L) relay. The (L) relay released, opens the circuit, through the R magnet, stopping the switch in position 11,12 or 13 , depenaing upon the class of call. As the switcin leaves position 10 , the holding circuit O. the (OI) relay is transferred from ground on can I to ground on cam \mathbb{Z}, under the control of the (I) relay. This circuit is traced from battery through the outer winding of the (CI) relay, imer contects of cam U, make contact of the (CI) relay, lower inner anu upper outer contacts of cam V, make contact of the (I_{μ}) relay, to ground through the lower inner and upper outer contacts of cam $\mathbb{E}_{\text {。 }}$ The release of the (I) reley opens the holding aircuit through the (OI) relay, disconnecting the sender from the district oircuit.

CALTED PARYY ANSWERS MR

24.

When the receiver at the called station is removed from the switchhook, with the switch in position 11 or 12, reversed battery and ground fro:a the incoming circuit operates the (OS) relay. This circuit is traced from battery over the ring side of the circuit, through the outer contacts of cam G, winding of the repeating coil, outer and lover inner contacts of cam X, through the winding of the (CS) relay, upper imer. and outer contacts of cam W, other winding of the repeating coil, outer contacts of cam E, to ground over the tip side in the incoming circuit. The (CS) relay operated, closes a circuit from ground on the upper onter contact of cam I, through its make contact, outer contacts of can N, winding of the I relay, to battery through the "3 contact of the 149-J interrupter. When the interrupter contact closes, the I relay operates ancl locks to the same ground through its make contact. When the \# 4 , contact of the interrupter closes, the operation of the I relay closes a circuit from ground on the interrupter contact to battery through the 500 olm winding of the (CH) relay, operating the relay. The (CH) relay operated, locks through its winding and the outer contacts of cam 0 , to ground on its make contact and armature and closes a circuit from battery on its make contact for holding the (SL) relay oporated after the (D) relay releases.
24.1 The 149-J interrupter is so connected in the circuit that the operation of the (CH) relay is delayed for at least two secopds after the (CS) relay operates. This delay is to prevent the false operation of the (GE) relay should the (CS) relay operate momenterily

OPFRAATOR ANSTVEDS

The switch advances to position 13, as Cescribed above, and when the operator inserts the plug of an ancwering cord in the answering jack of the trunk, the (CS) relay operates on reversed battery and ground over the trunk. The (CS) relay operated closes a circuit from the same ground on cam I, through the upper outer and lower inner contacts of cam, R, to battery through the outer winding of the (I) relay, which operates and advances the switch to position 14. With the switch in position 14, the repeating coil and battery are disconnected and the T and R leads are connected directly to the T, and R brushes of the selector through cam P and Q respectively. As the switch enters position $13-1 / 2$, the (L) relay locks in a cfrcuit from ground over lead S of the selector trunk, through the upper inner and lower outer contacts of cain E to battery through the make contact and inner winding of the (L) relay, and in position 14, the locking circuit through the inner winding of the (D) relay is transferred from the contacts of the (DC) relay to the upper contacts of cam J. In position 14, a checking tone circuit is closed over the sleeve of the operator's trmnik, inner contacts of com A, make contact of the (L) relay, upper contacts of cam V, lower contacts of cam W, 2.m.f. condenser, lower inner and upper outer contacts of cam X, the S brush and terminal at the line finder bank, to ground through the winding of the (CO) relay for number checking.

DISCONNECTION REGULAR CALI

26. When the receiver at the calling station is replaced on the switchhook, the (DC) reley releases, in turn releasing the (D) relay. The (D) relay released, closes a circuit operating the (i') relay. This circuit is traced from ground on the lower outer contact of cam I, break contact of the (D) relay, to battery through the 800 ohm winaing of the (F) relay. The (F) relay operated, discomnects the tip and ring of the trunk from the line and closes a circuit from ground on the if comnutator brush and segment, through its make contact, upper inner and lower outer contacts of cam D, to battery through the R magnet, ddvancing the switch to position 16.
27. On M. R. district circuits, with the switch in position 16, a circuit is closed from battery on the make contact of the (CH) relay, outer contacts of cam T, through the three 10 -AN resistances in parallel, the H brush and terminal at the line finder bank, over lead H, through the break contact of the. (I) relay, to ground on the make contact and armature of the (CO) relay througin the message register (MR), operating the
message register. During the message registering period, another line finder selector hunting over the line terminals in the same group will not stop its brushes on the multiple teminals of this line at this \quad. time on account of its (H) relay being shunted by the 5 ohm message register while the H brush of the huntins selector is passing over the H terminal of this line. When the 149-c intermpter contacts I close, a circuit is closed from ground on the make contacts, through the lower contacts of cam R, to battery through the outer winding of the (L) relay, operating the (L) relay. The (I) relay opereted, locks through its inner winding and moke contact to ground on cam E. Ground on the II make contacts of the interrupter is closed through the inner contacts of cam Y, make contact of the (L) relay, outer contacts of cam J, to battery through the inner winding of the (D) relay, which operates. The (D) relay operated, advances the switch to position 17 in a circuit from battery through the R magnet, lower outer contact of can B, make contact of the (L) relay, inner contacts of cam M, make contact of the (D) relay, to ground on cam I. In position 17 the A cam advances the switch to position 18.

As the switch advances from positions 16 to 18 , the circuits through the (D), (SL), (CH), and (L) relays are opened, releasing the relays and the battery for operating the message register is discomnected from lead H. The release of the (SL) relay disconnects battery from lead S, releasing the (CO) relay, thus restoring the line circuit to normal. As the switch enters position 7\%, the release of the (D) relay closes a circuit operating the (DS) relay in the line finder circuit. This circuit is traced from ground on the M commutator brush and segment, through the 350 ohm winding of the (DS) relay, inner contacts of cam \mathbb{N}, break contact of the (D) relay, to. Dattery on the break contacts of the (DS) relay. The (DS) relay operated, (a) locks through its make contact and 350 ohm winding to the seme ground, (b) closes a circuit through the outer winding of the (\vec{F}) relay, thus insuring the relay to hold until both the line finder selector and the district selector have returned to normal, operates the line finder DOWN magnet from ground on its amature, winch restores the line finder selector to normal. When the line finder selector returns to normal, ground is disconnected from the \mathbb{M} commatator segment, releasing the (E), (DS), and (MB) relays.

With the district switch in position 18, a circuit is closed from ground on the \mathbb{N} cormatator brush and segment, make contact of the (F) relay, upper contacts of cam to battery througin the district DoWN magnet, which operates and restores the district selector to normal. As the district selector returns to normal, a circuit is closed fror ground on the Y commatetor brush and segment, upper inner odntact of cam B, to battery through the \mathbb{R} magnet, advancing the switch to position 1 or normal. As the switch leaves position 18, the circuit through the

DOWIV magnet is opened, and after position $181 / 4$, the circuit through the outer winding of the (F) relay is opened, releasing the relay and restoring the circuit to nomal.

Showld the calling subscriber fail to replace the receiver on the switchicok after the called subscriber has disconneoted, the release of the (OS) relay, due to the incoming trunk fuactioning, operates the selector time alam circuit from ground thrcugh the upper outer contact of can I, thereby notifying the switchman of the existing condition.

DISCOMNECIION TATIKING TO OPERATOR

31. With the plug of the answering cord in the trunk jack at the incoming end, ground is comected to the sleeve terminal of the trunir to hold the district (L) relay operated. If the pirg of the cord is removed from the trunk jack before tlie receiver at the calling station is replaced on the switchhook, the line relay in the trunk circuit will operate, thereby holding the ground on the sleeve terminal of the trunk. When the recoiver at the calling station is replaced on the switchhook and the plug of the answering cord is removed from the trunk jack at the incoming end, the (IC) relay releases, and ground is disconnected from the sleeve of the trunk, releasing the (L) relay, thus advancing the switch to position 15. As the switch advances from position $14-1 / 4$, the locking circuit through the inner winding of the (D) relay is opened at cam J, releasing the relay. The (D) relay released, opens the circuit through the (SL) relay, which releases, and operates the (F) relay, which advances the district switch to position 16 from ground on the N commatar brush and segment. In position 16 ground on the armature of the (SL) relay throvgh the lower contacts of cam D advances the switch to position 17 , the A cam advancing it to position 18. In position 16 , the (CH) relay being normal, battery is not connected over lead H to operate the message register in the line circuit as the call is not chargeable. From this point on, the line finder and district selectors are restored to normal as described in paragraph 23 and 30.

DISCONNECTION ON ABANDONED CALIS

(a) Disconnection Before Line Finder Selector Finds Line

Should the calling subscriber replace the receiver on the switchhook before a hunting selector finds the line, the (L) relay in the line circuit releases, removing battery fron the H terminal at the multiple bank. Assuning the calling line to be in sub-group A, the release of the (I) relay releases the (BA) relay. The (TR) relay having operated, locks and operates the (SI-A) relay which operates the (IF) relay,
(28 Pages) Page \#18. Issue 2 - BT-431434.
June 29, 1923. (*)
in the line finder circuit and the selector is started hunting, as described in paragraph 9. The selector will, therefore, travel to the top of the bank and the H brush of the selector makes contact with the terminal of the H comb at the top of the multiple bank. The (H) relay operates from ground on the break contact and armature of the (DS) relay, winding of the (H) relay, outer contacts of cam Y, H brush of the selector, to battery on the terminal of the H comb, supplied through the $1,000 \mathrm{olm}$ non-inductive winding of the (BA-1) relay and the break contacts of the (BA-I) and (BA) relays. The (H) relay operated, releases the (LF) relay, which in turn releases the (F) relay and opens the circuit through the UP magnet, stopping the selector. The \mathbb{N} commutator segment is opened with the selector brush, resting on the B comb terminal to prevent the district switch from advancing from normal whon the (F) relay is released by the releases of the (IF) relay. When the (F), relay releases, the (DS) relay operates from ground on the X comnutator brush and segment, through its 1,000 chm winding. The (DS) relay operated, operates the DOWN magnet, restoring the selector to nomal.

POSITIONS 2 TO 6

33. If the receiver is replaced on the switchinok at the calling station while the district switch is in position 2 to 6 , the dialing circuit is opened at the calling station, causing the sender circuit to function and connect a direct ground, to the SC lead, causing the (D) relay to release on account of the increased current flowing through the outer winding of the relay. The (D) relay is connected differentially, but does not release when its inner winding is connected directly to ground and its outer winding connected to ground in series with a resistance. The (D) relay released, operates the (DS.) relay, which restores the line finder selector to normal, as described in paragraph 28. The (D) relay released, also opens the circuit through the (SL) relay, which releases. The (SL) relay released, disconnects battery from lead S, releasing the (6) relay in the line circuit, and advances the district switch to position 6 from ground on its armature and break contact through the lower contacts of cam D. With the district switch in position 6, a circuit is closed from the same ground through the lower inner and upper outer contacts of cam D, to battery through the DOWN magnet, operating: the district DOWN magnet, restoring the selector to normal. When the selector reaches normal, ground on the Y commutator brush and segment advances the switch to normal.

POSITIONS 7 TO 10

34. Should the receiver be replaced on the switchnook while the district switch is in any of these positions, the line finder circuit is restored to normal, as previousiy described in paragraph 28. Trunk hunting and

Abstract

selection beyond will take place in the same manner and the advance of the sender circuit advances the switch to position 11. In position 11 the release of (D) relay meleass the ($C O$) relay and operates the reay, which closes a circuit from ground on the N commutator brush and segment, advancing the switch to position 16. In position 16 , ground on the armature of the (SL) relay advances the switch to position 17, the A cam acvancing the switch to position 18. From this point on, the district selector and switch are restored to normal as described in paragraph 29.

ALI SBLECTORS IN ONE SUB-GROUP BUSY

35.

If all the selectors in sub-group "A", for example, are busy, the (CA) relay operates over a circuit from ground on the armature of the (NB) relay in the line finder circvit, through the make contacts of all the other operated (INE) relays in sub-g"oup "A", over lead cH to the starting circuit, 500 om wanding of the (Ca) relay, to battery through the 600 ohm resistance (C). The (CA) relay cperated, transfers the circuit through the 600 ohm winding of the (IR) relay in the trip circuit from the winding of the (ST-A) relay, to battery through the winding of the (SA) relay and the break contact of (SB) relay. When a call is now received, the (SA) relay cperates in series with the 600 ohm winding of the (TR) relay, in turn operating the ($S T-3$) relay. This circuit is traced from battery through the winding of the (ST-B) relay, make contact of the (SA) relay, 600 ohrn resistance (B), to ground on the armature of the (CB) relay. The (ST-B) relay operated, operates the (K) relay, starts a selector in the " B " sub-group hunting for the calling line and closes a locking circuit through the 1000 ohm winding and make contact of the (CA) relay. This is to prevent the release of the (CA) relay should selector become available in the "A" sub-group while a call is going through the "B" sub-group. - If all selectors in sub-group "B" are busy, the operation is similar except that the (CB), (SB), and (ST-A) relays now operate. The ($\mathrm{SI}-\mathrm{A}$) relay operated, starts a selector in the "A" sub-group hunting, as explained before.

AIL SELECTORS IN BONH SUB-GROUPS BUSY

36.

If all selectors in both sub-groups are busy, both the (CA), and (CB) relays are neerated. Should a call be received in either sub-group under these conditions, the corresponding (SA) or (SB) rolay operates, but neither the (ST-B) nor (ST-A) relay will operate as the circuit to ground on the armature of the (CA), and (CB) relays are open. When a call is received in the "A" or "B" sub-group while all selectors are busy, the message register (MR) in the starting circuit operates through the make contact of the (SA.) relay to ground on the armature of the (CB)
relay, if the call is in sub-group " A ", or through the make contact of the (SB) relay to ground on the armature of the (CA) felay, if the call is in sub-group " B ". The message register thus indicates the number of calls which were originated while all the line finder selectors were busy.

LINE FINDER TIME ALAFM

37.

If a line finder does not find the subscriber's line within $35 \mathrm{sec}-$ onds after the receiver at the calling station is removed from the switchhook, an alarm is given in the following manner: When the receiver at the calling station is removed from the switchhook, the line (I_{i}) relay operates, operating the (BA) relay. The (BA) relay operated, connects battery to the contact of the $152-D$ interrupter in the line alarm circuit over a circuit from battery through the outer winding and make contact of the (BA) relay, lead B, vinding of the B (frame) relay in the time alarm circuit, srush and terminal I of the START arc of the time alarm selector, break contact of the A freme relay, to the interrupter contact. When the interrupter contact closes, the (B) relay operates. The (A) frame relay does not operaie, however, due to being short cirruited by ground on the interrupter. When the interrupter contact opens, the short circuit is removed from the winding of the (A) relay, which now operates in series with the winding and make contact of the (B) relay, to ground on the armature of the (B) relay, thus both relays operated. The next operation of the interrupter operates the STP magnet, over a circuit from ground on the make contact of the interrupter, make contact of the (A) relay terminal 1 and brush of the STEP arc of the selector, to battery through the winding of the STP magnet. When the interrupter contact opens the STP magnet releases and steps its brushes one step on its back stroke. The selector brushes thus advance one stop for each make and break of the interrupter contact, which is of an interval of 7 seconds, until the fifth terminal of the selector is reached when the circuit through the interrupter is opened. When the fifth terminal of the selector is reached, the BA lamp in the trip circuit lights over a circuit from battery on the armature of the A (frame) relay, terminal 5 and brush of the LAMP arc of tie selector, lead A, through the make contact of the (BA) relay, EA lamp, lead C, to ground through the winding of the B (aisle) relay in the time alam circuit, which operates. The (B) relay operatod, operates the A (aisle) relay. The (A) relay operated, lights the aisle pilot lamp and the main or monitoring board lamp through its respective auxiliary alarm circuit. When the source of trouble is removed and the (BA) relay in the trip circuit has released, the circuits over leads A, and B are opened, in turn releasing both the frame and aisle (A), and (B) relays, extinguishing the aisle and main or monitoring board lamps and silencing the alarm. The release of the B (frame) relay also closes a
circuit from ground on its armature, througt terminal 5 and the bridging brush of the RFIURIN are of the selector, to battery through the break contact and winding of the STP magnet, which operates and steps the selector brushes to teminal 6, in which position it awaits the next closure of lead B.

Should the (BA) relay release before the fifth terminal is reached by the selector, the A, and B frame relays release. The (B) relay released, causes the selector to advance to the newt nornal position, awoiting closure of lead B, as proviously desoribed. The operation of the $138-A$ key steps the selector brushes to the next normal position by way of the STEP bridging brush and $5,10,15$ or 20 terminal, as the case may be. If the selectur had been at nomal position 6 , 11 or 16 When the (BA) relay operated, the operation would have been the same as described for position 1 .

WIRING OF GROUP DISTRIBUTOR BANK

The wiring of the two group distributor ares of the regular G distributing selactor bank, shown on the regular starting circuit, and of the emergency G distributor selector bank, is shown in detail in the circuit associated with the series circuit through the einergency jack and the contacts of the (TR), and (IR-1) relays for the 15 groups of a panel line finder frame. For a complete frame of 300 lines, the wiring of the terminals for both accs of each G distributor selector is shown in a table on the drawing. As a trip circuit is divided into two units, A and B, calls originating in the first 10 lines of a group of 20 lines aro connected through trip unit A and a terminal and brush of the G are normally having access to the line finders in sub-group "A". Calls originating in the last 10 lines of a group are connected through trip unit B and a corresponding terminai and brush of the other are nomally having access to the line finders in sub-gromp "B". This arrangenent permits the distributing of the 1 ! trip circuit A, and B units to subgroups "A" and "B", respectively, in the starting circuit, so as to give each group an equal preference, thus preventing and one group from having a permenent preference over the other groups. This is accomplished by the G selector being advanced one stop to the next group after each call. The series circuit through the contacts of the (TR), and (TR-1) relays permits the passing of a call through a number of idie groups with the same speed as though the call originated on a line within the group having the preference at that tine. Should two or more calls start in two or more groups at the same time, the group nearest the one having the prefererice at that time will be completed first, because of the series locking arrangement of the (IR) or (TR-1) relay holding the relay of this sroup locked and releasing the other relays.
40. The (TR) relay in any group locks from ground through its 600 ohm winding and make contact, jack 10, teminal and brush of the associated arc of the G selector, to battery in the starting circuit through jack 15, the (TR-1) relay locks throxgh its 600 ohm winding and make contact, jack 12, corresponding terininal and brush of the associated G arc, to the starting circuit through jack 16 . Jacks 10 and 12 of each group circuit wire to the selector arc temminals and jaciss 9, and 11 loops to the next group circuit, so that though the selector may be giving preference to one group, this group being idie, and a cail originates in some other group, a circuit is closed back through the intervening jacks and break contacts of the intervening relays of each group until the terminal which the distrioutor brush is resting on is reached. Assume a call originates in group 15, and is passing through trip unit A and the brushes of the G distributor solector are rosting on the first group terminal which is teminal l. The locking cirouit for the (TE) ralay will be as follows: Phrough the 600 chm winding and make contact of the (TR) relay and jack 10 of eroup 1.5, jacis 11, bread contacts of the (TR-1) and (TE.) relays, and jack 10 of group 14 (not shown), tinrough all other groups in the sane manner to jock 10 of group 1, terminal 1 , and brush of the selector, to jack 15 of the starting circuit. It will bo seen that if two calls start at the same tims in two different groups causing the (IR) relays in the two groups to operate together, the call originating in the group nearest the one having the preference of the starting circuit will be compieted first. For example, if a call started in group 10 , trip unit A, and another in group 15 , trip unit A, the operation of the (TR) relay in the former group would release the (TR) relay in the latter circuit, but remain locked itself. The magnet of the G selector is operated by ground on the armature of the (ST-A) or (ST-B) relay and the brushes advance one stop on the release of the selector armature when the (ST-A) and (ST-B) relay releasc;after each call.

LINE FINDRR DISTRIBUTOR

41. The distributing selectors A, and B shown in detail on "The Selector Start Wire Circuit" are used for distributing calls uniformly to the line finder selectors in subugroups A, and B respectively.

When the number of line finder selectors for a groun does not exceed 40 selectors for each 300 lines, the starting circuit shall be equipped with two 200-R distributor selectors. Figure 1 shows these selectors wired and equipped for 16 line finder selectors for each sub-group. When the operation of the ($\mathrm{ST}-\mathrm{A}$) relay in the starting circuit comnects ground on the start (SI) lead, as described in paragraph 9, the (LF) relay which operates depends upon the terminal on which the A-1 bridging brush is resting on terminal 1 in the regular start circuit of sub-group A.

In this case if the first selector is not busy the associated (IE) relav operates and funstions as previously described. If the first selector is busy, the associated (MB) relay will be operated and the circuit through the (JF) relay will be open. In this case the (LF) relay associated with the next idle selector will operate. Assuming this to be the tenth selector, a circuit is then closed from ground at the (ST-A) relay (not shown) through the break contacts of the (GA), and (C) reiays, the A-1 bridging brush and terminail of the $A-1$ arc of the distributor selector, the SI lead, make contact of the first (IB) relay, the series make contacts of the succeeding operated (MB) relays, break contact of the tenth (MB) relay, to battery through the inner wincing of the (IF) relay (not shown) which operates. The operation of the (GA) relay, as described in paragraph 9, operates the STP-A. magnet from ground on the armature of the (ST-A) reley, through terminal 1 and the A-3 brush, to battery through the winding of the magnet, so that when the (GA) relay releases on the coimpletion of a call, the STP-A magnet releases, in turn stepping the selector brushes one step and Eiving the next selector the preference. When the brushes of the distributor selector advance from the terminals of the last line finder selector terminal 16 , the selector is adranced over the spare terminals to the first terminal. from ground on the strapped spare terminals through the A-2 brush. While the selector is advancing over the spare terminals, a cell at this time will be routed to tine first selector through the A-1 brush and strapped spere terminals by the strap from terminal 22 to terminal 1 on the $A-1$ arc. The release of the (GA) relay opens the K lead, thus preventing the seloctor from selecting if the lead should become grounded.

When the number of line finder selectors for a group exceeds 40 . selectors for each 300 lines, the starting circuit shall be equipped with two 200 m a istributor selectors. Figure 2 shows these selectors wired and equipped for 26 line finder selectors for each sub-group. It will be noted that the ST leads from the first 15 line finder selectors of each sub-group are connected in their respective order to the first 15 terminals of the $\mathrm{A}-1$, and $\mathrm{B}-1$ arcs and the $S I$ leads of the last 11 finder selectors of each sub-group arc connected in their respective order to the first 11 terminals of the $A-4$, and $B-4$ arcs. It will also be noted that the brushes of the first three arcs of each selector are in the opposite position from the brushes of the last three arc so that only three brushes of a selector will be making contact with terminals at the same time, the other three brushes being open at that time. On a regular call in sub-group A, the circuit functions as described for Figure I until the first three brushes of the A distributor selector advance from terminals 22. At this time the first three brushes are open and the last three brushes are now resting on the first terminal of the $A-4, A-5$, and $A-6$ arcs. The next call in this sub-group
(28 Pages) Page \#24. 1ssue 2-BT-43143.。 June 29, 1923. (*)
will then start 17 selector, if idle, hunting for the calling line. Assume the last three brushes are resting on terminal 11 of the associated arcs and the 26 line finder selector is idle. The operation of the (SI-A) relay in the starting circuit closes a circuit from ground on its armature, break contact of the (GA), and (C) relays. A-4 brusin and terminal 11, over the ST lead, through the break contact of the (NB) reley of the last or 25 line selector in the sub-group, to the associated (LF) relay. The operation of the (GA) relay operates the STY --A magnet through the A-6 brush and terminal 11. The release of the (ST-A) relay releases the SMP-A magnet, advancing the brushes to the next or terminal 12. Ground on spare terminals 12 to 22 through the A-5 brush advances the brushes of the selector until the first three brushes are resting on the first terminal of the $A-1, A-2$, and $A-3$ aros. While the selector is advancing over the spare terminals, a call at this time will be routed to the first selector through the $A-4$ brush and strapped spare terminal.s by the strap to terminal 1 of the $A-1$ arc.
44. The number of line finder selectors for a sub-group may thus be arranged by changing the necessary strapping on the selector arcs. The operation for the emergency seloctor for sub-group "A", and the regular and emergency selectors for sub-group "B" are similar.

ANOMHER SBIEGTOR RENYRNS TO NORMAL THILE A CALL IS COING THROUGH

45. When the (SI-A) relay operates on a regular call, ground is connected to the line Sincer circuit over lead \mathbb{X} so that when the ($\mathrm{Z} B$) reley operates it is held operated through its outer winding from battery on the armature of the (SL) relay. This locking circuit prevents the (IBB) relay from releasing, should a selector return to nomal while a call is going through, until the call is safely started. There is the possibility that a circuit may have been closed from ground on the armature of the (SIT-A) relay, through the make contacts of several (NB) relays, to an (LE) relay associated with some other line finder, but the (GA) relay in the starting circuit not having had time to operate and. open the ST lead. Thus if an intermediate (NB) relay released, due to the associated line finder selector returning to normal, it would find ground on the SI lead and operate a second (LF) relay, thereby starting two line finder selectors for the same call.

TESTING LINE FINDER SELECTORS

46. This circuit, which is shown associated with the starting circuit, enables the testing of any particular line finder selector at any time. The test line used with the test box circuit for mazing the test is the first or bottom line of the bottom bank in both the "A" and "B" subgroups, the first line terminals in both sub-groups being connected together.
47. the TEST jack of the line finder under test, the ST and ST-1 Ieads are connected together. The 1000 ohm winding of the (LF) relay is disconnected from the break contact of the (MB) relay and connected to the make contact of the (c) relay in the starting cincuit through the strapod ring and sleeve of the TEST plug. When the plug of the test box cord is inserted in either 159 , test jack, the (A) relay operates from ground on the sleeve of the test box cord. The (A), rely is quick in operating to precede the (TR) relay in the trip circuit on a simultaneous call. The (A) relay operated, opens the circuit through the 700 ohm windings of the (TR) and (TR-1) relays in the trip circuit and connects ground to the winding of the (B) reldy, which operates. This circuit is traced from ground on the right injier armature of the (A) relay, winding and break contact of the (P) relay, break contacts of the (ST-A) and (ST-B) relays, to battery on the armature of the Smip-G magnet when the previous step of the G distributor selector has been completed. The (B) relay is slow in operating to prevent a call which has just reached the (SI-A) or (SI-B) relay from being interrupted and there being the possibility of two selectors arriving on the test line. The (B) relay operates, (a) locks to battery on its make contact, (b) operates the (C) and (CI) relay from ground on its armature, through the break contact of the (\mathbb{E}) relay, (c) closes the ring side of a loop through the test box, which operates the (I) relay associated with the test line. The (c) relay operated (a) transfers the circuit for operating the ($S T-A$) relay in the starting circuit from the G distributor selector bank, (b) opens the normal SI lead, (c) closes the circuit through the (IF) relay and TEST jack to the make contact of the (SI-A) relay, as hereinafter described, (a) opens the operating circuit for the ($S T-B$) relay, which would othervise operate and lock on a call within the last 10 lines in the group. The (CI) relay operated, (a) closes a circuit for operating the (TR) relay in the trip circuit from battery on the armature of the SIP-G magret, (b) connects the K lead of sub-group "A" with the K lead of sub-group "B", thus connecting the K commatar segments of all the selectors of both subgroups together, (c) connects the Y lead of sub-group "A" with the Y lead of sub-group "B", so the (GA) relay will be operated by a selector in either sub-group.

The (L) relay of the test line operated, in turn operates the (BA) relay. The (BA) relay operated, operates the (TR) relay through its 700 ohm winding over the same circuit as described in paragraph 9, except this time through the make contact of the (GI) relay, the (A) relay being operated. The (IR) relay operated, functions as previously described and locks in a circuit traced from ground through its 600 ohm winding and make contact, make contact of the (C) relay, break contacts of the (CA) and (SB) relays, to battery through the winding of the (ST-A) relay, which operates. The ($S T-A$) relay operated, functions as described
downloaded from: TCI Library - http://www.telephonecollectors.info - Source: Connections Museum, Seattle, WA
(28 Pages) Page \#26. Issue 2-Bi-431434. June 29, 1923. (*)
in paragraph 9 and in addition closes a circuit operating the (D) relay. The circuit for operating the (LF) relay of the line finder circuit under test is traced from ground on the armature and inner make contact of the ($S T-A$) relay, through the break contact of the (GA) relay, make contact of the (C) relay, sleeve and ring of the TEST jack and plug in the line finder circuit, to battery through the 1000 ohm vinding of the (LF) relay. The (LF) relay operated, starts the selector hunting for the battery on the H terminal of the test line, as in the case of a regular call. With the exceptions already stated, the line, trip, starting, line finder and district circuits function as for a regular call.

When the (ST-A) relay operates, the circuit for operating the (D) relay is traced from ground on the armature and onter make contact of the (ST-A) relay, break contact and winding of the (D) relay, to battery on the armature of the (B) relay. The (D) relay operated, locks to ground on the armature of the (A) relay. When the (SI-A) relay releases, the (E) relay operates from ground on the left inner armature of the (ST-A) relay, make contact of the (D) relay, to battery through the break contact and winding of the (E) relay. The (E) relay operated, (a) locks to ground on the armature of the (A) relay, (b) releases the (C) and (CI) relays, thereby restoring the starting circuit to normal, (c) closes the circuit from battery on the armature of the STP-G magnet, which was opened by the operation of the (A) relay and later

- closed by the operation of the (CI) relay, through to the 700 ohm windings of the (TR) and (TR-1) relays. When the plug of the test box cord is removed from the test jack, the (A) relay is released, releasing the B, D and \mathbb{E} relays, thereby restoring the test circuit to normal.

FELL TALE - LINE FINDFR SELECTOR

50. Should the selector travel to the tell tale position while hunting, due to the multiple brush not/being tripped, the (E) relay remains operated through its outer winding. Ground on the X conmutator brush and segment is thereby connected to the lead "To Tale Circuit", giving a Visual sienal to the attendant. As the \mathbb{N} commutator segment is open at tell-tale, the district is prevented from advancing from its normal position. The selector in thís case is restored to normal manually by the attendant.
51. Should the selector travel to the tell-tale position while hunting, with the multiple brush tripped, a circuit is closed from battery in the trip circuit through the 500 ohm winding of the (0) relay in parallel with the 500 ohm resistance, make contact of the (BA) relay, terminal
of the H comb at the top of the multiple bonik, H multiple brush of the line finder solector, outer contacts of cam Y, winding of the (H) relay, to ground on the armature of the (DS) relay, operating the (0) and (N) relays. The (0) relay operated, opens the lociins circuit of the (K) relay and the (H) relay operated, releases the (LF) relay, which in turn releases the (F) relay and UP magnot. The (F) relay released, opens the circuit through the teli-tale alarm and comects ground through the X cormutator brush and segment to battery through the 1000 ohr winaing of the (DS) relay, which operates, in tum operating the DOWI inagnet, restoring the solector to nomal. The receivor at the calling station being still removed from the switchhook, the (I) and (BA) relays are still operated and the call again goes through as described under "ORIGTNAMING CALL".

TELTMTALE DISTRTOT SELECTOR

52.

Should the selector travel to the tell-tale position during brush selection, ground on tho X comutator, brash ond segment is comectod through to cam B, to battery through the R magnet, advancing the switch to position 8. Under this condition ground is disconnected from the SC lead in the sender, releasirg the (CII) relay and the district remains in position 8 until it is restored to nomal manuelly. If the district. goes to tell-tale during group selection sround on the X cormutator advances the switch to position 8. In position 8 , ground on the SC lead holds the (CH) relay oporated which, in tum operates the ($工$) relay, advancing the switch to position 9. The (CH) and (L) relays remain operated and the district remains in position 9 until it is restored to normal manuelly.
53.

If all the trunks in the gromp are busy, the district selector, while trunk hunting in position 7 , will travel to the top of the group and rest on the overflow terminals. As the sleeve terininal at overflow is open, the (L) relay releases, in turn advancing the switch to position 8. In position 8, the (L) relay re-operates from ground on the armature of the (CH) relay, advancing the switch to position 9. In position 9, a circuit is closed from ground on the z commutator brush and segnent, through the upper contacts of cam K, to battery through the R magnet, advancing the switch to position 10. In position 10 , a circuit is closed from ground on the Z commatator brush and segment, through the upper outer contact of cam K, lower inner contact of cam L, to battery through the 1200 ohm winding of the (L) relay, operating the (I) relay. The (L) relay operated, locks through its 1200 ohm winding and make contact of the same ground, through the upper outer contact of cam I, advancing the switch to position 14, from ground on cam II. As the st:itch advences from position 13, the (L) relay releases, and in position 14 advances the switch to position 15. The release of the (I) relay also releases
(28 Pages) Page tit28.
Issue 2-BT-431434.
June 29, 1923. (*)
the (CI) relay, discomnecting the sender from the district circuit. With the switch in position 1.5 , قicircuit is closed from the "MiscelIsmeous rone Circuit over lead. $\mathrm{C}, 2 \mathrm{M} . \overrightarrow{\mathrm{J}}$. condenser, upper contacts of com G, wirding of the repeating coil, $2 \mathrm{M} . \mathrm{F}_{0}$. condenser, upper outer and lower inner contacts of cam \mathbb{W}, upper contacts of can V, luver outer and upper inner contects of can J, mare contact of the (D) relay, to ground on cam I. A tone is therefore induced in the other winding of the repeating coil, thus causing the "All Trunks Busy" tone to be sent back to the calling subscriber. When the receiver at the calling station is reflaced on the switchhook, the (DC) relay releases, opening tre locking circuit through the (D) relay, which releases. Fron this point on, the sritch is advanced to position 1 as described for a regular cail.

O COMMUTATOR

54. The function of the "O" commutator segment is to maintain an idle condition on the multiple overilow termizals, so that more then one selecter mej stop on overflow at one time; otherwise the first selector reaching overfiow would make the sleeve multiple terminals busy. thus causing succeeaing selectozs to continue upvard into the next grouv of trunks. The "O" comutator segment is open at overflow, but the S bar is continuous. Both the "O" and "Y" brusies aro permanently strapped tagether and wired to the multiple sleeve omash. When the selector is at overfiow, the "O" commatar briash is restins on on open (dead) segment and, as the busy ground is fod throiugh the "o" commitator bar only, this arrangement maintains a non-busy comdition on the sleeve terminals. Whon necossary to combitic two or more groups of trunks, the multiple sleeve overflow terminals between the compined groups are made permanently busy by being connected to ground. As the "S" commatator bar is closed at overilow, the (L) relay is hold operatod at this time', and the selector therefore hunts past the "made busy" terminals into the next group.

TEPMINATITG CALL

55.

When a finsl selector connects to the tip, ring and sleeve terminals of an idle line at the final multiple, battery through a resistance in the final circuit is connected over the sleeve lead s, to ground through the both windings of the (CO) relay on individual lines and the last line of a group of consecutive lines: or through the 100 ohm winding of the (CO) relay on an intermediate line of a group of consecutive lines. The (CO) relay operated, disconnects the (L) relay battery bridec from across the tip and ring of the line circuit. When the final selector returns to normal, the circuit through the windings of the (c) reley is opened, releasing the relay and restoring the circuit to normal.

ENG. - I.M.W.
BS
CHE'D. - J.I.
APP'D. - H. L. MOYNES. ㅍ. R. C.

downloade̊앙ㄹㅇ: TCI Library - http://www.telephonecollectors.info - Source: Connections Museum, Seattle, WA

