<table>
<thead>
<tr>
<th>Relay</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>General</td>
<td>Control</td>
</tr>
<tr>
<td>B</td>
<td>Input</td>
<td>Monitoring</td>
</tr>
<tr>
<td>C</td>
<td>Output</td>
<td>Actuation</td>
</tr>
</tbody>
</table>

APP FIG.1

CHEMICALS

- **LAMPS**
 - CRT, LED, etc.
- **KEYWORDS**
 - Circuit, System, Design

ELECTRIC TUBE

- **DEVICES**
 - Transistors, Diodes, Resistors
- **LOCATIONS**
 - Board, Module, Enclosure

INCOMING REGISTER CIRCUIT

- **REVERTIBLE PULSING**

BELL TELEPHONE LABORATORIES, INC.
Information Notes:
36. Use of trunk class relays in connection with various wad group arrangements of numbers.

(a) Single office wad group with physical numbers only.

(b) Discernment between physical and theoretical numbers.

(c) Identification between office A and office B by individual trunk group.

(d) Identification between office A and office B by low and high incoming group selection.

(e) Multi-office wad group with physical numbers only in office A and physical numbers only in office B.
(A) IDENTIFICATION BETWEEN OFFICE A AND OFFICE B
BY INDIVIDUAL TRUNK GRPS AND NO DISCRIMINATION BETWEEN PHYSICAL AND THEORETICAL NUMBERS.

(B) IDENTIFICATION BETWEEN OFFICE A AND OFFICE B
BY INDIVIDUAL TRUNK GRPS AND DISCRIMINATION BETWEEN PHYSICAL AND THEORETICAL NUMBERS
BY INDIVIDUAL TRUNK GRPS.

(C) IDENTIFICATION BETWEEN OFFICE A AND OFFICE B
BY INDIVIDUAL TRUNK GRPS AND NO DISCRIMINATION BETWEEN PHYSICAL AND THEORETICAL NUMBERS.

(D) IDENTIFICATION BETWEEN OFFICE A AND OFFICE B
BY LOW AND HIGH GRP SELECTION AND NO DISCRIMINATION BETWEEN PHYSICAL AND THEORETICAL NUMBERS,
BY SEPARATE TRUNK GRPS.
Circuit Requirements

Table 1: Component List

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1</td>
<td>10μF, 50V</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>1N4007</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>1kΩ, 1/8W</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>2N3904</td>
</tr>
</tbody>
</table>

Table 2: Test Procedure

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Measure voltage at pins 1 and 2 of IC1</td>
</tr>
<tr>
<td>T2</td>
<td>Measure voltage at pins 3 and 4 of IC1</td>
</tr>
</tbody>
</table>

Test Notes:
- **T1:** Remove the resistor R1 by blocking the output of the IC1. The output will be low. Perform a visual inspection of the IC1. Replace if necessary.
- **T2:** Measure the output voltage of IC1. Compare it with the expected value. Adjust the circuit if necessary.
- **T3:** Measure the input voltage of IC1. Ensure it is within the specified range. Adjust if necessary.

Figure 1: Circuit Diagram

- The circuit diagram shows the connections of the components as described in the previous tables.
- The diagram includes a schematic representation of the electronic circuit, showing the flow of current and the connection points.
- The diagram is labeled with component numbers for easy identification.

Notes:
- This document is part of the SD-26043-01-F1 series, indicating it is a part of a larger set of technical specifications.
- The document is part of INCOMING RECORDS, REVIVE PULSING, and is associated with BELL TELEPHONE LABORATORIES, INC.

Page 2:

- Contains similar information as Page 1, with additional tables and diagrams.
- The page is labeled as PAGE 2 of the document.
Circuit Requirements

Pulsing Requirements for 4 & 6 STP Relays

<table>
<thead>
<tr>
<th>Maximum Loop Condition</th>
<th>Minimum Loop Condition</th>
</tr>
</thead>
</table>

Timing Requirements

<table>
<thead>
<tr>
<th>Test Notes</th>
</tr>
</thead>
</table>