Wastarn Eloctric Co., Incorporated. Kngineesing Dept., New fork.
(2. Pagas) Pase 4. 4opondix 41 .
issue z - BT-431193. April 29, 1922.

MEIHOD OF OPERATION TRTINK CIRCUIS
Schenat.c -- For -- Through Wire Local Incoming From Full Mechanical Switching Syst ent.

The requiroments for the following relays have been changed to:-
OIRCUIT REQUIREMENS

MEOFANICAL REQUIREMEYTS
114-AK (a) The flutter spring shall be adjusted so it will ife approx($\mathrm{R}-1$) imately half way between the bacik contact and the armature. when the armature is in the operated position.
(b) There should be a clearance of $.034^{\prime \prime}$ between the back contact and the flutter spring, wien tho flutter spring is pressed flat against the armature and the armature is in the operated position.

BLECTRICAL REQUIREMENYS
OPERATE NON-OPFRATE * RELEASE

Special regivements to insure A.C. operation.
Test with Mesting Test with "Testing Circuit" in offices Circuit" in offices in which a tesing in which a testing circuit is furnished or by connectins 550 ohms $\pm 1 \%$ non - wavcoircuit is furnished or by connecting 1165 ohms $\pm 1 \%$ non-inductive resistance in series with the relay during ringing period. Ready. . 034 3mp. tive, resisianu' in series with tra rem lay during \because i. 抵i 18 period.
Readj. . 036 amp.
NOTE: \#l. The above "rest" resistances are hased on a ringing machine speed of approximately 1200 R.P.M. (20 cycles) and an A.C. voltage of 95 to 110 volts.

NOTE: \#2. If the relay fails to meet its test requirements, it shall be readjusted to its readjust requirements. If, after having been readjusted, the relay still fails to meet its test re-. quirements, its adjustment shall be modified until it coes meot the test requirements.

Western Electric co., Incorporated, Engineering Dept., New York.
> (7 pages) Page \#1. Isaue 2 - BT-431193. Replacing all previcus issues. April 29th, 1921

MERHOD OF OPBRATION

TRUNK CIPCUIT
Schematic - For - Three Wire Iocal Incoming From Full Mechanical - Full Mechanical Switching system.

GENERA L DESCRIPIIION.

1. This circuit is used as a three wire local incoming trunk from a full me chanical office. It is selected by a coin, non-coin or operator's district selector and connects to a local incoming selector.

DETA IIED DESCRIPTION.
2. When a hunting district selector connects to the tip, rine and sleeve terminals of this circuit, the fundemental circuit is closed, operating the I relay. Ground is also comnected to the sterminal, holding this selector busy to all other selectors. The fundamental circuit is traced from battery through the inner winding of the I relay, lower contacts of cam I, compensating resistance (T), lower contacts of cam Q, cut over the tip of the trunk, through the associated district and sender circuits, back over the ring, through the inner contacts of cam \mathbb{R}, compensating resistance $(\bar{\Omega})$, to ground through the lower contacts of cam J. The operation of the I relay closes a circuit from ground on its armature, cam C, to battery through the A magnet, advancing the switch to position 2. In position 2, the I relay locks through its inner winding, upper outer and the lower inner contacts of cam $P_{\text {g }}$ make contact of the I relay, upper outer and lower inner contacts of cam 1 , over the fundamental circuit, to eround on cam J, previously described. Ground through the inner contacts of cam K, is connected to lead S as a busy condition.

BRUSH AND GROUP SEIECTION.
3. With the switch in position 2 a circuit is closed from ground on the armature of the I relay, both lower contacts of cam C, to battery through the UP magnet, which operates, moving the selector upward for brush selection. As the selector moves upward, carrying the brushes over the commatator, ground is intermittently connected to the tip side of the fundamental circuit by means of the A commutator brush and secments, holding the L relay operuted but successively short circuiting and permitting the reoperation of the steppincerelsy in the associated sender circuit, until the proper brush has been selected. Then sufficient impulses have been sent back to setisfy the sender, the fundmental chrcuit is oponed by the operation of a relay in the sender circuit, relsasing the I rolay. The I relay releaged, opons the circuit through the UP magnet which stops the upward mavement of the selootor. The release of the I relay also closes a circuit from ground on its armsture, through the lower outer contact of cam B, to battery through the R magnet, advancing the switch to posm ition 3. As the switch passes through position $2 \mathrm{~m} 3 / 4$ a circuit is closed from ground through one winding of the $25-A$ repeating coil, outer contacts of cam N, to battery through the selector group register which operates. Through positions 3 and 4 of the switch a circuit is closed from ground through the upper inner and lower outer contacts of cam E, to buttery to the trip magnet which operates. In position 3 , the I rolay aguin operates and locks over the fundamental circuit, closing a circuit from ground on its armature, advencine the switch to position 40 In position 4, with the L relay operated the circuit through the UP magnet is again ciosed, moving the seloctor upwazd. for group selection. The trip magnet being operated, oauses the previously selectea set

(7. Pages) Page \#z。
Issue 2-BT-431193. Replacing all previous iasues April 29, 1921

Of brushes to trip as the selector starts upward. As the selector moves upward for group soloction, carrying the brushes over the commatar, ground is intermittently connected to the tip side of the fundamental circuit, this time by means of the B commtator brush and secment, through the lower contacts of cams H and Q, successiveIy short circuiting the stepping relay in the associated sender circuit, thus releas-
ing it and permitting its re-operation until the proper group has been selected. When sufficient impulses have been sent back to aatisfy the sender, the fundamental circuit is opened, roleasing the I relay. The release of the L relay opens the circuit through the UP magnet and advances the switch to position 5. In position 5, a circuit is closed from ground through the lower outer and upper inner contacts of cam D to battery through the outer winding of the I Rolay, which operates, advancing the switch to position 6.

TRUSK HUNTING.

4. Should the first trank in the selected group be busy, the i relay is held operated in a circuit from battery through its inner winding, upper outer and lower inner contacts of cam P, make contact of the I rolay, upper contacta of cam I, to ground on the sleeve of the busy trunk, from some other incoming selector, connects to that particular teminal. With the l relay held operated, due to this busy condition, a circuit is ologed from ground on the armature of the le relay. lower contacts of cam C to battery through the UP magnet which operates iand aausee the seletor to move upward until an 1dle trank is found. When an idie trunk is round, the circuit through the inner winding of the L relay is opened. but tho rolag does not release imendiately, as it is held operated through its outer winding to ground on the C commatator brush and segment. When the brushes are praperly contored, the cirouit through the commatator segment is opened. releasing the I tolay. The I relay released opens the circuit through the UP magnet, which steps the selector brush on the terminals of the selected trunk.
5. Note:- The adjustment of the C commatator brush, with relation to the tripped sleeve mult iple brush, is such that it down not break contact with the C commutar segment until slightly after the holding circuit through the inner winding of the I relay is opened by the sleeve brush leaving the busy terninals and making contact with the gleeve terminals of the idle trunk. The UP magnet, therefore, remains operated and the selector continues to travel upward until the brushes are carried slightly above the center of the trunk terminals, allowing the pawl to enter the notch on the rack attached to the brush support rod. At this time the holding circuit through the outer winding of the I relay is opened at the C domubator, releasing the relay. The L relay released, disconnects ground from tha C comutator feed bar (G) and releases the UP magnet, allowine the selector to drop into place, thus centering the brashes on the trunk terminels. During trunk humbing (fin pono ition 6 only) the commtator feed ground is supplied through cam a from ground on the armeture of and under control of the I relay. This is to provent the rewoperation of the I relay by the closing of a circuit between the 0 commator brush and segment on the overthrow of the selector, or as it drops into place.
6. The release of the i relay connects ground through the upper inner and lower outer contacts of cam K, break contact of the I relay, upper contacts of cam I, to the sleeve terminal of the selected trunk, as a busy oondition and advances the switch to position 7. In position 7 the I relay operates inva circuit from battery
(7 Pages) Page 3 . 3.
Issue z - BT-431193. Replacine all previous issues. April 29, 1921.
through its inner winding, inner contacts of cam G, to ground in the final circuit. The I relay operatea, locks through the upper outer and lower inner contacts of cam P, its make contact, to ground on cam I, and advances the switch to position 8 . Δs the switch enters position $7-3 / 4$, the holding circuit through the I inner winding of the relay is transferred from eround on cam I, to ground on the ring of the final selactor circuit. In position 8 the fundamental circuit is established for final selection. This circuit is traced from battery through the line relay in the associated final selector circuit, tip brush, inner contacts of cam H, compensuting resistance, lower contacts of cam Q, out over the tip side of the trunk, through the associated district and sender circuits, back over the ring side of the trunk, inner contacts of cam R, compensating resistance ($\overline{\mathrm{I}})$, to ground on carn J. after selection beyond has been completed, the associated final selector advances, removing ground from the R terminal and releasing the L relay. which advances the switch to position 9. The L relay re-operates in position 9 over the ring aide of the fundamental circuit. This circuit is traced from bittary through ine inner wanding of the I relay, upper outer and lower inner contacts of cam J, compenecting resistance, imner contacts of cam R, out over the ring of the fundumental circuit, through the associated district selector and sender circuit, back over the tip side of the fundamental circuit, lower contacts of cam Q, compensatine resistance, to eround through both lower contacts of cam D. The I relay operated advances the switch to position 10. As the switch leaves position 9 the I relay releases; The I relay rem operates with the switch in position 10, upon trunk closure in the associated district selector. The circuit is traced from battery through the inner winding of the L relay, lower contacts of cam I, compensating resistance (T), lower contacts of cam Q. out over the tip of the circuit through the repeatine coil and polarized relay in the associated district circuit, back over the ring side of the circuit, to ground through both lower contacts of cam K . The I relay operated in position 10, locks through its outer windine, lower contacts of cam P, make contact of the I relay, upper outer and lower inner contacts of cam K, to ground on the sleeve of the associated district selector. The I relay operated, closes a circuit through the R-2 relay which operates. This circuit is traced from ground on the armature of the I relay, lower inner and upper outer contacts of cam F, winding of the R-2 relay, break contact of the RI relay, compensatine resistance (R), to battery through the inner contacts of cam J. The operation of the R-2 relay advances the switch to position 11. in a circuit from eround on its armature, upper outer contacts of cam B to battery through the R magnet, the a cam advancing the switch to position 13.

RINGING - FOUG ParTY IINES - X WIRING.
7. With the switch in position 13 , one ring ringine current is connected to the line through the inner contacts of cam M, windine of the Rl relay, make contact of the Ria relay, upper inner and lower outer contacts of cam G, R brush, through the associated pinal selector, to ground through the ringer at the sub-station, connected to that particular siae of the line. Tvo ring rineing current is applied to the ring of the line with the switch in position 15. In this case the R2 relay is short circuited and released by ground on the P commutator as the switch passes through position 11 to 14. As the switch enters position 13 , ground through the P commatator brush and segment is closed through cam 0 to the R magnet, advancing the switch to position 14. With the switch in position 14, a circuit is closed from ground through the pick-up intermpter, inner contacts of cam N, break contact of the R2 relay.
upper contacts of cam F, winding of the R2 relay, break contact of the Rl relay, compensating resistance, to battery through the inner contacts of ean J o re-operating the R2 relay. The operation of the Kit relay cidvances the switch to position 15 in the circuit from ground on its amature, cam B to bittery through the magnet. Two ring ringing current is connected to the line through the lower contacts of cam M, winding of the RI relay, make contact of the R2 relay, upper outer and lower inner contects of oum G, R brush, through the associated finsl selegtor to ground through the ringer at the sub-station comnected to that aide of the line.
8. NOME: $\mathrm{L} l \mathrm{ll}$ party lines are arranges on a terminal per station basis, each station heving a sepurate number in the fincl maltiple bunks. The station number or party lines ure assigned in the final multiple so that all lines in one group Will require the same polarity of ringing current, and the lines in the next group will require ringing current of the opposite polarity. The switch has two ringing positions, namely 13 and 15. In position 13, one ring ringing current is connected to the ring brush of the selector, and in position 15 , two ring ringing current is connected to the ring brush. The switch stops in position 13 when the selector is on a finul trunk, so located that the circuit through the P commatator is opened. but it advances to position 15. When the selector is on a trunk so located that the circuit to the P commatator is closed. Stations requiring one ring ringing current are assigned numbers in the final frame that can be reached through the find selectors terminating in either first or third groups on the incoming frame. Stations requiring two ring ringing current are assigned numbers which are selected through final trunks, terminating in either the second or fourth groups of the incoming frame. The ringing of the stations on the tip side of the line is cared for by a cross connection and reversing scheme at the distributing frames.
dIREGT AND TWO PARTY RINGING:
9. When this cirouit is used with two party lines, \mathbf{Y} wiring is specified. One ring ringing current is connected to the line with the switch in position 13. The station numbers on two party lines are assigned in the fuse nultiple so that they ure reached over finel trunks so locuted that the circuit through the P commatator brush and sogment doss not close when the number is selected. Ringing takes place in a muner similar to that deacribed for four purty ringine, in position 13. Direct lines ure ussigned numbers in the final frume in the same banks with one ring parties. When the final selector associated with this circuit connects to a direct line and the switch reaches position 13, the called station is rung over the following circuit:m One ring ringing current is connected through both inner contacts of cam M, wind ing of the RI relay, mike contact of the K 2 relay , upper outer and lower inner contacts of cam G, R brush, through the associated final selector, and line loop back over the tip side of the circuit, t brush, lower outer und upper inner contacts of cam F, to ground through the make contact of the Ria relay.
10. During the operation of ringing a smill amount of ringing current is shunted through the $.02 \mathrm{M} . \mathcal{I}^{\text {. Condenser and one winding of the repeating coil to ground, thus }}$ transmitting a tone to the culling party us an audible indication that the ringing current is comnected to the called line.

SUBSCRIBER ANSUERS.

11. Then the receiver is removed from the switchhook et the called station, in position 13,14 or 15 the RI tripping relay operates, releasing the E 2 relay. The rem

> (7 Pages) Yage it5. Issue $2-$ BT- 451193. Replacine cill previous issues. april 29, 1921.
allowing the CS relay to operate. The operation of the CS relay connects ground to the tip side of the incoming trunk, while bettery is connected to the ring side through cum I thus reversing the direction of the current over the tip and ring of the incoming trunk, which operutes a polarized relay in the district selector circuit, causing the district selector to function.

DISCONNECTION:
12. Then the receiver at the called station is replaced on the switchiook, the CS relay releases, removing ground from the tip of the incomine trunk circuit, allowing the district selector circuit to function. "Fhen the district selector returns to normal it opens the holding circuit through the sleove terminal releasing the I relay, Fith the I relay released, the circuit is held busy from ground through both lower conticts of cum I, until the switch leaves position 18. The I relay released, closes a circuit from ground on its armature, cam B, to battery through the R magnet, advancing the switch to position 18. In position 18 the DONN magnet operates to ground through the upper contucts of cum E, returning the selector to normal. When the selector reciches normal a circuit is closed from ground through the Y commatar brush and segment, upper imner contact of cam B, to buttery throueh the R magnet, advancing the switch to normal.

OVERFLG:I:
13. Should all the trunks of a group be busy, the selector while hunting, in position 6 . udvances to the top of the group and rests on the overflow terminels. As the S terminal is open at overflow, the holding circuit through the L relay is opened, releasing the relay. The release of the L relay advances the switch to position 7. In pasition 7 a circuit is closed from ground on the Z commutator brush and segment, lower inner contact of cam B, to battery through the f magnet, advancing the switch to position 9. Jith the switch in position 9, battery through the inner winding of the I relay is connected to the ring of the trunk, thus the direction of the current connected through the fundemential circuit is reversed, causing the associated sender circuit to function. The operation of the I relay advances the switch to position 10. When the switch leaves position 9, the I relay releases, and re-operates in position 10, over the fundamental circuit. The I relay operated locks through its outer winding, lower contacts of cam P, make contact of the I relay, uppor outer and lower inner contacts of cam K to ground on the sleove of the associated district selectore The I relay operated in position 10, cioses a circuit through the R2 reley which operates, and advances the switch to position 11, the a cam edvancing the switch to position 13. As the switch pusses through position 11 , the holding circuit through the I relay is transferred from its outer to its inner winding. This ciruit is traced from battery through the inmer winding of the relaỹ upper outer ind lower inner contacts of cam P, make contact of the I relay, upper outer and lower inner contacte of cam $\mathrm{K}_{\text {, }}$ to ground on the sleave of the associated district acioctor circuit. After the associated district selector has runctioned, the holding cirouit through the I relay is opened, releasing the relay. The release of the I relay adyances the switch to position 28. In position 18, the DOIN megnet operates restoring the selector to normal. When the selector reaches normil, ground on the Y comatator brush and segment advances the switch to normal.
14. Should the selector $g \circ$ to tell tale during selection in position 2 , ground on the X commitator brush and segment advances the switch to position E. In posmuon 3 , the I relay operstes in a circuit from bittery through its inner winding: through the associuted district selector and sender circuits, to ground through bath lower contsacts of cam J. The I relcy operuted advinces the switch to position 4 . In position 4, ground on the X comutator brush and segment adrances the switch to position 5. The L relay operites in position 5 through its outer winding, to ground on c:m D, udvincing the switch to position 6. Then the switch leuves position $5-1 / 4$, the holding circuit through the I reluy is opened, relousine the relay, In position 6 ground on the X commatar brush and serment advances the switch to position 7, where it remains until it is restored to normal manually.

> (7 Pages) Pase 范. Issue $2-\mathrm{BT}-4 \overline{3} 1193$. Replacing all previous issues. April 29 th, 192l

CIRCUIT REQUIRWMENTS

214-2 21
($\mathrm{i}-1$)

B1

Test . 021 amp. Neadj. . 015 amp.

Test. 0037 smp. Feadj. . 005 mp.

Spl. E80 Test. 026 amp. D22155 (R2)Readj. . 024 amp.

E526 (I) Test . 0168 cmp.
Inner Wde. Readj. . 016 amp. (1000 Ohms)

Cuter Wdg. Test . 043 amp . (2000 0hms)

NOTE: - The E526 relcy to be equipped with special armature stop (piece part 163914.)

ENG.--TML-JO
CHK'D.--RAP-CWP.
APPROVED
C.J. SIUYTER; G.M.I.

