We stern Electric Co.. Incorporated. Engineering Dept., New York.
(2 Pages) Page \#1. Appendix \#l. Issue 4 - BT-431225. Replacing all previous issues. February 18, 1922.

MEITHOD OF OPERATION FINAL SELECIOR CIRCUIT. With Marginal Test-Arranged For Routine Subscriber's Line Te sting-Full Mechanical Swi whing System.

Page 8 . - The circuit requirements have been changed to read as follows: THE READJUST REQUIREMENTS SHOIN BELOM ARE FOR MAINTENANCE USE ONLY

Western Electric Co., Incorporated, Engineering Dept., New York.
(8 Pages) Page $\begin{aligned} \text { it } \\ \text {. }\end{aligned}$
Issue 4 - BT-431225.
Replacing all previous issues. March 17, 1921.

METHCD OF OPRRATICN SCHEMATIC

For - Final Selector Circuit - With Marginal Test Arranged For - Routing Subscriber's Line Testing - Full liechanical Switching System .

GENERAL DESCRIPIIION

1. This circuit is used in a full mechanical office, for establishing connections between the originating subscriber and the terminating subscriber or P。B. $X_{\text {, }}$ line, and is selected by either a local, cordless or an interoffice incoming selector. This circuit may also be used with a portable or permanent subscriber's line test set for the purpose of establishing connections between the test set and any line withing its range, or to select any or all of the lines in a bank, step-by-step under the conirol of the test set.
2. The principal functions of this circuit are as follows:-
(1) To select the called line and establish talking connection,
(2) To test the line for busy.
(3) To hold it busy to other hunting selectors while in use.
(4) To give a busy back signal to the calling subscriber or operator when the desired line is busy.
(5) To select a nonmusy line in a P.B.X. group.
(6) To provide means whereby a line test set may be used for routine testing of lines.

DERATEDDESCRIPRION

OPERASTON

REGUTAR CALTS

3. When an incoming selector connects to the tip, ring and sleeve terminals of this circuit, ground is connected to the sleeve torminal through the associated incoming circuit thus making this circuit test busy to other huating incoming selectors, and the fundamental circuit is closəd operating the L relay. The fundamental circuit is treced from battery tronoug the inner winding of the I relay, Zower inner contact of oam G, and the upper inner contact of cam F, over the tip side of the circuit, through the associated incomjag circuit and the stepping relay in the sender circuit (not show, back to ground in the associated incoming circuit. The I relay, operated (a) locks in a circuit from battery through its inner winding and make contact, lover outer concect of sam G, and wpper inner contact of cam F, thence over the fundamental circuit to ground in the associated incoming circuit, and (b) closes a circuit from ground on its aruaturo, through the lower inner contacts of cam E and D and winding of the TK relay to battory.

Whe wr relay operates in this circuit ard jocks in a circuit from battery through its winding and make contact to ground on the aleove of the associated inocming circuit. The II relas operated, closes a circuit from ground on its armature, through the upper outer contact of cam C to battery through the A magnet, edvancing the switok to position 2.
4. In poeition 2 a ofrcuit is closed from ground on the armature of the relay. through the innor contacts of cam E, to battery through the high apesd (HS) magnot. causing the selector to move upward for brush seleotion, As the seleotor moves upu ward, carrying the commutator brushes over the commatator sogmente, the A segments and brush intermittently conneot ground to the tip side of the fundamental circuit through the lower outer contact of oam F, holding the I relay operated, but successiveIy short circuiting the stepping relay in the associated sender circuit, thus reieasing and permitting the romoperation of the stopping relay until sufficient impuises have been asnt back to satisfy the sender. The fundamental circuit is then opened by bie sender releasing the I relay. The I relay released, opens the circuit through the high speed magnet, thus stopping the upward movement of the selector, and closes a cirm cuit from ground on its armature through the upper outer contact of oam B to battery through the R magnet advancing the switch to position 3 . With the switch in position 3 the trip magnet (M) operates in a circuit from battery through its winding to ground through the upper outer contacts of cam I.
5. In position 3, the I relay romoperates and locks in the fundamental cencuits, closing e circuit from ground on its armature, through the upper inner contact of cam B, to battery through the R magnet advancing the switch to position 4. In porsibion 4_{3} the HIGH SPEED magnet is again onergized oausing the selector to move upward for temz selection. The TRIP magnet being operated in position 3 to 5 , the previously sellocted set of brushes is tripped as the selector starts upward in position 4 . As the $80=0$ lector moves upward, carrying the brughes over the comutator segments, the B gegwerit and brush intermittently connect ground to the tip sids of the fundamental circuits through the upper outer contact of carn G, holding the I relay operated, but succesabvely short circuiting the stepping relay in the associated sender circuit, thus releasing and permitting the rewoperation of the stepping relay until sufficient pulses have been sent back to satisfy the sender. The fundomentel circuit is then opened by the sender. releasing the I relay. The release of the I relay, closes a circuit through the \mathbb{R} magnet which edvances the owitch to position 5. In position 5, the I reiay again opez ates and locks in the fundamental circuit, closing a circuit from ground on ita armem ture to batiery through the R magnet, advancing the switch to position 6 .
6. In position 6, the low speed (LS) magnet is energized in a circuit from battery through its winding, upper inner contact of cam D, and lower inner contact of cam E_{9} to ground on the armature of the I relay, causing the selector to move upward for units selection. As the selector moves upward carrying the brushes over the commatator segment, the U commutator brush and segments intermittently connect ground to the tip sade of the fundamental circuit through the lower outer contaot of cam F, holding the I relay operated but successively short circuiting the stepping relay in the associated sender circuit. thus releasing and permitting the remoperation of the stepping relay until sufficient. pulses have beon sent back to satisfy the sender. The fundamental circuit is then opened. by the sender releasing the I relay. The I relay, released, opens the circuit throrgh
the LS magnet stopping the upward movement of the selector, and closos a circuit from ground on its armature, through the contact of the T-I jack, and lower contacts of cam P, advancing the switch to position \%. In position \%, the I relay again operates and locks in the fundamental circuit, advancing the switch to position 8 , the A cam carrying the switch to position 9. When the switch advances beyond position $7-3 / 2$ the I relay is held operated in a circuit from battery through its inner winding and make contact to ground on cam I. In position 9, the T relay operates in a circuit from battory through the inner contacts of cam I, outer winding of the T relay, lower contacts of cam E, to ground on the armature of the I relay.

INDIVIDUAL LINE OR FIRSI LINE OF A P\& BeX. GROUP_NOT BUSY.
7. The T rolay, operated in position 9, closes a circuit from ground through the lower inner contact of cam I, through the lower inner contact of cam J, make contact of the T relay, inrough the lower outer contact of oam B to battery through the R magnet, advancing the switch to position 10 , the A cam carrying the switch to position 11. The I relay releases when the switch advances beyond position 9. If the sleeve brush is resting on the sleeve terminal of an idle P. B. X o or individual line when the switch leaves positions 9, the T relay reloases. The release of the I relay advances the switch to position 13 in a circuit from ground on cams I, through the lower inner contact of cam J, break contact of the T relay, and lower inner contact of cam B, to battery through the R magnet. The A cam advances the switch to position 14. In position 14, a cirouit is closed from ground on the amature of the I relay, to battery through the R magnet, advancing the switch to position 15, (talking position). The release of the T relay in position 9 also connects battery througl the lower contacts of oam K, the 18 Q resistances, break contact of the T relay, lower inner and upper outer contacts of cam $I_{\text {, }}$, and sleeve brush to the sleeve terminal of the selected line, thereby making it test busy to any other hunting selector. When the switch enters position $12=3 / 4$, a circuit $1 s$ closed from ground on oam I_{0} through the lower outer contact of cam H , to operate the selector group register.

DISCONNECTION

8. When the associated incoming aslector returns to nomal, ground is disconnected from the sleeve terminal, thus releasing the TK relay. The TK relayg released, connects ground through the inner contacts of cam $I_{\text {, }}$ break contact of the $\overline{C K} 2 \mathrm{G} . \mathrm{ay}$, to the sleeve terminal thus holding the selector busy to other hunting inconsing selectors until the switch advances to normal, and closes a circuit from ground on its armature, through the lower outer and upper inner contacts of cam N, to battexy through the outer winding of the I relay. The I relay operates in this circusto ade vances the switch to position 16 and locks provided the receiver at the called stem tion has not been replaced on the switchhook. The locking circuit is traced from battery through its inner winding and make contact through the outer contacts of oam MI, R brush and terminal, over the ring side of the called line, through the subscrim berts set, back over the tip side of the Iine, through the T terminal and brush, and lower outer contact of cam J, to ground on cam I. In position 16, the y8mAE zesism tance is connected through the lower contacts of cam U, in parallel with the inner winding of the I relay. This insures the release of the I relay with a 10,000 ohus leak across the line. In position 16 ground on the armature of the L relay is connected through the lower inner contact of cam $\mathbb{E}_{\text {. and }}$ the upper outer contact of $c a m$, $D_{\text {, }}$

> (8 Pages) Page fi4. Issue 4 BT_431225. Replacing all previous i ssue: March $17,19 \%$,
to the (P, S_{0}) selector time alanim circuit, thereby operating an alarm if the switch remains in position 16 for an abnormal length of time. When the receiver is reglaced on the switchhook at the called station, the I relay releases, advancing the switch to position 17. In position 17, a circuit is closed from ground on the armam ture of the TK relay, through the lower outer contact of cam C, to battery through the R magnet, advancing the switch to position 18. The TRIP magnet is operated in position 17 and 18 to guard againgt the brushes catching on the trip finger on the downard movement. In position 18 a circuit is closed from ground on cam I, through the upper outer contact of cam H. lower outer contact of cam D, and the upper outer contact of cam R, to battery through the Dow magnet, causing the selector to move downward. When the selector has returned to normal, a circuit is closed from ground through the Y commutator brush and segment, and upper inner contact of cam C, to battery through the R magnet, advancing the switch to position $\mathrm{I}_{\text {. }}$

INDI VIDUAI LINE BUSY

9. If the sleeve brush is resting on the sleeve terminal of a busy individual line, when the switch enters position 9, the P.B. $\mathrm{X}_{\text {。 }}$ and TB relays operate, in a circuit from ground through the lower imer contacts of cam I and H, winding of the P.B.X. relay, winding of the TB relay, make contact of the T relay, lower inner and upper outer contacts of cam I, and S brush, to bsttery on the sleeve terminal of the busy individual line. The T relsy holds in a circuit through its inner winding to ground on the armature of the TB relay, advancing the switch to position 10 , the A cam advancing it to position 11. When the switch advances beyond position 9 , the I relay releases. In position 11, a circuit is closed from ground on the armature of the I relay, to battery through the \mathbb{R} magnet advancing the switch to position 12. In position 12, a circuit is closed from ground through the lower inner contacts of cams I and J, make contact of the T relay, lower inner contacts of cams F and G, to battery through the inner winding of the L relay. The I relay operates in this circuit and locks in a circuit from battery through its inner winding and make contact, to ground on cam I, advancing the switch to position 13. The A cam advances the switch to position 14. In position 14, a circuit is closed from ground on the armam ture of the I relay, through the lower inner and the upper outer contacts of cam E, to battery through the DOWV magnet, causing this selector to move downward. When the selector reaches normal ground on the Y comutator brush and segment is conmected to the A magnet through the upper inner contact of cam C, advancing the switch to position 17. When the switch advances the I relay releases, thereby releasing the DOWN magnet and the T and TB relays release. In position 17 a circuit is closed from ground through the contacts of the busy back interrupter, through the imner con. tacts of cam 0 , outer winding of the T relay and inner contacts of cam K , to battery, alternately operating and releasing the T relay. The operation of the Trelay closes a oircuit from the busy back tone circuit, through the 19man resistance, 20 wer contacts of cam I, make contact of the T relay, inner contacts of cam M, over the ring side of the trunk end through the winding of the repeating coil in the associated fnowing sem lector circuit to ground, giving a busy tone to the calling subscriber. A circuit is also closed from battery through the lower inner and upper outer contacts of cam K, 18-AT resistance, make contact of the T relay, through the inner contacts of eam F_{g} ove: the tip side of the trunk, winding of the supervisory relay (when provided) and repeatio ing coil in the associated incoming selector circuit, to ground, causing the supervisory relay to operate and release as controlled by the T relay. When the calling suibseriber

> (8 Pages) Page \#5.
> Issue $4=$ BTG431225. Replacing all previous issues. March $17,1921$.
or operator disconnects, the associated incoming selector returns to normal, releasing the TK relay. The release of the IK relay advances the switch to position 18. From this point on, the circuit functions as described under "Disconnection".

FIRST BUT NOT ALL LINES OF \& P.B. X, GROUP BUSY.
10. If the sleeve brush is resting on the sleeve terminal of a busy P.B. X, line other than the last in the group when the switch enters position 9 , the TB relay operates in a circuit from ground through the lower inner contacts of cam I and H, windings of the P.B. X_{0} and TB relays, make contact of the T relay, lower inner and upper outer contacts of cam I and S brush, to battery on the sleeve terminal of the busy P.B. X. line. The TB relay operated closes the holding circuit through the inner winding of the T relay. The P.B. X_{0} relay does not operate at this time due to the high resistance of the busy P.B.X. sleeve circuit. The B relay operated, advances the switch to position 10, the A cam advancing it to position 11. The L relay releases when the switch advances beyond position 9. In position 11 the I relay remoperates in a circuit from ground through the lower inner contacts of cams I and J, make contact of the T relay, break contact of the P.B. X_{0} relay, inner contacts of cam G, to battery through the inner winding of the I relay. The I relay operated, closes a circuit from ground on its amam ture, to battery through the LOW SPEED magnet causing the selector to move upward and hunt for an idle P.B.X. line. When an idle line is found the TB relay releases and the holding circuit through the inner wading of the T relay is opened, but the T relay does not release immediately due to a circuit being closed from ground through the C commataicer brush and segment, upper outer and lower inner contacts of cam 0 , outer winding of the T relay, inner contacts of cam N, to battery through the outer winding of the I relay. When the brushes are centered on the idle line terminals, the circuit through the C comnatator brush and segment is opened, and the I relay releases, in turn releasing the I relay. The release of the I relay advances the switch to position 12, and opens the circuit through the LOW SPEED magnet, stopping the upward movement of the selector. In position 12 a circuit is closed from ground through the lower inner contacts of cams I and J, breals contact of the Trelay, lower inner contacts of cam B, to battery through the R magnet, advancing the switch to position 13, the A cam advancing the switch to position 14. From this point on the circuit functions as described under "Individual Line or first line of a P.B. X_{0} group not busy ".

NOTS:- The adjustment of the 0 commatator brush, with relation to the tripped sleeve multiple brush, is such that it does not break contact with the C comutator segment until slightly after the holding circuit through the inner winding of the I relay is opened by the sleeve brush leaving the busy terminal and is making contact with the sleeve terminal of the idle line. The IS magnet remains operated and the selector continues to move upward until the brushes are carried slightly above the center of the idle line terminals, allowing the locking pawi to enter the notch on the racik attached to the brush support rod. At this time the holding circuit through the outer winding of the T relay is opened at the C commutator, releasing the Trelay. The T relay, released, opens the holding circuit through the inner winding of the I relay. The I relay releases disconnecting ground from the commutator feed bar G, and releasing the IS magnet. The selector then drops into place, thus centering the brushes on the line

> (8 Pages) Page 6, Issue 4-BTA31225. Replacing all previous issue, March 17, $29 \% 1$,
terminals. During $P_{0} B_{0} X_{0}$ hunting in position $10-3 / 4$ to 11 the commutator feed ground is supplied through cams D and $E_{\text {, from ground in the armature }}$ of the I relay, and under control of the T relay. This is to prevent the re-operation of the I relay by the closing of a circuit through the commutator brush and segment, on the overthrow of the selector or as it drops into place.

ALL P.B. X LINES OF A GROUP BUSY

11. If all the P.B. X_{0} lines of a group are busy when the selector travels upward in position 11, the P. B. X. relay operates, when the sleeve brush makes contact with the sleeve terminal of the last line of the group as explained under (INDIVIDUAL LINE BUSY), opening the circuit through the winding of the L relay. The I relay releases opening the circuit through the LOW SPRED magnet, thus stopping the upward movement of the selector. The release of the I relay also advances the switch to position 12. From this point on, the circuit functions as described under "INDIVIDUAL LINE BUSY".

FOUTINE TESTING OF SUBSGRIBER:S_IINE.

12. When used in connection with a subscriber's line test set jacks T-1 and T-2 are connected to the corresponding jacks in the test set by means of patching cords. The test set supplants the functions of the incoming selector and sender circuits used in completing a call. The final selector is held busy to other selectors during the test., ing period by ground, connected to the sleove of jack T-1. The fundamental circuit is closed through cam Q and the tip of jack T-1, instead of cams F and G and the tip of tho ling, as when used on a (REGUIAR CALL). With the above excoption, the circuit functions the same under control of the test set, as previously described until the switch reaches position 6. With the switch in position 6 , the circuit noxmally used to advance the switch out of position 6, being open at the Twl jacik spring, prevents the switch from advancing out of "unit selection position". In position 6, the tip, ring and sleeve brushes rest on the terminals of the line to be tested, and battery in the test circuit is connected through the sleove of the jacix T. 2 to the sleeve terminal bolding the selected line busy. The test circuit is connected to the line through the tip and ring of jack Tm. All the lines in the bank may be tested by the operation of a "stopping" key, in the test set. The operation of this key closes the fundamental oircuit through jack T-I, operating the L relay. The I relay operated closos a circuit through the IS magnet which moves the selector up to the terminals of the next line. The fundamental cirouit is then opened in the test circuit, releasing the I rolay, thus stopping the seleotor. $4 l l$ the lines may be selected step-by-step. To re-set the selector to test in another group of lines or to restore the circuit to normal, a "disconnect" key in the test set is operated, which opens the holding circuit through the TK relay thus releasing it, advancing the switch to position 14. From this point on the return of the switch to normal takes place as described under "Disconnection".

NO TESEA FEATUSR.

13. On "no test" calls made over Cordless Incoming Selectors a circuit is closed in position 7 from battery on the ring side of the trunk, through the upper outer and lower inner contacts of cam \mathbb{N}, outer winding of the T relay, and upper inner contact of sam J to ground, operating the Trelay. The T relay, operated, closes a circuit from bettery

> (8 Pages) Page \#r. Issue 4-BT-431225. Replacing all previous issues. Tharch 17, 1921.
through the R magnst, lower outer contact of carn B , make contact of the T relay, to ground on cam J, advancing the switch to position 9. The T relay releases when the switch advances beyond position 8. In position 9 a circuit is closed from battery through the R magnet, and upper outer contact of cam B, to ground on the armature of the z relay advancing the switch to position 12. Since the T relay does not operate in 9 the test of the line selected is omitted and in position 11 P.B. X_{0}. hunting is omitted. In position 12 a circuit is closed from battery through the R magnet, lower (inner contact of Cam B, and break contact of the T relay, to ground on cam J, advancing the switch to position 23. In position 13 a circuit is closed (as in position 9) advancing the switch to position 15.

PREMATURE RBLEASE

14. When ground is removed from the sleeve of the incoming circuit at any time before the switch advances from position 14 , the \mathbb{K} relay releases, connecting ground through the upper inner contact of cam I to the sleeve lead making the selector busy until the switch returns to normal. The TK relay released, also closes a circuit from ground on its right armature through the lower outer contact of cam C, advancing the switch to position 14. Ground on the amature of the I relay advances the switch to position 15. The return to normal from this point on is as describod under "Discon neation".

MYLL TALS

15. Should the selector travel to the tell tale position during selection in positicns 2, 4, 6 or 11 a circuit is closed from ground on the X commutator brush and segment, lower inner contact of cam C, to battery through the R magnet, advancing the switch to position 7 or 12. The awitch advances from position 7 or 12 to position 15 as described under "Units Selection" and "Individual line or First line of a P. $B_{0} X_{0}$ Group not Busy". The return to nomal from position 15 takes place as described under "Disconnection".
(8 Pages) Page \#8: Issue 4 - BT-431225. Replacing ell previous isaues. March 17, 1921.

CIRCUIT REGUIREMENTS

OPERATE
 NON-OPERATE
 RELEASS

$\begin{aligned} & \text { E565 } \\ & \text { (TK) } \end{aligned}$	$\begin{aligned} & \text { Test . } 019 \mathrm{amp}_{2} \\ & \text { Readj. } 017 \mathrm{amp}_{.} \end{aligned}$	Test $.010 \mathrm{amp}_{\text {. }}$ Readj. . 011 amp.	
$\begin{aligned} & \text { T547 } \\ & \text { T } 2 \text {) } \\ & \text { uter Wdge } \\ & (400) \end{aligned}$	Test. 049 amp. Readj. . 046 amp.	Test .029 mp . Readj. .0z2 amp.	
$\begin{aligned} & \text { Inner wàg. } \\ & (900) \end{aligned}$	Test . 016 amp		
$\begin{aligned} & \text { E527 } \\ & \left(I_{1}\right) \\ & \text { Inner Wdge } \\ & (3000) \end{aligned}$	$\begin{aligned} & \text { Test } .0165 \mathrm{amp} \\ & \text { Readj. } .025 \mathrm{amp} \end{aligned}$	$\begin{array}{ll} \text { Teat } & .0095 \mathrm{amp}_{6} \\ \text { Readj. } & .010 \mathrm{amp}_{4} \end{array}$	
outer mag. (600)	Test . 042 mp .		
	$\begin{aligned} & \text { Test } .0268 \mathrm{amp} . \\ & \text { Readj. . } 0254 \mathrm{amp} \end{aligned}$	$\begin{aligned} & \text { Test .0205 smp. } \\ & \text { Readj. .0235 amp } \end{aligned}$	
$\begin{aligned} & 31283 \\ & (q: B) \end{aligned}$	Test Readj. .0065 $.00620 m p$.		Test Readj. ${ }^{\text {a }}$. 0009 gmp amp

