
.-

BEI.LSYSTEM PRACTICES
AT&TCa SPCS

SECTION 254-280-040
Issue 4, February 1983

f-
DIAGNOSTIC LANGUAGE — DL-1

SOFTWARE DESCRIPTION

1A PROCESSOR

CONTENTS PAGE

1. GENERAL. .
*

A. Introduction .

* B. Purpose of Diagnostic Language—DL-l .
.

,-, 2. BASIC STRUCTUREOF DL-1 .

3. STATEMENT FORMAT .

A.

B.

c.

D.

Maior Subfields of DL-1 Statement .

Variable Subfield Content .

Register Usage .

Formatting Macros .

4. DETAILEDEXPI.ANATION OF EACH DL-l STATEMENT .

d.

A. Introduction, .

Classes of DL-1 Statements . , ,

Format for the Explanation of each DL-1 Statement , , , ,

B. Statement for Internal Manipulation of Data .

ARITH . e.

DLICOUAPSE . , .

DLIDELETE. .

C. Statements forcantrol and Decision .

DELAYIOW. .

DLIETERM .

DLIMTSKIP .

DLISKPTST .

DLITFZAP .

DTDEST . ,

NOTICE

Notforuseordisclosureoutsidethe
BellSystemexceptunderwrittenagreement

13

13

14

14

17

17

17

1
m

18

18

18

18

19

19

19

22

23

23

23

24

24

25

25

26

PrintedinU.S.A. Page 1

SECTION 254-280-040

CONTENTS PAGE

D.

E

E.

DTJUMP. .

PHASEEND . ,

PHASEINIT. , ,

SEGEND. , . , .

SEGINIT .

Statements to Define and Call Subroutines . , .

DLISUB .

SUBCAU, . ,

SUBRTN. , ,

Statements for Testing . !

ADSPUL5E. , . ,

ADSREAD. ,

ADSWRITE. , .

AP3BMSG . , . . .

AUBRQ .

AUGCPCLR .

AUKCRDCC . , . , . . .

AUKCWRCC . , , , .

AUMREAD . , , ,

AUMWRITE . ,

AUPULSE. , . ,

AURPLY .

AUSTADD .

AU_XOVER . , . ,

BUSACT. $. ,

Page 2

26

27

27

28

29

29

29

30

31

31

31

32

34

35

35

36

37

37

38

39

39

40

41

41

42

-’l

‘-)

*

--

1SS4, SECTION 254-280-040

CONTENTS PAGE
,P

7’

CCAAS.ST .

CCARR_ST. , , . . . , . . . , , . . , , ,

CCATOTST. , . , , . ,

CCAUBRQ .

CCAUINIT , , . , , . ,. , , . , , , .

CCAURSTR , , , , , . , , ,

CCAUSTAT . . , . , . . . , , ,.

CCBITEST. , , , . , ,

CCBR-ST , , , . ..O , , . . #. . , . ,O

CCCLR , , , #. , . , , , , . . .

CCDAR_ST. , , , , , ,

CCGATE. . #, . . . , . . . , . , , . , , . . . , . . ,0

CCGCPTST. , , , , , , , , . . , , . , , , ,

CCINT_ST . , , , , , ,

CCISOL. , . . . , , , . , , . .

CCMCP3P , , . , , . . . , , ,. ,

CCMUTIME , . , , , . . .

CCPAR-ST . #. , , . . , #. ,

CCPCCNPG , . . , . , . . , , , . . #. ,. , , .

CCPCINIT. , , , . , , , . . , , . , . .

CCPCNOTR $. , . #. , ,

CCPCTRIG . , , . . , . . . , , , , , . .

CCPCTST1 . , . . . ,.

CCPHAPHB . , . . #, , , . .

CCPHBPHA , . , , , , . . . , . . , , . .0 . . ,

42

43

44

45

45

46

46

47

48

51

52

52

53

54

55

55

56

57

58

58

59

60

61

61

SECTION 254-280-040

CONTENTS PAGE

CCPHBPHB , . , . .
.

CCPHBPHC , . , , . , .

CCPHCPHB . , , .

CCPULSE. , . , . , .

CCRDZ , , . ,

CCREAD., , . , . , . , , , .

CCREC. .

CCRISTEP. , .,

CCRUN , , , , ,

CCRWBR . , . , .

CCSC_ST . , , . . . ,

CCSTANTI . , , ,

CCST_ABL. .

CCST_AUW $. ,

CCST_BR. , , . . , . , . . .

Ccswcc . #. .

CCTRAN ~. , . , .

CCWALK . , .

CCWRITE . , . . . , ,

CCXAUSYC $. , , . . .

CCXGCP .

CCXNSYNC . , , ,

CHGICC .

CHKSRDUC @. ,

CKEANTI , . #. , .

CLKINH . ,, . . ,. . . .

CLRTUCTF. , , ,

Page 4

62

62

63

63

64

67

67

69

70

71

71

72

73

74

74

75

76

77

78

78
T

79 >

80
-.

-.

%.

‘n

80

81

82

82

83

f-’

1SS4, SECTION 254-280-040

CONTENTS PAGE

DCREAD. .

DCWRITE , , , , . , ,

DGSCRTP. . . , , . ., , . . . , , , , , . . .

DKCODE , , , , , . . . , , . , , , ,

DLRCLSBY. , . , , , , . , .

DI.RRUN. , , , , , , . . . , . . . , , ,

DLRSTAT , . , . , . ,. , .

DLIPWRMON . , . , , .

DMSECR. , . , . , . ,

DMSKW . . , . . . , , , . , , , , . . . , ,

DNREAD , . , . . , #. , , . . , , , ,

DNWRITE , , , , . , . . . , . . . , , , , . . .

DREU . , . . . , , , . . . , , , . ,

DSKCLKCK. , . , , , . ,

DTOGGIE . #. , ,

DUADRDFL. ,. , . , , . . . , , ,

DUCCHK . , , , . , , , . , . , , . , ,

DUSMREAD . , . , , , , . . , .

DUSMWRITE , . . . #. , , . , .

DUSOARIN , . , , , , . . , , . , , , . . , , . . , ,

DUSOAROT . , . , , . ,4 . . ,

DWNAME , , , , . , , , , , ,

EDINIT , , . , , , , , . . ,

EQUIPCHK. , , . . , , . . , , . . .

EXECUTE. , , . . . , . , , , . , . . , , . .

INREAD . , . . , , , , . , ,. . .

INWRITE , , . , , . , . . , . .

IOCONFIG . ,

83

84

89 .

85

86

86

87

88

88

89

90

91

91

92

93

93

94

94

95

95

96

97

97

98

99

100

100

101

—

SECTION 254-280-040

CONTENTS PAGE

IOCONIOUS .

IOMACON . 0. .

IOPOU , $. e. . . . , , . , . ,

IOPUCON .

IOPULSE, .

IOREAD , , , , . , .

IOREQRD . , . , , .

IOWRITE .

12MAPTST .

12MEMR. , , , . ,

12MEMW . , , , , . .

12PCLOOP. .. s. .s o.o

12MPTST .. 0. .$$

12PCPMP , .

12POU . , e. , ,

IMPULSE. .

12RDADJ! .

12READ .

12TESTMP . , , , .

12WRITE. , , .

LCKCODE, , . . , . , . ,

LDSAR , , , , , ,

MBREGTST , , , , .

MCCAMV . , . , , . . , ,

MCCBARTST . ,

MCCBITW . ,

MCCBITWK , , , , .

MCCINTCON .

Page 6

. .

101

102

103

103

104

104

105

106

107

107

108

109

109

110

110

111

112

112

113

114

116

116

117

117

118

119

120

120

‘-l

‘--%,

..

-,

-%,

‘n

P

1SS4, SECTION 254-280-040

CONTENTS PAGE

(-

v

f---

r=
.

MCCKEYSET .

MCCKEYTEST . . , , , . , , , . . , ,

MCCONFIG . #. $. , . 0, ,

MCCPULSE. , . , , , , .

MCCREAD . . . , . , . , . . , . , . 0, , . . ,

MCCTOG .

MCCTUCSR ! , , , . . , , , , ,

MCCWRITE , , , , . . . , , ,

MCSDPTC 0. , , , , .

MEMCHECK. 0. , , , , . , ,

MEMLOAD ,, . . . , , . , 0. . , , 0. 0, , . . 0. . . .

MPRDXRUN , . , .

MP, MP7, andMP8 , , . . , . . , , , , , . . , . . , , ,

MPXHEAD . , . , . . , . . , , ,

PCCWRITE. , , . , . , . 0.

PDQWRITE. , . , . . , , , , . . .

PPCSTRT , , . . , .

PPIMAPO , , . , , . . . , . . . , 0.

PPIMAP1 .“.. #.

PPIMAP2 . . . , . , , 0, 0. , . . . 0. ,

PSWITCHC. 0m. . . , . 4. 0. ,

PUBCNFIG , , . . , . 0. , #,

P1P2TEST , . , , . . . , 0. .

RDACTDSK . , . ., . . . , , . . , , . , , ,

RDand RD6 . . . , . , . . . e. , , . . . ,. . 0. , 0. . . , r , , ,

RDXHEAD, .

RDZREG. , , , , #. , , , . . . , . . .

RDPPI. , . ! , ,

121

122

123

124

125

126

127

127

128

129

129

130

130

131

132

132

133

134

134

135

136

137

137

13a

139

139

140

140

Page 7

SKTION 254-280-040

CONTENTS PAGE

REGTEST. .

RESMTST. , .

RSTICC. .

SAPADDR .

SBYPULSE. , . ,

SCANMCCROW24 .

SRTAPTST. , ,

STAREAD. .

STAREAD3. ,

STAWRITE’ .

STAWRIT3 . , ,.

ST3ERRAN. , , , ,

STBUSACT. .

STBUSACT3. , .

STCREAD.. , , ,. . , . . .

STCREAD3.. .

STCTRTSTO. ,

STCTST03 .

STCWRITE . ,

STDRTEST. .

STDRTST3 .

STEXER .

STEXER2 .

STEXER3 .

STLKBUS2. .

STLKBUS3. .

STLKYBUS. ..O..

STLREAD. .

STLREAD3. .

141

141

142
T,

143

v
143

144

144

145

147

149

150

151

152

152

153

154

154

155

156

156

158

160

161

161

162

164

166

168

169

Page 8

1SS4, SECTION 254-280-040

CONTENTS PAGE

*

f’-’

STMARCH3 .

STMCCRD , , . , .

STMCCRD2 .

STMCCRD3 .

STMHWPM3 .

STMREAD , .

STMWAI.K . , .

STMWRITE. .

STPCLKA .

STRCLKA. ., .

STRCLKB. .

STRCSYNC. , .

STRDGCP. .

STRDGCP2. .

STRDGCP3. .

ST;DUPDN .

STRD512 .

STREAD . , , .

STRUPDN2. .

STSLAVE .

STSI.AVE2 .

STSLAVE3 .

STSLWRD2. .

STSNAP .

STSTATUS .

STSTATUS3 .

STRAP. .

STVERMEM .

170

170

171

171

172

173

174

174

175

175

176

176

177

178

179

181

181

182

183

183

184

185

186

186

187

188

189

190

Page 9

SECTION 254-280-040

CONTENTS PAGE

STVRMEMS .

STVRMEM2 ..OO.

STWRGCP . . , , , . . . ,. . . . , , , . , ,

STWRGCP2 , 0. , , . , , ,

~RGCP3 , , , , , , , , , . . , ,

STWRITE , , , , , , . , ,

STWRMEMS. , . , , , . , , ,

STWRMEM2 , , , , , , , , . , .

STWRMEM3 , , , , , , . , , . . , , . . , , ,

STWRNAM2 . . . , . . , , , , , . , , .

STWRNAM3 . . , . . . , , . , , . , , , . .

STWRSTAT. , , .

STWRTMEM. , , , , . ,

STWRTNAM . . , 0. , , , 0. , . , ,

STWRTRTF
.

. , , . . , , , . . , . . . , , ,

STWRUPDN , , , , , . . . , . . . , , , ,

STWRWPM3 , . , . . , , , .

STWR512 , , , , . , , . . , , . , , , .

STWSLOW3 , , , , . 0 e . e . . , , . , , . , . . , # . , ,

STWSTAT2. , , , , . , , , , , $. , . . . , , e.

STWSTAT3. , , , 0, , . . . , .

STWTKBR3 . , #. , , , , . . , .

STWTRTF2. , , , ,4 . . , . . . , . , ,

STWTRTF3. , , #. ,

STWUPDN2 . , , , . , , . , , .

STWUPDN3 . . 0, 0, . . . , . , , , . , ,

ST2EXTST . , . . . , . . , , , . . . , , , , , , . , 0. , 0, , 0. . . . , , ,

ST2RD512 , , , , , , , , . , , , , , . , , , . ,

190

191

192

193

194

196

196

197

198

198

199

200

201

201

202

*

‘-l

203

203

204

204

-’)

.

209

210

210

211
‘m

.

,P

.

.

1SS4, SECTION 254-280-040

CONTENTS PAGE

ST2STCC .

ST2VRTST*. .

ST2WRTST. , , , . , . . .

ST2WR512 , , . , , ,,

ST2WVTST. ,

ST3EXTST . , . . , ,O

ST3MRH2K . , . , , . . .

ST3PATAN , , , , . . , . , . . ,

ST3STCC . , , ,

ST3VRTST , , , .

ST3WRTST. .

ST3WR2K . . . ,, . . , #. , ,

ST3WVTST. , , . , , . . ., , ,

SYNCDET. , , , . , . , . ,

TAPERETN. ,

T6LDELY. , . , , , . , . , , , . ,

TESTDMA. , , , . , . . . , , . . ,

TPMOTCHK . , , .

TUCARIN , , . , , . , , , , . .

TUCAROUT #. , , , , .

TUCMREAD . ,

TUCMWRITE . , . . . , ,. ,

TUCMICHK . , ,. , . , ,

TUCOICHK . . . , , , . , . , ,

VLDWRTPT , . , . . , . #. . . . ,

212

214

214

215

216

216

218

218

220

221

222

222

223

223

224

225

225

226

227

227

228

229

229

230

231

XCR . , . , . . . , ,0 , , , , . . .231

XREAD. . , #, . , . , . , , , , . , . ,232

Page 11

SECTION 254-280-040

CONTENTS PAGE

5.

6.

7.

8.

STATEMENT INDEX—ALPHABETICAL LISTNG OF STATEMENTS FOR TESTNG BY EQUIPMENT TYPE

REFERENCES. .

GLOSSARY. ,..OO

ABBREVIATIONS AND ACRONYMS .

Figures

1.

2.

3.

4.

5.

Table

A.

Example Data Table Expansion asit appearson a Program listing .

Table-Driven Diagnostic Test Structure .

Options Used by the 256K 5emieonductor Store. .

Description of the DGN and EX Input Messages. .

Example of Histogram Printout .

Options for the ML and MS Instructions. .

233

239

239

243

15

16

147

217

219

33

.

-,

‘-)

1SS4, SECTION 254-280-040

“KR The DL-1 statements described in this section are current with the CPR7 generic issue
of the 1A Processor diagnostic programs.

f-’ ,. GENERAL

A. Introduction
.

1.01 This section describes the Diagnostic Language (DL-1) and provides the following

* (a) Description of the basic structure of DL-1

(b) Description of statement format and definition of terms

(c) Detailed explanation of each DL-1 statement.

1.02 This section is reissued to

(a) Add a description of the AP3BMSG statement

(b) Add a description of the EQUIPCHK statement

(c) Add a description of the 12MEMR statement

7’

.

(d) Add a description of the 12MEMW statement

(e) Add a description of the 12PCLOOP statement

(f) Add a description of the LCKCODE statement

(g) Add a description of the LDSAR statement

(h) Add a description of the MPXHEAD statement

(i) Add a description of the RDXHEAD statement

(j) Add a description of the RDZREG statement

(k) Add a description of the SAPADDR statement

(1) Add a description of the TBLDELY statement

(m) Add a description of the TESTDMA statement

(n) Make minor changes as required for the CPR7 generic program. Revision arrows are used to
emphasize the more significant changes.

1.03 Part 8 provides a list of abbreviations and acronyms with applicable terms used in this section.

Page 13

B. Purpose of Diagnostic Language—DL- 1

1.04 The DL-1 is a macro language that consists of many individual statements. When these DL-1 state-
ments are assembled, the results are data table-driven diagnostic programs that direct diagnostic tests

to be run on 1A Processor equipment.

2. BASIC STRUCTUREOF DL-1

2.01 The diagnostic programs run on the 1A Processor are, in general, based on repetitive execution of
simple tests involving .

(a) Setting a location to a known value
.

(b) Reading the value of a location

(c) Comparing the read results with an expected value.

2.02 Most programs repeat the same type of test hundreds of times in diagnosis of a particular unit. The
program instructions required to perform each differ only in the location address and the data to be

read or written. Instead of repeating these instructions for each and every test, the unique portion of each, ie,
addresses, data and expected results, are compiled in tables referred to as data tables. Only one set of instruc-
tions, called a task routine, is then provided in the program to execute all these types of tests.

2.03 The DL-1 macro language is used to generate these data tables. A DL-1 macro is a high-level statement
which is expanded by the assembly program into a predefine data table format. In general, each DL-1

statement has an associated test routine. An example of a DL-1 statement and the data table which it produces
is given in Fig. 1.

al
2.04 Figure 1 illustrates the IOREAD macro statement and its data table expansion as it appears in a

program listing. In this example of the macro statement,

IOREAD OPER(LOOPDATA), DATA(O(26565113),MASK(lDG_ONES),EXPECT(O(26565ll3)),MTCPU

LOOPDATA represents a Datapool-defined operation code which will write the data (0(265655113)) and then
read back the expected data (0(26565113)) through a mask of all ones (lDG_ONES). A complete description of
the IOREAD statement is given in this section and is not repeated here. An explanation of each line of data is
given in Fig. 1.

2.05 In the example of Fig. 1, the first word in the data table contains an index (octal 32) in the rightmost six
bits (binary). This index is used by a control program to locate the IOREAD task routine responsible for

executing the tests as given in the data table. This procedure is illustrated and explained in Fig. 2.
-,

2.06 A description of diagnostic programs is given in Section 254-280-220, Diagnostic Programs–Descrip-
tion, 1A Processor. .

2.07 There are two major classes of DL-1 statements:

(a) General purpose statements are independent of the unit being tested and include the following -
classes of statements

(1) Internal data manipulation
n ‘,

Page 14

—

RELATIVEADDRESS
PROGRAMSTRIPNAME

~~;EF::;;;:::BER ~
187. 07 #- -------------------------- ..- . ------------ -----
188. 08 # TESTTHEPARITY FORTHEPURBUS ANSWERTOCC BYSENDING
189. 09 # TESTVECTORSTHAT WILLCOMPLETELYTESTTHEPARITY CIRCUIT.
190. 10 # TESTVECTOR3.

/,/
191. 11 #- -------------------------- . . . -- ----------------------- .

‘AcRO%
STATEMENT

hOO027A~
\

193. 13 IOREADbPER(LOOPDATA),DATA(O(26565ll3),MASK(lDG_ONES),EXPECT(O(26565ll3)),MTCPU

-002- 15 #...... .ACCESS: READ,OPERATIONCODE= 161,DATA =26565113,MASK =77777777,E
XPECT= 26565113

FOR

)

-003- 17 #**
PROGRAMMER -003- 18 #*
USE ONLY

\

-003- 19 #TEST 4
-003- 20 #*
-003- 21 #**

OOO027AB ‘424300N 60704032 -002- 22 DATA 1=1,1=1,1=0,3 =lDG_UNUSED,7 ‘lDGLOOPDATA ‘5=
lDG_UNUSED,6 =lDGIOREAD

000030AB 424300 26565113 -002- 24 DATA 24=0(26565113)
OOO031AB 424300 77777777 -002- 25 DATA 24=lDG_ONES
OOO032AB 424300 ,26565113, -002- 26 DATA 24=0(26565113)

+ ENCODED PROGRAM INSTRUCTION

Notes:

1.

2.

3.

4.

5.

6.

7.

Pageline numbers 07throughll are comments that describe the followingprogram statement.

Pageline number 13 isthestatiment which produces thedatatable. The actual data table expansion is shown on page line numbers
22 through 26. (These lines begin with the word DATA.)

Pageline numbers 15 through 21 are comments showing the assignedtest number.

Pageline number 22isthe first word of the data table. Itisthe index word. The first bit(Bit23) is al. Thesecond bit(Bit22)is
al. The third bit (Bit 21)isa0. The next 3 bits (Bits 20—18)me unused. The next 7 bits (Bits 17—11)are the operation
(lDGLOOPDATA). The next 5 bits (Bits 10-6) are unused. The last 6 bits (Bits 5-O) are the index (lDGIOREAD).

Pageline number 24 is the second word of the data table. For this example, it is 24 bits (Bits 23-O) of data.

Pageline number 25 is the third word of the data table. For this example, it is the mask. It is 24 bits (Bit 23-O) of all 1s.

Pageline number 26 is the fourth and last word of the data table. For this example, it is the expected result. It is 24 bits (Bits 23-O)
of expected results.

Pig. 1—Example Data Table Expansion aS it appears on a Program listing

TEST RESULTS
+ TO 01 AGMJSE

CONTROL

IOM CONTROL PROGRAM

0)0650
●

●

●

●

●

●

C&62

TASK OI SPENSER

TASK OISPENSER TRANSFER TASLE
T TASK 1
T TASK 2
●

●

●

●

●

T IDREAO

IOREAO TPSK ROUT I P&

●

●

●

) UPON COMPLETION OF TIE TEST, THE
IOREAO RWT I NE PASSES THE RESULTS
TO THE NA I N CONIROL PROGRAN, ANO
THEN TRANSFERS TO IODG CONTROL
WHICH READS TWE tHT OATA TABLE
INDEX WCRO ANO CONTINUES TESTING

oI CONTROL PROGRAM (IODG 00) DATA TAELE (FFKM FIG. 1)
REAOS I NCEX FRC+I OATA TABLE

I
1

.

~ IODG CONTROL AOOS THIS
INDEX TO STARTING ADLHKS.S
OF VECTOR TABLE TO LOCATE
AODRESS OF TASK RDIJ I NE

328 INLEX

630. START OF TABLE

6628 THIS AOCRESS CONTAINS A
TRANSFER INSTRUCTION TO
TtE IDREADTASK ROUTINE

IODG CONTROL THEN TRANSFERS TO
THE TASK RWT I NE

o3 BY REFERENCE TO THE
OATA TABLE, THE IOREAO TASK
ROUT I NE DETER14I NES THE
OPERATION (MITE ANO/OR REAO),
AOORESS, OATA TO BE WRITTEN,
RESULTS EXPECTEO, ETC, ANO
PERFORI!S THE TEST

Pig. 2—Table-Driven Diagnostic Test Structure

I I OATA

I INDEX

OATA

DATA

●

●

●

9

●

C- INCEX

(2) Control and decision

(3) Defining and calling subroutines.

(b) Testing statements specify the diagnostic test sequence to be applied to 1A Processor units.

3. STATEMENT FORMAT

A. Maior Subfields of DL-1 Statement

3.01 A typical DL-1 statement contains four major subfields

● Location field

● Operation field

● Variable (or operand) field

● Comment field.

Page 16

.

.

-. —

1SS4, SECTION 254-280-040

P
3.02 The location field may contain a symbol to be referenced by other DL-1 statement~ the symbol in the

location field is also called a label. The operation field contains the name of the statement to be
executed. The variable (or operand) field normally contains parameters and variables related to the operation.
The comment field contains diagnostic design notes for the program listing user. The following are example
statements as they may appear on program listings

P
LOCATION OPERATION VARIASLE COMMENT

JDEST DTDEST. #EXAMPLE 1
SUBCALL SUBROUTINE (AUCCINIT.CC) #EXAMPLE 2
IOCONFIG PUBR #EXAMPLE 3
ADSPULSE ITEM (DSICPMFF1),EXPECT(0)* #EXAMPLE 4

P’
B. Variable Subfield Cantent

3.03 The variable subfield contains parameters and variables. Variables are data or addresses to be used in
the statement. Some parameters have no associated variables. Variables associated with a parameter

normally appear in parentheses following the parameter; in the statement format, variables are represented by
a number preceded by a dollar mark ($). In the statement format:

ADSPULSE ITEM ($1), EXPECT($2)

The $1 and $2 represent variables for the ITEM and EXPECT parameters, respectively.

3.04 Choices of parameters appear in a vertical row in the appropriate position in the statement. An
overscore over a parameter or variables indicates that the parameter or variables are optional.

!F!rR Unless otherwise indicated, all numbers in this section are decimal,

3.05 Diagnostic programs make extensive use of symbolic names of Datapool-defined tables, words, and
items in place of absolute numbers. Datapool-defined state names are also used. Definitions of these

symbols are shown in the 1A Processor Datapool listing (PK-5AO01).

,P C. Register Usage

3.06

.

P

f-’

Special use of general purpose registers are made by task routines invoked by DL-1 statements as
follows:

F–The F register contains the base address of the scratch memory allocated to the diagnostic by the
Maintenance Control Program (MACP).

Y–The Y register is the pointer to the next data table word.

G–The G register contains, upon entry to a task routine, the index word for the current data table
entry.

Page 17

——

SKTION 254-280-040

D, Formatting Macros

3.07 Throughout this section many DL-1 statements will be provided which consist of more than one line.
The example statements which require more than one line show the statement name immediately

followed by an underscore, the last line beginning with ME (macro end), and the lines between the first and last
line (if any) beginning with MC (macro continue). The underscore and the formatting macros MC and ME are
not required for statements consisting of more than one line; they are used solely for formatting purposes to
make the DL-1 statement easier to read. For more information, see Section 254-280-010, Datapool Documents —
Description.

4. DETAILEDEXPLANATION OF EACH DL-1 STATEMENT

A. Introduction

Classes of DL-1 Statements

4.01 Listed below are the classes

(a) Statement for Internal

of DL-1 statements that

Manipulation of Data

(b) Statements for Control and Decjsion

(c) Statements to Define and Call Subroutines

(d) Statements for Testing.

Format for the Explanation of Each DL-1 Statement

.

are described in the following paragraphs

4.02 The detailed explanation of each DL-1 statement is given alphabetically within the class of statements
to which the DL-1 statement belongs. The description of each statement includes

(a) The function of the statement

(b) The format of the statement

(c) The characteristics of the parameters in the statement

(d) Examples as they may appear on a diagnostic phase program listing with a brief explanation. -

4.03 Some statements have more than one format shown. This is because the parameters in one format do .

not apply to another.

B. Statements far Internal Manipulation of Data

ARITH

4.04 The description of the ARITH statement includes:

Function:

The ARITH statement is used for data manipulation
result is stored at a specified destination.

Page 18

of two arguments (X and Y) by a function; the

—

[SS 4, SECTION 254-280-040

Format:

ARITH DESTINATION, ARGX,FUNCTION,ARGY

Characteristics of Parameters:

DESTINATION – Specifies a destination. The DESTINATION is one of the following

.

,/’-.

WORD($l)
WORD(IND($l))
WORD($2)
WORD($l,IND($l))
SWORD($l)
SWORD(IND($l))
SWORD($l,IND($l))
DTWORD($l)
DTWORD($2)
SITEM($3)
SITEM($4($5))

WORD – Specifies an absolute location for a destination. The $1 is a label; $2 is a list of labels. The
IND specifies indirect access via call store scratch location. The base address (in register F)
is added to $1 value. A maximum of four labels and/or IND (label)s may appear.

SWORD – Specifies a destination in a call store scratch location. $1 is a label. The base address (in
register F) is added to $1 value. The IND specifies indirect access via call store scratch
location. The address equals the contents of the location at “$1 plus the base address (in
register F)” added to the base address (in register F). A maximum of four labels and/or
IND(labels)s may appear.

DTWORD – Specifies a destination in a data table location. The $1 is a label and $2 is a list of labels (4
maximum).

SITEM – Specifies a destination in a call store scratch location defined by Datapool item plus the
base address (in register F). Insertion masking is per item. The $3 is an item name. The $4 is
a list of a maximum of four item names followed by ($5), the number 1, 2, 3, or 4 in
parentheses. If $4 is only one item ($5) does not appear. The value is left-adjusted to the
item’s displacement.

ARGX – Specifies the X argument. Argument X is one of the following

DTWORD($l)
WORD($l)
WORD(IND($l))
SWORD($l)
SWORD(IND($l))
ITEM($3)
SITEM($3)
ITEMs($4)
sITEMs($4)
LIT($5)

Page 19

— -.—

SECTION 254-280-040

DTWORD – Specifies an argument in a data table location. The $1 is a label.

WORD – Specifies an absolute location containing the argument. The $1 is a label. The IND specifies

SWORD

ITEM –

indirect access via a call store scratch location. The base address (in register F) is added to
the $1 value to determine the location of the address of the argument.

?
– Specifies an argument in call store scratch location. The $1 is a label. The base address (in

register F) is added to $1 value. The IND specifies indirect access via a call store scratch
location. The address equals the contents of the location at “$1 plus the base address (in
register F)” added to the base address (in register F).

+

Specifies an argument in an absolute location specified by a Datapool item. The $3 is an item
name. The value is right-adjusted before being used.

SITEM –

ITEMS –

Specifies an argument in a call store scratch location defined by Datapool item plus the base
T

address (in register F). The $3 is an item name. The value is right-adjusted before being
used.

Specifies an argument in an absolute location defined by Datapool items. The $4 is a list of
items all in the same word. ITEMS is used only with the XOR, OR, and AND functions.

SITEMS – Specifies an argument in a call store scratch location defined by Datapool items. The base
address (in register F) is added. The $4 is a list of items all in the same word. The SITEMS
is used only with the XOR, OR and AND functions.

LIT – Specifies a fixed quantity to be used as an argument. The $5 is any arithmetic expression to be
used as the argument.

FUNCTION – Specifies the function to be performed on ARGX and ARGY, the resultant of which is
stored in the specified DESTINATION. Function is one of the following

ADD – ARGX phls ARGY

SUB – ARGX minus ARGY

SHIFT – Shift ARGX left ARGY bit positions (the value of ARGY is O through 23)

ROT – Rotate ARGX per ARGY

XOR – Exclusive-OR ARGX with ARGY .

OR – Union ARGX with ARGY

AND – Product ARGX with ARGY

SROT – 16-bit rotate ARGX left ARGY bit positions
T,

MOVE – Move ARGX to destination, (If function is not specified, it is MOVE).

ARGY – Specifies the Y argument. The Y argument may be any one of the choices listed under
ARGX. (ARGY does not appear on MOVE function.)

Page 20

1SS4, SECTION 254-280-040

Examples:

(a)

(b)

.

.

.- (c)

(d)

(e)

(f)

(d
.

(h)

(i)

ARITH SITEM(DGIFSDFEQB),WORD(DGIAUAXAl),SHIFT,LIT(-H(XLlFSGQSEMO))

This statement causes the contents of location DGIAUAXA1 to be shifted right by the displace-
ment of XLIFSGQSEMO and insertion masked into call store scratch item DGIFSDFEQB.

ARITH SWORD(DGlAUSCR2),SWORD(DGIAUSCRl), ADD, SWORD(DFlAUSCR2)

This statement causes the contents of the call store scratch location DGIAUSCR1 to be used as
the contents of the call store scratch location DG1AUSCR2 and placed in the call store
scratch location DG1AUSCR2.

ARITH SWORD(DGICOMTC,IND(DGIKODE)),SWORD(IND(DGIAUSCRl)), SUB,LIT(7)

This statement causes the contents of the call store scratch location at the address calculated by
“the contents of DGIAUSCR1 plus the base address (in regular F)” to have subtracted from it the
constant seven and placed in two call store scratch locations: one call store scratch location is at
address DGICOMTC and the address of the other call store scratch location is given by “the
contents of DGIKODE plus the base address (in register F).”

ARITH SITEM(DGIFSDFEQB), SWORD(IND(DGIAUAXA1)),SHIFT,
LIT(-H(XLIFSGQSMEO))

This statement causes the contents of the call store scratch location at the address calculated by
“the contents of DGIAUAXA1 plus the base address (in register F)” to be shifted right by the
displacement of XLIFSGQSEMO and insertion masked into the call store scratch item
DGIFSDFEQB.

ARITH SWORD(DG1AUSCR2), SWORD(DGIAUSCR1),ROT,LIT(3)

This statement causes the contents of call store scratch location DGIAUSCR1 to be rotated left 3
positions and inserted in the call store scratch item DG1AUSCR2.

ARITH DTWORD(ARDT),SITEM(DGIAUKCODE),XOR,LIT(A(FSlOAR)(AUlSTART))

This statement causes the contents of the call store scratch location designated by Datapool item
DGIAUKCODE to be exclusive-ORed with “the address of FS1OAR ORed with the value of
AUISTART” and then to be placed in the data table word at address ARDT.

ARITH SWORD(DGIKODE), SWORD(DGIKODE),OR,LIT(–M (IOIECTR))

This statement causes the contents of the call store scratch location at address DGIKODE to be
ORed with the mask of the IOIECTR item and placed in the call store scratch location DGIKODE.

ARITH SWORD(DGIKODE), SWORD(DGIKODE), AND,LIT(-MIOlECTR))

This statement causes the contents of the call store scratch location at address DGIKODE to be
ANDed with the complement of the mask of the IOIECTR item and placed in the same call store
scratch location DGIKODE.

ARITH SITEM(DGIFSDMFSMO(l),DGlFSDFSMl(2)),ITEM(XLIFSDFSQD), SR0T,
LIT(H(FSIFSQO))

Page 21

SECTION 254-280-Q40

This statement causes rotate-16 the displacement of the FSIFSQO item bit positions action on the
XLIFSDFSQD item. The result is then insertion masked into the call store scratch items
DGIFSDMFSMO and DGIFSDFSM1.

(j) ARITH SITEM(DGlITEMA(l),DGlITEMB(2),DGlITEMC(3)),ITEM(DGlABITEMD),MOVE

This statement causes item DGIABITEMD to be insertion masked into the call store scratch
items DGIITEMA, DGIITEMB, and DGIITEMC. The same function would be performed if the
MOVE were omitted. Any ARITH statement which has no function and no ARGY is a MOVE. .

DLICOUAPSE
-

4.05 The description of the DLICOLLAPSE statement includes

Function:

The DLICOLLAPSE statement is used
data word.

Format:

BEGIN LAMP

to collapse raw data results from the specified tests into one

DLICOLLAPSE END , PHYSICAL
BOTH

Characteristics of Parameters:

BEGIN – Indicates the beginning point of the tests to be collapsed.

END – Indicates the termination point of the tests to be collapsed.

LAMP – The tests are to be collapsed for LAMP fault data processing only.

PHYSICAL – The tests are to be collapsed for PHYSICAL fault data processing insertion only.

BOTH – The tests are to be collapsed for both LAMP and PHYSICAL. If none is specified, it will n
default to BOTH.

Example:
.

DLICOLLAPSE BEGIN, LAMP

DL1DELETE

4.06 The description of the DLIDELETE statement includes:

Function:

The DLIDELETE statement is used to exclude raw data entries from being included in the trouble
location process.

Page 22

1SS4, SECTION 254-280-040

,f- Format:

BEGIN LAMP
DLIDELETE END , PHYSICAL

BOTH

Characteristics of Parameters:

.
BEGIN – Indicates the beginning point of the deletion.

P

END — Indicates the end point of the deletion.

LAMP – The tests are to be deleted from the processing LAMP fault data only.

PHYSICAL – The tests are to be deleted from the processing of the PHYSICAL fault data.

BOTH – The tests are to be deleted for both LAMP and PHYSICAL. If nothing is specified, it will
default to BOTH.

W?n!s

DLIDELETE BEGIN, PHYSICAL

C. Statements for Control and Decision

DELAY1Og

4.07 The description of the DELAYIO~ statement includes:

Function:

The DELAYIO~ statement is used to obtain units of delay in 10%icrosecond increments. A delay in this
form should not exceed 2.5 milliseconds.

Format:

DELAY1OK $1
.

Characteristics of Parameters:

.-

,/=

$1 – Specifies a delay in 10-microsecond increments. Should not exceed 250 due to the possibility of an
interrupt.

&?Q?.2k:

DELAY1OP 150

This statement will result in delaying 1500 microseconds or 1.5 milliseconds.

Page 23

—

SECTION 254-280-040

4.08 The description of the DLIETERM statement includes:

Function:

The DLIETERM statement allows the diagnostic to terminate early as the result of certain test
failures. This statement can be used in conjunction with the DLITFZAP macro.

Format:

Characteristics of Parameters:

TESTFAIL – Used when it is desired to terminate if a failure occurs after a DLITFZAP was issued.

ANYFAIL – Terminate if any failure occurs in the diagnostic.

FAILURE – Terminate if a failure occurs during this phase.

DIAGEND – If terminating due to a failure, the equivalent of a SEGEND will be executed followed
by a jump to the end of the phase, and then the diagnostic is terminated.

LABEL (LOC) – If terminating, a jump to this location is made. The code at this location must be code
to restore the unit to a safe state followed by SEGEND and PHASEEND macros.

YESTERM – If specified, this parameter ensures that a termination due to DLIETERM will occur if
a failure has been detected. This will override the “UCL” on a DGN message.

Example:

DLIETERM FAILURE, DIAGEND

This statement will terminate the diagnostic if a failure has occurred up to the point in the phase that
this statement exists.

DL1MTSKIP

4.09 The description of the DLIMTSKIP statement includes:

Function:

The DLIMTSKIP statement is used to circumvent program code in accordance with the Laboratories
Design Information (LDI) value of the frame. Thus, one diagnostic program may be used on various
frame LDI issues with only the appropriate code being executed.

Page 24

1SS4, SECTION 254-280-040

Format:

.

*

DLIMTSKIP LABEL, EQMTVAL ($1)
NEMTVAL ($1)

Characteristics of Parameters:

LABEL – The label to which the jump is made.

EQMTVAL – Jump to LABEL if LDI value is equal to any of the $1 values.

NEMTVAL – Jump to LABEL if LDI value is not equal to any of the $1 values,

$1 – May be one or a string of LDI symbols.

Example:

DLIMTSKIP LABEL = END, EQMTVAL (lXLMTDUSIA)

This statement will jump around the code for DUS LDI Issue 1A only, making the diagnostic forward
compatible.

DL1SKPTST

4.10 The description of the DLISKPTST statement includes:

Function:

The DLISKPTST statement is used to skip tests in a diagnostic but maintain the proper total test
count, for transmission level point purposes, as though all tests were executed.

. Format:

DLISKPTST SKIP = $1

Characteristics of Parameters:

SKIP = $1 – This parameter indicates the number ($1) of tests to be skipped, and causes a cumula-
tive test counter to be incremented by this number.

Example:

DLISKPTST SKIP

This statement causes

DL1TFZAP

4.11 The description of the

Function:

. 4

the next four tests to be skipped and increments the test counter accordingly.

DLITFZAP statement includes:

The DLITFZAP statement clears the failure indicator examined when DLIETERM TESTFAIL is
specified. This provides control over the period during which a failure is to be observed; ie, between the
DLITFZAP statement and the DLIETERM TESTFAIL statement.

Page 25

Format:

DLITFZAP

DLITFZAP

This statement will clear the TESTFAIL indicator (DIGITSFAIL) which is marked by the Diagnostic
Control Program (DCON) when a failure occurs.

DTDEST

4.12 The description of the DTDEST statement includes

Function:

The DTDEST statement specifies a location as the forward destination of a DTJUMP statement.

Format:

LAB DTDEST

Characteristics of Parameters:

LAB – Specifies location field symbolic name as DTJUMP destination.

NODFO1 DTDEST

This statement provides a destination for a previous DTJUMP statement.

DTJUMP

4.13 The description of the DTJUMP statement includes:

Function:

The DTJUMP statement is used to conditionally or unconditionally skip around a strip of test (data
table words) to another location (forward) in the data table.

Format:

$2

DTJUMP LABEL($1),IF($3(F), MASK($4),$5,$6)

.

Characteristics of Parameters:

LABEL – Specifies the destination of the jump to a symbolic labeled data table location $1. The $1
appears in the location field of a subsequent DTDEST statement.

Page 26

1SS4, SECTION 254-280-040

.

“

IF – Specifies location contents to be compared to $6 per logical condition $5. The jump is executed if
the tested condition is true; otherwise, the next data table task block is executed. The $2 is an
absolute location or an EXTERN vector name. The $3 is a call store scratch word or item. The $3
is followed by (F) to indicate that $3 will be indexed by the base address.

MASK – Optionally specifies a mask for the location. The $4 is any arithmetic expression which
expresses the mask.

$5 – Specifies one of the logical conditions of the control flip-flops: AZ, AU, GT, GE, LT, LE as the IF
condition to be true for execution of the jump.

$6 – Specifies an arithmetic expression to be compared to the contents of the location per $5.

&?9U?!2

DTJUMP LABEL(NODFO1),IF(DGIFSEQSMEO(F), AZ,O)

This statement causes a jump to the label NODFO1 (which is on a subsequent DTDEST statement) if
the contents of DGIFSEQSMEO indexed by the base address (in register F) compared to Ois arithmetic
zero.

PHASEEND

4.14 The description of the PHASEEND statement includes:

Function;

The PHASEEND statement clears the auxiliary unit bus lock, checks
were either executed or properly skipped via DLISKPTST (if not,
terminates the phase.

Format:

that all of the tests in the phase
the diagnostic is aborted), and

LABEL PHASEEND PHASE ($1)

Characteristics of Parameters:

LABEL – Pident name followed by “E.”

PHASE ($1) – The number ($1) of the phase being executed.

Example:

>’
CCDGOIE PHASEEND PHASE (01)

This statement ends phase 1 of the central control diagnostic.

PHASEINIT

4.15 The description of the PHASEINIT statement includes:

FunctiorI:

The PHASEINIT statement clears the PEST (interrupt inhibit) control words, clears the auxiliary unit
P bus lock flag, loads the stack address used by DTJUMP macros, turns off auto-segmenting, and turns on

manual segmenting. This statement also performs standard initialization on a unit basis.

Page 27

Format:

‘T

LABEL PHASEINIT PHASE($l), NOLAMP,NOPHYS

Characteristics of Parameters:

LABEL – Pident name.

PHASE($l) – Specifies the phase of the diagnostic in which this statement is. The $1 is the phase .
number.

NOLAMP – When specified, indicates transmission level point will not search a LAMP fault data file
for this phase.

.

-,
NOPHYS – When specified, indicates transmission level point will not search a PHYSICAL fault

data file for this phase.

CCDGO1 PHASEINIT PHASE(O1)

This statement will perform basic initialization for phase 1 of the central control diagnostic.

4.16 The description of the SEGEND statement includes:

Function:

The SEGEND statement checks that the next statement is either SEGINIT or PHASEEND, and if not,
it aborts the diagnostic. Otherwise, a segment break is taken and requests delays, if specified.

Format:

6SEC($1)
SEC($2)

SEGEND MSEC($3)
,-,

Characteristics of Parameters:

.
6SEC($1) – Requests $1 6-second delays.

SEC($2) – Requests $2 l-second delays. .

MSEC($3) – Requests $3 100-millisecond delays.

Example: -,

SEGEND MSEC(l)

This statement takes a segment break and requests that a new segment is not started for at least 100
milliseconds.

Page 28

—

1SS4, SECTION 254-280-040

SEGINIT

4.17 The description of the SEGINIT statement includes

Function:

.

This statement requests special services, such as auxiliary unit soft stops, auxiliary unit hard stops,
inhibit of various interrupts, for the next segment. It also performs common initialization on a per unit
basis and certain audits. An example of the latter is the checking of routing flip-flops in the Central
Control Diagnostic Control Program (CCDG) to ensure proper state.

Format:

SEGINIT INHAU = $1, STOPAU = $2, INHINT = $3,

LPBND = $4, AUBUS (REQUEST)

Characteristic of Parameters:

INHAU = $1 – If $1 is Y, this will request an inhibit on the auxiliary unit bus request (auxiliary unit
soft stop).

STOPAU = $2 – If $2 is Y, this will request a stop of all active auxiliary units) and also stoPs the
auxiliary unit sequencer in the central control (hard stop). $It also inhibits K-code
match and auxiliary unit bus drivers (trouble PIF).4

INHINT = $3 – If $3 is Y, this will set the normal PESTS (interrupt inhibit) for this unit. Default
inhibits only G, H, and J level interrupts.

LPBND = $4 – If $4 is Y, this indicates that this is a valid loop boundary when using the EX mode,
and a corresponding entry will be made in the valid loop boundary table at the end of
the phase.

AUBUS (REQUEST) – If this parameter is used, the first three parameters will automatically be set
to “Y,” and an auxiliary unit lock request is made.

&2?u?!s

SEGINIT INHINT = Y, LPBND = N

This statement will set the PESTS for this unit type and also indicates that this is not a valid loop
boundary.

D. Statements to Define and Call Subroutines

DLISUB

4.18 The description of the DLISUB statement includes:

Function:

The DLISUB statement starts a definition of a data table subroutine. The statement is followed by the
statements which define the operation of the subroutine. These statements are followed by a SUBTN
statement which signals the end of the subroutine definition. The DLISUB statement automatically
generates a DTJUMP statement to jump around the subroutine to isolate it from straight line execu-
tion.

Page 29

SKTION 254-280-040

Format:

NAME DLISUB

Characteristics of Parameters:

NAME – Specifies a location
subroutine.

!@!?!@

AUINIT.CC DLISUB

field to be referred to by a SUBCALL statement used to call the

.

This statement defines the beginning of a subroutine named AUINIT_CC.

SU8CAI.L

4.19 The description of the SUBCALL statement includes:

Function:

The SUBCALL statement conditionally or unconditionally calls a defined data table subroutine. The
subroutine is defined with the DLISUB header statement followed by a DL-1 statement and terminated
by the SUBRTN statement. Following execution, subroutine control is returned to the next statement
following the SUBCALL statement.

Format:

.

$2

SUBCALL SUBROUTINE($1),IF($3(F),MASK($4),$5,$6)

Characteristics of Parameters:

SUBROUTINE – Specifies the label of a data table subroutine, that is a DTLABEL to be jumped to.

IF –

The $1 is the name of the subroutine.

Specifies location contents to be compared to $6 per logical condition $5. The jump is executed if
the tested condition is true; otherwise, the next data table task block is executed. The $2 is an
absolute location or an EXTERN vector name. The $3 is a call store scratch item or word. The $3
is followed by (F) to indicate that $3 will be indexed by the base address.

-i

MASK – Optionally specifies a mask for the location. The $4 is any arithmetic expression which
expresses the mask.

$5 – Specifies one of the logical conditions of the control flip-flops: AZ, AU, GT, GE, LT, LE as the IF
condition to be true for execution of the jump.

$6 – Specifies an arithmetic expression to be compared to the contents of the location per $5.
?

w

SUBCALL SUBROUTINE(AUCCINIT.CC)
T

This statement causes an unconditional transfer to the subroutine AUCCINIT_CC.

Page 30

—.

1SS4, SECTION 254-280-040

SUBRTN
,P

4.20 The description of the SUBRTN statement includes:

Function:

P.
The SUBRTN statement specifies the termination of a subroutine and generates a return to the main
flow.

● Format:

SUBRTN.

f-. Characteristics of Parameters:

This statement has no parameters.

SUBRTN

This statement specifies the termination of a subroutine.

E. Statements for Testing

ADSPULSE

4.21 The description of the ADSPULSE statement includes:

Function:

The ADSPULSE statement control pulses the auxiliary data system (ADS) under test.

Format:

P

ADSPULSE NOSTORE

ITEM($l)

ADSPULSE ITEMS($2),EXPECT($3),KCODE($4)

Characteristics of Parameters:

NOSTORE – If specified, the ADS is control pulsed, and the results sent back on the auxiliary unit
reply bus are ignored.

ITEM – Generates a mask for the results pulsed back from the ADS. The $1 is an item name.

ITEMS – Generates a mask for the results pulsed back from the ADS. The $2 is a list of item names

all in the same word.

Page 31

SECTION 254-280-040

EXPECT – Specifies the result the ADS should send on the auxiliary unit reply bus (ie, data of _

KCODE –

Example:

concern after masking.) The $3 is any arithmetic expression which expresses the expected “-’l

result,

Specifies which data unit selector (DUS) is being written into and supplies bits 11 through
15 of the auxiliary unit address. If not specified, the KCODE supplied by translations is
inserted. The $4 is the KCODE.

.

ADSPULSE ITEM(DSICPMFF1),EXPECT(0)
.

This statement control pulses the ADS under test. The DSICPMFF1 item is the mask for the results “?
pulsed back and the expected result is zero.

ADSREAD

4.22 The description of the ADSREAD statement includes:

Function:

The ADSREAD statement is a general purpose read for the ADS.

Format:

ITEM($1) ,NOSTORE

ADSREAD ITEMS($2),EXPECT($4),0PTIONS($5),KCODE($6),ACODE($7)

WORD($3)

Characteristics of Parameters:

ITEM – Specifies the location being read. This parameter supplies bits Othrough 10 of the auxiliary

unit address bus if ACODE is not specified, else bits Othrough 5. The mask for the expected

results is also generated from this parameter. The $1 is the item name.

ITEMS –

WORD –

Specifies the location being read. This parameter supplies bits Othrough 10 of the auxiliary

unit address bus if ACODE is not specified, else bits Othrough 5. The mask for the expected

results is generated from this parameter. The $2 is list of items all in the same word.

Specifies the location being read. This parameter supplies bits Othrough 10 for the auxiliary

unit address bus, if ACODE is not specified, else bits Othrough 5. The mask for the expected
result is also generated from this parameter. The $3 is the address of the word.

NOSTORE – If specified, nothing is done with the data read from the ADS.

EXPECT – If specified, this is the result the ADS should send on the auxiliary unit reply bus (ie, data
of concern after masking). The $4 is any arithmetic expression.

Page 32

1SS4, SECTION 254-280-040

f-’

*

/-”

OPTIONS –

KCODE –

ACODE –

Example:

ADSREAD_

Specifies the options associated with the maintenance load (ML) assembly language
instruction. This parameter supplies bits 16 through 18 of the auxiliary unit address bus.
The ML instruction is described in Section 254-280-020, 1A Processor Assembly Lan-
guage – Description, 1A Processor. The $5 is the list of options. Table A is a list of
options for the ML instructions.

Specifies which DUS is being read and supplies bits 11 through 15 of the auxiliary unit
address bus. If not specified, the KCODE supplied by translatio~s is inserted. The $6 is the
KCODE.

Specifies which data unit controller (DUC) is being read. This parameter supplies bits 6
through 9 of the auxiliary unit address bus and sets bit 10 = 1. The $7 is the ACODE. If $7
is UUT, the ACODE supplied by translations is used.

ITEMs(TulccEQz,TulLRcFL),ExPEcT(M(TulccEQz)),KcoDE(o(l5)).
ME ACODE(O(12))

-,, ,.

This statement causes a read of the ADS. The items TUICCEQZ and TUILRCFL specify bits Othrough
5 of the auxiliary unit address bus (the location to be read). The KCODE supplies bits 11 through 15 of
the auxiliary unit address bus (DUS). The ACODE supplies bits 6 through 9 of the auxiliary unit
address bus (DUC) and sets bit 10 to 1. The EXPECT parameter specifies the result exDected on the
auxiliary unit reply bus after the read.

TABLEA

OPTIONS FOR THE ML AND MS INSTRUCTIONS

MS/Ml OPTION

c
M
R
w
IPKA
IST(IT3,3T5E,

3T5L,4T6)
NGCP

DELAY

MS ONLY OPTION

IP1
IP2
IWE

ML ONLY OPTION

READ2

EXPLANATION

Control Mode
Maintenance Mode
Read
Write
Invert Address parity

Inhibit store timing, only one pulse at a time
Do not execute two GCPS before instruction (STRDGCP, STWRGCP, and STWRSTAT
statements only)
Introduce a 10-microsecond delay between MS/ML instruction and generate control
pulse (GCP) (STRDGCP, STWRGCP, and STWRSTAT statements oily) I

EXPLANATION 1

Invert data parity bit P1
Invert data parity bit P2
Inhibit write enable

EXPLANATION I

Execute a second ML instruction (STAREAD statement only)
I

Page 33

—.

ADSWRITE

4.23 The description of the ADSWRITE statement includes:

Function:

The ADSWRITE statement is a general-purpose write for the ADS.

Format:

ADSWRITE WORD($l),DATA($2),OPTIONS($3),KCODE($4),ACODE($5)

.

Character&tks of Parameters:

WORD – The location being written into. If ACODE is not specified, this parameter supplies O
through 10 for the auxiliary unit address bus. If ACODE is specified, it supplies bits O
through 5 for the auxiliary unit address bus. The $1 is the address.

DATA – Up to 24 bits of data to be written into the location specified by WORD. This parameter
supplies bits Othrough 23 of the auxiliary unit write bus, The $2 is any arithmetic expression
which expresses the data.

OPTIONS – These are the options associated with the maintenance store (MS) 1A Processor Assem-
bly language instruction. This parameter supplies bits 16 through 18 of the auxiliary unit
address bus. The MS instruction is described in Section 254-280-020 (Assembly Langua-
ge—Description 1A Processor). The $3 is a list of options. Table A is a list of options for
the MS instruction.

KCODE – Specifies which DUS is being written into and supplies bits 11 through 15 of the auxiliary
unit address bus. If not specified, the KCODE supplied by translations is inserted. The $4 is
the KCODE.

ACODE – Specifies which DUC is being written into. This parameter supplies bits 6 through 9 of the
auxiliary unit address bus and sets bit 10 = 1. The $5 is the ACODE. If $5 is UUT, the
ACODE supplied by translations is used.

M?@

ADSWRITE WORD(TUIDR),DATA(lDGBIT15),0PTIONS(C,W),KCODE(O(21)),ACODE(UUT)

This statement causes a write to the ADS. The WORD parameter supplies bits O through 5 of the
auxiliary unit address bus (the location being written into). The value of 1DGBIT15 will be written into
TUIDR. The options parameter supplies bits 16 through 18 of the auxiliary unit address bus. The T

KCODE supplies bits 11 through 15 of the AU address bus (DUS). The ACODE specifies that bits 6
through 9 of the auxiliary unit address (DUC) be supplied from translation and sets bit 10 to 1.

Page 34

—-

1SS4, SECTION 254-280-040

,F-

.

,/-=,

.

4.24 The description of the AP3BMSG statement includes:

Function:

The AP3BMSG statement will request the 3B executed attached processor interface (API) diagnostics
and retrieve the results of the diagnostic. This is done by sending a message to the 3B via the active
API. A 3B process will be started in response to the message. This process will request the running of
the 3B diagnostics. At the completion of the 3B diagnostics, the process will return the results to the 1A
Processor. The results are passed in one word with a specified bit set for the first failing phase.

Format:

TSTMSG
AP3BMSG RESULTS

Characteristics of Parameters: I

TSTMSG – Specifies that a message is to be sent to the 3B processor which starts the running of the 3B
executed API diagnostics.

RESULTS – Specifies that the result word of the 3B executed API diagnostics is to be read. This word
has a specified bit set for the first failing phase. Bit 1 set = Phase 1 failed, Bit 2 set =
Phase 2 failed, Bit 12 set = Phase 12 failed.

AP3BMSG TSTMSG

This statement will send a message to the 3B processor to begin execution of the 3B executed API
diagnostics.

AP3BMSG RESULTS

This statement reads the results word sent to the 1A from the 3B. The word shows the results of the 3B
executed API diagnostics.~

AUBRQ
*

4.25 The description of the AUBRQ statement includes:

Function:

This AUBRQ statement assures an auxiliary unit diagnostic that the auxiliary unit community will not
be softstopped or hardstopped while the diagnostic is taking a segment break. When the auxiliary units
are softstopped, the bus requests are inhibited in central control denying auxiliary units the use of the
auxiliary unit bus for autonomous data transfers. When the auxiliary units are hardstopped, the
auxiliary unit sequencer in central control is stopped, also denying auxiliary units the use of the
auxiliary unit bus.

Page 35

SECTION 254-280-040

Format:

AUBRQ .

Characteristics of Parameters:

This statement has no parameters.

&2@2

AUBRQ .

This statement permits an auxiliary unit diagnostic to take a segment break and not have the auxiliary
--x

unit bus inhibited during that time.

AUGCPCLR

4.26 The description of the AUGCPCLR statement includes:

Function:

The AUGCPCLR statement control pulses an auxiliary unit initializing various circuits and sending a
l-bit reply to central control on bit 20. The results may be passed to the DCON program or ignored.

Format:

AUGCPCLR EXPECT(1DGBIT20)

Characteristics of Parameters:

EXPECT – Specifies the expected result.

Examdes:

(a) AUGCPCLR

Thiq statement control pulses the auxiliary unit under diagnosis initializing the frame. The frame

response is not of interest.

(b) AUGCPCLR EXPECT(1DGBIT20)

This statement control pulses the auxiliary unit under diagnosis initializing the frame and expects a

response on bit 20.

f’-’%

‘-l

--)

Page 36

1SS4, SECTION 254-280-040

,n

AUKCRDCC

4.27 The description of the AUKCRDCC statement includes:

Function:

The AUKCRDCC statement reads one of the 16-bit auxiliary unit registers in the active or standby
central control. The DGIAUPOS indexed by the base address (in register F) contains the bit position
corresponding to the auxiliary unit under test. Optionally, the auxiliary unit maintenance request bit
0/1 (AUMRQO-1) or auxiliary unit operational interject bit 0/1 (AUOIO-1) maybe read. The read bus is
calculated from DGIAUPOS: Even positions read on bus O,odd positions on bus 1. Any failing result is
passed to the DCON in bit position O.

Format:

AUKCRDCC ITEM($1),EXPECT($2)

Characteristics of Parameters:

ITEM – Specifies the auxiliary unit request register to be read. The $1 is the symbolic name of any
auxiliary unit request register in the active or standby central control.

EXPECT – Specifies the expected result. The $1 is O or 1.

!@@&

AUKCRDCC ITEM(STIEVG),EXPECT(0)

This statement reads the auxiliary unit enable verify expect group register (STIEVG) in the standby
central control. The read bus is calculated from DGIAUPOS. The result is compared to zero.

AUKCRDCC ITEM(lNIAUOI),EXPECT(l)

This statement reads the 01. The result is compared to 1.

AUKCWRCC

4.28 The description of the AUKCWRCC statement includes:

Function:

The AUKCWRCC statement writes (insertion masks) a 16-bit auxiliary unit register in the active or
standbv central control. The DGIAUPOS indexed by the base address (in register F) contains the bit
positio~ corresponding to the auxiliary unit under test. The register may
bits in the word remain unchanged.

Format:

AUKCWRCC WORD($1),DATA($2)

Characteristics of Parameters:

WORD – Specifies the register to be written. The $1 is the symbolic
request register in the active or standby central control.

be set or reset. All the other

name of any auxiliary unit

Page 37

DATA – Specifies the data to be written. The $2 is 1 for set, O for reset.

Examde:

AUKCWRCC WORD(INIRIG),DATA(0)

This statement resets the auxiliary unit request inhibit group (INIRIG) flip-flop corresponding to
DGIAUPDS in both central controls. All other bits are unchanged.

.

AUMREAD

4.29

m

The description of the AUMREAD statement includes:

Function:

The AUMREAD statement generates an ML instruction. The ML instruction is described in Section
254-280-020 (Assembly Language–Description, 1A Processor). The read (ML) instruction may be di-
rected to the auxiliary unit under test or to another auxiliary unit designed by KCODE. It also sets and
resets lPP_FUAC.

Format:

ITEM($1) NOSTORE

AUMREAD ITEMS($2),EXPECT($4),0PTIONS($6),KCC) DE($7)
WORD($3) TO($5)

Characteristics of Parameters:

ITEM – Specifies the location to be read. The $1 is the item name,

ITEMS – Specifies the location to be read. The $2 is a list of items all in the same word.

WORD – Specifies the location to be read. The $3 is the address.

NOSTORE – Specifies that the results are to be ignored. T

EXPECT – Specifies the expected results. The $4 is any arithmetic expression which expresses the
expected results.

.

TO – Specifies the call store location containing the expected result. The $5 is the call store address
which will be indexed by the base address (in register F).

OPTIONS – Specifies the option for the ML instruction. The ML instruction is described in Section
254-280-020, Assembly Language–Description, 1A Processor. The $6 is a list of options.
If not specified, the options are C and R. Table A shows the options for the MS or ML
instruction.

KCODE – Specifies the KCODE of the auxiliary unit to be read. The, $7 is the KCODE. If not
specified, the auxiliary unit under test is read and its KCODE is in DGIAUKCODE.

Page 38

1SS4, SECTION 254-280-040

&z?&

AUMREAD ITEM(FSISAMLFWK), EXPECT(M(FSISAMLFWK)),OPTIONS(R),KCODE(28)

This statement reads with the R option the FSISAMLFWK item in the auxiliary unit whose KCODE is
,fi 28 and compares the result to the mask of the FSISAMLFWK item.

AUMWRITE

●

4.30 The description of the AUMWRITE statement includes:

Function:

The AUMWRITE statement generates an MS instruction. The MS instruction is described in Section
254-280-020, Assembly Language-Description, 1A Processor. The write (MS) instruction may be di-
rected to the auxiliary unit under test or to another auxiliary unit designated by KCODE. It also sets
and clears lPP-FUA.

Format:

DATA($2)
AUMWRITE WORD($1),FROM($3),0PTIONS($4),KCODE($5)

Characteristics of Parameters:

WORD –

DATA –

FROM –

OPTIONS

Specifies the location to be written. The $1 is the address.

Specifies the data to be written. The $2 is any arithmetic expression which expresses the
data.

Specifies the call store location containing the data to be written. The $3 is the address of the
call store location which is indexed by the base address (in register F).

— Specifies the options for the MS instruction. The MS instruction is described in Section
254-280-020,Assembly Language–Description, 1A Processor. The $4 is a list of options.
If not specified, the options are C and W. Table A shows the options for the MS or ML
instruction.

KCODE – Specifies the KCODE of the auxiliary
specified, the auxiliary unit under test

unit to be written. The $5 is the KCODE. If not
is written and its KCODE is in DGIAUKCODE.

awL?!E
- AUMWRITE WORD(FSISAM),FROM(DGISCR1)

This statement writes the data contained in call store location DGISCR1, indexed by the F register, into
the auxiliary unit location FSISAM in the auxiliary unit under test..

AUPULSE
/-\

4.31 The description of the AUPULSE statement

Function:

includes:

The AUPULSE statement control pulses an
sending a 24-bit reply to central control. The

auxiliary unit location initializing various circuits and
results may be passed to the DCON program or ignored.

Page 39

SECTION 254-280-040

Format:

AUPULSE

AUPULSE

NOSTORE

ITEM($l),NOSTORE
ITEMS($2),EXPECT($4)
WORD($3)

Characteristics of Parameters:

NOSTORE – Specifies that the results of the read are to be ignored.

ITEM – Specifies the mask to be used with the reply. The $1 is the item name.

ITEMS – Specifies the mask to be used with the reply. The $2 is a list of items all in the same word.

WORD – Specifies the mask to be used with the reply. The $3 is the address.

EXPECT – Specifies the expected result. The $4 is any arithmetic expression which expresses the

.

.

Example:

AUPULSE

expected result.

WORD(FSISAM),EXPECT(1AUDAT6)

This statement control pulses the auxiliary unit under test and forms a 24-bit mask for the restarting 7
reply and compares the result to the value of 1AU1DAT6.

AURPLY

4.32 The description of the AURPLY statement includes:

Function:

The AURPLY statement initializes the auxiliary unit buffer register (AUISWR) with the desired data
pattern and clears all error sources.

Format: -,

AURPLY PATTERN($l)

Characteristics of Parameters:

PATTERN – Specifies the data pattern. The $1 is any 24-bit value to be written into the AUISWR in
the auxiliary unit.

Example:
‘-3

AURPLY PATTERN(O(0))

This statement writes octal O into AUISWR in the auxiliary unit under diagnosis and clears all error
‘T

sources.

Page 40

1SS4, SECTION 254-280-040

r= AUSTADD

4.33 The description of the AUSTADD statement includes:

Function:

The AUSTADD statement is used to specify the value of the 22 bits of the auxiliary unit store address
bus and to specify the value of the read bit of the store address group (bit 22) as either 1 or O. This
initializes the store address register in the auxiliary unit and causes the auxiliary unit to transmit the.
desired store address to the central control.

Format:.

,/-.,

/-’

.

.

P

AUSTADD PATTERN($1),READBIT($2)

Characteristics of Parameters:

PATTERN –

READBIT –

Example:

Specifies the data pattern. The $1 is any 22-bit value used to specify the value of the 22
store address bits of the auxiliary unit bus. If 24 bits are specified, bits 22 and 23 are
zeroed.

Specifies the value of the read bit of the store address group (bit 22) as either 1 or O;the
write bit of the store address group (bit 23) is the opposite value of the read bit. The $2 is
O or 1.

AUSTADD PATTERN (O(17777775)),READBIT(0)

This statement initializes the store address register in the auxiliary unit and causes the auxiliary unit
to transmit octal 17777775 in bits 21 through O; O in bit 22 and 1 in bit 23 to the central control.

AU_XOVER

4.34 The description of the AU_XOVER statement includes:

Function:

The AU_XOVER statement specifies which auxiliary unit is to be used to test for cross-over of enable
and store access permitted (SAP) leads between central control and the auxiliary units.

Format:

AU.XOVER $1,$2, SAP

Characteristics of Parameters:

$1 – Specifies auxiliary unit type by mnemonic symbol such as lXLUFS for file store or lXLUDUS
for DUS.

$2 – Specifies auxiliary unit member number by decimal number.

SAP – If specified, a SAP cross-over test is made. If not specified, an enable test is made.

Page 41

SECTION 254-280-040

Example:

AU.XOVER lXLUFS,l,SAP

This statement specifies that FS1 is to be used in the SAP cross-over test.

BUSACT

4.35 The description of the BUSACT statement includes:

Function:

The BUSACT statement tries to configure the specified

.

*

call store or program store bus active. If the ,“Y—
specified bus is the active bus, no action is taken. If the specified bus is out of service, a message is
printed on the input/output terminal.

Format:

BUSACT ABUS($1),COMM($2)

Characteristics of Parameters:

ABUS – Specifies the bus desired active. The $1 is O or 1.

COMM – Specifies the community. The $2 is program store or call store.

BUSACT ABUS(0),COMM(PS)

This statement tries to configure the program store bus O active. If program store bus O is active, no
action is taken. If program store bus O is out of service, a message is printed on the input/output
terminal.

CCAAS.ST

4.36 The description of the CCAAS_ST statement includes:

Function:

The CCAAS_ST statement initializes all standby central control address source registers, The standby
central control auxiliary unit send address register (AAS) contains the specified call store or program
store address. All other standby central control address source registers contain the complement of the
specified address. This statement also sets the auxiliary unit sequencer step flag, puts the auxiliary unit
sequencer into state 1, and writes the value of the address parity bit (PKA) which is calculated by the
statement, and sets the AASR and/or the AASW bit in the auxiliary unit verify receive group (VRG)
register, and the MTCPS or MTCCS bit in the central control error summary register (CES) if M is
specified in the OPTIONS parameter. Certain standby central control registers are initialized so that
the standby central control is ready to address the program store or central control from the AAS.

n

Page 42

1SS4, SECTION 254-280-040

Format:

CCAAS_ST ADD($1),0PTIONS($2),INHCLK($3)

Characteristics of Parameters:

.

.

/--’.

ADD – Specifies the call store or program store address to be written. The $1 is any arithmetic
expression which expresses the complete call store or program store address.

OPTIONS – Specifies the mode, parity, and store timing during the read (ML) instruction. The ML

INHCLK –

instruction is described in Section 254-280-020, Assembly Language-Description, 1A
Processor. The $2 is a list of options. Table A is a list of options for the MS and ML
instructions.

If specified, specifies a clock phase to be inhibited during the test. The $3 is 45S65, 7T9,
8TIO, or 12T0.

Example:

CCAAS.ST ADD(lDGCS I 1DGK3 I lDGAO),OPTIONS(M,R), INHCLK(45S65)

This statement initializes the standby central control to write into the address resulting from the
ORing of the values of lDGCS, 1DGK3, and lDGAO, using the maintenance read with the 45S65 clock
inhibited.

CCARR_ST

4.37 The description of the CCARR_ST statement includes

Function:

The CCARR_ST statement initializes the following standby central control registers:

.

.

(a)

(b)

(c)

(d)

(e)

(f)

(E!)

(h)

(i)

(j)

Memory address decoder flip-flops (MSFS) with IDLEPS or IDLECS set

Instruction fetch register (IFR) to indicate a full stack

Auxiliary unit and central control block counters (ABK) with BLKAUOV and BLKAU set

Auxiliary unit miscellaneous group B (AMB) with auxiliary unit sequencer in second state and
AUQS set

Auxiliary unit store address register (AAS) contains program store or call store address

Auxiliary unit verify received group (VRG) with write (W) and address parity bit (PKA) set

Auxiliary unit reply register (ARR) with desired data

Data buffer regist~r (BR) with complement of desired data

Auxiliary unit enable verify expect group (EVG) with correct data parities

Clock error group register (CLE) to inhibit the specified clock phase.

Page 43

. . .—

SECTION 254-280-040

Format:

CCARR.ST ADD($l),REG_INIT($2),INHCLK($3)

Characteristics of Parameters:

ADD – Specifies the call store or program store address. The $1 is any arithmetic expression which
expresses the complete address.

REG_INIT – Specifies the data. The $2 is any arithmetic expression which expresses the data.

INHCLK – If specified, specifies a clock phase to be inhibited during the test. The $3 is 45S65, 7T9,
8TIO, or 12T0.

Example:

CCARR_ST ADD(lDGCS I lDGKO I lDGAO)),REG_INIT(lDGD77)

This statement initializes the standby central control registers. The AAS will contain the address
resulting from ORing the values of lDGCS, lDGKO, and lDGAO. The ARR will contain the value of
1DGD77. The BR will contain the complement of the value of 1DGD77.

CCATOTST

4.38 The description of the CCATOTST statement includes:

Function:

The CCATOTST statement starts the central control analog timer, waits a specified amount of time,

then tests to verify that the analog timer timeout did or did not occur.

Format:

CCATOTST DELAY= $1,TIMEOUT=$2

Characteristics of Parameters:

DELAY – Specifies the delay time before the test. The $1 is the number of milliseconds to delay. .

TIMEOUT – Specifies the expected result of the test. The $2 is YES or NO.
-,,

Example:

CCATOTST DELAY = 125, TIMEOUT = YES

This statement starts the analog timer, waits 125 ms, then tests that an analog timer timeout did occur.

Page 44

1SS4, SECTION 254-280-040

CCAUBRQ

4,39 The description of the CCAUBRQ statement includes:

Function:

The CCAUBRQ statement starts an auxiliary unit sending bus requests to the central control. This
statement is used by the central control diagnostic auxiliary unit bus testing phases. The auxiliary unit
to be used is specified through the auxiliary unit status words stored in the diagnostic call store scratch.
area. The following call store words contain the following information:

DGIGCPADDR – Unit generate control pulse (GCP) address.

,P.

,,

.

.

, ,p

DGIAUKCODE – Unit KCODE

DGIAUUTMN – Unit type and member number.

Format:

CCAUBRQ

Characteristics of Parameters:

This statement has no parameters.

Example:

CCAUBRQ

This statement starts the auxiliary unit, specified in the auxiliary unit status words in the diagnostic
call store scratch area, sending bus requests to the central control.

CCAUINIT

4.40 The description of the CCAUINIT statement includes:

Function:

The CCAUINIT statement initializes the auxiliary unit bus system for a test segment of the central
control diagnostic auxiliary unit bus tests.

Format:

CCAUINIT BUSINH

Characteristics of Parameters:

BUSINH – If specified, the contents of scratch word DG1DTSCR4 is written into the standby central
control buffer pulse source (BPS) register, thus establishing the bus inhibit condition
desired during the test segment.

Page 45

4@?.?@2

CCAUINIT

This statement initializes the auxiliary unit bus system for a test segment of central central diagnostic
auxiliary unit bus tests. T,

CCAURSTR

4.41 The description of the CCAURSTR statement includes:
.

Function:

The CCAURSTR statement restores the auxiliary unit system after a test segment of the central
-,

control diagnostic auxiliary unit bus tests.

Format:

CCAURSTR

Characteristics of Parameters:

This statement has no parameters.

Example:

CCAURSTR

This statement restores the auxiliary unit system after a test segment of the central control diagnostic
auxiliary unit bus tests.

CCAUSTAT

4.42 The description of the CCAUSTAT statement

Function: - ‘,

The CCAUSTAT statement gets an auxiliary unit status for the central control diagnostic auxiliary
unit bus testing phases. Status is derived by an auxiliary unit fault recovery (AUFR) subroutine. Given

.

a unit type number and a member number, the following call store words will be updated to reflect the
status of the corresponding units:

DGIKCODE – Contains
DGIAUSTAT – Contains
DGIAUAXA – Contains
DGIGCPADDR – Contains
DGIAUPOS – Contains
DGIAUUTMN – Contains
DGIAUCTRL – Contains

the KCODE of the unit.
the AUFR status of the unit.
the auxiliary block table address of the unit.
the GCP address of the unit.
the mask of the unit’s
unit type and member
odd KCODE flag.

central control register position.
numbers.

Page 46

1SS4, SECTION 254-280-040

Format:

CCAUSTAT UTYN(SCR)

CCAUSTAT UTYN($1),MEMN($2)

.

Characteristics of Parameters:

UTYN – Specifies the unit type number. If SCR is specified, the call store scratch word
DGIAUUTMN contains the unit type and member number. The $1 is the unit type, usually
specified with symbols such as lXLUFS for file store or lXLUDUS for DUS.

MEMN – Specifies the member number. The $2 is O, 1, or 3.

.

.

If-’

CCAUSTAT UTYN(lXLUDUS),MEMN(l)

This statement gets the status of the DUS 1 for the central control diagnostic auxiliary unit bus testing
phases.

CC81TEST

4.43 The description of the CCBITEST statement includes:

Function:

The CCBITEST statement causes the active central control to do a series of ten write/read operations
into the standby central control register specified. The data for each write operation is one of a group of
five general-purpose bit patterns and their complements which are masked with the mask of the
read/write items of the register being tested. Following each of the ten writes, a read operation passes
the contents of the standby central control register, the mask of its read/write items, the expected
results, and the data originally written to the DCON program for the processing of raw results.

The ten general-purpose bit patterns are as follows:

SYMBOL PATTERN PATTERN(–)

lDG.BPAT1 25252525 52525252
lDG_BPAT2 31463146 46314631
lDG_BPAT3 36074170 41703607
lDG_BPAT3 40077600 37700177
lDG_BPAT5 77700000 00077777

Format:

CCBITEST $1

Characteristics of Parameters:

$1 – Specifies a register in the standby central control without the prefix ST1. The lDG_RW_REG is
defined in Datapool.

Page 47

SECTION 254-280-040

Example:
?

CCBITEST BCO

This statement causes the active central control to write/read ten bit patterns into the bit control
register O (BCO) in the standby central control.

CCBR_ST

4.44 The description of the CCBR-ST statement includes
.

Function: .

The CCBR_ST statement initializes the standby central control to send data to the desired program
store or call store. The address is loaded in the standby central control X register (XR); the instruction
is loaded in the buffer order word register left-half (BOL) register, and the data is loaded in the G
register (GR) and data buffer register (BR). Also, this statement writes the complement of the specified
data into the auxiliary unit reply register (ARR).

Format:

CCBR_ST ADD($l),REG_INIT($2),01’TIONS($3),INHCLK($4)

Characteristics of Parameters:

ADD – Specifies the call store or program store address. The $1 is any arithmetic expression which
expresses the address.

REG_INIT – Specifies the data to be written. The $2 is any arithmetic expression which expresses the
data.

OPTIONS – Specifies the mode, parity, and store timing during the write (MS) instruction. The MS
instruction is described in Section 254-280-020, Assembly Language—Description, 1A
Processor. The $3 is a list of options. Table A is a list of options for the MS and ML
instructions.

INHCLK – If specified, specifies a clock phase to be inhibited during the test. The $4 is 45S65, 7T9,
8TIO or 12T0.

Example:

CCBR_ST ADD(lDGCS I lDGKO I lDGAO),REG_INIT(lDGD77)jOPTIONS(W,IPl,IP2),

INHCLK(8TIO)

This statement loads the address resulting from ORing the values of lDGCS, lDGKO, and lDGAO into
the standby call store XR; the send instruction is loaded into the standby central control BOL, the value
of 1DGD77 is loaded in the standby central control GR and BR; and the complement of the value of
1DGD77 is loaded into the standby central control ARR. The write is performed with the W, IP1, and
IP2 options. Clock phase 8TIO is inhibited.

Page 48

.

,/-.

m Cccl&

4.45 The description of the CCCLR statement includes

Function;
n

The CCCLR statement clears most registers of the standby central control & any of the four areas
(INAD, U13MB, BB, AU) specified.

.
Format:

CCCLR AREA($l)

Characteristics of Parameters:

AREA – SDecifies the area in the standbv central control to be cleared. The $1 is either ALL or any

,/---

.

+

INAD –

c~mbination of the following INAD, UBMB, BB, AU.

The registers in the standby central control instruction address area are cleared in the
followi~g order

(1)
(2)

(3)
(4)

(5)

(6)
(7)

(8)

(9)
(lo)
(11)

Order word register (OW)
Buffer order word register right-half (BOR)
Half word register (HWR)
Auxiliary buffer word register left-half (ABL)
Save data register (SDA)
Index adder augend register (IA)
Index adder addend register (ID)
Add-one register (AOR)
Auxiliary current register (ACR)
Save current address register (SCA_B)
Save program address register (SPA_B).

UBMB – The registers in the standby central control masked and unmasked bus area are cleared in
the following order:

(1) L register (LR)
(2) F register (FR)
(3) G register (GR)
(4) K register (KR)
(5) X register (XR)
(6) Y register (YR)
(7) Z register (ZR)
(8) J register (JR)
(9) Peripheral unit enable register (ER)

(10) P register’s most significant bits (PRM_B)
(11) P register’s least significant bits (PRL)
(12) Central pulse distributor (CDP) reply register (RR)
(13) Stack register (SR)
(14) Argument register (AG)
(15) Sign and homogeneity flip-flops (CF)
(16) Size displacement register (SDR).

Page 49

\.——

SECTION 254-280-040

BB – The registers in the standby central control buffer bus area are cleared in the following
order

Page 50

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(lo)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

Central control error summary register (CES)
Interrupt level activity flip-flop (ILA)
Interrupt level request register (ILR)
Interrupt inhibit register (INH)
Interrupt request register (INJ)
Interrupt sequence register (INR)
Interrupt source register (INS)
Internal timer register (ITR)
Millisecond clock (MCL)
Processor configuration sanity timers (SAT)
Peripheral unit error summary (PES)
Processor configuration control register (PCR)
Clock error group (CLE) register
Central control status flip-flop (CSC)
Peripheral unit sequencer control (PSC)
Instruction fetch register (IFR)
Instruction execution register (IER)
Memory address decoder flip-flop (MDF)
CDP diagnostic and echo register (DE)
Stack counter (SC_B)
Peripheral matcher O (PMO)
Peripheral matcher 1 (PM1)
Lower protected area bound register (LPA)
Upper protected area bound register (UPA)
Activity flip-flop group (ACT)
Delay and limited run register (DLR)
Stop-start register (SSR)
Data buffer register (BR)
Buffer shadow register (BRS)
Inhibit buffer register (IBR).

AU – The registers in the standby central control auxiliary unit area are cleared in the following
order:

(1) Auxiliary unit and central control block counters (ABK)
(2) Auxiliary unit store access verify expect group (SVG)
(3) Auxiliary unit write slow register (AWS_B)
(4) Auxiliary unit enable buffer register (EBG)
(5) Auxiliary unit request inhibit group (RIG)
(6) Auxiliary unit reply register (ARR_B)
(7) Auxiliary unit write fast register (AWF_B)
(8) Auxiliary unit enable verify expect group (EVG)
(9) Auxiliary unit miscellaneous group A (AMA)

(10) Auxiliary unit miscellaneous group B (AMB)
(11) Auxiliary unit miscellaneous group C (AMC)
(12) Bit control register O (BCO)
(13) External match register O (MEO)
(14) Bit control register 1 (BC1)
(15) Internal match register 1 (Mll)
(16) External match register 1 (ME1)
(17) Match mode control register (MMR)
(18) Match summary register (MSR)

.

1SS4, SECTION 254-280-040

●

.

/’-%

.

(19) Matcher O control register (MOR)
(20) Matcher 1 control register (M1O)
(21) Internal match register O (MIO)
(22) Combined mask O (CMO)
(23) Combined mask 1 (CM1)
(24) Auxiliary unit store address register (AAS_B)
(25) Auxiliary unit request group (RQG)
(26) Auxiliary unit verify receive group (VRG).

ALL – All standby central control registers are cleared from the areas (INAD, UBMB, BB, AU).

Example:

CCCLR AREA(INAD,UBMB)

This statement clears the registers in the standby central control in the INAD and UBMB areas.

CCDAR_ST

4.46 The description of the CCDAR_ST statement includes:

Function:

The CCDAR_ST statement initializes all the standby central control address source registers. The
standby central control data address register (DAR) contains the specified program store or call store
address. All other standby central control address source registers contain the complement of the
specified address. This statement also initializes all necessary registers in the standby central control
to be ready to address the call store or program store from the DAR. The statement also initializes any
one of the central control-to-store clock syncs in the standby central control and/or certain central
control clock phases.

Format:

CCDAR-ST ADD($l),OPTIONS($2),INHSYNC($3),INHCLK($4)

Characteristics of Parameters:

ADD – Specifies the program store or call store address to be written. The $1 is any arithmetic
expression which expresses the complete program store or call store address.

OPTIONS –

INHSYNC –

INHCLK –

Specifies the mode, parity, and store timing during the MS or ML instructions. The ML
and MS instructions are described in Section 254-280-020, Assembly Language-Des-
cription, 1A Processor. The $2 is a list of options. Table A is a list of options for the MS
and ML instructions.

If specified, specifies one of the central control-to-store clock syncs in the standby
central control.The $3 is any one of three central control-to-store clock syncs 1T3, 3T5, or
5T7.

If specified, specifies a clock phase to be inhibited during the test. The $4 is 45S65, 7T9,
8TIO, or 12T0.

Page 51

SECTION 254-280-040

Example:

CCDAR.ST ADD(lDGCS I 1DGK3 I lDGAO),OPTIONS(IST),INHSYNC(1T3)

This statement initializes the standby central control address source registers with the address result-
ing from the ORing of the values of lDGCS, 1DGK3, and lDGAO. The 1ST option is used on the write
instruction. The 1T3 central control-to-store clock sync is inhibited.

CCGATE
,

4.47 The description of the CCGATE statement includes

Function: .

The CCGATE statement tests the standby central control. It writes the instruction fetch register (IFR), ?
buffer order word right and left-half (BOR and BOL) registers, program address register (PAR),
memory address decoder flip-flop (MDF), and any other registers specified in the statement. Then it
runs the standby central control the number of cycles specified (one if not specified), then reads
whatever registers are specified and compares it to the expected results. The statement also specifies
whether the test is active or inactive. Finally, it writes the standby central control pests and resets
STIFREZ in the buffer pulse source (BPS) register.

Format:

CCGATE $1

Characteristics of Parameters:

$1 – Specifies any combination

!@!@

of registers, data, cycle time, and active or inactive tests.

CCGATE(CYCl_SET= (GOCONDl)),A,WIFR(lDG–IFQ_-oo M(STIBOLVSTIBORV)),
ME RIFR(lDG_IFQ_Ol M(STICYC1))

This statement performs an active test. First it writes the value of lDG_IFQ_OO ORed with the mask of
the STIBOLV and STIBORV items into the IFR in the standby central control. It also writes data into
the BOL, BOR, PAR, and MDF. Then it runs the standby central control 1 cycle. It then reads the IFR
and compares the result with the value of lDG_IFQ_Ol ORed with the mask of STICYC1. It writes the
standby central control pests and resets STIFREZ.

CCGCPTST
T.,

4.48 The description of the CCGCPTST statement includes: .

Function:

The CCGCPTST statement is a special purpose statement used by the pulse source tests in the central
control diagnostic program. The CCGCPTST statement executes six tests of pulse source control of the
specified flip-flop. The statement results in three main strips of code: control code, relocatable code,
and the store subroutine. The tests are actually done in the relocatable code strip which can be
optionally executed from call store if specified in the statement. All GCPS to be generated by the
standby central control are done by the GCP_EXEC subroutine which is part of the relocatable code
strip. The relocatable code returns to the control code after every two tests with the L register (LR) and
L register shadow (LRS) containing the raw results of the two reads. All test results are stored by the
GCP_STOR subroutine. The actual order in which the tests are executed is test 2, test 1, test 4, test 3,
test 6, and test 5.

Page 52

1SS4, SECTION 254-280-040

.

Format:

CCGCPTST FF($1),$2,POINTS($3,$4),CSPGM

Characteristics of Parameters:

FF – Specifies the flip-flop. The $1 is the hardware name of the flip-flop which is controlled by GCP
pulses from either central control.

$2 – Symbol specifying the l-out-of-10 field information (board) for the GCP address, ie, BD15.

POINTS – Specifies the pulse point. The $3 is a symbol specifying the information for the two l-out-
of-6 fields (point) to set the specified flip-flop. The $4 is a symbol specifying the two l-out-
of-6 fields (point) to clear the specified flip-flop.

CSPGM – If specified, the relocatable code strip is copied to and executed from call store. This is
specified when the flip-flop being tested could interfere with program store communica-
tions in the active central control.

Example:

CCGCPTST FF(TCC),BD21,POINTS(33,32)

This statement tests the trouble in central control (TCC) fliwfloD by rmlsing it with GCP tmlses from
the board address BD21, points (33, 32).

CCINT_ST

4.49 The description of the CCINT_ST statement

Function:

.,. .“.

includes:

The CCINT_ST statement initializes the standby central control to send data to the desired program
store or call store during a D- or E-level interrupt. The interrupt sequencer is placed in state 4, and the
specified data is placed in the current address register (CAR) and the control flip-flops. The buffer
order word registers left and right halves (BOL and BOR) are loaded with an instruction to set the
ILRD or ILRE in the interrupt level request (ILR) register.

.

Format:

CCINT_ST ADD($l),REG_INIT($2)

Characteristics of Parameters:

ADD – Specifies the call store or program store address. The $1 is any arithmetic expression which
expresses the complete call store or program store address.

REG_INIT – Specifies the data to be written. The $2 is any arithmetic expression which expresses the
data.

Example:

CCINT_ST ADD(lDGCS) I lDGKO I 0(4011)),REG_INIT(lDG25)

This statement initializes the standby central control to write the value of 1DG25 into the address
resulting from ORing the values of lDGCS, lDGKO, and octal 4011 during an E-level interrupt.

Page 53

CCISOL

4.50 The description of the CCISOL statement includes:

Function:

The CCISOL statement performs central control isolation tests concerning program store or call store
buses. This test makes sure there is no crosstalk between bus Oand bus 1 of program store or call store
buses. This statement dynamically creates a small proglam and executes it from the opposite
community specified by bit 21 of ADD data; ie, call store if bit 21 is set. After executing this program,
test results are processed according to the TEST parameter. If the test is EN, the expected value is
RDATA; if the test is INH, the expected value is the complement of RDATA. The small program
created by this statement configures program store bus selection flip-flops (PBO and PBT) or call store
bus selection flip-flops (CBO and CBT), changes the original K-code of a test store to a desired K-code
specified in ADD data, and sets the maintenance flip-flop in a test store whose community is specified
by bit 21 of ADD data. The store location specified by the ADD data is initialized with data specified by
RDATA. This program also runs or stops the standby central control according to the STBCC parame-
ter. It executes an MS/ML instruction with options specified. The last thing the program does is to
restore system configuration and original store data. The CCISOL must be immediately preceded by a
central control-to-store initialization statement.

Format:

CCISOL TEST($l),STORE(ADD$2),RDATA($3),ACTCC(OPTIONS(W),WDATA($5)),STBCC(6),OPTIONS($7))

Characteristics of Parameters:

TEST – Specifies the manner in which the test results are to be processed. The $1 is INH or EN. If $1
is EN, the expected value is RDATA or WDATA. If $1 is INH, the expected value is the
complement of RDATA or WDATA.

STORE – Specifies the address of the store and the expected results.

ADD – Specifies the address of the store. The $2 is any arithmetic expression which expresses the
complete store address.

RDATA – Specifies the expected results for an address isolation test. The $3 is any arithmetic
expression which expresses the expected result.

ACTCC – Specifies the options and data for the MS/ML instruction executed by the active central
control. The MS and ML instructions are described in Section 254-280-020, Assembly Lan-
guage-Description, 1A Processor.

OPTIONS – Specifies the options for the MS/ML instruction. The $4 is any combination of options for
the MS/ML instruction. Table A is a list of options for the MS and ML instructions.

WDATA – Specifies the data for the MS instruction for a data isolation test. The $5 is any arithmetic
expression which expresses the data.

STBCC – Specifies whether the standby central control is to run and the options for the MS/ML
instruction. The MS and ML instructions are described in Section 254-280-020, Assembly
Language-Description, 1A Processor.

$6 – Specifies whether the standby central control is to run. The $6 is RUN or STOPPED.

OPTIONS – Specifies the options for the MS/ML instruction. The $7 is any combination of options for
the MS/ML instruction. Table A is a list of options for the MS and ML instructions.

Page 54

.

.

.

1SS4, SECTION 254-280-040

P

.

,/-%

.

CCISOL_TEST(EN STORE ADD lDGCS I 1DGK3 I 1DGAO),RDATA(1DGD25)),ACTCC
ME J’LL(OPTIO S(R,M)), TBC (RUN,OPTIONS(C,W,R))

This statement performs a central control address bus isolation test to make sure there is no crosstalk
between bus Oand bus 1 of the call store buses. A small program is created and executed in the program
store community. The store address is the result of ORing the values of lDGCS, 1DGK3, and lDGAO.
After the program has been executed, the result is compared to the value of 1DGD25. The small
program sets maintenance flip-flops in a call store test store. The store location at the address resulting
from ORing the values of lDGCS, 1DGK3, and lDGAO is initialized with the value of 1DGD25. This
program also runs the standby central control. The active central control executes an MS/ML instruc-
tion with R and M options, the standby central control executes an MWML instruction with C, W, and R
options.

CCMCP3P

4.51 The description of the CCMCP3P statement includes:

Function:

The CCMCP3P statement tests the standb central control millisecond clock (MCL) circuitry. The
6statement starts the delay and limited run (LR) sequencer in the standby central control. The opera-

tional clock error detector in the standby central control is then initialized and the operational clock
error detector indicator, analog timeout indicator and analog timer toggle inhibit flip-flop are cleared.
An 8-cycle (5.6 ms) delay is taken. During the delay, circuit functions of the standby central control
MCL may or may not occur, depending on the test being performed. No tests are generated by this
statement.

Format:

CCMCP3P

Characteristics of Parameters:

This statement has no parameters.

Ew?!@
CCMCP3P

This statement starts the DLR sequencer in the standby central control, then initializes the operational
clock error detector and clears the operational clock error detector indicato~, the analog timeout
indicator, and the analog timer toggle inhibit flip-flop. Then an 8-cycle delay M taken.

CCMUTIME

4.52 The description of the CCMUTIME statement includeg

Function:

The CCMUTIME statement searches for a nonbase test store in the community specified in the COMM
parameter. In the case of REC test and call store community or RECB test and call store community,
the statement searches for a test call store on the branch of call store reply bus specified by the TEST

{
arameter (ie, REC indicates call store reply bus branch A and RECB indicates call store reply bus
ranch B). The method of search is in two fields. First, a search b K-code for du licated stores is

E
1 Rerformed until maximum K-code is reached. If successful, the searc terminates. Ot erwise, a search

y member number is performed until maximum allowable member number for the office is reached.
Any member number which is out of service or contains base K-code is re “ected. After a test store is

ifound, this statement calculates delay constants depending on the type o test and community. If no
store is available, the delay constant is zero.

Page 55

_—

SECTION 254-280-040

Format:

CCMUTIME TEST($1),COMM($2)

Characteristics of Parameters:

TEST – Specifies the type of test. $1 is one of the following

RECI Receive test for program store and receive test on call store reply bus branch A
RECB: Receive test on call store reply bus branch B
TRAN Transmission test
ISOL Isolation test.

COMM 1 – Specifies the store community. The $2 is program store or call store.

Example:

CCMUTIME TEST(RECB),COMM(CS)

This statement searches for a test call store on branch B of the call store reply bus.

CCPAR_ST

4.53 The description of the CCPAR_ST statement includes:

Function:

The CCPAR_ST statement initializes all the standby central control address source registers. The
standby central control program address register (PAR) contains the specified call store or program
store address. All other standby central control address source registers contain the complement of the
specified program store or call store address. This statement also initializes all necessary registers in
the standby central control to be ready to address call store or program store from the PAR.

Format:

.

CCPAR_ST ADD($1),INHCLK($2)
m,

Characteristics of Parameters:

ADD – Specifies the call store or program store address to be written. The $1 is any arithmetic
.

expression which expresses the complete call store or program store address.

INHCLK – If specified, specifies a clock phase to be inhibited during the test. The $2 is 45S65,7T9,
.

8TIO, or 12T0.

Example:

CCPAR.ST ADD(lDGCS) I 1DGK34 I 1DGA77)

This statement initializes the standby central control to write at the address resulting from the ORing ‘
of the values of lDGCS, 1DGK34, and 1DGA77.

Page 56

1SS4, SECTION 254-280-040

CCPCCNPG

4.54 The description of the CCPCCNFG statement includes:

Function:

The CCPCCNFG statement can perform three functions:

(1)
●

.

(2)

(3)

The CCPCCNFG statement verifies that the processor configuration sequencer can be safely fired
from a specified processor configuration state. If base K-code is not duplicated, an entire set of
tests is aborted. A check is made that the program store which will be selected as base by the
processor configuration sequencer for the specified processor configuration state contains the
base K-code. If not, the next test is skipped.

The CCPCCNFG statement verifies that the standby central control is either all tests pass (ATP)
or conditional all tests pass (CATP) and that the demand processor configuration tests have been
entered via the proper input message. If the input message was incorrect, a message is printed on
the input/output terminal.

The CCPCCNFG statement will either set or reset the TCC flip-flop in the active central control or
restore it to the state it exhibited during the last PHASEINIT statement.

Format:

CCPCCNFG PCSTATE ($1), SKIPLAB($2), ABORTLAB($3)

DGNRUN ($4), ABORTLAB($3), TCC($5)

Characteristics of Parameters:

PCSTATE –

SKIPLAB –

Specifies the processor configuration counter state in which the next trigger is to occur.
The $1 is any symbolic processor configuration counter state.

Specifies the location to which a DTJUMP is made if the selected program store does not
c;ntain base K-code. The $2 is a label defined on a DTDEST statement immediately after
the next test.

ABORTLAB (used with PCSTATE) – If specified, specifies a location to which a DTJUMP is made to
abort the entire sequence of tests which will fire the processor configuration sequencer in
a configuration state. The $3 is a label defined in a DTDEST statement.

DGNRUN – Specifies that it is to be verified, that the standby central control is ATP or CATP, and
that the proper input message was entered for running the demand processor configura-
tion tests. The $4 is ATP or CATP.

ABORTLAB (used with DGNRUN) – If specified, specifies a location to which a DTJUMP is made to
terminate the diagnostic. The $3 is a label defined in a DTDEST statement.

TCC – If specified, specifies what action is to be performed on the TCC flip-flop in the active central
control. The $5 is one of the following

SET – TCC flip-flop is set
RESET TCC flip-flop is reset
RESTORE ~ TCC flip-flop is restored to the state it exhibited during the last PHASEINIT

statement.

Page 57

SECTION 254-280-040

Examdes:

(a)

(b)

CCPCINIT

CCPCCNFG PCSTATE(02), SKIPLAB(CCDG91.SKIPl),ABORTLAB(CCDG91_SKIP3)

This statement checks to see that K-code 20 is duplicated in the program store community. If not,
a DTJUMP to label CCDG91_SKIP3 will be made. If so, PSO is checked to see if it contains K-code
20. If not, a DTJUMP to label CCDG91_SKIP3 will be made.

CCPCCNFG DGNRUN(CATP),ABORTLAB(CCDG91A),TCC(SET)
.

This statement checks to see that all previous phases have run CATP (or ATP) and that the proper
input message for running the demand processor configuration tests are entered. If not, a
DTJUMP to label CCDG91A will be made and a message will be made and a message will be .

printed on the input-output terminal. The TCC flip-flop in the active central control is set.

4.55 The description of the CCPCINIT statement includes

Function:

The CCPCINIT statement initializes the processor configuration circuit in the standby central control.
The following registers are cleared: PC register (PCR), sanity timers (SATS), activity flip-flop group
(ACT), interrupt source register (INS), and interrupt level activity flip-flops (ILA). Also, the cable
driven inhibits may be set and/or the analog timer flip-flop toggled.

Format:

CCPCINIT CDINH,ATMRT

Characteristics of Parameters:

CDINH – If specified, sets the cable driven inhibits,

ATMRT – If specified, toggles the analog timer flip-flop.

@!!?U?@

CCPCINIT CDINH,ATMRT

This statement initializes the processor configuration circuit in the standby central control, clears the
PCR, SAT, ACT, INS, and ILA registers, sets the cable driven inhibits, and toggles the analog timer
flip-flop.

CCPCNOTR

4.56 The description of the CCPCNOTR statement includes:

Function:

The CCPCNOTR statement tests to see that no processor configuration source indicator flip-flops are
set in the absence of any processor configuration sources.

Page 58

-\

1SS4, SKTION 254-280-040

Format:

.

nr

.

.

CCPCNOTR

Characteristics of Parameters:

This statement has no parameters.

Example:

CCPCNOTR

This statement tests to see that no processor configuration source indicator flip-flops are set in the
absence of any processor configuration sources.

CCPCTRIG

4.57 The description of the CCPCTRIG statement includes:

Function:

The CCPCTRIG statement triggers the processor configuration circuitry in either the active or standby
central control and performs a cleanup operation. It is used when the diagnostic fires the analog clock
in either central control to ensure system sanity is not lost. If the processor configuration state counter
is in a configuration state, the statement which performs the processor configuration trigger is exe-
cuted from call store. Also, in this case, a status table is built describing which central control is active
and the state of the base program store and the two rovers both before and after the processor
configuration trigger. If the processor configuration trigger is executed from program store, only the
central control status is placed in the status table. After the before status is compiled and prior to the
program store trigger, the base and two rover program stores may be reconfigured for test purposes.
This statement generates O, 1, or 2 tests.

Format:

CCPCTRIG UNIT($l),SOURCE($2,BLOCK),STATE($3),VERIFY($4,NOT),SBYCLOCK($5)

,ROSET($6),COMPKC($6)

Characteristics of Parameters:

UNIT – Specifies the unit in which the processor configuration circuit is to be activated. The $1 is
ACTIVE or STANDBY.

SOURCE – Specifies the source of the processor configuration trigger. The $2 is DELIBERATE,
MATCH, PST, PCST, or NOTRIGGER. DELIBERATE causes a deliberate processor con-
figuration trigger. MATCH causes an activity match trigger. The PST causes a program
sanity timer trigger. The PCST causes a processor configuration sanity timer trigger.
NOTRIGGER causes the trigger action to be omitted. If specified, BLOCK causes the
selected source to be blocked from triggering the analog clock. BLOCK is specified only if
$1 is standby, $2 is DELIBERATE, PST, or PCST, and $3 is not a configuration state.

Page 59

SECTION 254-280-040

STATE – Specifies the processor configuration counter state in which the trigger is to occur. The $3 is
any symbolic processor configuration counter state. ‘T

VERIFY –

SBYCLOCK

If specified, that the processor configuration counter was incremented in the unit speci-
fied is verified. If NOT is specified, that the processor configuration counter was not
incremented is verified. The $4 is ACTIVE or STANDBY.

— If specified, that the operational clock in the standby central control is in the specified
state after the processor configuration sequence is verified. The $5 k RUNNING or
STOPPED. Also, may be used to start the operational clock in the standby central ,

control prior to the processor configuration sequence (no test is performed in this
case). The $5 is START.

.

ROSET – If specified, specifies the stores in which the RO flip-flop is to be set prior to the processor
configuration trigger. Any stores not listed will have the flip-flop cleared. The $6 is PSO T

RSO, RS1, or any combination. No preconfiguration is performed if ROSET is not specified.

COMPLC – If specified, specifies the stores in which the K-code is to be complemented prior to the
processor configuration trigger. The $6 k PSO, RSO, RS1, or RS1, or any combination. if
COMPKC is specified, ROSET must also be specified.

Examples:

(a)

(b)

CCPCTST1

CCPCTRIG_UNIT(STANDBY),SOURCE(PCST,BLOCK),STATE(W),VERIFY(STANDBY,
ME NOT), SBYCLOCK(RUNNING)

This statement triggers the standby central control processor configuration circuitry in processor
configuration counter state 00 from the processor configuration sanity timeout. The processor
configuration sanity timeout is blocked from triggering the analog clock. That the processor
configuration counter state is not incremented and that the operational clock is running in the
standby central control is verified.

CCPCTRIG UNIT (ACTIVE), SOURCE(DELIBRATE), STATE(15),ROSET(RS1),
COMPKC(PSO)

This statement deliberately triggers the active central control processor configuration circuitry in
processor configuration counter state 15 after the K-code in PSO is complemented. The RO flip-
flop is set in rover store 1 and cleared in rover store O and PSO.

-

4.58 The description of the CCPCTST1 statement includes:
.

Function:

The CCPCTST1 statement tests the operational clock stop-start actions of the processor configuration
sequencer. The operational clock should be stopped at PCP1 and restarted at PCP3 in nonswitch states.
A deliberate processor configuration trigger is generated in the standby central control and two tests
are performed to verify that the operational clock is first stopped and then started.

Format:

CCPCTST1

Page 60

1SS4, SECTION 254-280-040

Characteristics of Parameters:

r’-’

.

This statement has no parameters.

Example:

CCPCTST1

This statement tests the operational clock stop-start actions of the processor configuration sequencer.
A deliberate processor configuration trigger is generated in the standby central control and two tests
are performed to verify that the operational clock is first stopped and then started.

.

CCPHAPHB

4.59 The description of the CCPHAPHB statement includes:

Function:

The CCPHAPHB statement tests the active central control matcher hardware. Matchers O and 1
control registers (MCO and MC1) are initialized by prior DL-1 statements. This statement sets certain
active central control registers, starts the match sequencers, and then executes an instruction. The
instruction, during its execution, causes specific data to be present in the stack counter (SC_B) and data
address registers (DARs) during match phases A and B of matchers O and 1, respectively. This data is
matched automatically by the matchers and then the match sequencers are stopped. No test results are
generated; they are obtained by succeeding DL-1 statements.

,n.

,/-

.

.

Format:

CCPHAPHB

Characteristics of Parameters:

This statement has no parameters.

Example:

CCPHAPHB

This statement causes specific data to be present in the SC_B and DAR registers during match phases
A and B of central control matchers O and 1, respectively.

CCPHBPHA

4.60 The description of the CCPHBPHA statement includes:

Function:

The CCPHBPHA statement tests the active central control matcher hardware. Matchers O and 1
control registers (MCO and MC1) are initialized by prior DL-1 statements. This statement sets certain
active central control registers, starts the match sequencers, and then executes an instruction. The
instruction, during its execution, causes specific data to be present on the masked bus (MB) and
unmasked bus (UB) during match phases B and A of matchers O and 1, respectively. This data is
matched automatically by the matchers and then the match sequencers are stopped. No test results are
generated; they are obtained by succeeding DL-1 statements.

Page 61

SKTION 254-280-040

Format:

CCPHBPHA

Characteristics of Parameters:

This statement has no parameters.

Example:

CCPHBPHA

This statement causes specific data to be present on the MB and UB during match phases B and A of
central control matchers O and 1, respectively.

\
CCPHBPHB

4.61 The description of the CCPHBPHB statement includes:

Function:

The CCPHBPHB statement tests the active central control matcher hardware. Matchers Oand 1 control
registers (MCO and MC1) are initialized by prior DL-1 statements. This statement sets certain active
central control registers, starts the match sequencers, and then executes an instruction. The instruc-
tion, during its execution, causes specific data to be present on the MB and in the data address register
(DAR) during match phases B and B of matchers Oand 1, respectively. This data is matched automati-
cally by the matchers and then the match sequencers are stopped. No test results are generated; they
are obtained by succeeding DL-1 statements.

Format:

CCPHBPHB

characteristics of Parameters:

This statement has no parameters.

Example:

CCPHBPHB

This statement causes specific data to be present on the MB and in the DAR during match phases B and
B of central control matchers O and 1, respectively.

CCPHBPHC

4.62 The description of the CCPHBPHC statement includes:

Function:

The CCPHBPHC statement tests the active central control matcher hardware. Matchers Oand 1 control
registers (MCO and MC1) are initialized by prior DL-1 statements. This statement sets certain active
central control registers, starts the match sequencers, and then executes an instruction. The instruc-
tion, during its execution, causes specific data to be present on the MBs and UBS during match phases B
and C of matchers Oand 1, respectively. This data is matched automatically by the matchers and then
the match sequencers are stopped. No test results are generated. They are obtained by succeeding DL-1
statements.

Page 62

1SS4, SECTION 254-280-040

Format:

CCPHBPHC

Characteristics of Parameters:

This statement has no parameters.

@?!@

CCPHBPHC

This statement causes specific data to be present on the MB and UB during match phases B and C of
central control matchers O and 1, respectively.

CCPHCPHB

4.63 The description of the CCPHCPHB statements includes

Function:

The CCPHCPHB statement tests the active central control matcher hardware. Matchers Oand 1 control
registers (MCO and MC1) are initialized by prior DL-1 statements. This statement sets certain active
central control registers, starts the match sequencers, and then executes an instruction. The instruc-
tion, during its execution, causes specific data to be present in the stack counters (SC_B) and data
address (DAR) registers during match phases of C and B of matchers Oand 1, respectively. This data is
matched automatically by the matchers and then the match sequencers are stopped. No test results are
generated; they are obtained by succeeding DL-1 statements.

Format:

CCPHCPHB

Characteristics of Parameters:

This statement has no parameters.

CCPHCPHB
,n

This statement causes specific data to be present on the SC_B and DAR during match phases C and B of
central control matchers O and 1, respectively.

.

CCPULSE

.
4.64 The description of the CCPULSE statement includes

f’=
Function:

With the GCP instruction, the CCPULSE statement causes the active central control to pulse the point
specified in the point parameter. The second and third parameters produce a pulse/read operation. If
the pulse/read option is specified by the second and third parameters, the active central control

,- performs a read of the active central control immediately following the pulse instruction. The GCP
instruction is described in Section 254-280-020, Assembly Language—Description, 1A Processor.

Page 63

SECTION 254-280-040

Format:
‘n

ITEMS($2) NOSTORE

CCPULSE POINT($l),ITEMS($3),EXPECT($5) —
WORD($4)

Characteristics of Parameters:

POINT – Specifies the symbolic
symbolic reference.

●

reference to any of the 360 possible pulse points. The $1 is the

ITEM – Specifies the symbolic location of an item in the active central control. The $2 is an item.

ITEMS – Specifies the symbolic locations of items in the active central control. The $3 is a list of
items all in the same word.

WORD – Specifies the symbolic location of a word in the active central control. The $4 is the address.

EXPECT – Specifies the expected results. The $5 is any arithmetic expression that expresses the
expected results.

NOSTORE – No raw data will be stored.

Example:

CCPULSE POINT(lPP.CLSBY)

This statement causes the active central control to pulse the point lPP_CLSBY.

CCRDZ

4.65 The description of the CCRDZ statement includes

Function:

The CCRDZ statement causes the active central control to perform a series of read operations of certain
areas in the standby central control. The results from the read are passed along with the mask of the .

read/write items to the DCON where nonzero results are recorded as failures. This statement is
generally used with the CCCLR statement.

Format:

CCRDZ AREA($l)

Characteristics of Parameters:

AREA – Specifies the area of this standby central control. The $1 is either ALL or any combination of
INAD, UBMB, BB, and AU.

Page 64

1SS4, SECTION 254-280-040

f-

P

.

.

#-\

f-’

.

INAD – The read of the read/write items of the registers of the instruction address area in the
standby central control. The registers and the order in which they are tested follow

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(lo)
(11)
(12)
(13)
(14)
(15)

Order word register (OW)
Buffer order word register left-half (BOL)
Buffer order word register right-half (BOR)
Half word register (HWR)
Auxiliary buffer word register right-half (ABR)
Auxiliary buffer word register left-half (ABL)
Data address register (DAR)
Save data address register (SDA)
Index adder augend register (IA)
Add-one register (AOR)
Auxiliary current address register (ACR_B)
Current address register (CAR_B)
Save current address register (SCA_B)
Save program address register (SPA_B)
Program address register (PAR_B).

UBMB – The read of the read/write items of the registers of the mask and unmasked bus area in the
standby central control. The registers and the order in which they are tested follow:

(1) L register (LR)
(2) F register (FR)
(3) G register (GR)
(4) K register (KR)
(5) X register (XR)
(6) Y register (YR)
(7) Z register (ZR)
(8) J register (JR)
(9) Peripheral unit enable register (ER)

(10) P register’s most significant bits (PRM_B)
(11) P register’s least significant bits (PRL)
(12) Central pulse distributor (CPD) reply register (RR)
(13) Stack register (SR)
(14) Argument register (AG)
(15) Sign and homogeneity flip-flips (CF).

BB – The read of the read/write items of the registers of the buffer bus area in the standby central
control. The registers and the order in which they are tested follow:

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(lo)
(11)

Central control error summary register (CES)
Peripheral matcher O (PMO)
Peripheral matcher 1 (PM1)
Interrupt level activity flip-flops (ILA)
Interrupt level request register (ILR)
Interrupt inhibit register (INH)
Interrupt request register (INJ)
Interrupt sequence register (INR)
Interrupt source register (INS)
Millisecond clock (MCL)
Processor configuration sanity timers (SAT)

Page 65

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

Peripheral unit error summary (PES)
Processor configuration control register (PCR)
Central control status flip-flop (CSC)
Peripheral unit sequencer control (PSC)
Instruction fetch register (IFR)
Instruction execution register (IER)
Memory address decoder flip-flop (MDF)
CPD diagnostic and echo register (DE)
Stack counter (SC_B)
Lower protected area bound register (LPA)
Upper protected area bound register (UPA)
Delay and limited run register (DLR)
Buffer register shadow (BRS).

.-
AU – The read of the read/write items of the registers of the auxiliary unit area in the standby

central control. The registers and the order in which they are tested follow:

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(lo)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

Auxiliary unit and central control block counters (ABK)
Auxiliary unit store access verify expect group (SVG)
Auxiliary unit write slow register (AWS_B)
Auxiliary unit enable buffer register (EBG)
Auxiliary unit request inhibit group (RIG)
Auxiliary unit reply register (ARR_B)
Auxiliary unit write fast register (AWF_B)
Auxiliary unit enable verify expect group (EVG)
Auxiliary unit miscellaneous group A (AMA)
Auxiliary unit miscellaneous group B (AMB)
Auxiliary unit miscellaneous group C (AMC)
Bit control register O (BCO)
External match register O (MEO)
Bit control register 1 (BC1)
Internal match register 1 (MI1)
External match register 1 (ME1)
Match mode control register (MMR)
Match summary register (MSR)
Matcher O control register (MOR)
Matcher 1 control register (MIR)
Combined mask O (CMO)
Combined mask 1 (CM1)
Internal match register O (MIO)
Auxiliary unit store address register (AAS_B)
Auxiliary unit request group (RQG)
Auxiliary unit verify receive group (VRG).

.

ALL – The read of read/write items of the registers from the areas (INAD, UBMB, BB, AU) in the
standby central control.

Example:

CCRDZ AREA(INAD,UBMB)

This statement causes the active central control to perform a series of read/write operations of the
INAD and UBMB areas in the standby central control.

Page 66

1SS4, SECTION 254-280-040

.

/-’

,/=

.

●

CCREAD

4.66 The description of the CCREAD statement includes

Function:

The CCREAD statement causes the active central control to read an item, a group of items (of the same
address), or a word in the standby central control. If EXPECT is specified, the reply, the mask, and the
expected results are passed to the DCON program for processing raw results. If NOSTORE is specified,
only the read is performed.

Format:

ITEM($l), NOSTORE
CCREAD ITEMS($2),EXPECT($4)

WORD($3)

Characteristics of Parameters:

ITEM – Specifies the symbolic location of an item in the standby central control. The $1 is the item
name.

ITEMS – Specifies the s mbolic location of a list of items in the standby central control. The $2 is a
rlist of items a 1 in the same word.

WORD – E@&f:s the symbolic location of a word in the standby central control. The $3 is the

EXPECT – Specifies the expected results of the read. The $2 is any arithmetic expression that ex-
presses the expected results.

NOSTORE – No raw data will be stored.

Example:

CCREAD WORD(STIXR),EXPECT(-0)

This statement causes the active central control to read the X register (XR) in the standby central
control. The expected results are all 1s (-O).

CCREC

4.67 The description of the CCREC statement includes

Function:

The CCREC statement dynamically creates a small program and executes it from the opposite commu-
nity specified by bit 21 of ADD data (ie, call store if bit 21 is set). Before the small program is generated,
the program store or call store bus selection flip-flop PBO or CBO is reset. If the test is INH, the
program store or call store bus selection flip-flop PBT or CBT is set; if the test is EN, the PBT or CBT is
reset. If the office is a 2-wire office, TOLL in the upper protected area bound register (UPA) is set.
After the program is executed, TOLL, PBO or CBO, and PBT or CBT are reset. Then test results are
processed according to the TEST parameter. If the testis EN, the expected value is RDATA; if the test
is INH or CLK, the expected value is the complement of RDATA. The small program created by this
statement configures PBO and PBT or CBO and CBT, changes the original K-code to a desired K-code
specified in ADD data, and sets the maintenance flip-flop in a test store whose community is specified
by bit 21 of ADD data. Store location specified by the ADD data is initialized with data specified by
RDATA data. Then the program starts the standby central control operational clock by writing into its
delay and limited run register (DLR). The standby central control executes the second cycle of a load (L)
instruction. The last thing the program does is restore system configuration and original store data.
The CCREC must be immediately preceded by a store-to-central control initialization statement.

Page 67

.

5ECTION 254-280-040

Format:

CCREC TEST($l,$2),STORE(ADD($3),RDATA($4)),ACTCC(ML,0PTIONS($5)),STBCC(DEST($6))

Characteristics of Parameters:

TEST – Specifies the manner in which the test results are to be processed. The $1 is INH, CLK, or EN.
If $1 is EN, the expected value is RDATA. If $1 is INH or CLK, the expected value is the
complement of RDATA. The CLK should be used if a central control operational clock phase
has been initiated. If specified, $2 is ITS, and causes the parity bits PI and P2 to be zero
independent of data.

STORE – Specifies the address of the store and the expected results.

ADD – Specifies the address of store. The $3 is any arithmetic expression which expresses the com-
plete store address.

RDATA – Specifies the expected result. The $4 is any arithmetic expression which expresses the

ACTCC –

expected result.

Specifies the options for the ML instruction executed by the active central control. The ML
instruction is described in Section 254-280-020, Assembly Language—Description, 1A Pro.
~essor.

~
OPTIONS – Specifies the options for the ML instruction. The $5 is any combination of options for the ‘ “

ML instruction. Table A is a list of options for the MS and ML instructions.

STBCC – Specifies the destination register for the second half of the load instruction executed by the
standby central control.

DEST – Specifies the destination register. The $6 is any of the following

(a)
(b)
(c)
(d)

Auxiliary buffer order word register, right-half (ABR)
Auxiliary buffer order word register, left-half (ABL)
Data buffer register (BR)
Auxiliary unit write register(s) (AUW).

Example:

CCREC.TEST(EN), STORE(ADD(lDGCS I 1DGK3 I 1DGA1),RDATA(1DGD52)),
ME ACTCC(ML,OPTIONS(R,M,IPKA)),STBCC(DEST(BR))

This statement creates and executes a small program in the program store community. The store
address is the result of ORing the values of lDGCS, 1DGK3, and lDGA1. After the program has been 7

executed, the result is compared to the value of 1DG52. The small program configures CBO and CBT
and sets maintenance flip-flops in a call store test store. The store location at the address resulting
from ORing the values of lDGCS, 1DGK3, and lDGA1 is initialized with the value of 1DGD52. This
program also starts the standby central control. The active central control executes an ML instruction
with R, M, and IPKA options; the standby central control executes the second half of an L instruction,
putting the value of 1DGD52 in the standby central control BR.

Page 68

1SS4, SECTION 254-280-040

CCRISTEP

4.68 The description of the CCRISTEP statement includes:

Function:
,n%

.

The CCRISTEP statement puts the standby central control in step with the active central control to
execute the code specified in the statement. The code is executed three times, For the first two times,

, directed matching is set up. For the third time routine matching is set up. The instructions to be
matched are specified by the parameters, as well as what is matched during directed matching. For the
first two passes through the code, the match summary register (MSR) of the standby central control is
passed to the DCON program for outputting with the expected results = M(STIW) and a mask =
M(STIMH, STIMOI, STIY, STIX, STIW, STIS, STIL, STIT). For the third pass, the standby MSR is
passed to DCON for outputting with the expected results = M(STIW) and a mask = M(STIMIE,
STIMII, STIMOE, STIMOI, STIY, STIX, STIW, STIS, STIL, STIT). The MSR of the active central
control is also passed to DCON with expected result = O and a mask= M(ACIMIE, ACIMII, ACIMOE,
ACIMOI).

Format:

CCRISTEP $1,$2,1NSTR($3($4))

Characteristics of Parameters:

$1 – Specifies a quoted test string which is a descriptive title of the particular test.

$2 – Specifies any one of the valid instruction types: Y, X, W, S, L, or T. This is used to specify the
directed matching MATCH points. Refer to Section 254-201-030 (Central Control–Description)
and Section 254-201-031 (Central Control—Theory) for more information.

INSTR – Specifies the 1A Processor assembly language pseudo-operation and instruction and speci-
fies if matching is to be performed. The 1A Processor assembly language pseudo-operations
and instructions are described in Section 254-280-020, Assembly Language—Description, 1A
Processor. The $3 is one of the following

MLONG – Matched instruction, FLONG on
RLONG – RELLOAD on, FLONG on
MRLONG – Matched instruction, RELLOAD on, FLONG on
MSHORT – Matched instruction, FSHORT on
RSHORT – RELLOAD on, FSHORT on
MRSHORT – Matched instruction, RELLOAD on FSHORT on
LONG – FLONG on
SHORT – FSHORT on.

The $4 is the 1A Processor assembly language instruction to be executed. The INSTR parameter may be
repeated any number of times.

&wP!s

CCRISTEP_’’TEST OF LOAD (L02A)’’,L,INSTR(LW X,MEM3)),
ME INSTR(MLONG(L GJ, O(X)))

This statement puts the standby central control in step with the active central control to execute two
instructions. The second instruction will be matched using the L-type match points.

LW X,MEM3
L GJ,O(X)

Page 69

SECTION 254-280-040

Both instructions are Idescribed in Section 254-280-020, Assembly Language +lescription, 1A Proces- -,
ser. Both instructions are long, the LW instructions uses relative addressing and the L instruction is a
matched instruction. These instructions are executed twice and the L-type INSTR is matched by direct
matching. Then the instructions are executed and the L-type INSTR is matched by routine matching.

‘-’l
CCRUN

4.69 The description of the CCRUN statement includes
.

Function:

The CCRUN statement causes the active central control to set STILIMIT in the delay and limited run
register (DLR) of the standby central control to the number of cycles specified in the CYCLE parame-
ter. The standby central control is then started by a write to the buffer pulse source (BPS) setting

T

STIIDLRCA. If STAMA is specified, start match (lPP_STAMA) is pulsed with a GCP instruction
before STIIDLRCA is set. If LR is specified, the data specified as the LR parameter is loaded into the
active central control L register (LR) before STIIDLRCA is set, The GCP instruction is described in
Section 254-280-020, Assembly Language-Description, 1A Processor.

Format:

STAMA
CCRUN CYCLE($1),LR($2)

Characteristics of Parameters:

CYCLE – Specifies the number of cycles the standby central control is to run. The $1 is a number 1
through 15.

STAMA – Specifies the lPP-STAMA be pulsed before STIIDLRCA is set.

LR – Specifies that the value of $2 is to be loaded in the active central control LR before STIIDLRCA
is set. The $2 is any arithmetic expression.

l?xamples:

(a)

(b)

(c)

CCRUN CYCLE(1)

This statement causes the active central control to set STILIMIT in the DLR of the standby
central control to 1. The standby central control is then started by a write to the BPS setting
STIIDLRCA and runs 1 cycle.

.

CCRUN CYCLE(l), STAMA

This statement causes the active central control to set STILIMIT in the DLR of the standby
central control to 1. The lPP_STAMA is pulsed by a GCP instruction. Then the standby central ?,
control is started by a write to the BPS setting STIIDLRCA and runs 1 cycle.

CCRUN CYCLE(l),LR(0)

This statement causes the active central control to set STILIMIT in the DLR of the standby ?,
central control to 1. A O is loaded into the LR of the active central control. Then the standby is
started by a write to the BPS setting STIILDRCA and runs 1 cycle.

Page 70

1SS4, SECTION 254-280-040

,P

.

.

/--’

,

.

CCRWBR

4.70 The description of the CCRWBR statement includes

Function:

The CCRWBR statement runs the standby central control with a desired data pattern in its data buffer
register (STIBR). This is accomplished by writing the STIDELAY and the STILIMIT of the delay and
limited run register (DLR) of the standby central control to the desired number of cycles. The standby
central control is then started by setting the STIIDLRCA in its buffer pulse source register (BPS).
While the standby central control delays, the active central control writes the desired data pattern in
the data buffer register of the standby central control (STIBR).

Format:

CCRWBR DATA($1),CYCLE($2),DELAY($3)

Characteristics of Parameters:

DATA – Specifies the data pattern. The $1 is any arithmetic expression.

CYCLE – Specifies the number of cycles the standby central control is to run. The $2 is a number 1
through 15.

DELAY – Specifies the number of cycles the standby central control will delay before running. If not
specified, there is a 3-cycle delay. The $3 is a number 1 through 15.

-s:

(a) CCRWBR DATA (-O),CYCLE(l)

This statement causes the active central control to set STILIMIT to 2 and STIDELAY to 3 in the
DLR of the standby central control. During the 3-cycle delay of the standby central control, the
active central control writes all 1s (-1) into STIBR of the standby central control. The standby
central control is then started by setting the STIIDLRC in its BPS. The standby central control
then runs for 1 cycle.

(b) CCRWBR DATA(-O),CYCLE(l),DELAY(2)

This statement causes the active central control to set STILIMIT to 1 and STIDELAY to 2 in the
LDR of the standby central control. During the 2-cycle delay of the standby central control, the
active central control writes all 1s (-1) into STIBR of standby central control. The standby central
control is then started by setting the STIIDLRCA in its BPS. The standby central control then
runs for 1 cycle.

CCSC-ST

4.71 The description of the CCSC-ST statement includes:

Function:

The CCSC_ST statement writes lDLECS into the standby central control memory address decoder flip-
flop (MDF), sets the standby central control instruction fetch register (IFR) to indicate a full stack,
writes a POP instruction into the standby central control buffer order word register left-half (BOL),
and initializes the standby central control stack register (SR) with test call store stack address. This
statement also initializes all other standby central control address source registers with the comple-
ment of the address.

I%ge 71

SECTION 254-280-040

Format:

CCSC_ST ADD($1),0PTIONS($2),1NHCLK($3)

Characteristics of Parameters:

ADD – Specifies the stack address. The $1 is any arithmetic expression that expresses a complete
stack address to be written.

OPTIONS – Specifies the mode, parity, and store timing during the write (MS) instruction. The MS

INHCLK –

instruction is described in Sectjon 254-280-020, A~sembly Language—Description, 1A
Processor. The $2 is a list of options. Table A is a list of options for the MS and ML
instructions.

If specified, specifies a clock phase to be inhibited during the test. The $3 is 45S65, 7T9,
8TIO, or 12T0.

Example:

CCSC.ST ADD(lDGCS I lDGKO I 0(4400))

This statement writes the stack address (the address resulting from ORing the values of lDGCS,
lDGKO1, and octal 4400) in the standby central control SR.

CCSTANTI

4.72 The description of the CCSTANTI statement includes:

Function:

The CCSTANTI statement tests to the read/write access of the analog timer inhibit flip-flop (ANTI).
The ANTI is cleared and a test is performed to verify that ANTI is O. The ANTI is then set and it is
verified that ANTI is 1.

Format:

CCSTANTI

‘T,

‘-l

.

.

.
Characteristics of Parameters:

This statement has no parameters.

Example:

CCSTANTI

This statement clears ANTI and tests to see that ANTI is O; sets ANTI and tests to see that ANTI is 1;
then clears ANTI and generates a deliberate processor configuration trigger and tests to see that ANTI
is 1.

Page 72

1SS4, SECTION 254-280-040

CCST-ABL

P
4.73 The description of the CCST_ABL statement includes:

f-’

.

.

n

Function:

The CCST_ABL statement initializes the standby central control to be ready to receive data as follows

(1) From call store reply bus (CSR) to auxiliary buffer order word register left-half (ABL)
(2) From CSR to auxiliary buffer order word register right-half (ABR)
(3) From program store reply bus left-half (PXL) and program store reply bus right-half (PSR) to

ABL and ABR.

The following standby central control registers are initialized as:

(1) Addressing state in the instruction fetch register (IFR)
(2) Stall instruction in the buffer order word register left-half (BOL), buffer order word register

right-half (BOR), and half word register (HWR)
(3) Specified data in the ABL, ABR, data buffer register (BR), auxiliary unit write slow register

(AWS), and auxiliary unit write fast register (AWF)
(4) Clock error group register (CLE) is initiated to inhibit any specified clock phase.

Format:

CCST_ABL ADD($l),REG_INIT($2), ASW($3),INHCLK($4)

Characteristics of Parameters:

ADD – Specifies the call store or program store address. The $1 is any arithmetic expression which
expresses the complete call store or program store address.

REG_INIT – Specifies the data to be written. The $2 is any arithmetic expression which expresses the
data.

ASW – If specified, specifies sense of all-seems-well (ASW) test. The $3 is PASS or FAIL. If not
specified, it is PASS.

INHCLK – If specified, specifies a central control clock phase to be inhibited during the test. The $4 is
7T13.

Example:

CCST_ABL ADD(lDGCS I 1DGK22 I lDGAO),REG_INIT(0(70707070)IJJNHCLK(7T13)

This statement initializes the standby central control to receive data from the address resulting from
the ORing of the values of lDGCS, 1DGK22, and lDGAO. Octal 70707070 is written into the standby
central control’s ABL, ABR, BR, ASW, and AWF. Central control long clock phase 7T13 is inhibited.

Page 73

CCST_AUW

4.74 The description

Function:

of the CCST_AUW statement includes

The CCST_AUW statement initializes the standby central control to be ready to receive data from a call
store or program store into its auxiliary unit write slow register (AWS) or auxiliary unit write fast
register (AWF). In addition, the following occurs:

(a)
(b)
(c)
(d)
(e)
(f)

[f
)
)

(i)

The standby central control auxiliary unit request register (ARR) is set to 1.
Auxiliary unit inhibit request register (RIG) M cleared.

.

Auxiliary unit sequence is set to state 1.
The auxiliary unit inhibit verify mismatch fli -flop (FF) is set.

1The auxiliary unit store address register (AA) contains the desired address.
The standby central control runs 1 cycle to initialize the right-half program store (RPS) and right-
half program store reply (RPSR) FFs and advance the auxiliary unit sequencer.
The instruction fetch register (IFR) indicates a full stack.

-

The standby central control gives u the next cycle and the data buffer register (BR , auxiliar
r i Ybuffer order word register left-half ABL), auxihary buffer order word register right- alf (ABR ,

AWS, and AWF are initialized with the specified data.
The clock error group register (CLE) is initialized to inhibit any specified clock phase.

Format:

CCST_AUW ADD($l), REG_INIT($2),ASJV($3),INHCLK($4)

Characteristics of Parameters:

ADD – Specifies the call store or rogram store address. The $1 is any arithmetic expression which
fexpresses the complete ca 1 store or program store address.

REG.INIT – Specifies data to be written. The $2 is any arithmetic expression which expresses the
data.

ASW – If specified, specifies sense of ASW test. The $3 is PASS or FAIL. If not specified, it is PASS.

INHCLK – ~~l~ified, specifies a central control clock phase to be inhibited during the test. The $4 is

&wP!5
CCST_AUW ADD(lDGCS I 1DGK03 I lDGA25),REG_INIT(O(07070707))

This statement initializes the standby central control to receive data from the address resulting from
the ORing of the values of lDGCS, 1DGK03, and 1DGA25. This address is laced in the standb central

P~~tcJ AAS. Octal 07070707 is written into the standby central contro BR, ABL, ABR, A%3, and
T

.

CCST_BR

4.75 The description of the CCST_BR statement includes

Function:

The CCST_BR statement initializes the standby central control to be ready to receive data from a call
store or program store into its data buffer register (BR). This statement also initializes the standby
central control BR, auxiliary buffer order word register left-half (ABL), auxiliary buffer order word
register right-half (ABR), auxiliary unit write slow register (AWS), and auxiliary unit write fast
register (AWF) with the specified data. The standby central control data address register (DAR) is
initialized with the specified address of the data to be read. The standby central control instruction
fetch and execution sequencers are initialized to execute the second half of the read instruction (L L,O).
The clock error group register (CLE),is initiated to inhibit any specified clock phase.

Page 74

1SS3, SECTION 254-280-040

Format:

CCST_BR ADD($l),REG_INIT($2),ASW($3),INHCLK($4)

Characteristics of Parameters:

ADD – Specifies the call store or program store address. The $1 is any arithmetic expression which
expresses the complete call store or program store address.

REG-INIT – Specifies the data. The $2 is any arithmetic expression which expresses the data.

ASW – If specified, specifies sense of ASW test. The $3 is PASS or FAIL. If not specified, it is PASS.

INHCLK – If specified, specifies a central control clock phase to be inhibited during the test. The $4 is
7T13.

&w.?4&

CCST_BR ADD(lDGPS 1 1DGK34 I lDGA1),REG.INIT(O(25252525))

This statement places the address resulting from the ORing of the values of lDGPS, 1DGK34, and
lDGA1 (this is the address from which data is to be received) in the standby central control DAR and
places octal 25252525 in the standby central control BR, ABL, ABR, AWS, and AWF.

Ccswcc

,m 4.76 The description of the CGSWCC statement includes:

Function:

.

The CCSWCC statement switches central control activity by pulse source. Immediately after the
switch, a test is performed to verify that a switch actually occurred. If the test fails, one of two actions
may occur:

(1) A DTJUMP to a specified label is performed.

(2) If no label is specified, an additional attempt is made to switch central control activity using the
stop-start sequencer in the standby central control. This is called a determined switch.

Format:

CCSWCC FAIL($l)

Characteristics of Parameters:

FAIL – Specifies the location to which a DTJUMP is made if the central control switch fails. The $1 is
a label defined on a DTDEST statement.

CCSWCC FAIL (CCDG89ET)

This statement switches central control activity by pulse source and performs a test to verify that the
switch actually occurred. If the test fails, a DTJUMP is made to the location with the DTDEST label
CCDG89ET.

Page 75

SKTION 254-280-040

CCTRAN

4.77 The description

Function.’

of the CCTRAN statement includes

The CCTRAN statement dynamically creates a small program and executes it from the opposite com-
munity specified by bit 21 of ADD data; ie, call store if bit 21 is set. Before the small program is
generated, the program store or call store bus selection flip-flop PBO or CBO is reset. If the office is a 2-
wire office, TOLL in the upper protected area bound register (UPA) is set. After this program is
executed, TOLL, PBO or CBO and PBT or CBT are reset.Then test results are processed according to the
test parameter. If the test is EN, the expected value is RDATA or WDATA; if the test is INH, the
expected value is the complement of RDATA or WDATA. The small program created by this statement

.

configures PBO and PBT or CBO and CBT, changes the original K-code to a desired K-code specified in -
ADD data, and sets the maintenance flip-flop in a test store whose community is specified by bit 21 of
ADD data. Store location specified by the ADD data is initialized with data specified by RDATA or
WDATA data. The ACTPS or ACTCS in the activity flip-flop group (ACT) is set in both central
controls, Then the program starts the standby central control operational clock by writing into its delay
limited run register (DLR). The standby central control executes the MS/ML instruction with the
specified options. The last thing the program performs is to restore system configuration and original
data. The CCTRAN must be immediately preceded by a central control-to-store initialization state-
ment.

Format:

CCTRAN TEST($l),STORE(ADD($2),RDATA($3),ACTCC(OPTIONS($4)),

STBCC(SOURCE($5), WDATA($6),0PTIONS($7))

Characteristics of Parameters:

TEST – Specifies the manner in which the test results are to be processed. If $1 is INH or EN, $1 is
EN; the expected value is RDATA or WDATA. If $1 is INH, the expected value is the
complement of RDATA or WDATA.

STORE – Specifies the address of the store and the expected results,

ADD –

RDATA

ACTCC –

OPTIONS

STBCC –

Specifies the address of the store. The $2 is any arithmetic expression which expresses the
complete store address.

– Specifies the expected results for an address transmission test. The $3 is any arithmetic

Page 76

———

expression which expresses the expected result.

Specifies the options for the MS/ML instruction executed by the active central control. The
MS and ML instructions are described in Section 254-280-020, Assembly Language-Des-

.

cription, 1A Processor.

– Specifies the options for the MS/ML instruction. The $4 is any combination of options for
the MS/ML instruction. Table A is a list of options for the MS and ML instructions.

Specifies the source register and the options and data for the MS/ML instruction for the
standby central control. The MS and ML instructions are described in Section 254-280-020,
Assembly Language–Description, 1A Processor.

r’

.

.

*

.

1SS4, SECTION 254-280-040

SOURCE – Specifies the source register. The $5 is any of the following

(a)
(b)
(c)
(d)
:;;

Data Buffer Register (BR)
Program Address Register (PAR)
Data Address Register (DAR)
Auxiliary Unit Store Address Register (AAS)
Auxiliary Unit Reply Register (ARR)
Stack Counter (SC).

WDATA – Specifies the data for the MS/ML instruction. The $6 is any arithmetic expression which
expresses the data.

OPTIONS – Specifies the options for the MS/ML instruction andtheexpected result from a data
transmission test. The $7 is any combination of options for the MS/ML instruction. Table
A is a list of options for the MS and ML instructions.

&V?Z!L&

CCTRAN.TEST(EN), STORE(ADD)lDGCS I 1DGK3 I lDGAO),ACTCC(OPTIONS(C,M,W)),
ME STBCC(SOURCE(BR),WDATA(lDGD70),0PTIONS(M,W,C,IPl,IP2))

This statement creates and executes a small program in the program store community. The store
address is the result of ORing the value of lDGCS, 1DGK3, and lDGAO. After the program has been
executed, the result is compared to 1DG070. The small program sets the maintenance flip-flops in a call
store test store. The store location at the address resulting from ORing the value of lDGCS, 1DGK3,
and lDGAO is initialized with zeros. The ACTCS is set in both central controls. This program also starts
the standby central control. The active central control executes an MS/ML instruction with C, M, and W
options; the standby central control executes an MS/ML instruction with M, W, C, IP1, and IP2 options.
The source register for the standby central control is BR and the data to be written is the value of
1DGD70.

CCWALK

4.78 The description of the CCWALK statement includes

Function:

The CCWALK statement causes the active central control to perform a series of write/read operations
into the standby central control. The write operation in the first part of the couplet performs a write of
a O right-adjusted in a field of 1s, leaving all other bits outside the field zero. The read operation, the
second part of the couplet, consists of reading the field and expecting a pattern to be written. This
sequence of operations is repeated, one bit position shifting Oleft one bit each time until the Ohas been
shifted throughout the field. A 1 may be walked through a field of 0s in the same manner.

Format:

CCWALK FIELD($1),WALK($2)

Characteristics of Parameters:

FIELD – Specifies the symbolic location in the standby central control. The $1 is the location name.

WALK – Specifies walk a 1 through a field of 0s or walk a Othrough a field of 1s. The $2 is lTHRUO or
OTHRU1.

Page 77

SECTION 254-280-040

m

CCWALK FIELD(STITA),WALK(lTHRUO)

This statement performs a series of write/read operations in the STITA location in the standby central
control. For the first write, the data is a 1 right-adjusted (bit position O) in a field of 0s. The STITA is 7
then read and compared to the data. For the second write, the data is a one in bit position 1 in a field of
zeros. The STITA is then read and compared to the data. The write/read and shifting the 1 left on bit
position continues until the last read, when the data written is a 1 left-adjusted (bit position 23). The
STITA is then read and compared to the data for the final time.

.

CCWRITE .

4.79 The description of the CCWRITE statement includes: -,

Function:

The CCWRITE statement causes the active central control to store a word of data in the standby
central control at the location specified. The data is stored with a store secure instruction in the
standby central control without product or insertion masking. The store secure instruction is described
in Section 254-280-020, Assembly Language—Description, 1A Processor.

Format:

CCWRITE WORD($1),DATA($2)

Characteristics of Parameters: ‘-’)

WORD – Specifies the symbolic word location in the standby central control. The $1 is the symbolic
location.

DATA – Specifies the data to be stored. The $2 is any arithmetic expression that expresses the data to
be written.

@z!?.@

CCWRITE WORD(STIXR),DATA(-O)

This statement causes the active central control to write all 1s (–O) in the X register in the standby
central control (STIXR). There is no product or insertion masking.

*

CCXAUSYC

4.80 The description of the CCXAUSYC statement includes .

Function:

The CCXAUSYC statement is used in the central control diagnostic auxiliary unit bus testing phases to
test the transmission of sync signals to the auxiliary units. The buffer order word register left-half
(BOL) in the standby central control contains the test instruction to be executed by the standby central
control when the CCXAUSYC statement is executed. The results of a GCP read of bit 3 (AUIACTPS) is
stored in scratch word DG1DTSCR3 for later interrogation.

Page 78

P

1SS4, SECTION 254-280-040

Format:

CCXAUSYC

Characteristics of Parameters:

.

.

P.

.

This statement has no parameters.

Example:

CCXAUSYC

This statement tests the transmission of sync signals to the auxiliary units. The results of a GCP read
of bit 3 (AUIACTPS) is stored in DG1DTSCR3.

CCXGCP

4.81 The description of the CCXGCP statement includes:

Function:

The CCXGCP statement executes a GCP instruction in sync with the standby central control execution
of the same instruction. The pulse source activity flip-flops (FFs) are reversed so that only the standby
central control actually generates a pulse. When this statement is executed during testing pulse source
isolation, the standby central control is blocked from actually pulsing a unit, but a reply is looked for in
the active central control. If a reply is received, the affected unit is restored immediately. The pulse
reply, if present, is stored in scratch word DGIDTSCR1 for later interrogation. This statement is
executed with the standby central control not isolated to test transmitting control pulses to the auxil-
iary units. In this case, bit 19 of DGIDTSCR1 indicates that a nonzero reply was received.

Format:

CCXGCP POINT (AUSCRATCH)

Characteristics of Parameters:

POINT –

Example:

Specifies the GCP address of the point under test. The $1 is any arithmetic expression which
expresses the address of the pulse to be generated. The AUSCRATCH specifies that the
address is to be taken from scratch word DGIGCPADDR.

CCXGCP POINT (lPP.PAUO1)

This statement causes the standby central control to generate a control pulse from pulse point
lPP_PAUO1. The active central control looks for a reply and if a reply is received, it is stored in scratch
word DGIDTSCR1.

Page 79

SECTION 254-280-040

CCXNSYNC

4.82 The description of the CCXNSYNC statement includes:

Function:

The CCXNSYNC statement starts the standby central control using the delay-limited run maintenance
features. Delay and limit amounts are specified in the statement. After starting the standby central
control, the active central control executes the long 1A Processor assembly language instruction speci-
fied in the statement. Prior to the execution of this instruction, the K register (KR) is loaded from
DGIDTSCR1 indexed by the base address (in register F) and the G register (GR) is loaded from
DG1DTSCR2 indexed by the base address (in register F); these can be used for the address and data in
the active central control instruction. All stores are forced to appear slow to the active central control.
Optionally, the active central control will set (by a GCP) the force auxiliary unit address (AUA) bus
(FAUA) flip-flop. The GCP and other long 1A Processor assembly language instructions are described
in Section 254-280-020, Assembly Language— Description, 1A Processor.

Format:

CCXNSYNC INSTR($l),DELAY($2),RUN($3),FAUA,NOSYNC

Characteristics of Parameters:

INSTR – Specifies the 1A Processor assembly language instruction to be executed in the active
central control. $1 is any long instruction.

DELAY – Specifies the number of cycles the standby central control should delay. The $2 is a number
1 through 15.

RUN – Specifies the number of cycles the standby central control should run. The $3 is a number 1
through 15.

FAUA – Specifies that the FAUA flip-flop is to be set.

NOSYNC – Specifies that no SYNC pulse is to be sent.

Examples:

CCXNSYNC INSTR(SS G,O)(K)),DELAY(8),RUN(2)

This statement causes the active central control to execute the following 1A Processor assembly lan-
guage instructions: SS G,O(K). The standby central control waits 8 cycles, then runs for 2 cycles.

CHGICC

4.83 The description of the CHGICC statement includes:

Function:

The CHGICC statement reads an internal central control register, saves the present state of an item in
that register, then changes that item to a new state. A subsequent RSTICC statement is used to restore
the saved item state.

Page 80

.

1SS4, SECTION 254-280-040

/-

h

.

/’--

P

.

,f’-

Format:

ITEM($1) FF($4)
CHGICC ITEMS($2),ST($3),DATA($5)

Characteristics of Parameters:

ITEM – Specifies an internal central control register address and bit or contiguous bits to be saved
and changed. The $1 is the item name.

ITEMS – Specifies an internal central control register address and noncontiguous bits to be restored
from call store scratch. The $2 is a list of item names all in the same word.

ST – Specifies one of six call store scratch addresses for saving the present item state. The $3 is
TEMPO, TEMP1, TEMP2, TEMP3, TEMP4, or TEMP5,

DATA – Specifies the new state for the item being changed. The $5 is any arithmetic expression
which expresses the data.

FF – Specifies the item being changed is a central control buffer bus flip-flop; $4 specifies the new
SET or RESET state via convention of rightmost character “S” or “R.” The $4 is the item name
with “S” or “R’ as the rightmost character.

Example:

CHGICC ITEMS(INCUZ,INlCUGl,INlCUGS),ST(TEMP2),DATA(O(4O))

This statement causes the INCUZ, INICUG1, and INICUGS items in the internal central control
register to be saved in the third call store scratch address (TEMP2) for saving the present item state.
Then octal 40 is written into the items.

CHKSRDUC

4.84 The description of the CHKSRDUC statement includes:

Function:

The CHKSRDUC statement calls a Data Unit Administration Program (DUAD) subroutine to deter-
mine if any DUC is in the system reinitialization (SR) mode. A diagnostic scratch word will be set
according to the response from DUAD.

Format:

CHKSRDUC

Characteristics of Parameters:

This statement has no parameters.

Example:

CHKSRDUC

This statement calls a DUAD subroutine to determine if any DUC is in the SR mode. A diagnostic
scratch word is set according to the response from DUAD.

Page 81

.

SECTION 254-280-040

CKEANTI

4.85 The description

Function:

of the CKEANTI statement includes:

The CKEANTI statement tests the clock error (CKE) and analog timer inhibit (ANTI) flip-flops in the
processor configuration circuit. Write/read tests are performed on these flip-flops in the processor
configuration register (PCR) in the standby central control. This statement, due to hardware restric-
tion, starts the standby central control operational clock before performing the tests and stops the clock
afterward. All data generated from the reads of the two flip-flops are stored in diagnostic scratch call
store for interrogation by other DL-1 statements.

Format:

CKEANTI

.

.

Characteristics of Parameters:

This statement has no parameters.

Example:

CKEANTI

This statement tests the CKE and ANTI flip-flops in the processor configuration circuit by performing n,

write/read tests on the PCR in the standby central control. All data generated from the reads are
stored in diagnostic scratch call store.

CLKINH

4.86 The description of the CLKINH statement includes:

Function:

The CLKINH statement tests the operational clock phase inhibit circuitry in the standby central
control. The standby central control operational clock is started, the operational clock error detector is
initialized, and the clock error detector is read and saved in diagnostic scratch call store. An operational
clock phase, specified by $1, is inhibited by control writing a data pattern generated by $1 into the clock
error group register (CLE). The clock error indicator is then read and saved in diagnostic scratch call
store. The clock error detector is again initialized (synchronized) and the clock error indicator is read
and saved in diagnostic scratch call store. The standby central control is then clear stopped, stopping

4

the operational clock and clearing the clock phase inhibit circuitry. The diagnostic scratch call store
data is interrogated by other DL-1 statements.

Format:

CLKINH $1

Characteristics of Parameters:

$1 – Specifies an operational clock phase in the form XXTYY, where XX is the leading edge and YY is -,
the trailing edge times. All clock phases specified are of 100 nanoseconds duration. The $1
generates a symbol of the form lDGIXXTYY which is Datapool defined.

Page 82

1SS4, SECTION 254-280-040

.

.

;-l

Examples:

(a) CLKINH 00T02

This statement starts the standby operational clock, initializes the operational clock error detec-
tor, reads the clock error detector, and saves it in diagnostic scratch call store. The operational
clock phase OOT02is inhibited by control writing the data pattern which is the value of 1DGIOOT02
into the CLE. Then the clock error indicator is read and saved in diagnostic scratch call store. The
clock error detector is again initialized and the clock error indicator is read and saved in diagnos-
tic scratch call store. The standby central control is then clear stopped, stopping the operational
clock and clearing the clock phase inhibit circuitry.

(b) CLKINH 05T07

This statement causes the same actions as the previous statement, except
phase is 05T07 and the data pattern written is the value of 1DGI05T07.

the operational clock

CLRTUCTF

4.87 The description

Function:

of the CLRTUCTF statement includes:

The CLRTUCTF statement calls a Data Unit Fault Recovery Program (DUFR) subroutine to request
that DUFR reset the trouble flip-flop in all in-service tape unit controllers (TUCS). The subroutine is
called after an SR test.

Format:

CLRTUCTF

Characteristics of Parameters:

This statement has no parameters.

Example:

CLRTUCTF

This statement performs an SR test, then calls a DUFR subroutine to reset the trouble flip-flop in all
in-service TUCS.

DCREAD

4.88 The description of the DCREAD statement includes:

Function:

The DCREAD statement reads a file store register with a control read instruction. Data read is ignored
or compared to specified expected results and stored as raw data.

Page 83

SECTION 254-280-040

Format:

ITEM($l) NOSTORE
DCREAD ITEM($2),EXPECT($4)

WORD($3)

Characteristics of Parameters:

ITEM – Specifies a file store register address and bit or contiguous bits of register to be read. The $1 .

is an item name.

ITEMS – Specifies a file store register and bits within that register to be read. The $2 is a list of items .

all in the same word.
“Y

WORD – Specifies a file store register address to be read as a full 24-bit word. The $3 is the address.

EXPECT – Specifies data to be used for expected results. The $4 is any arithmetic expression that
expresses the expected results.

NOSTORE – No raw data will be stored.

Example:

DCREAD ITEM(FSISCP),EXPECT(O(777777))

This statement causes the FSISCP item in the file store register to be read and compared to octal
777777.

DCWRITE

4.89 The description of the DCWRITE

Function:

The DCWRITE statement writes
instruction.

Format:

DCWRITE WORD($1),DATA($2)

Characteristics of Parameters:

statement includes:

a full 24-bit word into a file store register with a control write

-,

4

WORD – Specifies a file store register address to be written. The $1 is the address.
.

DATA – Specifies 24-bit word to be written. The $2 is any arithmetic expression which expresses the
data. ?

Examvle:

DCWRITE WORD(FS11LLA),DATA(62)

This statement causes decimal 62 to be written in the FSIILLA file store register.

Page 84

1SS4, SECTION 254-280-040

c’ DGSCRTP

4.90 The description of the DGSCRTP statement includes:

r’
Function:

The DGSCRPT statement calls a DUAD subroutine to determine if a TUC is assigned to the DGN
(diagnostic) function. A diagnostic scratch word will be set according to the response from DUAD.

.
Format:

DGSCRTP

Characteristics of Parameters:

This statement has no parameters.

Example:

DGSCRTP

This statement calls a DUAD subroutine
sets a diagnostic scratch word according

DKCODE

to determine if a TUC is assigned to the DGN function and
to the response.

4,91 The description of the DKCODE statement includes

Function:

The DKCODE statement verifies the file store K-code specified for the unit being diagnosed. Proper
response for all possible K-codes, both common and unique, for both communities of file stores is
verified. Supplementary data words are generated by the DKCODE statement as follows:

D

.

f-’

P

Word O –
l–
2–
3–
4–
5–
6–
7–

Unique K-code of file store being diagnosed.
Common K-code of file store being diagnosed.
Opposite common K-code.
Mate file store unique K-code.
Other community unique K-code.
Other community, other unique K-code.
Other community, common K-code.
Other community, other common K-code.

Each supplementary data word corresponds to a test. The file store under test should recognize K-codes
in tests O through 2 and not recognize K-codes in tests 3 through 7.

Format:

DKCODE

Characteristics of Parameters:

This statement has no parameters.

Page 85

——

SECTION 254-280-040

Example: n,

DKCODE

This statement verifies the response of the unit under test to all possible K-codes assigned to file stores
to ensure that the unit responds only to the proper K-code. Supplementary data words are generated if T.

required for the results of the tests.

DLRUSBY

4.92 The description of the DLRCLSBY statement includes:

Function:

.

The DLRCLSBY statement tests the delay and limited run (DLR) sequencer circuitry in the standby
central control. The statement starts the DL sequencer and then stops the operational clock in the
standby central control. An operational clock status indicator is then reset and the standby central
control is pulse cleared. Operational clock control and status indicators are then read and stored in
diagnostic scratch call store. The operational clock is then stopped by control pulse to ensure it is
stopped. No tests are
interrogated by other
results.

Format:

DLRCLSBY

generated by this statement. Results stored in d~agnostic s&atch call store are
DL-1 statements to verify proper circuit reactions (functions) and generate test

Characteristics of Parameters:

This statement has no parameters.

Example:

DLRCLSBY

This statement starts the DLR sequencer and then stops the operational clock in the standby. An
operational clock status indicator is then reset and the standby central control is pulse cleared. Opera-
tional clock control and status indicators are then read and stored in diagnostic scratch call store. The
operational clock is then stopped by control pulse, -,

DLRRUN 4

4.93 The description of the DLRRUN statement includes:

Function:

The DLRRUN statement tests the delay and limited run (DLR) sequencer in the standby central
control. The DELAY and LIMIT counters in the DLR circuit are initialized by the DELAY and LIMIT
parameters and then the DLR sequencer is started by buffer pulse source (BPS) control write. The
DELAY and LIMIT counters are then read and their values are stored in diagnostic scratch call store.
The DELAY and LIMIT counters are read seven times. The operational clock stop-start register (SSR)
is then control read and the results stored in diagnostic scratch call store. The standby central control
operational clock is then stopped. The results stored in diagnostic scratch call store are interrogated by
other DL-1 statements.

Page 86

1SS4, SECTION 254-280-040

●

.

n

(’-’

*

.

Format:

DLRRUN LIMIT($l),DELAY ($2)

Characteristics of Parameters:

LIMIT – Specifies the value to be control written in the DLR LIMIT counter. The $1 is a decimal value
of o to 15.

DELAY – Specifies the value to be control written in the DLR DELAY counter. The $2 is a decimal
value of O to 15.

Examples:

(a)

(b)

DLRSTAT

DLRRUN LIMIT(2),DELAY(0)

This statement control writes the decimal value 2 into the LIMIT counter and the decimal value O
into the DELAY counter in the DL circuit, then starts the DLR sequencers by a BPS control write.
The DELAY and LIMIT counters are then read seven times and their values are stored in diagnos-
tic scratch call store. The operational clock SSR is then control read and the results stored in
diagnostic scratch call store. The standby central control operational clock is then stopped.

DLRRUN LIMIT(15),DELAY(3)

This statement causes the same actions as the previous statement, except the decimal value 15 is
control written into the LIMIT counter and the decimal value 3 is control written into the DELAY
counter.

4.94 The description of the DLRSTAT statement includes

Function:

The DLRSTAT statement tests the delay and limited run (DLR) sequencer and associated circuitry in
the standby central control. The LIMIT and DELAY counters of the DLR circuitry are control written
to the values specified by the LIMIT and DELAY parameters and then the DLR sequencer is started by
control writing the DLR by buffer pulse source (BPS) access. The stop-start register (SSR) (operational
clock stop-start-status) is then control read three times and the results stored in diagnostic scratch call
store call store. The operational clock is then stopped. The diagnostic results are interrogated by other
DL-1 statements.

Format:

DLRSTAT LIMIT($1),DELAY($2)

Characteristics of Parameters:

LIMIT – Specifies a value to be control written into the DLR LIMIT counter. The $1 is a decimal value
of o to 15.

DELAY – Specifies a value to be control written into the DLR DELAY counter. The $2 is a decimal
value of O to 15.

Page 87

SECTION 254-280-040

Examples:

(a)

(b)

DLRSTAT LIMIT(10),DELAY(5)

This statement control writes the decimal value 10 into the LIMIT counter and the decimal value 5
into the DELAY counter of the DLR circuitry, then starts the DLR sequencers by control writing
the DLR by a BPS access. The SSR is control read three times and the results stored in diagnostic
scratch call store. The operational clock is then stopped.

DLRSTAT LIMIT(2),DELAY(0)
.

This statement causes the same action as the previous statement, except that the decimal value 2 .
is control written into the LIMIT counter and the decimal value O is control written into the
DELAY counter. -,

DL1PWRMON

4.95 The description of the DLIPWRMON statement includes:

Function:

The DLIPWRMON statement executes the power monitor test sequence and examines the test results
for the specified frame. The DLIPWRMON acquires frame information from the diagnostic buffer
table.

Format:

DLIPWRMON SMEMN,FRSPI,TYPE

Characteristics of Parameters:

SMEMN – Submember number is used only when required for frames with subunits.

FRSPI – Frame scan point index is used only when required for frames with subunits.

TYPE – Specifies unit type. Presently, only need to specify if called by program store, call store, or
disk file.

Example: q

DLIPWRMON
t

This statement calls the power monitor test sequence for the frame being diagnosed.

DMSECR
.

4.96 The description of the DMSECR statement includes: ?

Function:

The DMSECR statement reads a 32-word data block from a specified maintenance sector of a disk file
in the file store under test. The following supplementary data words are generated for corresponding
failing results.

Page 88

f-

1SS4, SECTION 254-280-040

WORD TEST EXPECTED RESULT

●

.

0
1

2

3

4

5
6

7

100

137

Pulse read interject FF Expect O
File store request register O Expect 1
(DRRO) idle bit
Error register O Expect all 0s

Error register 1 Expect all 0s
Error register 2 Expect all 0s
Error register 3 Status errors all 0s

Read file store read buffer 3 Start and abort bits
(FSRB3) status word
All 32 words read correctly. Expect 0s (FAILING READ
omits word number 7, PASSING READ omits word number
100 through 137)
Octal word numbers for failing read match corresponding to
data block words O through 32
Block matching stops on first word mismatching

Format:

DMSECR DISK($1),FACE($2),TRACK($3),EXPECT($4)

Characteristics of Parameters:

DISK – Specifies disk file to be read of the file store being diagnosed. The $1 is O, 1, 2, or 3.

FACE – Specifies the face of that disk file. The $2 is O or 1.

TRACK – Specifies the track of that disk file. The $3 is a number O through 99.

EXPECT – Specifies the data to be expected in each of the 32 words of that data block read from the
disk file. The $1 is any arithmetic expression which expresses the data.

Example:

DMSECR DISK(0),FACE(l),TRACK(80),EXPECT(O(77777777))
,P’

This statement causes a 32-word block to be read from disk file O,face 1, track 80 and compared to the
? expected results of all 1s (octal fi777777). Supplementary data words are generated if required by a

failing result.

DMSECW

4.97 The description of the DMSECW statement includes:

Function:

The DMSECW statement writes a 32-word data block in a specified maintenance sector of a disk file in
the file store under test. Supplementary data words are generated for corresponding failing results.

Page 89

WORD TEST EXPECTED RESULTS

o
1

2
3
4
5
6

Format:

Pulse read interject FF
File store request register O
(DRRO) idle bit
Error register O
Error register 1
Error register 2
Error register 3
Read file store read
buffer 3 (FSRB3)
status word

Expect O
Expect 1

Expect all 0s
Expect all 0s
Expect all 0s
Expect all 0s
Start and abort bits

DMSECW DISK ($1),FACE($2),TRACK($3),EXPECT($4)

Characteristics of Parameters:

.

.

‘?

DISK – Specifies disk file to be written in the file store under test. The $1 is O, 1, 2, or 3.

FACE – Specifies of that disk file. The $2 is O or 1.

TRACK – Specifies of that disk file. The $3 is a number O through 99.

DATA – Specifies 24-bit data word to be written in each of the 32 words of the block to be written.
The $4 is any arithmetic expression which expresses the data.

Example:

DMSECW DISK(l),FACE(0),TRACK(1),DATA(O(25252525))

This statement causes a 32-word block containing octal 25252525 to be written on OF 1, face O,track 1.
Supplementary data words are generated if required by a failing result.

DNREAD

4,98 The description of the DNREAD statement includes:

Function:
-,

The DNREAD statement reads a file store register with a normal read instruction. Data read is ignored 4
or compared to specified expected results and stored as raw data.

Format:

ITEM(1) NOSTORE
DNREAD ITEM($2),EXPECT($4)

WORD($3)
‘7

Characteristics of Parameters:

ITEM – Specifies a file store register address and bit or contiguous bits of item to be read. The $1 is
an item name.

Page 90

1SS4, SECTION 254-280-040

ITEMS – Specifies a file store register and bits within that register to be read. The $2 is a list of items
all in the same word.

WORD – Specifies a file store address to be read as a full 24-bit word. The $3 is the address.

NOSTORE – Indicates the data read is to be ignored.

EXPECT – Specifies data to be used for expected results. The $4 is any arithmetic expression which
expresses the expected results.

Example:

DNREAD ITEMS(FSITT,FSILL, FSIX),EXPECT(M(FSILL,FSIX))

This statement causes the items FSITT, FSILL, and FSIX in the file store register to be read and
compared to the mask of items FSILL and FSIX.

DNWRITE

4.99 The description of the DNWRITE statement includes:

Function:

The DNWRITE statement writes a full 24-bit word into a file store register with a normal write
instruction.

Format:

DNWRITE WORD($1),DATA($2)

Characteristics of Parameters:

WORD – Specifies address of the file store register to be written. The $1 is the file store register
address.

DATA – Specifies 24-bit data word to be written. The $2 is any arithmetic expression which expresses
the data.

,n
Example:

t DNWRITE WORD(FS1lLAA),DATA(62)

This statement causes decimal 62 to be written in the FSIILAA file store register.
.

DREU

4.100 The description of the DREU statement includes

Function:

The DREU statement reads a file store register with a control read instruction. The expected result is
any nonzero data, within the mask of the parameter specified.

Page 91

SECTlON 254-280-040

Format:

ITEM($l)
DREU ITEMS($2)

WORD($3)

Characteristics of Parameters:

ITEM – Specifies a file store register address and bit or contiguous bits of register to be read. The $1
is an item name.

ITEMS – Specifies a file store register and noncontiguous bits within that register to be read. The $2
is a list of items all in the same word.

WORD – Specifies a file store register address to be read as a full 24-bit word. The $3 is the address.

Example:

DREU WORD(FSIIARR)

This statement causes the FSIIARR register in the file store to be read and expects it to be nonzero.

DSKCLKCK

4.101 The description of the DSKCLKCK statement includes:

Function:

The DSKCLKCK checks the disk clocks, has no parameters, and generates one test. The DSKCLKCK
task routine checks the frame equipage to determine how many disk files are equipped. For each
equipped disk file the following applies

(1) Reads the sector portion of the disk clock counter twice and stores one of these in scratch memory
if the two readings agree. If they differ, a third reading is made and this one is stored.

(2) Takes a nominal one sector delay (approximately 340 microseconds).

(3) Reads the sector counter again after the delay using the procedure in Step 1.

(4) Determines whether the reading made after the delay is either +1 or +2 sectors greater than the
first reading that was saved. If this is not the case, bit O,bit 1, bit 2, and bit 3 in the test result are
used to indicate the test failed for disk files O, 1, 2 and 3, respectively.

Format:

DSKCLKCK

Characteristics of Parameters:

This statement has no parameters.

Page 92

*

.T

.

—.

1SS4, SECTION 254-280-040

P
DTOGGLE

,f’=

4.102 The description of the DTOGGLE statement includes:

Function:

The DTOGGLE statement writes a single bit into a file store register one or more times with a control
write instruction.

.

Format:

.
DTOGGLE N($1),BIT($2)

P
Characteristics of Parameters:

N – Specifies the number of times the control write is repeated. The $1 is a decimal number. $Maxi-
mum number that can be specified is 99.4

BIT – Specifies a single bit in a file store register to be written. The $2 is the name of a l-bit item.

Example:

DTOGGLE N(20),BIT(FS1XX)

This statement causes the FSIXX bit in the file store register to be written 20 times.

?

.

/-

4.103 The description of the DUADRDFL statement includes:

Function:

The DUADRDFL statement calls a DUAD subroutine to determine if a TUC has failed a read function
for a client. A diagnostic scratch word is set according to the response from DUAD.

Format:

DUADRDFL

Characteristics of Parameters:

This statement has no parameters.

Example:

DUADRDFL

This statement calls a DUAD subroutine to determine if a TUC has failed a read function for a client. It
sets a diagnostic scratch according to the response from DUAD.

Page 93

DUCCHK

4.104 The description of the DUCCHK statement includes:

Functjon:

The DUCCHK statement calls a DUFR subroutine to determine if an equipped DUC is out of service. A
diagnostic scratch word is set according to the response from DUFR.

Format:
#

DUCCHK ACODE($l)

Characteristics of Parameters:

ACODE – Specifies the ACODE of the DUC to be checked for out of service, The $1 is a decimal
number between O and 15.

Exam vie:

DUCCHK ACODE(12)

This statement calls a DUFR subroutine to determine if the DUC whose ACODE is 12 is out of service.

DUSMREAD

4.1 os The description of the DUSMREAD statement includes:

Function:

The DUSMREAD statement is a maintenance-read instruction for the DUS.

Format:

*

ITEM($1) NOSTORE
DUSMREAD ITEMS($2),EXPECT ($4)

WORD($3)

Characteristics of Parameters:
$

ITEM – Specifies the internal DUS location to be read. This supplies bits Othrough 6 of the auxiliary
unit address bus. K-code is supplied by the task routine. The mask for the results is also
generated from the attributes of this parameter. The $1 is the item name.

.

ITEMS – Specifies internal DUS location to be read. This supplies bits O through 6 of the auxiliary
unit address bus. K-code is supplied by the task routine. The mask for the results is also
generated from the attributes of this parameter. The $2 is a list of items all in the same
word.

WORD – Specifies the internal DUS location to be read. This supplies bits Othrough 6 of the auxiliary
unit address bus. K-code is supplied by the task routine. The $3 is the address.

Page 94

i-

1

1SS4, SKTION 254-280-040

NOSTORE – If specified, nothing is done with the reply from the DUS.

EXPECT – If specified, this is used to match with the reply from the DUS. The $4 is any arithmetic
expression which expresses the expected results,

Example:

DUSMREAD ITEM(DSIASEQER),EXPECT(M(DSIASEQER))

This statement causes a read of the DSIASEQER item in the DUS. The DSIASEQER supplies bits O
through 6 of the auxiliary unit address bus and the K-code is supplied by the task routine. This result is
compared with the mask of the item.

DUSMWRITE

4.106 The description of the DUSMWRITE statement includes:

Function:

The DUSMWRITE statement is a maintenance-write instruction for the DUS.

Format:

DUSMWRITE WORD($1),DATA($2)

Characteristics of Parameters:

WORD –

DATA –

Example:

Specifies the internal DUS location to be written. This supplies bits O through 6 for the
auxiliary unit address bus. K-code is supplied by the task routine. The $1 is the address.

Specifies 24 bits of data to be written into the DUS location specified by WORD. This
supplies bits Othrough 23 of the auxiliary unit write bus, The $2 is any arithmetic expression
which expresses the data.

DUSMWRITE WORD(DSISUR),DATA(O(25252525))

This statement causes octal 25252525 to be written into DSISUR in the DUS. The DSISUR supplies bits
O through 6 of the auxiliary unit address bus and the K-code is supplied by the task routine.

DUSOARIN ‘

4.107 The description of the DUSOARIN statement includes:

Function:

The DUSOARIN statement adds the relative address of the start of scratch memory, used for autono-
mous block transfers of the ADS, to the address of scratch memory (in register F) and puts the sum into
the DUS – output address register (OAR).

Page 95

Format:
T

DUSORIN $1,$2,G

Characteristics of Parameters:

$1 – Specifies the Datapool name given to the start of scratch memory for ADS autonomous block
transfers.

$2 – Specifies the Datapool name for either the read or write bits in the OAR.

$3 – Specifies the Datapool name for either the read or write bits in the OAR.

Example:

DUSOARIN DGIADSLK,DSIOARW,DS1 OARR

This statement adds the address of DGIADSLK (the start of scratch memory for ADS autonomous
block transfers) to the base address (in register F) and puts the sum plus the DUS read and write bits
(DS1OARR and DS1OARW) in the OAR register.

4.108 The description of the DUSOAROT statement includes:

Function:

The DUSOAROT statement reads the contents of the DUS output address register (OAR). The contents
is compared to the parameter(s) supplied with the statement after adding the address of scratch ?,

memory (in register F) to the parameters supplied with the statement. If the DUS OAR content is not
equal to the parameters plus address of scratch memory, DUSOART will:

(1) Force the mismatch data to all one (0(77777777)

(2) Record the actual mismatching bits as a supplementary information (S1) word

(3) Force a diagnostic termination to prevent an unknown memory location from being written or
read.

Format:

DUSOAROT $1, $2,S

Characteristic of Parameters:

$1 – Specifies the expected relative.

$2 – Specifies the Datapool name for either the read or write bits in the OAR.
.

$3 – Same as $2.
T

Example:

DUSOAROT DG1ADSBLK,DS1OARW

This statement reads the DUS-OAR and compares its contents to the value obtained by adding the
contents of register F to the logical OR of the parameters DGIADSBLK and DS1OARW.

Page 96

1SS4, SECTION 254-280-040

.

,

/-%,

P

(-

t

.

DWNAME

4.109 The description of the DWNAME statement includes:

Function:

The DWNAME statement writes a new name in the K-code register of a file store, with a control-write
instruction. Optional parameters MASK and EXPECT may be used to verify the K-code written, and to
obtain raw data according to expected results.

Format:

DWNAME NAME($1),KCODE($2),MASK($3),EXPECT($4)

Characteristics of Parameters:

NAME – Specifies the new name to be written. The $1 is any of 32 valid file store K-codes defined in
Datapool. If $1 is XREG, it specifies the new name in the K-code of the file store being
diagnosed.

KCODE – Specifies the file store frame which is to have its K-code register changed. The $2 is the same
as $1 described for NAME.

MASK – Specified with EXPECT and specifies that verification of the new name or that the name did
not change is accomplished by a GCP read. The $3 is the same as $1 described for NAME. The
GCP instruction is described in Section 254-280-020, Assembly Language-Description, 1A
Processor.

EXPECT – Specified with MASK and specifies that verification of the new name or that the name did
not change is accomplished by a GCP read. The $4 is the same as $1 described for NAME.
The GCP instruction is described in Section 254-280-020, Assembly Language–Descrip-
tion, 1A Processor.

Example:

DWNAME NAME(XREG),KCODE(XREG),MASK(M(AUIKCDPS)),EXPECT(O)

This statement causes the K-code of the file store under diagnosis to be written in itself. The new name
is verified by a GCP read,

EDINIT

4.110 The description of the EDINIT statement includes:

Function:

The EDINIT statement tests the standby central control operational clock error detector initializing
circuitry, The standby central control operational clock and its error-detecting circuitry are started.
The error detector is then repetitively initialized. Each time, the error detector indicator is read to
verify that no error was generated due to an initializing failure. If no failure occurs before the end of the
test loop, the last read of the error indicator is stored in diagnostic scratch call store. If a failure occurs
during the test loop, the failing result is stored in diagnostic scratch call store. The operational clock is
stopped. The diagnostic scratch call store result is interrogated by other DL-1 statements.

Page 97

Format:

EDINIT

Characteristics of Parameters:

This statement has no parameters.

Examde:

EDINIT

This statement starts the standby central control operational clock and its error detecting circuitry,
then repeatedly initializes and reads the error detector indicator. If a failure due to an initializing
failure occurs before the end of the test loop, the failing result of the error indicator read is stored in
diagnostic scratch call store; otherwise, the last read of the error indicator is stored in diagnostic
scratch call store. The operational clock is stopped.

*EQuipcHK

4.111 The description of the EQUIPCHK statement includes:

Function:

The EQUIPCHK task routine is used to determine if unit 1XLUSD29 is either in the growth or opera-

tional state and whether the unit 1XLUSD29 is for a 2-wire or 4-wire office application. Compool
symbol XLIMCDMTHG is compared with the value of parameter three (1XLMCSD29). If a comparison
is found it indicates that the master control console panel SD-5A029 is for a 2-wire office application. A
noncomparison indicates that the master control console panel SD-5A029 is for a 4-wire office applica-
tion and bit 3 designated (DGIUNEQUIP) is set in scratch word DGISTAT.

Format:

EQUIPCHK UTYN($1),MEMN($2),HGVAL($3)

Characteristics of Parameters:

UTYN – Specifies the unit type. The $1 is 1XLUSD29.

MEMN – Specifies the member number. The $2 is O.

HGVAL – Specifies the hardware group value. The $3 is 1XLMCSD29.

Examples:

EQUIPCHK UTYN(1XLUSD29),MEMN(0),HGVAL(1XLMCSD29)

This statement will determine the state of unit type (1XLUSD29) and member number (0) and if it is
either growth or operational a comparison of the hardware group value (1XLMCSD29) and the Compool
symbol XLIMCDMTHG is made to determine if the application is for a 2-wire or 4-wire office.~

9

, “-%

Page 98

1SS4, SECTION 254-280-040

P’

>

EXECUTE

4.112 The description of the EXECUTE statement includes:

Function:

The EXECUTE statement causes the active central control to write specified 1A Processor language
instructions into the instruction stack in the standby central control. Execution of these instructions
takes place after the instruction execution register (IER) is cleared, the instruction fetch register (IFR)
is initialized to octal 300036, and the delay and limited run register (DLR) is set to the number of cycles
the standby central control is to run. The 1A Processor assembly language instructions and pseudo-
operations are described in Section 254-280-020, Assembly Language—Description, 1A Processor.

Format:

EXECUTE $1($2($3)),CYCLE($4)

Characteristics of Parameters:

$1 –

$2 –

$3 –

Specifies any of the five

(a)

(b)

(c)

(d)

(e)

instruction stack registers:

Buffer order word register

Buffer order word register

Half word register (HWR)

left-half (BOL)

right-half (BOR)

Auxiliary buffer order register left-half (ABL)

Auxiliary buffer order word register right-half (ABR).

Specifies the pseudo-operation for assembling the instruction. The $2 may be

RLONG – RELLOAD on, FLONG on

RSHORT – RELLOAD on, FSHORT on

SHORT – FSHORT on

LONG – FLONG on.

Specifies the 1A Processor

CYCLE –

Example:

EXECUTE

Specifies the number

assembly language instruction.

of cycles the standby central control is to run. The $4 is a decimal
number 1 through 15.

BOL(SHORT(LW X, O)),CYCLE(l)

This statement causes the active central control to write the 1A Processor assembly language short
instruction LW X, O into the BOL instruction stack register. Then the IER is cleared, the IFR is
initialized to octal 300036, and the DLR in the standby central control is set to 1. The instruction is then
executed.

Page 99

.

SECTION 254-280-040

4.113 The description of the INREAD statement includes:

Function:

The INREAD statement causes the active central control to read an item, a group of items of the same
address, or a word internal to the active central control. If EXPECT is specified, the reply, the mask,
and expected results are passed to the DCON program for processing raw results. If NOSTORE is
specified, only the read is performed.

Format:

ITEM($1) NOSTORE
INREAD ITEMS($2),EXPECT($4)

WORD($3)

Characteristics of Parameters:

ITEM – Specifies the symbolic location of an item in the internal central control. The $1 is an item
name.

ITEMS – Specifies the symbolic location of items in the internal central control. The $2 is a list of
items all in the same word.

WORD – Specifies the symbolic location of a word in the internal central control. The $3 is the
address.

EXPECT – Specifies the expected results. The $4 is any arithmetic expression that expresses the
expected results.

NOSTORE – No raw data is stored.

Example:

INREAD WORD(INIXR),EXPECT(-O)

This statement causes the active central control to read its X register (INIXR) and compares it to all 1s
(-o).

INWRITE

4.114 The description of the INWRITE statement includes:

Function:

The INWRITE statement causes the active central control to store a word of data internal to the active
central control at the location specified. The data is stored with a store secure instruction into the active
central control without product or insertion masking.

Format:

INWRITE WORD($1),DATA($2)

Page 100

“?

.

*

-’!

—.

1SS4, SECTION 254-280-040

,n Characteristics of Parameters:

WORD – Specifies the symbolic word location in the internal central control. The $1 is the symbolic
location.

DATA – Specifies the data to be stored. The $2 is any arithmetic expression that expresses the data to
be written.

. &U?@?:

INWRITE WORD(INIXR),DATA(-O)
,

This statement causes the active central control to write all 1s (-O) into its X register (INIXR).
f-<

f

IOCONFIG

4.115 The description

Function:

of the IOCONFIG statement includes:

The IOCONFIG statement configures the active central control to proper peripheral unit bus or buses
for the input/output diagnostic.

Format:

IOCONFIG E

Characteristics of Parameters:

$1 – The $1 is either PUBR or PUBA to indicate the PUBR or PUBA flip-flops in the central control
buffer bus register (central control status flip-flops) (CSC). The PUBR and PUBA are initially
set to zero. When PUBR or PUBA is specified, its associated flip-flop is set to one. The following
PB bus configurations are used by input-output diagnostic

PU ACCESS & WRITE BUS PU REPLY BUS PARAMETER

o 0
1 PUBA

0:1 0+1 PUBR

Example:

8
IOCONFIG PUBR

This statement causes both peripheral unit buses to be configured as active.

IOCONIOUS
,p’

4.116 The description of the IOCONIOUS statement includes:

Function:

The IOCONIOUS statement calls a peripheral unit fault recovery subroutine to configure or restore one
IOUS or the whole IOUS community to the correct bus configuration.

Page 701

Format:

RESTORE

IOCONIOUS CONFIG(RO($l),SO($2),Sl($3)),tiL

Characteristics of Parameters:

CONFIG – Specifies to what state the receive-on and send-on flip-flops should be set. The $1,$2, and
$3 are O or 1.

RESTORE – Specifies that all in-service IOUSS should have their configuration restored according to
status.

ALL – If specified, specifies that all in-service IOUSS should have their configuration set according to
the CONFIG parameter.

ExampIe:

IOCONIOUS CONFIG(RO(0),SO(l),S1(O))

This statement causes the receive-on flip-flop to be set to O,the send-on Oflip-flop to be set to 1, and the
send-on 1 flip-flop to be set to O.

lOMACON

4.117 The description of the IOMACON statement includes:

Function:

The IOMACON statement calls a peripheral unit fault recovery subroutine to set or clear the MA flip-
flop for all equipped IOUCS in an IOUS.

Format:

IOMACON MA($l)

Characteristics of Parameters:

MA – Specifies that the MA flip-flop of the IOUS should be set or restored. The $1 is SET or RE-
STORE.

IOMACON MA(SET)

This statement causes all the MA flip-flops for all equipped IOUCS in the IOUS under diagnosis to be
set.

Page 102

“,

.

?,

1SS4, SECTION 254-280-040

IOPOLL

4.118 The description of the IOPOLL statement includes

Function:

The IOPOLL statement performs an input/output polling pulse-source operation.

Format:

IOPOLL EXPECT($l)
NOSTORE

Characteristics of Parameters:

NOSTORE – Specifies that the reply from the polling pulse be ignored.

EXPECT – Specifies the l-bit expected result from the IOUS under diagnosis. The $1 is O or 1.

IOPOLL EXPECT(1)

This statement causes an input-output polling pulse source operation. The l-bit result from the IOUS
under diagnosis is compared to 1.

IOPUCON

4.119 The description of the IOPUCON statement includes:

Function:

The IOPUCON statement calls a peripheral unit fault recovery subroutine to set the state of the
peripheral unit control bus clock or poll selector flip-flops.

Format:

IOPUCON POLL($l)
CLOCK($l)

Characteristics of Parameters:

POLL – Specifies the state of the peripheral unit control bus poll selector flip-flop. The $1 is SET or
CLEAR.

CLOCK – Specifies the state of the peripheral unit control bus clock selector flip-flop. The $1 is SET
or CLEAR.

Example:

IOPUCON POLL(SET)

This statement causes the peripheral unit control bus poll selector flip-flop to be set.

Page 103

IOPULSE
T

4.120 The description of the IOPULSE statement includes:

Function:

“n
The IOPULSE statement performs a GCP peripheral unit pulse-source operation. It toggles the RO flip-
flop, sets the IOUS maintenance flip-flop (MAS) and gates back on the peripheral unit reply bus the
status register and error indicators from the IOUS under test. .

Format:

IOPULSE NOSTORE

ITEM($l)
IOPULSE ITEMS($2),EXPECT($3),REPULSE

Characteristics of Parameters:

NOSTORE – Specifies that the reply from the pulse source be ignored.

ITEM – Specifies the product mask for one Datapool-defined item. The $1 is a Datapool-defined item
which is contained in the input/output pulse-source register.

ITEMS – Specifies the product mask of a number of Datapool-defined items. The $2 is a list of
Datapool-defined items which are contained in the input-output pulse-source register.

EXPECT – Specifies the expected result of the read. It is exclusive-ORed with the result of the mask
7

operation. The $3 is any arithmetic expression which expresses the expected result.

REPULSE – Specifies that another pulse-source operation be executed to toggle RO back to its origi-
nal state.

Example: ●

IOPULSE ITEM(IOIPPFE),EXPECT(M(IOIPPFE)),REPULSE

This statement toggles the RO flip-flop, sets MAS, and gates back the status register and error indica-
tors from the IOUS under test. The reply is compared to IOIPPFE (the expected result). Then another
pulse-source operation is executed to toggle the RO back to its original state.

n ,

IOREAD
*

4.121 The description of the IOREAD statement includes:

Function:

The IOREAD statement specifies a peripheral unit operation which returns 24 bits of data on the
peripheral unit reply bus from the input/output circuit for processing raw test results.

Format:

IOREAD 0PER($1),DATA($2),MASK($3),EXPECT($4),MTCPU

Page 104

1SS4, SECTION 254-280-040

,n Characteristics of Parameters:

f-

.

8

OPER – Specifies the operation to be performed by the input-output circuit; it is sent over peripheral
unit write bus bits 35 through 29. The $1 is a Datapool-defined operation code for the IO
circuit.

DATA – Specifies the 24-bit data to be sent to the input-output circuit on peripheral unit write bus
bits 23 through O.If not specified, it is O.The $2 is any arithmetic expression which expresses
the data.

MASK – Specifies the product mask of the response on the peripheral unit reply bus before it is
exclusive-ORed and stored into memory. The $3 is amy arithmetic expression which ex-
presses the mask.

EXPECT – Specifies the expected result of the read. It is exclusive-ORed with the result of the mask
operation. The $4 is any arithmetic expression which expresses the expected result.

MTCPU – Specifies that the maintenance bit be sent. This is bit 12 of the peripheral unit enable
address bus. If not specified, it is O.

Example:

IOREAD OPER(CLEARBUF), DATA(45),MSK(34343),EXPECT(5655),MTCPU

This statement causes the Datapool-defined operation CLEARBUF to be sent out on bits 35 through 29
of the peripheral unit write bus, 45 to be sent out on bits 23 through Oof the peripheral unit write bus,
and 1 to be sent out on bit 12 of the peripheral unit enable address bus. The result is masked through
34343 and compared to 5655.

IOREQRD

4.122 The description of the 10 REQRD statement includes

Function:

The IOREQRD statement performs a maintenance read of the poll request register of the IOUS under
diagnosis.

Format:

IOREQRD EXPECT(SR($l),MR($2))

Characteristics of Parameters:

EXPECT – Specifies the expected result of the read of the service request and maintenance request
bits in the poll request register for the IOUC under diagnosis. The $1 and $2 are O or 1.

Example:

IOREQRD EXPECT(SR(0),MR(l))

This statement performs a maintenance read of the poll request register of the IOUS under diagnosis.
The expected results are O for the service request bit and 1 for the maintenance request bit.

Page 105

SECTION 254280-040

IOWRITE

4.123 The description of the IOWRITE statement includes:

Function:

The IOWRITE statement
circuit.

Format:

-,

specifies a peripheral unit operation which sends data to the input/output

.

#

OPER($l) INVK($4)

IOWRITE 0PAD($2),DATA($3),IOUCCODE($5),IPARE,IPARO,MTCPU,NSYNC
KCODE($6)

Characteristics of Parameters:

OPER –

OPAD –

DATA –

Specifies the operation to be performed by the input-output circuit; it is sent over peripheral
unit write bus bits 35 through 29. The $1 is a Datapool-defined operation code for the input-
output circuit. This parameter will not appear with OPAD.

Specifies peripheral unit write bus bits 25 through 24. The $2 is any arithmetic expression
which expresses the operation code and address. This parameter will not appear with OPER.

Specifies the 24-bit data to be sent to the input-output circuit on peripheral unit write bus
bits 23 through O. The $3 is any arithmetic expression which expresses the data.

IOUCCODE – If specified, it causes $5 to be insertion-masked into the three least significant bits of
the input-output KCODE. It is Owhen not specified. The $5 is any number from Oto 7.

INVK – If specified, the bit of the input-output KCODE corresponding to the absolute value of $4 is
inverted. The $4 is any number from 3 to 11.

KCODE –

IPARE –

IPARO –

MTCPU –

NSYNC –

Example:

If specified, it replaces the KCODE that would normally be used for the diagnosis. The $6 is
any arithmetic expression which expresses the K-code.

[f specified, the central control inverts the parity bit it computes over the even bits before ?,

sending it out on peripheral unit write bus bit 39.
●

[f specified, the central control inverts the parity bit it computes over the odd bits before
.

sending it out on peripheral unit write bus bit 38.

Specifies that the maintenance bit be sent. It is bit 12 of the peripheral unit enable address
bus. If not specified, it is O.

If specified, no address or data sync is to be transmitted to the input-output circuit.

T

IOWRITE OPER(CLEARBUF),DATA(77777), IPARE,NSYNC

Page 106

1SS4, SECTION 254-280-040

This statement causes the Datapool-defined operation CLEARBUF to be sent out on bits 35 through 29
of the peripheral unit write bits; all 1s (77777) to be sent out on bits 23 through Oof the peripheral unit
write bus with inverted parity sent out over the even bits of the peripheral unit bus and no sync.

P 12MAPTST

4.124 The description of the 12MAPTST statement includes:

. Function:

The 12MAPTST statement is used for testing the ROM sequencer map for all normal mode operation
codes with valid and invalid modes.

Format:

12MAPTST

Characteristics of Parameters:

This statement has no parameters.

Example:

12MAPTST

This statement tests the ROM sequencer map.

012MEMR

4.125 The description of the 12MEMR statement includes:

Function:

The 12MEMR statement is used for reading consecutive micromemory locations beginning at the ad-
dress specified. The data read must be a multiple of 3 bytes.

Format:

EXPPAT($2)
12MEMR STADD($l),EXPECT($5),COUNT($3),MASK($7),MP($4)

DTBEGIN($6)

Characteristics of Parameters:

STADD – Specifies the start address in micromemory where the test code is loaded. The $1 is any
valid micromemory address. The $1 must be specified with the EXPECT and EXPPAT
parameters; it is optional with the DTBEGIN parameter.

EXPPAT – Specifies what is read from micromemory; $2 is any 8-bit arithmetic expression which
expresses the pattern expected. The $2 is replicated three times to fill the 24-bit field.
Count must be specified with the EXPPAT parameter.

Page 107

COUNT – Specifies the number of times the EXPPAT is duplicated at consecutive memory locations.
Three consecutive memory locations are read for each increment of count. The $3 specifies
the number of locations read.

EXPECT – Specifies the data expected from micromemory reads. The $5 is a multiple number of octal
words separated by commas.

DTBEGIN – Specifies the label of the block of data that was previously loaded in a diagnostic phase.
The $6 is the label of the starting address where the block of data is contained. .

MP – If specified, it causes bit 3 of the K-code to be modified according to $4. The $4 is zero, one, or
NUT. If NUT is specified, bit 3 is inverted. If zero or one is specified, it is insertion-masked into
bit 3 of the input-output K-code.

,

MASK – If specified, all reads for this macro are masked through $7. The $7 is any arithmetic
.-

expression which expresses the mask.

Example:

12MEMR sTADD(loo3),ExPEcT(o(77777777,oooooooo,77777777)),MP(NuT)

This statement causes the MP memory, which is not under test, to be read starting at address 1003.
Each data byte is exclusive-ORed with the EXPECT parameters.

12MEMW

4.126 The description of the 12MEMW statement includes:

Function:

The 12MEMW statement is used for writing consecutive micromemory locations beginning at the
address specified. The data written must be a multiple of 3 bytes.

Format:

PATTERN($2)
12MEMW STADD($l),DATA($5),COUNT($3),MP($4),

DTBEGIN($6)

Characteristics of Parameters:
:

STADD – Specifies the start address in micromemory where the test code strip should be loaded. The
$1 is any valid micromemory address. The $1 must be specified with the data and pattern

parameters. It is optional with the DTBEGIN parameter.

PATTERN – Specifies what is written on peripheral unit write bus bits 23 through O.The $2 is any 8- -,

bit arithmetic expression which expresses the data. The $2 is replicated three times to
fill the 24-bit field. Count must be specified with the pattern parameter.

COUNT – Specifies the number of times the pattern is duplicated at consecutive memory locations. T
Three consecutive memory locations are written for each increment of count. The $3 speci-
fies the number of locations written.

Page 108

—

n

p

1SS4, SECTION 254-280-040

DATA – Specifies the data written over peripheral unit write bus bits 23 through O.The $5 may be a
multiple number of octal words separated by commas.

DTBEGIN – Specifies the label of the block of data that was previously loaded in a diagncqtic phase.

MP – If specified, it causes bit 3 of the K-code to be modified according to $4. The $4 is zero, one, or
NUT. If NUT is specified, bit 3 is inverted. If zero or one is specified, it is insertion-masked into
bit 3 of the input-output K-code.

Example:

12MEMW sTADD(loo3),DATA(o(77777777,oooooow,oooooooo)),MP(NuT)

This statement causes the MP memory, which is not under test, to be loaded
with the contents of the data parameter.

12PCLOOP

4.127 The description of the 12PCLOOP statement

Function:

includes:

starting at address 1003

The 12PCLOOP statement is used to put a TN82 peripheral controller into a looP data mode. Known
data is transmitted by the TN82 peripheral con~roller, then looped back and t&ted for errors. The
craftperson must establish the loop on the data link.

Format:

12PCLOOP

Characteristics of Parameters:

This statement has no parameters.

Example:

12PCLOOP

This statement puts a TN82 peripheral controller into a loop data mode.t

12MPTST

4.128 The description of the 12MPTST statement includes:

Function:

The 12MPTST statement is used to read and report the results of the MP power alarm monitor tests.

Format:

12MPTST RESULT

Page 109

Characteristics of Parameters:

RESULT – Specifies that the saved results of the MP power alarm monitor test should be reported to
central control.

If no parameter is specified, then the state of the MP out-of-service bits are read and saved.

@lw!s’

12MPTST

This statement reads the states of both MP out-of-service bits and saves them in a call store location.
The results of this read will be reported by the next call of 12MPTST.

?,

12PCPMP

4.129 The description of the 12PCPMP statement includes:

Function:

The 12PCPMP task routine uses a routine in the Peripheral Fault Recognition (PFLR) program to pump
the IOP peripheral controller with its on-board diagnostic. The data that is pumped into the processor
configuration resides on the 1A Processor disk file.

12POU

Format:

12PCPMP

Characteristics of Parameters:

This statement has no parameters.

Example:

12PCPMP

This statement loads the peripheral controller with its on-board diagnostic.

4.130 The description of the 12POLL statement includes:

Function:

The 12POLL statement performs an input-output polling GCP source operation.

Format:

NOSTORE CLEAR
12POLL EXPECT($l),SET

Page 110

.

——

/-’

.

,/-=

Characteristics of Parameters:

NOSTORE – Specifies that the reply from the polling pulse be ignored.

EXPECT – Specifies the l-bit expected result from the MP under diagnosis is O or 1.

CLEAR – Specifies the INIPUCBF flip-flop be cleared.

SET – Specifies the INIPUCBF flip-flop be set.

Example:

12POLL EXPECT(1)

This statement causes an input-output polling GCP source operation. The l-bit result from the MP
under diagnosis is compared with 1 and ‘the results are stored as raw data.

12PULSE

4.131 The description of the 12PULSE statement includes:

Function:

The 12PULSE statement performs either a maintenance or control GCP source operation.

Format:

CONTROL ITEMS($2) NOSTORE
12PULSE STATUS,ITEM($l), EXPECT($3),REPULSE

Characteristics of Parameters:

CONTROL – Specifies that the GCP to unlock the DMAC bus inhibit is executed. No other parameter
should be used with control.

STATUS – Specifies that the maintenance GCP to toggle RO and return status be executed.

NOSTORE – Specifies that the reply from the maintenance GCP source be ignored.

ITEM – Specifies the product mask for one Datapool-defined item which is contained in the DMAC
status register.

ITEMS – Specifies the product mask of a number of Datapool-defined items. The $2 is a list of
Datapool-defined items which are contained in the DMAC status register.

EXPECT – Specifies the expected result of the read. It is exclusive-ORed with the result of the mask
operation. The $3 is any arithmetic expression which expresses the expected result.

REPULSE – Specifies that another maintenance GCP source operation be executed to toggle RO back
to its original state.

awk:

12PULSE ITEM(10112PMAS),EXPECT(M(I0112PMAS)),REPULSE

Page 111

SECTION 254-280-040

This statement toggles the RO flip-flop, sets MAS, clears SO and S1, and gates back the status register -,
and error indicators from the DMAC under test. The reply is product masked and exclusive-ORed with
I0112PMAS. Another maintenance GCP source operation is executed to toggle the RO back to its
original state.

12RDADJ

4.132 The description of the 12RDADJ statement includes:
.

Function:

The 12RDADJ task routine is used to read the IOP peripheral controller service request or error
request. The service request (SR) or error request (ER) from the processor configuration under test is
right-adjusted according to the processor configuration member number in order to normalize the raw
data.

Format:

SR($l)
12RDADJ ER($l)

Characteristics of Parameters:

SR – Specifies the service request will be read. The $1 is the expected value (O or 1).

ER – Specifies the error request will be read. The $1 is the expected value (O or 1).

Example:

12RDADJ SR(0)

This statement reads the IOP peripheral controller service request. The expected value is O.

12READ

4.133 The description of the 12READ statement includes

Function:

The 12READ statement specifies a peripheral unit operation which returns 24 bits of data on the
peripheral unit reply bus from the DMAC for processing raw test results.

Format:

MEMADM($7)MEMDA($8)
$12READ 0PER($1),DATA(2),MASK($3),EXPECT($4), LIU($5),MP($6), MTCPU4

MEMAD($9)
MPOP($1O)MPDA($11)

Characteristics of Parameters:

OPER – Specifies the operation performed by the DMAC circuit; it is sent over peripheral unit write
bus bits 34 through 29. The $1 is a Datapool-defined operation code for the DMAC.

.

‘-l

Page 112

.

DATA

OMPOP

$MPDA

1SS4, SECTION 254-280-040

Specifies the 24-bit data sent to the DMAC circuit on peripheral unit write bus bits 23
through O. The $2 is any arithmetic expression which expresses the data.

— Specifies peripheral unit write bus bits 23 through 16, which is the MP operation code. The
$10 is any arithmetic expression which expresses the MP operation code. It must not be
specified with the DATA, MEMAD, or MEMADM codes. The MPDA parameter must be
qualified.~

— Specifies peripheral unit write bus bits 15 through O,which is the 2 MP data bytes. The $11
may be any arithmetic expression which expresses the 2 bytes of data.g

MEMAD – Specifies peripheral unit write bus bits 23 through 8, which expresses the MP memory
address. The $9 maybe any arithmetic expression which expresses the memory address. It
must not be specified with the DATA, MPOP, or MEMADM parameters. The MEMDA
parameter may be defaulted.

OMEMADM – Specifies the peripheral unit write bus bits 23 through 8, which expresses the memory
address. That portion of the address which signifies the LIU to be addressed is modi-
fied according to the LIU under test. The $7 is any arithmetic expression which ex-
presses the memory address.~

MEMDA – Specifies peripheral unit write bus bits 7 through O,which expresses the data written to a

LIU –

*MP –

memory address. It may be defaulted or specified with the MEMAD or MEMADM param-
eters. The $8 is any arithmetic expression which specifies the data.

If specified, it causes $5 to be insertion-masked into the three least-significant bits of the
input-output K-code. The $5 is any number from zero through seven.

If specified, it causes bit 3 of the K-code to be modified according to $6. The $6 is zero, one, or
NUT. If NUT is specified, bit 3 is inverted. If zero or one is specified, it is insertion-masked into
bit 3 of the input-output K-code.4

MTCPU – Specifies that the maintenance bit is sent. It is bit 12 of the peripheral unit enable address
bus.

Example:

12READ OPER(LOOPDA),DATA(lDG.ONES),MASK(lDG.ONES), EXPECT (DG_ONES),MTCPU
,c\

This statement sends the Datapool-defined operation LOOPDA out on peripheral unit write bus bits 34

t
through 29, all ones sent on bits 23 through O.The maintenance bit (which is bit 12 of the peripheral unit
enable address bus) is sent. The reply from peripheral unit reply bus bits 23 through O is masked with
all ones and exclusive-ORed with all ones to give a pass or fail test result.

.

12TESTMP

4.134 The description of the 12TESTMP statement includes

Function:

,P The 12TESTMP statement is used to load and execute the onboard MP diagnostic and to report the test
results to central control.

Format:

PSTORE
12TESTMP DSTORE

Characteristics of Parameters:

PSTORE – Specifies that the program store random access memory area of the MP should be loaded.

DSTORE – Specifies that the data store random access memory area of the MP should be loaded.

.

If no parameter is specified, then test results are reported to central control. *

Example:

12TESTMP

Since no parameter is specified, the test results from the previous call of 12TESTMP are read from
either program or data store and reported to central control.

4.135 The description of the 12WRITE statement includes:

Function:

The 12WRITE statement specifies a peripheral unit operation which sends data to the DMAC.

Format:

OPER($l) DATA($3) INVK($4)
$12WRITE 0PAD($2),MEMADM($8),MEMDA($9),LIU($5),IPARE,IPARO,MTCPU,SCHSPD4

MPOP($1O) MPDA($ll) KCODE($6)
MEMAD($12) MEMDA($9) MP($7)

Characteristics of Parameters:

?,
OPER – Specifies the operation performed by the DMAC circuit; it is sent over the peripheral unit

write bus bits 34 through 29. The $1 is a Datapool-defined operation code for the DMAC
circuit. This parameter must not appear with OPAD.

.

OPAD – Specifies peripheral unit write bus bits 35 through 24. The $2 is any arithmetic expression.
This parameter must not appear with OPER.

DATA – Specifies the 24-bit data sent to the input-output circuit on peripheral unit write bus bits 23 T
through O. The $3 is any arithmetic expression which expresses data.

$MPOP – Specifies peripheral unit write bus bits 23 through 16, which specifies the MP operation
code. The $10 is any arithmetic expression which expresses the MP operation code. This
parameter must not be specified with the DATA, MEMAD, or MEMADM parameters. The
MPDA parameter must be specified.q

Page 114

1SS4, SECTION 254-280-040

.

,n

OMPDA – Specifies peripheral unit write bus bits 15 through 0, which specify the 2 MP data bytes.
The $11 is any arithmetic expression which expresses the 2 bytes of data.t

MEMAD –

OMEMADM

MEMDA –

Specifies peripheral unit write bus bits 23 through 8, which express the MP memory
address. The $12 is any arithmetic expression which expresses the memory address. This
parameter must not be specified with the DATA, MPOP, or MEMADM parameters. The
MEMDA parameter may be defaulted.

– Specifies the peripheral unit write bus bits 23 through 8, which express the memory
address. That portion of the address which signifies the LIU addressed is modified
according to the LIU under test. The $8 is any arithmetic expression which expresses
the MP memory address. The MEMDA parameter may be defaulted.t

Specifies peripheral unit write bus bits 7 through O, which express the data written to a
memory address. It may be defaulted or specified with the MEMAD or MEMADM param-
eters. The $9 is any expression which specifies the data.

LIU – If specified, it causes $5 to be insertion-masked into the least three significant bits of the input-
output K-code. The $5 is any number from O through 7. This parameter must not be specified
with the KCODE or INVK parameters.

INVK – If specified, the bit of the input-output K-code corresponding to the absolute value of $4 is
inverted. The $4 is any number from 4 through 11 or 24 through 26. This parameter must not I
be specified with the LIU, KCODE, or MP parameters.

KCODE – If specified, it replaces the K-code that would normally be used with the diagnostic. The $6
is any arithmetic expression which expresses the K-code. This parameter must not be
specified with LIU, INVK, or MP parameters.

9MP – If specified, it causes bit 3 of the K-code to be modified according to $7, The $7 is zero, one, or
NUT (not under test). If NUT is specified, bit 3 is inverted. If zero or one is specified, it is
insertion-masked into bit 3 of the input-output K-code.4

IPARE – If specified, the central control inverts the parity bit it computes over the even bits of the
peripheral unit write and enable address bus before sending it out on peripheral unit write
bus bit 39.

IPARO – If specified, the central control inverts the parity bit it computes over the odd bits of the
peripheral unit write and enable address bus before sending it out on peripheral unit write
bus bit 38.

MTCPU – Specifies that the maintenance bit is sent. It is bit 12 of the peripheral unit enable address

NSYNC –

$SCHSPD

Example:

bus.

Specifies that the peripheral unit sync pulse is not sent. It is
enable address bus.

— If specified, send channel speed to peripheral controller.~

12WRITE OPER(LOOPDA),DATA(O(7777777)),IPARE,NSYNC

bit 13 of the peripheral unit

This statement sends the Datapool-defined operation LOOPDA out on bits 34 through 29 of the
peripheral unit write bus; all ones are out on peripheral unit data bits 23 through Owith the even parity
bit inverted with no peripheral unit sync.

Page 115

SECTION 254-280-040

$LCKcODE

4.136

LDSAR

4.137

The description of the LCKCODE statement includes:

Function:

The LCKCODE statement writes the K-code register of an auxiliary unit to the value contained in
DGIAUKCODE. This is done by first control pulsing (GCP) the test unit to obtain the present state of
the auxiliary unit K-code register. Then, using the K-code obtained from the GCP reply to address the
test unit, a write to the auxiliary unit K-code register is performed.

Format: .

LCKCODE -y

Characteristics of Parameters:

This statement has no parameters.

Example:

LCKCODE

This statement will GCP the test unit (using the GCP address contained in DGIGCPADDR) to obtain
the present state of the test unit’s K-code register. Using the K-code obtained from the GCP reply to
address the test unit, a write of the test unit’s K-code register is performed to change its state to the
value contained in DGIAUKCODE.

The description of the LDSAR statement includes:

Function:

The LDSAR statement will take the specified argument (ARGX), add the contents of the F register to
it, and store the results in the output address register (OAR) of the attached processor interface (API).
The LDSAR will also set the read or write bit in the OAR.

Format:
‘?

READBIT
*

LDSAR ARGX($l),WRITEBIT

Characteristics of Parameters:

ARGX – Specifies that the argument is to be added to the contents of the F register. The $1 is any
arithmetic expression which expresses an address pattern.

READBIT – Specifies that bit 22 of the OAR is to be set. (lVote: Bit 23, the write bit, is defaulted to O
if this parameter is specified.)

WRITEBIT – Specifies that bit 23 of the OAR is to be set. (lVote: Bit 22, the read bit, is defaulted to O
T

if this parameter is specified.)

Page 116

1SS4, SECTION 254-280-040

LDSAR ARGX(O(4271)),READBIT

This statement will load the API’s OAR with F+ O(4271). It will also set the read bit (bit 22).4

MBREGTST

4.138 The description of the MBREGTST statement includes

,

.(’-

Function:

The MBREGTST statement causes the active central control to do a series of write/read operations into
the standby central control register specified. The following procedure is used:

(1) The register is cleared and then the read/write lists in the register (specified by lDG_RW_ register
name) are read and expected to be O.

(2) An alternating 1 and O pattern which is masked with the read/write bits.

(3) The STIUBA (unmasked bus read through the add one register), STIM (masked bus), and STIUBM
(unmasked bus read through the mask and complement circuit) are read and expected to be O.

(4) An alternating O and 1 pattern is written into and read out of the read/write bits in the register.

(5) The STIUBA, STIMB, and STIUBM are read and expected to be O.

(6) The register is cleared and the read/write bits are read and expected to be O,

Format:

MBREGTST $1

Characteristics of Parameters:

$1 – Specifies a register name in the standby central control without the prefix ST1.

Example:

MBREGTST XR

.

MCCABLEV

This statement causes the active central control to do a series of read/write operations into the X
register (XR) in the standby central control.

P’ 4.139 The description of the MCCABLEV statement includes:

Function:

The MCCABLEV routine is used to generate the GCP to produce the A or B level for testing the manual
recovery circuitry. The associated task routine does all the necessary administration to keep the system
sane and recover smoothly from the A- or B-level interrupt.

Page 117

SECTION 254-280-040

Format:

MCCABLEV GCP($1),COMM($2),RO($3),CONFIG($4)

Characteristics of Parameters:

GCP –

COMM

Specifies the number of GCPS to be produced by the task routine. Also will specify whether an
automatic processor configuration is to be generated. The $1 is one of the following.

NONE – Specifies no GCP.

ONE –

TWO –

OVREN

Specifies 1 GCP. This is the default case if no GCP parameter is specified.

Specifies 2 GCPS.

— Specifies that 1 GCP should be produced if the override enable is on.

AUTOPC – Specifies that an automatic processor configuration will be produced. No GCP is
done.

— s~ecifies the community (program store or call store) which the routine will be executed
f~om. The $2 is only specified as call store. The program store community is the default case.

RO – Specifies the bus which the stores will receive on. The $3 is SET for bus 1. The default case is
RESET.

7

CONFIG – Specifies whether a configuration of the standby central control is to be performed. The $4
is STOPCC if the standby central control is to be stopped and left out of service.

Example:

MCCABLEV COMM(CS),RO(SET), GCP(TWO)

This statement will cause the code to be copied to the call store for execution. The store’s active bus will
be set to bus 1. Two GCPS will be executed.

MCCBARTST
‘>

4.140 The description of the MCCBARTST statement includes:
*

Function:

The MCCBARTST statement tests the system activity bar graph display for the application panel on
the master control console. The MCCBARTST routine has the capability of either sequentially lighting
a bar specified to the maximum value or extinguishing the light-emitting diodes (LEDs) of the bar

T

specified.

Format:

MCCBARTST $1,$2

Page 118

f-

,/-’

.

.

.

,P

1SS4, SECTION 254-280-040

Characteristics of Parameters:

$1 – Represents 1 of 15 bars that can be specified.

$2 – Specifies whether the bar under testis to be sequentially lighted or extinguished. The $2 is ON

or OFF.

J&Z!@%

(a) MCCBARTST BAR1,ON

This statement tests bar 1 of the status panel. The lights are sequentially lighted.

(b) MCCBARTST BAR15,0FF

This statement tests bar 15 of the

MCCBITOG

4.141 The description of the MCCBITOG

Function:

status panel. The lights are sequentially extinguished.

statement includes:

The MCCBITOG statement writes a toggle row on the master control console to the desired pattern.
This is done by reading the toggle row, comparing the contents of the row to the desired pattern, then
toggling the flip-flops that mismatch. The MCCBITOG statement enables testing of rows with toggle
flip-flops by walking either a one through a field of zeros, or a zero through a field of ones.

Format:

MCCBITOG ROW($1),WALK($2), BIT($3),MASK($4)

Characteristics of Parameters:

ROW – Specifies the row address. The $1 is a 7-bit pattern sent out over peripheral unit write bus bits
30 through 24.

WALK – Indicates the type of bit pattern sent on peripheral unit write bus bits 23 through O.The $2 is
either lTO (representing a 1 in a field of 0s) or OT1 (representing a O in a field of 1s).

BIT – Specifies which data bit is complemented from the rest. The $3 is a decimal number.

MASK –

Example:

Specifies 24-bit pattern which specifies the significant bits of the reply on the peripheral
unit reply bus. There are four cases of masks that are encoded into the data word depending
on which row is under test. The $4 is any arithmetic expression which expresses the mask.

MCCBITOG ROW (1MCROW29),WALK(1 TO),BIT(18),MASK(O(17777777))

This statement reads the row at row address 1MCROW29 and compares the result to a word of data,

containing a 1 in bit position 18, all other bits O. The row read is masked through octal 17777777. The
flip-flops which mismatch after the compare are toggled.

Page 119

MCCBITWK

4.142 The description of the MCCBITWK statement includes:

Function:

The MCCBITWK statement matches a reply to an expected result through a mask to test a matrix row
in the master control console with set-reset type flip-flops. One data word is obtained by encoding the
bit displacement and pattern (1 in field of 0s; O in a field of 1s).

Format:

MCCBITWK ROW($1),WALK($2),BIT($3),MASK($4)

Characteristics of Parameters:

ROW – Specifies the row address. The $1 is a 7-bit pattern sent out over the peripheral unit write bus
bits 30 through 24.

WALK – Indicates the type of bit pattern sent on peripheral unit bus bits 23 through O. The $2 is
either lTO (representing a 1 in a field of 0s) or OT1 (representing a O in a field of 1s).

BIT – Specifies which data bit is complemented from the rest. The $3 is a decimal number.

MASK – Specifies a 24-bit pattern which specifies the significant bits of the reply on the peripheral
unit reply bus. There are four cases of masks that are encoded into the data word depending -
on which row is under test. The $4 is any arithmetic expression which expresses the mask.

\

Example:

MCCBITWK ROW(1MCROW3),WALK(1TO),BIT(3),MASK(1MCALL1S)

This statement sends one word of data, containing a 1 in bit position 3, all other bits O,to the master
control console row at row address 1MCROW3. The reply on the peripheral unit reply bus is masked
through the value of lMCALLIS.

MCCINTCON

?
4.143 The description of the MCCINTCON statement includes:

Function:

The MCCINTCON statement sets up the bus configuration flip-flop in the master control console.

Format:

MCCINTCON RECEIVEON($l),MAINTMODE($2), REPLYON($3)

Characteristics of Parameters:

RECEIVEON – Specifies on which peripheral unit bus (O, 1, or active) the master control console will
receive information from the central control. The $1 is BUS O, BUS 1, or ABUS.

Page 120

1SS4, SECTION 254-280-040

P

●

✎

✌✌✍

/-’

P..

.

P’

MAINTMODE – Specifies whether the master control console is in maintenance mode. The $2 is OFF
or ON. (OFF is normal condition). Does not need to be specified if $1 is ABUS; will
default to MAINTMODE ON.

REPLYON – Specifies on which peripheral unit bus the master control console is addressing the
central control. If not specified, the master control console sends both. The $3 is BUS O
or BUS 1. Does not need to be specified if $1 is ABUS.

Example:

MCCINTCON RECEIVEON(BUS O),MAINTMODE(OFF),REPLYON(BUS 1)

This statement sets the bus configuration flip-flop in the master control console. The master control
console will receive on BUS O,the maintenance mode is off, and the master control console will reply on
BUS 1.

MCCKEYSET

4.144 The description of the MCCKEYSET statement includes:

Function:

The MCCKEYSET macro is used to provide the operating personnel with a way of selecting various keys
needed for a particular test. It also can be used to check the status of a key by input from the operating
personnel. The associated task routine flashes the diagnostic in progress (DIP) lamp and displays the
test number being performed on the numeric display of the master control console. The operating
personnel then has approximately 1 minute to select the keys specified in the diagnostic listing. When
the operating personnel has selected the keys, the direct data insert key 1 is pressed. The routine then
reads the keys to verify the correct selection. If the keys are incorrect, the DIP lamp will continue to
blink until 1 minute has elapsed or until the correct keys are selected. If 1 minute elapses, a failure will
be recorded and the diagnostic will proceed to the next test.

The MCCKEYSET routine also has the capability of skipping tests without recording a failure. If the
DIP lamp is flashing and direct data insert key O is pressed, the test will be skipped with no failures.
This is useful when trying to loop on a particular test. To get to the test wanted, other tests may have to
be run which are not cared about. By using key O, the test can be gotten to much quicker.

The other use of MCCKEYSET is to provide the operating personnel a way of telling the diagnostic the
state of a lamp which cannot be read directly. The diagnostic will tell the operating personnel which
condition to look for. If the condition is as described, direct data insert key 1 should be pressed. If the
condition is incorrect, the operating personnel should respond by pressing direct data insert key O.

Format:

KEYCHECK($3,$4)
MCCKEYSET KEYS($1),LABEL($2)

Characteristics of Parameters:

KEYS – Specifies the keys which the operating personnel should set and reset. These keys will be
checked for correctness when the operating personnel responds with direct data insert key 1.
The $1 is a list of keys to set from the following list:

Page 121

SECTION 254-280-040

UPDATE.FSO
UPDATE.FS1
OC_BLK_PSO
OC_VAR_PSO
OC_VAR_PSl
OC_AUBO
OC_AUBl
OC_PSBO
OC_PSBl
OC_ACT_CC
OC_STB_CC
SR_ENABLE
PC_DISABLE
PR_CLR_UTIL_FUNC

PR_INH_INT
PR_RST_MTCE_IO T

PR_MOD_REC_ACT
PR_FULL_CFG_EMER_MODE
PR_MIN_CFG_EMER_MODE
PR_PH6
PR_PH5
PR_PH4
PR_PH3
PR_PH2

.

PR_PHl
Mc3_DIs
RESET_DIS

LABEL – Specifies the label which will bejumped to if the routine timesout (exceeds 1 minute)orif
direct data insert key Oispressed. The$2is thelabel name. Acorresponding DTDEST
macro must be used at the label destination.

KEYCHECK – Specifies that thetest isacheck ofakeystate bytheoperating personnel. The$3is
any English expression which describes the key which is to be checked by the operat-
ing personnel. The $4 is either SET or RESET.

Examples:

(1)MCCKEYSET KEYS(OC_VAR_PSO, OC_AUBl,OC_PSBl, OC_ACT_CC),
LABEL(NEXT_TEST)

(2) MCCKEYSET KEYCHECK(PC_BIT_OO, SET)

Example 1 will tell the operating personnel to set variable PSO, auxiliary unit bus 1, program store bus
1, and the active central control keys in the override control section of the master control console. Once
the keys are set, the operating personnel should respond by pressing direct data insert key 1. The
selected keys will then be read to verify that the correct keys were selected.

Example 2 will tell the operating personnel that processor configuration state counter bit Oshould be
checked to see if it is set. If it is set, direct data insert key 1 should be pressed. If not set, direct data
insert key O should be pressed.

-y

MCCKEYTEST
.

4.145 The description of the MCCKEYTEST statement includes:

Function:

The MCCKEYTEST statement enables a check of the specified key on the master control console or ?,
central control with an expected result. If the flip-flop associated with the specified key does not match
the expected value within 20 seconds, a failure is stored at this test.

Format:
T,

MCCKEYTEST KEY($l),EXPECT($2),PASSGOTO($3)

Page 122

1SS4, SECTION 254-280-040

,n

f-

.

.

,#--’.

.

Characteristics of Parameters:

KEY – Specifies an addressable key name defined on Datapool. The address of the key can be in
either the central control or the master control console. The $1 is the address of the key.

EXPECT – Specifies the expected value of the key under test. The $2 is O or 1.

PASTGOTO — Specifies a data table location where the program will continue execution.

Example:

MCCKEYTEST KEY(MCIDIKO),EXPECT(l), PASSGOTO(DILOC1)

This statement causes the key at address MCIDIKO to be compared to 1 (the expected value), and if the
comparison is true, the check will continue at data table with label DILOC1.

MCCONFIG

4.146 The description of the MCCONFIG statement includes:

Function:

The MCCONFIG statement sets the states of the peripheral unit bus configuration flip-flops of the
central control buffer register CSC (central control status flip-flops).

Format:

MCCONFIG PUBA,PUBT,PUBR,PUBO, SCBC,SCBB,SCBA, PBMB,PBMA,CDMA,CDMB,CPDB,El4

Characteristics of Parameters:

PUBA –

PUBT –

PUBR –

PUBO –

SCBC –

SCBB –

SCBA –

PBMB –

Coded enable peripheral unit bus control. When set, peripheral unit bus 1 active; otherwise,
peripheral unit bus O is active.

Coded enable peripheral unit bus control. Denotes that the standby bus is in trouble.

Coded enable peripheral unit bus control. Active central control receives on both peripheral
unit buses.

Coded enable peripheral unit bus control. Active central control sends on both peripheral
unit buses.

Peripheral unit reply bus control flip-flop C.

Peripheral unit reply bus control flip-flop B.

Peripheral unit reply bus control flip-flop A.

Peripheral unit write bus control. Controls standby send bus.

PBMA – Peripheral unit write bus control. Controls active send bus.

CDMA – Peripheral unit enable bus control. Controls active send bus.

Page 123

SECTION 254-280-040

CDMB – Peripheral unit enable bus control. Controls standby send bus.

CPDB – Peripheral unit enable and CPD reply bus control flip-flop.

E14 – Sends out a one on bit 14 of E register in the central control when specified.

Example:

MCCONFIG PUBA,PBMA,SCBA,PUBT

This statement sets the coded enable bus 1 active, marks the standby coded enable bus as in trouble,
sets the standby send bus, and sets the peripheral unit reply bus control flip-flop A.

MCCPULSE

4.147 The description of the MCCPULSE statement includes:

Function:

The MCCPULSE statement is used for pulse-source reads of the status register in the master control
console. When a pulse source is activated, it automatically gates out the contents of the status register
on both peripheral unit reply buses.

Format:

‘-n

.

.

NOSTORE

MCCPULSE POINT($l),MASK($2),EXPECT($3),REPULSE

Characteristics of Parameters:

POINT – Specifies 24-bit address of the pulse point. The $1 is the address.

NOSTORE – Either this parameter or the MASK, EXPECT pair will appear. This indicates that the
reply from the pulse source should be ignored.

MASK – Specifies 2-bit mask pattern. The $2 is any arithmetic expression which expresses the mask.
‘7

EXPECT – Specifies 24-bit expected results. The $3 is any arithmetic expression which expresses the
expected results. *

REPULSE –

-:

If specified, the pulse point is hit twice. The first pulse toggles the RO (peripheral unit
write bus select) flip-flop, and the second pulse source toggles the RO flip-flop back to its
initial state.

MCCPULSE POINT(OPPUOOO), MASK(lMCALLIS), EXPECT(M(MClROFF,MClMAFF))

This statement causes a read of the pulse source at address OPPUOOO in the status register in the
master control console. After being masked through the value of lMCALLIS, the result is compared to
the expected result (the mask of the MCIROFF and MCIMAFF items).

Page 124

1SS4, SECTION 254-280-040

f-% MCCREAD

4.148 The description of the MCCREAD statement includes

Function:

The MCCREAD statement executes a master control console instruction and matches the reply to an
expected result through a mask.

.
Format:

.

,/--

P

./----
r

$.

.

,(-

P

MCCREAD OPBITS($l),ROW($2),DATA($3),MASK($4), EXPECT($5),SPARE,1PAR0,1PARE

,MTCPU,NSYNC

Characteristics of Parameters:

OPBITS – Specifies the four OP code bits on the peripheral unit write bus. The $1 is any combination
in any of CM, S, R, T, or NOOP.

CM = PU write bus bit 35 (PUW35)=1

s = PUW33=1

R = PUW32=1

T = PUW31=1

NOOP = PUW35,PUW33,PUW32,PUW31 =0,

ROW – Specifies an invalid or valid row address. The $2 is a 7-bit pattern sent out over bus bits
PUW30 through 24.

DATA – Specifies the 24-bit pattern on PUW23 through PUWOO. If not specified, all 0s are sent. The
$3 is any arithmetic expression which expresses the data.

MASK – Specifies a 24-bit pattern which specifies the significant bits of the reply on the peripheral
unit reply bus. The $4 is any arithmetic expression which expresses the mask.

EXPECT – Specifies a 24-bit pattern which specifies the expected result of the masked reply. The $5 is

SPARE –

IPARO –

IPARE –

any arithmetic expression which expresses the expected result.

If not specified, PUW34 = O. If specified, PUW34 = 1.

If specified, the central control inverts the parity bit it computes over the odd bits before
sending it out on PUW38.

If specified, the central control inverts the parity bit it commtes over the even bits before. .
sending it out on PUW39.

MTCPU – If specified, the M-bit (enable address bus bit 12) = O, else =1.

NSYNC – If specified, the sync is not sent.

Page 125

—.

SECTION 254-280-040

w:

MCCREAD OPBITS(CM),ROW(lMCSTATR),MASK(M(MClAZCO,MClKM,MClROFF,
ME MCIMAFF)),EXPECT(M(MCIKM,MCIROFF))

This statement sets PUW35 = 1, from ORBITS, sends the row address lMCSTATR over bus bits
PUW30 through 24, makes the reply with the mask of the (MCIAZCO,MCIKM, MCIROF,MCIMAFF)
items and compares the result with the expected result (the mask of the MCIKM and MCIROFF items).

.

MCCTOG

4.149 The description of the MCCTOG statement includes:
?,

Function:

The MCCTOG statement writes a toggle row on the master control console to the 24-bit pattern
specified by the PATTERN parameter. The specified row is read and compared to the desired pattern;
then the bits that mismatch are toggled, The results of the toggle operation may either be matched or
ignored.

Format:

NOSTORE
MCCTOG ROW($l),PATTERN($2),MASK($3),EXPECT($4)

Characteristics of Parameters:

ROW – Specifies 7-bit row address. The $1 is the address.

PATTERN – Specifies 24-bit pattern that is written into the toggle row. A read is required of the row
and compares the contents of the row to the desired pattern and then toggles the bits
that mismatch. The EXPECT and MASK applies to the read after the toggle operation.
The $2 is any arithmetic expression which expresses the data.

NOSTORE – Either this parameter or the MASK-EXPECT pair will be present. This indicates that
the reply from the master control console is ignored. ?,

MASK – Specifies 24-bit mask. The $3 is any arithmetic expression which expresses the mask. .

EXPECT –

!@!&:

Specifies expected results. The $4 is any arithmetic expression which expresses the ex-
pected result.

T

MCCTOG ROW(lMCROW24),PATTERN(M(MCIFAK)),MASK(lMCALLIS),EXPECT(M(MClFAK))

This statement reads master control console row 1MCRW24, compares it to the mask of the MCIFAK
item, then toggles the bits that do not match. The result is masked through the value of lMCALLIS and
compared to the mask of the MCIFAK item.

Page 126

— —

1SS4, SECTION 254-280-040

P

.

.

,/-=

.

MCCTUCSR

4.150 The description of the MCCTUSR statement includes

Function:

The MCCTUCSR macro is used to set the TUC, specified as a helper unit on the DGN request, to the SR
mode. This will cause the READY lamp on the master control console panel to be lighted.

Format:

MCCTUCSR

Characteristics of Parameters:

There are no parameters for this macro. The TUC to be set to the SR mode is obtained from the
diagnostic buffer table (DBT). The DBT gets set up from the diagnostic input message.

Examde:

MCCTUCSR

This statement will set the TUC specified on the DGN message to the SR mode and will cause the
READY lamp on the master control console to be lighted.

MCCWRITE

4.151 The description of the MCCWRITE statement includes:

The MCCWRITE statement executes the master control console instruction with specified values on the
peripheral unit write bus and the enable address bus. Where a valid master control console instruction
is sent out on the bus, the master control console reply is on the peripheral unit reply bus. The
statement always ignores this response.

Format:

MCCWRITE 0PBITS($l),ROW($2), DATA($3),KCODE($4), SPARE,IPARO,IPARE, MTCPU,NSYNC

Characteristics of Parameters:

OPBITS

ROW –

– Specifies the four OP-code bits on the peripheral unit write bus. The $1 can be any combi-
nation in any order of CM, S, R, T, or NOOP.

CM = Peripheral unit write bus bit 35 (PUW35)=1 (control mode)

S = PUW33 = 1 (set on 1)

R = PUW32 = 1 (reset on O)

T = PUW31 = 1 (toggle on 1)

NOOP = PUW35 = PUW33 = PUW32 = PUW31 = O,

Specifies an invalid or valid row address to be sent on peripheral unit write bits PUW30
through PUW24. The $2 is the row address.

Page 127

SKTION 254-280-040

DATA – Specifies the 24 data bits to be sent PUW23 through PUWO. The $3 is any arithmetic
expression which expresses the data.

KCODE — If not sDecified, the true master control console KCODE is sent on the enable address bus

SPARE –

IPARO –

IPARE –

bits (ENA) 11 through O. An invalid K-code can be specified. The $4 is a 12-bit pattern.
?,

If not specified, PUW34 = O, else PUW34 = 1.

If specified, the central control inverts the parity bit it computes over the odd bits before
sending it out on PUW38.

.

If specified, the central control inverts the parity bit it computes over the even bits before
sending it out on PUW39.

.

MTCPU – If specified, the M-bit (ENA 12) equals O; if not specified, the M-bit equals 1.
.T

NSYNC – If specified, the sync is not to be sent.

Example:

MCCWRITE OPBITS(S,R),ROW(lMCROW7),DATA(lDG_ALTO),IPARE,NSYNC

This statement sets PUW33 = 1 and PUW32 = 1 from OPBITS(S,R), sends the row address 1MCROW7
over bits PUW33 through 24, sends the value of lDG_ALTO over PUW23 through PUWO, with inverted
parity (even) on PUW39, and no sync is sent.

MCSDPTC
T

4.152 The description of the MCSDPTC statement includes:

Function:

The MCSDPTC statement clears the signal distributor (SD) point of the SD matrix in three steps so as
not to start a power monitor alarm test on the unit whose SD points are in the specified row. The first
step is to set all points to a one (extinguish “ACK” and “out-of-service” lamps). Next, clear all the even-
numbered points in the row specified. After a l-ins delay, the remaining odd-numbered points of the
row specified are cleared.

Format:

MCSDPTC SSD($l)

Characteristics of Parameters:

SSD – Specifies the row address

Exampie:

MCSDPTC SSD(ROW39)

.

in the SD matrix that is being tested. The $1 is the row address.

This statement sets all points in ROW39 of the SD matrix to a 1, then clears all even-numbered points.
-,

After a l-ins delay, the odd-numbered points are cleared.

Page 128

1SS4, SECTION 254-280-040

MEMCHECK

4.153 The description of the MEMCHECK statement includes

Function:

The MEMCHECK statement reads a block of scratch memory and compares each word with a specified
data constant. The two parity bits of each word are also checked.

.

Format:

.

MEMCHECK ADDR($l),BLOCKSIZE($ 2),DATA1($3),DATA2($4), . .DATA32($34)

Characteristics of Parameters:

ADDR – Specifies the Datapool name given to the start of scratch memory for auxiliary unit autono-
mous block transfer. The $1 is the Datapool name. ,

BLOCKSIZE – Specifies the size of the block to be read, The $2 is any number between 1 and 1024.

DATA1–DATA32 – Specifies a set of 24-bit data patterns to be read from scratch memory. The $3
through $34 are any arithmetic expressions which express the data.

Example:

MEMCHECK ADDR (DGIADSBLK),BLOCKSIZE(90),DATAl(O(252525M)),DATA2(O(52525252))

This statement reads 90 blocks of memory at address DGIADSBLK and compares them in turn to octal
25252525 and octal 52525252.

MEMLOAD

4.154 The description of the MEMLOAD statement includes:

Function:

The MEMLOAD statement writes a block of scratch memory with some constant data pattern.

Format:

MEMLOAD ADDR($l),BLOCKSIZE($2),OPTIONS($3),DATAl(M),DATA2($5),. ,DATA32($35)

Characteristics of Parameters:

ADDR – Specifies the Datapool name given to the start of scratch memory for auxiliary unit autono-
mous block transfers. The $1 is the Datapool name.

BLOCKSIZE – Specifies the size of the block to be written. The $2 is any number between 1 and 1024.

Page 129

— .——

SECTION 254-280-040

OPTIONS – Specifies the mode, parity, and store timing during the write (MS) instruction. The MS
instruction is described in Section 254-280-020, Assembly Language-Description, 1A
Processor. The $3 is a list of options. Table A is a list of options for the MS and ML
instructions. This permits inverting parity. If not specified, $3 is W.

DATA1–DATA32 – SDecifies a set of 24-bit data patterns to be written into scratch memory. The $4 7

t~rough $35 are any arithm~tic expressions which express the data. -

Example:

MEMLOAD ADDR (DGIADSBLK),BLOCKSIZE(90),DATAl(O(77777777)),DATA2(O(~~OOO))

This statement writes 90 words of memory starting at address DGIADSBLK alternately with
77777777 (all 1s) and octal 00000000.

MPRDXRUN

4.155 The description of the MPRDXRUN statement includes:

Function:

.

.

octal

The MPRDXRUN statement acts upon data generated during one or more previous tests. The
MPRDXRUN statement follows an MP, MP7, MP8, RD, or RD6 D1-1 statement which begins a series of
tests. It returns the test results to the DCON program.

Format:

MPRDXRUN

Characteristics of Parameters:

This statement has no parameters.

Examde:

MPRDXRUN

This statement acts upon data collected from the previous MP, MP7, MP8, RD or RD6 statement.

MP, MP7, and MP8

4.156 The description of the MP, MP7, and MP8 statements includes:

Function:

The MP, MP7, or MP8 statement looks at 1,7, or 8 match points. One of these statements begins a series
of tests to be ended by the MPRDXRUN statement. It stores in call store the mask, the matcher address
STIMIR and STIMOR, the match phase (A, B, or C) and the match word. It also stores the size and
displacement of the mask, the number of cycles the central control is to run, and the expected results of

the match.

Page 130

1SS4, SECTION 254-280-040

Format:

.

,/-=.

,/-.

●

.

P’

MP
MP7 $1,CYCLE($2),EXPECT($3),MPHASE($)

MP8

Characteristics of Parameters:

$1 – Specifies the match point(s). The $1 is the symbolic name of the match point(s).

CYCLE – Specifies the number of cycles the standby central control is to run. The $2 is a decimal
number.

EXPECT – Specifies the expected result of the match. For the MP statement, $3 is 1 bit with a value
of O or 1. For the MP7 and MP8 statements, $3 is any arithmetic expression which
expresses the expected result.

MPHASE – Specifies match phase. The $4 is A, B, or C.

MP DRMBO,CYCLE(l), EXPECT(l)

This statement stores in call store the mask, the matcher address, and the match word (all available
from the match point name DRMBO). It also stores the number of cycles the standby central control is
to run at the end of the test (1), the match phase (A), and the expected results of the test (l).

*MPXHEAD

4.157 The description of the MPXHEAD statement includes:

Function:

The MPXHEAD statement saves in call store the mask, address, and number of cycles that the standby
central control is to run for the MPXRUN routine which follows immediately after the MPXHEAD
routine.

Format:

MPXHEAD

Characteristics of Parameters:

This statement has no parameters.

w:

MPXHEAD

This statement acts upon data collected from the previous MP, MP7, or MP8 statement.t

Page 131

—.

SECTION 254-280-040

PCCWRITE

4.158 The description of the PCCWRITE statement includes:

Function:

The PCCWRITE routine is used to write the processor configuration state counter to some value and
maintain any other bits in the processor configuration register (PCR).

Format:

PCCWRITE DATA($l)

Characteristics of Parameters:

-%,

-)

-

.

DATA – Specifies the data to be written into the PCR register. The $1 is any valid arithmetic
expression which represents the data.

PCCWRITE DATA(M(IN1PCC3))

This macro call will cause the processor configuration state counter to be set to the value of
M(IN1PCC3). All other bits of the PCR will remain unchanged.

4.159 The description of the PDQWRITE statement includes:

Function:

The PDQWRITE statement performs two writes into a DUC and can also follow these with a no-store
read of a DUC. The number of cycles of delay between the first and second write and read operation is
specified. The statement is used for critical timing problems where DUC sequencers are being tested
“on the fly” instead of by “stepping” them from state to state.

Format:

PDQWRITE WRITEl(ADDR($l),DATA($2)), WRITE2(DELTA($3), ADDR($4),DATA($5))

,READ(DELTA($6),ADDR($7))

Characteristics of Parameters:

WRITE1 – Keyword denoting the parameter of the first write operation.

ADDR – Specifies the Datapool-defined name for any location in a DUC. The $1 is the Datapool name.

7

B

‘-?

DATA – Specifies any 24-bit data pattern. The $2 is any arithmetic expression which expresses the
data pattern.

Page 132

1SS4, SECTION 254-280-040

f-’

P

.

.

,7

DELTA – Specifies the number of cycles to delay before the second write operation. The $3 is a
number from 8 to 63.

WRITE2 – Keyword denoting the parameters of the second write operation.

ADDR – Specifies the Datapool-defined name for any location in a DUC. The $4 is the Datapool name.

DATA – Specifies any 24-bit data pattern. The $5 is any arithmetic expression which expresses the
data pattern.

READ – Keyword denoting the parameter of the read operation,

DELTA – Specifies the number of cycles to delay between the second write and read operation. The $6
is a number from 16 to 63.

ADDR – Specifies the Datapool-defined name for any location in a DUC. The $7 is the Datapool name.

Example:

PDQWRITE. WRITE1(ADDR(TUIMR), DATA(M(TUISTAPEMOT)),
MC WRITE2(DELTA(63),ADDR(TUICIBG),DATA(O)),
ME READ(DELTA(25), ADDR(TU1CIBG))

This statement writes the data symbolized by TUISTAPEMOT into DUC address TUIMR, waits 63
cycles, and writes zeros into DUC address TUICIBG. After a 25-cycle wait, the DUC address TIICIBG is
read.

P PPCSTRT

4.160 The description of the PPCSTRT statement includes:

Function:

.

,n

The PPCSTRT statement tests the pulse point start of the standby central control operational clock.
Various circuit functions associated with starting and stopping of the operational clock are also tested.
The operational clock is started by pulse point from the active central control. Many clock status and
control indicators are read and stored in diagnostic scratch call store. Various clock control functions
are then generated and monitor points are read and stored in diagnostic scratch call store. The opera-
tional clock is then stopped. No tests are generated by this statement. The results stored in diagnostic
scratch call store are interrogated by other DL-1 statements to determine the test results.

Format:

PPCSTRT

Characteristics of Parameters:

This statement has no parameters.

Example:

PPCSTRT

This statement starts the standby central control operational clock by pulse point. Then many clock
status and control indicators are read and stored in diagnostic scratch call store. Various clock control
functions are then generated and monitor points are read and stored in diagnostic scratch call store.
The operational clock is then stopped.

Page 133

SECTION 254-280-040

-!
4.161 The description of the PPIMAPO statement includes:

Function:
7

The PPIMAPO statement activates “mapping O“ in the processor peripheral interface (PPI) loop-around
circuit, sends data patterns out on the peripheral unit write bus bit positions Othrough 23, and tests the
information that was looped around and sent back to the central control over the peripheral unit reply .

bus bits O through 23.

Format: .

?,
PPIMAP() PUWB2300($l),NOsTC) R13,NOW31J3CT

Characteristics of Parameters:

PUWB2300 – Specifies the data pattern that is to be written out on the bus. The $1 is any arithmetic
expression which expresses the data pattern.

NOSTORE – Specifies that the reply is ignored.

NOSELECT – Specifies that there is no data selected.

Example:

PPIMAPO PUWB2300(M(PPIOPUW02)),NOSTORE

This statement sends the mask of the PPIOPUW02 item out on bit positions O through 23 of the
peripheral unit write bus. Nothing is done with the reply.

PPIMAP1

4.162 The description of the PPIMAP1 statement includes:

Function:

1-$
The PPIMAP1 statement activates that portion of the PPI loop-around circuit that receives from the
central control the following bus bits: enable address bus bits 35 through O and peripheral unit write
bus bits 35 through 24. Upon reception of the data pattern, the PPI loops the bus bits to the appropriate

,

reply bus to be sent back to the central control. The PPI loops enable address bus bits 35 through 12 back
to the central control over CPD reply bus bits 23 through O.Bits 11 through Oof the enable address bus
are looped back to the central control by the PPI over peripheral unit reply bus bits 23 through 12.
Peripheral unit write bus bits 35 through 24 are looped back to the central control by the PPI over
peripheral unit reply bus bits 11 through O.Along with the above bits looped-around, the PPI also sends
the CPD ASW bit back to the central control over CPD reply bus bit 24.

Format:

PRIMAP1 EA3512($l),EAl100($2),PUWB3524($3),NOSTORE,NOSELECT

Page 134

1SS4, SECTION 254-280-040

Characteristics of Parameters:

.

EA3512 – Specifies data for enable address bits 35 through 12. The $1 is any arithmetic expression
which expresses the data.

EA11OO – Specifies data for enable address bits 11 through O. The $2 is any arithmetic expression
which expresses the data.

PUWB3524 – Specifies data for peripheral unit write bus bits 35 through 24. The $3 is any arithmetic
expression which expresses the data.

NOSTORE – Specifies the reply is ignored.

NOSELECT – Specifies there is no data selected.

PRIMAP_EA3512(M(PPIlEA34,PPIEA27)),EAllOO(lPPIALLOS),
ME PUWB3524(M(PP11 PUWB27))

This statement sends the mask of items PP11EA34 and PPIEA27 on enable address bits 35 through 13
the value of lPPIALLOS on enable address bits 11 through O, and the mask of the PP11PUWB27 on
peripheral unit write bus bits 35 through 24.

PPIMAP2
,-

4,163 The description of the PPIMAP2 statement includes:

The PPIMAP2 statement activates “mapping 2“ in the PPI loop-around circuit and tests the miscella-
neous peripheral unit bus leads PDG, PSZ, PLP, PHP, PIO, PUSYC, MBIT, GI, MI, PUPEV, PUPOD,
FCG, RESET, APUB, APUT, PURP, and PUASW.

Format:

PPIMAP2 PUPEV,PUPOD,PUSYC, MBIT, PSZ,PLP,PHP,PDG, PIO,GI,MI,FCG,RESET,NOSELECT

,NOSTORE

.

/-

P

Characteristics of Parameters:

PDG – Sets bit 23; central control pulse sources are looped-around.

PSZ – Sets bit 22 central control pulse sources are looped-around.

PLP – Sets bit 21; central control pulse sources are looped-around.

PHP – Sets bit 20; central control pulse sources are looped-around.

PIO – Sets bit 19; central control pulse sources are looped-around.

PUSYC – Sets bit 13.

MBIT – Sets bit 12.

Page 135

SECTION 254-280-040

GI – Sets

MI – Sets

PUPEV –

PUPOD –

bit 10; central control pulse sources are looped-around.

bit 9; central control

Sets bit 8 parity.

Sets bit 7 parity.

pulse sources are looped-around.

FCG – Sets bit ficentral control pulse sources are looped-around.

RESET – Sets bit 5; central control pulse sources are looped-around.

NOSTORE – Specifies the reply is to be ignored.

NOSELECT – Specifies that there

Example:

PPIMAP2 FCG,PIO,PLP,NOSTORE

This statement sets bits 6,19, and 21
ignored.

PSWITCHC

is no data selected.

central control pulse sources that are looped-around. The reply is

.

●

T,

4.164 The description of the PSWITCHC statement includes

Function:

The PSWITCHC statement tests the start-stop control sequencer (SSCS) circuit in the standby central
control. Specific clock control flip-flops are written in the start-stop-register (SSR) and the contents of
the SSR and clock error group (CLE) registers are read and saved in diagnostic scratch call store. The

contents of these scratch words are interrogated by later DL-1 statements.

Format: ..-,

PSWITCHC s

Characteristics of Parameters:
.

This statement has no parameters.

Example:
?

PSWITCHC

This statement writes specific clock control flip-flops in the SSR and then reads the contents of the SSR
?

and CLE registers and stores them in diagnostic scratches.

Page 136

1SS4, SECTION 254-280-040

.

r’ PU8CNFIG

4.165 The description of the PUBCNFIG statement includes:

Function:

The PUBCNFIG statement sets up the peripheral unit buses. It pulses the routing flip-flops of the
peripheral unit buses and restores them before a segment break. Optionally, it configures all IOUSS
onto the standby bus.

.

,/-=

Format:

PUBCNFIG

PUBCNFIG

PUBCNFIG

RESTORE

PUBAS,PUBOS,PUBTS,PUBRS

CNFIGIO,RESTORE
BUS=($l)

Characteristics of Parameters:

RESTORE – Specifies that any routing flip-flop pulsed should be restored before a segment break is
taken.

PUBAS – If specified, the PUBA flip-flop is pulsed (set).

PUBOS – If specified, the PUBO flip-flop is pulsed (set). s

PUBTS – If specified, the PUBT flip-flop is pulsed (set).

PUBRS – If specified, the PUBR flip-flop is pulsed (set).

CNFIGIO – Specifies that all IOUSS be configured on the specified bus.

BUS – Specifies the bus on which all IOUSS be configured. The $1 is O or 1.

Example:

/-
This statement pulses the routing flip-flops PUBA and PUBT.

●

P1P2TEST

. 4.166 The description of the P1P2TEST statement includes

f-
Function:

The P1P2TEST statement allows reading the DUS-output buffer register (OBR) and then checking the
Pl, P2 parity bits sent back to the central control error summary register (CES) in adjacent instruc-
tions. This prevents a store operation from being executed after the ML instruction and before checking
Pl, P2. The ML instruction is described in Section 254-280-020, 1A Processor Assembly Language–De-
scription.

Page 137

.

~CTION 254-280-040

Format:

P1P2TEST EXPECT($l),OPTIONS($2)

Characteristics of Parameters:

EXPECT – The expected state of the P1 and P2 bits in the central control CES register after the ML
instruction is executed. The $1 is any arithmetic expression which expresses the expected .

results.

OPTIONS – If not specified, the C and R options are inserted; otherwise, any of the ML options are ,
specified. The $2 is on list of ML options. The ML instruction is described in Section 254-
280-020, 1A Processor Assembly Language—Description. Table A is a list of options for
the ML and MS instructions.

P1P2TEST EXPECT(M(INIPC1)),OPTIONS(C,R,IPKA)

This statement reads the DUS-OBR register and compares the Pl, P2 parity bits to the mask of the
INIPC1 item. The C, R, and IPKA are options for the ML (read) instruction.

RDACTDSK

4.167 The description of the RDACTD~K statement includes:

Function:

The RDACTDSK statement is used in testing the file store servo system. This statement tests the mate
file store to determine if the mate disk file is near the ORIGIN pulse (between, SECTOR 100 and
SECTOR O). If the mate disk file is in SECTOR 100 and SECTOR O, a 630-ps delay loop is entered; if
not, the delay is omitted.

Format:

RDACTDSK DF($l)

Characteristics of Parameters:

DF – Specifies which disk file on the mate file store is to be tested. The $1 is O, 1, 2, or 3.

Examples:

(a) RDACTDSK DF(0)

This statement reads active DF O.

(b) RDACTDSK DF(3)

This statement reads active DF 3.

Page 138

,

.

?.

—

1SS4, SECTION 254-280-040

●

,/f-

.

,n

,f--=

P

c RD and RD6

4.168 The description of the RD and RD6 statements includes:

Function:

The RD and RD6 statements set up call store for tests that follow. The RD statement is concerned with
sequencer tests, the RD6 with decoder tests. They store in call store the number of cycles the central
control is to run, the expected results, and the address of the part of central control to be tested.

Format:

RD IEQUA,CYCLES($l),EXPECT($2) RD6

Characteristics of Parameters:

IEQUA – Specifies that the sequencer states are to be read.

CYCLES – Specifies the number of cycles the standby central control is to run. The $1 is a decimal
number.

EXPECT – Specifies the expected results. The $2 is any arithmetic expression which expresses the
expected results.

Example:

RD IEQUA,CYCLES(l), EXPECT(0)

This statement stores in call store the number of cycles the standby central control is to run (l), the
expected results (0), and the address of the sequencer states to be read.

$RDXHEAD

4.169 The description of the RDXHEAD statement includes:

Function:

The RDXHEAD statement saves in call store the mask, the address, and number of cycles that the
standby central control is to run for the MPRDXRUN routine which follows immediately after the
RDXHEAD routine.

Format:

RDXHEAD

Characteristics of Parameters:

This statement has no parameters.

Example:

RDXHEAD

This statement acts upon data collected from the previous XCR statement.

Page 139

SECTION 254-280-040

RDZREG ‘-?

4.170 The description of the RDZREG statement includes:

Function:
“T

The RDZREG statement causes the active central control to read a register or group of registers in the
. standby central control. The RDZREG will read the items that have both read and write access in the
specified register(s) and will expect the result(s) to be zero. .

Format:

RDZREG PARAMS

RDPPI

Characteristics of Parameters:

PARAMS – Register 1, Register 2,, Register 10
Up to 10 registers may be specified, separated by commas,

Example:

RDZREG ILR

This statement causes the active central control to read the interrupt level activity flip-flops in the
standby central control and expect all 0s.4

4.171 The description of the RDPPI statement includes:

Function:

The RDPPI statement reads a 24-bit row of data from either the master control console or SSD matrix
in the processor peripheral interface unit. The controls of the row read are saved in the memory word
DGIPPISAVRW.

Format:

RDPPI ROW($1),MASK($2),EXPT($3),RDPPI ROW($l),NOTEST

Characteristics of Parameters: -,

ROW – The $1 specifies one of the 64 rows to be read with a decimal value. The O-63 is the range of
valid rows.

*

MSK – The $2 specifies a 24-bit pattern of significant bits.
.

EXPT – The $3 specifies a 24-bit pattern of expected results.

NOTEST – If specified, the row is read without a call to DCONSTOR.

Examples:

(1) RDPPI ROW(5),MSK(1MCALL1 S),EXPT(1MCALL)

(2) RDPPI ROW(24),NOTEST

Page 140

1SS4, SECTION 254-280-040

P REGTEST

4.172 The description of the REGTEST statement includes:

.

.

P

●

Function:

The REGTEST statement causes the active central control to do a series of write/read operations into a
standby central control register. The data for the write operations is O, alternate 1s and 0s, and
alternate 0s and 1s ANDed with the mask of the read/write items of the register being tested. The read
operation passes to the DCON program the contents of the register, the mask of the read/write items,
and the expected results for processing raw results.

Format:

REGTEST $1

Characteristics of Parameters:

$1 – Specifies a register name in the standby central control without the prefix ST1.

REGTEST DAR

This statement causes the active central control to do a series of read/write operations into the data
address register (DAR) in the standby central control.

RESMTST

4.173 The description of the RESMTST statement includes:

Function:

The RESMTST statement tests the circuitry involved with the active and standby central control pulse
point reset of the millisecond clock (MCL) in both central controls. The statement guarantees that the
active central control MCL will not be affected if it is reset. The statement ensures that no output clock
functions are lost and that all internal counters are restored to their proper value if the MCL is reset.
The central control MCL internal counters are read and compared with constants in a loop until the
counters are within a small range of values. At this time, a new value of the MCL internal counters is
computed which is eight central control clock cycles hence. The MCL will not output any clock pulses for
at least eight cycles. The present value of the MCL is saved in diagnostic scratch call store. Then, either
the active or standby central control specified by $1, generates a control pulse (GCP) to reset the MCL.
The value of the active central control MCL is saved in diagnostic scratch call store and then the
computed value of the counters is written into the active central control MCL. Writing the computed
value of the counter into the active central control MCL restores the counters to their proper value if
they were reset and if they were not reset, the computed value is the same value already in the counters.
All 1s are written into diagnostic scratch call store location if the active central control MCL was not
reset or all 0s are written if the MCL was reset. Also, stored in diagnostic scratch call store is the active
central control MCL (1) computed counter value, (2) counter value before the reset pulse is generated,
and (3) counter value after the reset pulse. The values and reset/not reset indicator stored in diagnostic
scratch call store are interrogated by other DL-1 statements. No tests are generated by this statement.

Page 141

Format:

RESMTST $1

Characteristics of Parameters:

$1 – Specifies which central control generates thereset pulse. The$lis ACTor STBY.
.

Examples:

(a) RESMTST ACT .

This statement reads the active central control MCL and compares it with constants in a loop until the
counters are within a small range of values. Then eight cycles later, a new value for the MCL internal
counters is computed. The present value of the MCL is saved in diagnostic scratch call store. Then the
active central control generates a control pulse to reset the MCL. The computed value of the counters is
written into the active central control MCL.

(b) RESMTST STBY

This statement performs identical tests as the previous statement except that the standby central
control generates the control pulse to reset the MCL.

RSTICC

4.174 The description of the RSTICC statement includes:

Function:

The RSTICC statement restores an item of an internal central control register to a state saved by a
previous CHGICC statement.

Format:

ITEM($l)
RSTICC ITEMS($2),ST($4)

FF($3)

Characteristics of Parameters: .

ITEM – Specifies an internal central control register address and bit or contiguous bits to be restored
from call store scratch. The $1 is a Datapool-defined item. .

ITEMS – Specifies an internal central control register address and noncontiguous bits to be restored

FF –

ST –

f~om call store scratch. The $2 is a list of Datapool-defined items all in the same word. 7

Specifies a central control buffer bus flip-flop to be restored from call store scratch. The $3 is a
central control buffer bus flip-flop.

Specifies one of six call store scratch locations used by a previous CHGICC statement to save a
previous state of item or items. The $4 is TEMPO, TEMP1, TEMP2, TEMP3, TEMP4, or TEMP5.

Page 142

1SS4, SECTION 254-280-040

RSTICC ITEMS(INICUG,IN1 CUGL,INICUGS),ST(TEMP2)

This statement restores the internal central control registers INICUG, INICUGL, and INICUGS to the
state previously saved in call store scratch location TEMP2.

*5ApADDR.

4.175 The description of the SAPADDR statement includes

Function:

The SAPADDR statement is used to send the API all addresses in a specified range via the auxiliary
unit address bus. The SAPADDR, after sending an address, GCPS the test unit to read the illegal
address detected flip-flop (AU1ORAEOPS) within the API. The SAPADDR expects AU1ORAEOPS to
be set.

Format:

SAPADDR START($1),END($2), [IPKA]

Characteristics of Parameters:

START – Specifies the starting address, inclusive. The $1 is any arithmetic expression which ex-
presses an address.

END – Specifies the ending address, inclusive. The $2 is any arithmetic expression which expresses an
address.

IPKA – Specifies that address parity (PKA) is to be inverted. Optional parameter.

Example:

(a) SAPADDR START(O(66)),END(O(77))

This statement attempts a control write of the API using all addresses in the range of 0(66) to 0(77),
inclusive. After sending each address, the illegal address detector is read. Expect AU1ORAEOPS to be
set.

p (b) SAPADDR START(O(66)),END(O(77)),IPKA

● This statement performs the same steps as in the previous example with the exception that address
parity is inverted.t

.

,P

SBYPULSE

4.176 The description of the SBYPULSE statement includes:

Function:

The SBYPULSE statement is used to control pulse and reset critical pulse points in the standby central
control. The flip-flop corresponding to the pulse point is restored to its previous state. The pulse points
which are pulsed by this statement are defined by SBYPTEXT in Datapool. If ONLY is specified in the
text, this statement is the only one which can pulse these points.

Page 143

—-

SECTION 254-280-040

Format:

SETS($l)
SBYPULSE RESET($l)

Characteristics of Parameters:

SET – Specifies that the pulse points are to be set. The $1 is the name of the pulse point.
.

RESET – Specifies that the pulse points are to be reset. The $1 is the name of the pulse point.

Example:

SBYPULSE SET(STIPUBR)

This statement reads the flip-flop corresponding to pulse point STIPUBR, sets the pulse point, and
restores it to the previous state as indicated by the flip-flop.

SCANMCCROW24

4.177 The description of the SCANMCCROW24 statement includes:

Function:

The SCANMCCROW24 statement checks data insert keys Oand 1 for a response as to whether a specific ‘7

visual display appeared on the master control console control and display panel. If the maintenance

personnel toggles data insert key 1 to a one, it indicates that the correct display appeared on the panel.
If data insert key Ois toggled to a one, it indicates the test failed. However, when no response is given,
neither data insert key Oor 1 is toggled; within 20 seconds the SCANMCCROW24 routine assumes the
test has failed and proceeds to the next instruction.

Format:

SCANMCCROW24

Characteristics of Parameters:

This statement has no parameters. .

Example:

SCANMCCROW24

This statement checks data insert keys O and 1 for a response as to whether a specific visual display ‘?

appeared on the master control console control and display panel.

SRTAPTST

4.178 The description of the SRTAPTST statement includes.

?tage 144

1SS4, SECTION 254-280-040

P’

.

/’-’

●

t’-

Function:

The SRTAPTST statement calls a DUAD program subroutine to determine if the tape on the TUC
under test is an SR tape. A diagnostic scratch word is set according to the response from DUAD.

Format:

SRTAPTST

Characteristics of Parameters:

This statement has no parameters.

Examzde:

SRTAPTST

This statement calls a DUAD subroutine to determine if the tape on the TUC under testis an SR tape.

STAREAD

4.179 The description of the STAREAD statement includes

Function:

The STAREAD abnormal read statement provides the basic structure for testing the read ability of the
store. The maintenance load (ML) instruction is used in the associated macro routine which gives the
user complete control over the mode, parity, and store timing pulses. The macro is, briefly, expanded as
follows:

Control writer (MS) to reset the CRI flip-flop

ML instruction

GCP

GCP.

Format:

STAREAD
ITEM($l) EXPECT($4)
ITEMS($2),EXP_P2Pl($5),0PTIONS($7), STATE($8),KCODE($9).MASK($lO)
WORD($3j;EXPIASW($6j’ ‘ ‘‘ ‘ ‘‘ ‘“ ‘‘ ‘“ ‘
,BUS($ll),ADDR2($12),0PT2($13), MSK2($14),EXP2($l5)

Characteristics of Parameters:

WORD – Specifies the address of the read (bits O through 15). The $3 is the address,

ITEM – Specifies the address (bits O through 15) of the read which is associated with a Datapool
layout. The $1 is an item name.

ITEMS – Specifies the address (bits O through 15) of the read which is associated with a Datapool
layout. The $2 is a list of items all in the same word.

Page 145

SECTION 254-280-040

EXPECT – Specifies theexpected results ina24-bit word. The@isany arithmetic expression which ?,
expresses the expected results.

EXP_P2Pl – Expected results data parity bits, P2and Pl, data bits24and 25arerotated into bits 1
and O of the 24-bit word. The module is determined by address bit 15 specified in the
word, item or items parameters. The $5 is any arithmetic expression which expresses
the expected results data parity bits.

EXP_ASW – The ASW and ASWF leads (in central control) are rotated into bits Oand 1 of the 24-bit
word. The $6 is any arithmetic expression which expresses the ASW and ASWF ex-

.

petted results.

NOSTORE – Ignore results of the read, keeping the CRI flip-flop set.
.

OPTIONS – Specifies the mode, parity, and store timing during the read (ML) instruction. The $7 is a
list of options. Figure 3 shows a list of the options used.

STATE – Specifies the states of the communications reply inhibit (CRI) and maintenance (MTCE)
flip-flops during the ML instruction. The $8 is two of the following

CRIR – Reset CRIR

CRIS – Keep CRI set

MTCER – Reset MTCE

MTCES – Keep MTCE set.

If not specified, $7 is (CRIR, MTCES).

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all ones is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $10 is any arithmetic expression
which expresses the mask.

KCODE – Specifies the K-code to be sent to the store during the ML instruction. The $9 is the K-code.
If not specified the current store K-code is used.

BUS – Specifies the bus the store is put on during the ML instruction which is executed on the active
bus. The $11 is ACT (active bus) or STB (standby bus). If not specified, the active bus is used. 7,

ADDR2 – Specifies the address of the second read (ML) instruction if READ2 is specified in OP-
TIONS. The $12 is the address. If not specified, the address of the first read is used.

●

0PT2 – Specifies the mode, parity, and store timing during the second read (ML) instruction if
READ2 is specified in OPTIONS. The $13 is a list of options. Figure 3 shows a list of the
options used. If not specified, $13 is $7.

MSK2 – Specifies the mask for the second read (ML) instruction if READ2 is specified in OPTIONS.
?

The $14 is any arithmetic expression which expresses the mask. If not specified, $14 is $10.

EXP2 – Specifies the expected results of the second read (ML) instruction if READ2 is specified in
OPTIONS. The $15 is any arithmetic expression which expresses the expected results. If not

T

specified, the expected results of the first read is used ($4 or $5).

Page 146

1SS4, SECTION 254-280-040

+

p

&wL?!s

STAREAD WORD(MUIDRWll), EXPECT(M)MUlDCR15)),OPTIONS(R,C,M),
MASK(M(MU1DCR15))

This statement does amaintenance store (MS) to reset the CRI flip-flop, then sets the ML (read)
options to R, C, and M; then reads the word at location MUIDRW1l, masks the result through the mask
of the MU1DCR14 item, and compares the result to the mask of the MU1DCR15 item. After the ML
instruction is executed, two GCPS are performed.

MS and ML instructions

C – Control mode
M – Maintenance mode
R – Read
W – Write

IPKA – Invert address parity
ST ($1) – Inhibit store timing pulse. $1 is one of the following

1T3
3T5E
3T5L
5T7

MS instruction only

IP1 – Invert data parity bit 1
IP2 – Invert data parity bit 2
IWE – Inhibit write enable pulse

Fig. 3—Options Used by the 256K Semiconductor Store

STAREAD3

4.180 The description of the STAREAD3 statement includes:

Function:

The store abnormal read is the basic macro used to test the read capability of the store. The associated
macro task routine uses the maintenance load (ML) instruction to interrogate the store. The ML
instruction provides control over the mode, parity, and store timing pulses. A general expansion of the
macro would appear as follows:

Control write (MS instruction) to reset the CRI flip-flop

ML instruction

GCP

GCP.

Format:

STAREAD3
ITEM($1) EXPECT($5)
ITEMS($2),EXP_P2Pl($5),0PTIONS($6), STATE($7),
WORD($3) f3{E$:y($5)

KCODE($8),MASK($9),BUS($10),ADDR2($ll),0PT2($12),MSK2($13),EXP2($l4),NOROT

Page 147

SKTION 254-280-040

Characteristics of Parameters:

ITEM – Specifies the address

T

(bits O through 17) of the read which is associated with a Datapool
layout. The $1 is an item name.

ITEMS – Specifies the address (bits O through 17) of the read which is associated with a Datapool
layout. The $2 is a list of items residing in the same word.

WORD – Specifies the address of the read (bits Othrough 17). The $3 is the Datapool-defined name of .
a word or some value.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results.

.

EXP.P2P1 –

EXP.ASW –

NOSTORE –

Specifies the expected results of the data parity bits, P2 and Pl, data bits 24 and 25 are
rotated into bits 1 and Oof the 24-bit word. The store word which is read is determined
by address bit 15 of the word, item or items parameter. The $5 is any arithmetic
expression which expresses the expected results of the data parity bits.

The all seems well (ASW), all seems well failure (ASWF) and data parity write enable
failure (DPWEF) leads in the central control are rotated respectively into its O, 1 and 2
of the 24-bit word. The $5 is any arithmetic expression which expresses the ASW,
ASWF, and DPWEF expected results.

Specifies to ignore the results of the read, keeping the CRI flip-flop set.

OPTIONS – Specifies the mode, parity, and store timing during the read (ML instruction). The $6 is a
list of options. Figure 3 shows a list of valid options. READ2 may also be specified as an
option if a second read (ML) is to be performed.

STATE – Specifies the state of the communications reply inhibit (CRI) and maintenance (MTCE)
flip-flops during the ML instruction. The $7 can be specified as two items, one for CRI and
one for MTCE from the following list:

CRIR – Reset CRI flip-flop
CRIS – Keep CRI set
MTCER – Reset MTCE flip-flop
MTCES – Keep MTCE set.

If not specified, $7 is (CRIR and MTCES). 7

KCODE – Specifies the K-code to be sent to the store during the ML instruction. The $8 is the K-code. +
If not specified, the current store K-code is used.

MASK – Specifies the mask used for the read. If not specified with WORD parameter, a mask of all
ones is used. If not specified with ITEM(S) parameter, the mask of the item(s) is used. The $9

.

is any arithmetic expression which expresses the mask.

BUS – Specifies the bus the test store is put on during the ML instruction (the ML instruction is -,

executed on the active bus). The $10 is ACT (active bus) or STBY (standby bus). If not specified,
the active bus is used.

ADDR2 – Specifies the address of the second read (ML instruction) if READ2 is specified in OP-
TIONS. The $11 is the address. The address of the first read is used if ADDR2 is not T

specified.

Page 148

1SS4, SECTION 254-280-040

.

.

;-

.

,(-’

P

OPT –- Specifies the mode, parity, and store timing during the second read if READ2 is specified in
CPTIONS. !’he $12 is a list of options. Figure 3 shows a list of valid options. If 0PT2 is not
specified, $1i! is $6.

MSK2 – Specifics the mask used for the second read if READ2 is specified in OPTIONS. The $13 is an
arithmetic expression which expresses the mask. If not specified, $13 is $9.

EXP2 – Specifies L!Wexpected results of the second read instruction if READ2 is specified in OP-
TIONS. The $14 is an arithmetic expression which expresses the expected results. If not
specified, the expected results of the first read is used ($4 or $5).

NOROT -- Specifies t.l,at the address of the read instruction will not be rotated by the control pro-
gram. If ilot specified, the address will be rotated as normal.

Example:

STAREAD3 WORD(MSIDRWIO),EXPECT(O(0)),OPTIONS(R,C, M),
MASK(M(MSIDTRFDPF1))

This statement does a maintenance store to reset the CRI flip-flop, then sets the read (ML) options to R,
C, and M. l’h~ word at location MS1DRW1O is read; the results are masked through the mask of
MSIIYTRFDPF1 and f~en compared with the expected results O(0). After the read is completed, two
GCPS are executed.

STAWRIW

d. 181 ‘l’he description oi the STAWRITE statement includes

Funciion;

‘l’he STAWl?IT13 abnormal write statement provides the basic write facility for testing the store. The
associated macro routhw uses the maintenance store instruction which gives the user complete control
over the m&, parity, and store timing pulses, The STAWRITE does not generate test results as it
serves only in test initialization.

Forma t:..—

STAWRITE WCRD($l),DATA($2), 0PTIONS($3),STATE($4),KCODE($5),BUS($6)

Characteristics of Parameters:

WORD -- Specifies the address (bits O through 15) to be written into. The $1 is the address.

DATA – Specifies the ~ata to be written. The $2 is any arithmetic expression which expresses the
data.

!IPTIONS – Specifies ;he mode, parity, and store timing during the write (MS) instruction. The $3 is a
list cf q%:ons. Figure 3 shows the list of options used. A delay is taken after the MS if
DELAY is specified.

STATE – Specifies ~ks state of the maintenance (MTCE) flip-flop during the MS instruction. The $4 is
one of the ‘c,:bwing.

Page 149

SECTION 254-280-040

MTCER

MTCES

– Reset MTCE

– Keep MTCE set.

If not specified, $4 is MTCES.

If MTCER is specified, one MS instruction is executed to reset the MTCE FF; then the
regular MS instruction is executed followed by two GCP instructions. The MS is followed by
one GCP instruction if STB is specified in the BUS parameter. .

KCODE – Specifies the K-code to be sent to the tested store during the MS instruction. The $5 is the
K-code. .

BUS — Specifies the bus the store is put on during the MS instruction which is executed on the active -$

bus. The $6 is ACT (active bus) or STB (standby bus). If not specified, the active bus is used.

&?!2@2:

STAWRITE WORD(MU1DM200),DATA(1MUDADD15),0PTIONS(W,C,M)

This statement sets the MS (write) options to W, C, and M; then writes the value of 1MUDADD15 into
location MU1DM200.

STAWRIT3

4,182 The description of the STAWRIT3 statement includes:

Function:

The store abnormal write is the basic macro used to test the write capability of the store. The associated
macro task routine uses the maintenance store (MS) instruction to access the store. This instruction
gives control over the mode, parity, and store timing pulses. The STAWRIT3 macro does not generate
test results. It is used solely for initialization purposes. A general expansion of the macro would appear
as follows:

Control write (MS instruction) to reset MTCE flip-flop if specified

MS instruction

GCP.

GCP – Performed if STB is not specified in the BUS parameter.
.

Format:
.

STAWRIT3 WORD($l),DATA($2),0PTIONS($3),STATE($4),KCODE($5),BUS($6),NOROT,NOCWOl

Characteristics of Parameters:

WORD – Specifies the address (bits O through 17) to be written into. The $1 is the address.

DATA – Specifies the data to be written. The $2 is any arithmetic expression which expresses the
data.

Page 150

—-

.

.

,-

*

.

OPTION –

STATE

KCODE

BUS –

NOROT

—

—

1SS4, SECTION 254-280-040

Specifies the mode, parity, and store timing during the write instruction. The $3 is a list of
options from the list in Fig.’3. If DELAY is specified, a delay of approximately 25 micro-
seconds is taken after the MS is executed.

Specifies the state of the maintenance (MTCE) flip-flop during the MS instruction. The $4
can be one of the following.

—

MTCER – Reset MTCE

MTCES – Keep MTCE set.

[f not specified, the MTCE flip-flop will remain set.

Specifies the K-code to be sent to the store during the MS instruction. The $5 is
arithmetic expression representing the K-code. If no K-code is specified, the current
code is used.

an
K-

Specifies the bus the store should be on when the MS instruction is executed on the active bus.
The $6 is ACT for active bus or STB for standby bus. If not specified, the active bus is used.

– Specifies that the address of the MS instruction will not be rotated by the control program.
If not specified, the address will be rotated as normal.

NOCWO1 – Specifies that the first control write 01 will not be performed.

@!?2L!k
STAWRIT3 WORD(MSIDRWOO), DATA(O(lMSDDATAIS)),

OPTIONS(W,C,M)

This statement sets the write options to W, C, and M, then writes the value of lMSDDATAIS into
location MSIDRWOO. After the write operation, two GCPS are executed.

ST3ERRAN

4.183 The description of the ST3ERRAN statement includes:

Function:

The store error analysis is used to locate errors in store memory and place the error information in a
table for possible use by the pattern analysis routine to print a histogram of the failing memory
location. The routine works in the following manner. The store is initialized to a specified data pattern
prior to calling error analysis. Error analysis looks at the diagnostic buffer table (DBT) to see if fault
recognition has trapped a failing address and data pattern. If a failure is found, it will be processed as
described below. If no failure is found, the store trap register is read to see if an address has been
trapped. If so, the address is processed as described below. If no address is found, a delay of 100 ms is
done while the store is allowed to refresh. The trap register is read and checked to see if an address was
trapped during the 100-ms delay. If an address is found it is processed. If no address is found, another
100-ms delay occurs. The 100-ms delays are performed until four consecutive 100-ms delays occur
without an address being trapped or if the maximum number of failures (20) has been reached.

If an address is trapped, the failure is processed as follows. The failure is recorded and the first of four
possible data patterns (O(0), 0(77777777), 0(25252525), 0(52525252)) is selected. The selected pattern is
written into the failing address and the complement data is written into the complement address. All 18
addresses of 1 hamming distance away from the failing address are written with the test pattern. All 18
complement addresses of 1 hamming distance are written with complement test data. A 1.4-ms delay is
taken and the test address is read. If the parity or data fails, the failure is recorded and the next of the
four test patterns is tried. If the parity and data pass, the test pattern which cleared the failure is
recorded. Once the failure is cleared, the routine goes back and starts delaying for 100-ms breaks to try
and find another failin address. If the failure cannot be cleared using one of the four test patterns, all

fdata is recorded and t e routine goes on to possibly look for another failing address.

Page 151

SECTION 254-280-040

Format:

ST3ERRAN

Characteristics of Parameters:

This macro has no parameters.

Example:

ST3ERRAN

This macro will search fordata parity failures using the procedure outlined above.

STBUSACT

4.184 The description of the STBUSACT statement includes:

Function:

The STBUSACT statement specifies which
bus cannot be configured, the phase is no

Format:

STBUSACT ABUS($l)

Characteristics of Parameters:

bus the diagnostic phase wants active. If the active specified
tests run (NTR).

‘T,

ABUS – Specifies desired bus. The $1 is O — BUS O, 1 — BUS 1, E — either bus – the system’s active
bus at the start of the diagnostics.

Example:

STBUSACT ABUS(1)

This statement sets bus 1 to be active.

STBUSACT3

4.185 The description of the STBUSACT3 statement includes:

Function:

The store bus active is the macro used to specify which
cannot be configured, the phase is NTR (no tests run).

Format:

STBUSACT3 ABUS($1)

Page 152

bus is to be made active. If the specified bus

—

1SS4, SECTION 254-280-040

Characteristics of Parameters:

ABUS – Specifies which bus is to be the active bus. The $1 is Ofor BUS O, 1 for BUS 1 or E for either
bus (the system’s active bus will be the active bus).

f-’ Example:

STBUSACT3 ABUS(O)
.

This macro call will set bus O as the active bus.

STCREAD

4.186 The description of the STCREAD statement includes:

Function:

,/-=

.

The STCREAD control read statement reduces to a STAREAD macro with the R, M, and C bits set. The
R, M, and C bits are options which specify the mode of the ML instruction used by this macro. Refer to
Table A.

Format:

ITEM($1) EXPECT($4)
STCREAD ITEMS($2), NOSTORE ,MASK($9)

WORD($3)

Characteristics of Parameters:

WORD – Specifies the address of the read. The $3 is the address.

ITEM – Specifies the address of the read which is associated with a Datapool layout. The $1 is an item
name.

ITEMS – Specifies the address of the read which is associated with a Datapool layout. The $2 is a list
of items all in the same word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results.

NOSTORE – Ignore results of the read, keeping the CRI flip-flop set.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $9 is any arithmetic expression
which expresses the mask.

az?@2:
STCREAD ITEM(MUIDRKREG), EXPECT(I(MUIDRKREG) *O(32))

Reduces to

STAREAD ITEM(MUIDRKREG), EXPECT(I(MUIDRKREG) *O(32)),0PTIONS(R,M,C)

Page 153

—

SECTION 254-280-040

STCREAD3

4.187 The description of the STCREAD3 statement includes:

Function:

The store control read macro expands to a STAREAD3 macro with the R, M, and C bits set.

Format:

STCREAD

ITEM($l)

ITEMS($2),EXPECT($4),MASK($9)
WORD($3) NOSTORE

Characteristics of Parameters:

ITEM – Specifies the address (bit O through 17) of the read which is associated with a Datapool
layout. The $1 is an item name.

ITEMS –

WORD –

Specifies the address (hits O through 17) of the read which is associated with a Datapool
layout. The $2 is a list of items residing in the same word.

Specifies the address of the read (bits Othrough 17). The $3 is the Datapool-defined name of
a word or some value.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results.

NOSTORE – Specifies to ignore the results of the read, keeping the CRI flip-flop set.

MASK –

Examv]e:

Specifies the mask used for the read. If not specified with WORD parameter, a mask of all
ones is used. If not specified with ITEM(S) parameter, the mask of the item(s) is used. The $9
is any arithmetic expression which expresses the mask.

STCREAD3 WORD(MSIDRWIO), EXPECT(O(O))

Reduces to “>

STAREAD3 WORD(MSIDRWIO),EXPECT(O(O)),OPTIONS(R,C,M) .

STCTRTSTO

4.188 The description of the STCTRTSTO statement includes:

Function:

The STCTRTSTO statement will stop the tested semiconductor store’s refresh by setting the FRH flip-
flop. The flip-flop is then reset after a specified number of 1.4-ms cycles. The macro is, briefly, expanded
as follows:

?

Control write (MS) to set the FRH flip-flop

Page 154

1SS4, SECTION 254-280-040

Delay specified by number of 1.4-ms cycles

Control write (MS) to reset the FRH flip-flop.

Format:

STCTRTSTO CYCLE($1),SET($2)

.

.

Characteristics of Parameters:

CYCLE – Specifies the number of 1.4-ms cycles to stop refresh. The $1 is the number of cycles.

SET – Specifies the state of the TWF flip-flop during the execution of the macro and upon exit. The $2
is one of the following

TWFS – Set TWF, allow refresh parity check

TWFR – Reset TWF, inhibit refresh parity check.

Example:

STCTRTSTO CYCLE(l), SET(TWFS)

This statement executes a control write (MS) to set the FRH and TWF flip-flops. A delay of 1.4 ms is
then taken. This is followed by a control write to reset the FRH and set TWF flip-flops. The FRH and
TWF flip-flops are set/reset by the same control write.

STCTST03

4.189 The description of the STCTST03 statement includes:

Function:

The store counter stop macro is used to stop the store’s refresh circuitry by setting the FRH flip-flop.
The flip-flop is then reset after a specified number of 1.4-ms cycles. A general expansion of the macro
would appear as follows:

,n.

.

.

P’

Control write to set the FRH flip-flop
Delay specified by number of 1.4-ms cycles
Control write to reset the FRH flip-flop.

Format:

STCTST03 CYCLE($1),SET($2)

Characteristics of Parameters:

CYCLE – Specifies the number of 1.4-ms cycles to stop refresh. The $1 is the number of cycles.

SET – Specifies the state of the refresh data parity check flip-flop (RDPC) during the execution of the
macro and upon exit from the macro. The $2 is either:

RDPCS – Set RDPC to allow refresh data parity check

Page 155

SECTION 254-280-040

RDPCR – Reset RDPC to inhibit refresh data parity check.

Example:

STCTST03 CYCLE(3),SET(RDPCS)
T,

This statement will execute a control write to set the FRH and RDF’C flip-flops. A delay of 3 times
1.4 ms or 4.2 ms is then taken. This is followed by a control write to reset the FRH and set RDPC flip-
flops. -

STCWRITE

4.190 The description of the STCWRITE statement includes

Function:

The STCWRITE control write statement reduces to an STAWRITE with W. M, and C bits set. The W, M,
and C bits are options which specify the mode of the MS instruction iised by the nuwro. Refer to
Table A.

Format:

STCWRITE WORD($1),DATA($2)

Characteristics of Parameters:

WORD – Specifies the address to be written into. The $1 is the address.

DATA – Specifies the data to be written. The $2 is any arithmetic ex~wession which expresses the
data.

Example:

STCWRITE

Reduces to

STAWRITE

STDRTEST

WORD(MUIDRWIO), DATA(1MUDTRPO8)

WORD(MUIDRWIO), DATA(1MUDTRP08), OPTIONS(W,M,C)

-

4.191 The description of the STDRTEST statement includes

Function:

The STDRTEST statement tests the store data register (DR). The associated macro routine uses the
maintenance store (MS) instruction to write the DR followed by the maintenance ioad (ML) instruction
to read the DR. The user has complete control over the mode, parity, and store thning pulses during the
MS and ML instructions. Additional parameters allow to perform tests when a write and a read must be
adjacent. The macro is, briefly, expanded as follows: ?$

Control write (MS) to reset the CRI flip-flop

Page 156

1SS4, SECTION 254-280-040

MS instruction

ML instruction

GCP

a

GCP.

Format:

,y--

‘

EXPECT($5)
STDRTEST WORD($l),DATA_EXPECT($2),WROPTS($3),RDADD($4),EXP_ASW($5)

EXP_P2Pl($5)
NOSTORE

,RDOPTS($6),MASK($7), STATE($8),WRASW($9),ODWINDOW

Characteristics of Parameters:

WORD – Specifies the address (bits Othrough 15) at which the data register is control written. The $1
is the address.

DATA_EXPECT – Specifies the data to be written and the expected results of the ML instruction
unless the EXPECT, EXP_ASW or EXP_P2Pl parameter is specified. The $2 is
any arithmetic expression which expresses the data.

WROPTS – Specifies the mode, parity, and store timing during the write (MS) instruction. The $3 is a
list of options. If not specified, $3 is M, C, and W. Figure 1 shows the list of options for che
MS instruction.

RDADD – Specifies the address to be read during the ML instruction. If not specified, it is the write
address. The $4 is the address.

RDOPTS – Specifies the mode, parity, and store timing during the read (ML) instruction. The $6 is a
list of options. If not specified, $6 is M, C, and R. Figure 3 shows the list of options for the
ML instruction.

EXPECT – Specifies the expected results in a 24-bit word. The $5 is any arithmetic expression which
expresses the expected results.

EXP_P2Pl – Expected results data parity bits, P2 and Pl, data bits 24 and 25 are rotated into bits 1
and O of the 24-bit word. The $5 is any arithmetic expression which expresses the
expected results data parity bits. The module is determined by address bit 15 specified
in the address.

EXP_ASW – The ASW and ASWF leads (in central control) are rotated into bits Oand 1 of the 24-bit
word. The $5 is any arithmetic expression which expresses the ASW and ASWF ex-
pected results.

NOSTORE – Specifies that the results of the read are to be ignored.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all ones is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

Page 157

STATE – Specifies the states of the communications reply inhibit (CRI) and maintenance (MTCE)
flip-flops during the MS and ML instructions. The $8 is one of the following

CRIR – Reset CRI

CRIS – Keep CRI set

MTCER – Keep MTCE set

MTCES – Keep MTCE set.

If not specified, $8 is (CRIR, MTCES).

WRASW – Specifies the expected result of the ASW and ASWF leads after the MS instruction. The
ASW and ASWF leads (in central control) are rotated into bits Oand 1 of the 24-bit word.
The $9 is any arithmetic expression which expresses the ASW and ASWF expected re-
sults.

ODWINDOW – Specifies three consecutive read (ML) instructions so that output data window faults
can be detected. The first two read results are ignored.

Example:

STDRTEST WORD(MU1DM200),DATA.EXPECT(1MUDADD1S),WROPTS
(W,C,M),EXPECT(0),RDOPTS(R,C,M),STATE(CRIS)

This statement sets the MS (write) options to W, C, M, and sets the ML (read) options to R, C, and M.
Then the value of lMUDADDIS is written into location MU1DM200. The location MU1DM200 is then
read and compared to zeros. The CRI flip-flop is set. If the STATE (CRIS) was not specified, a mainte-
nance store (MS) instruction would first be executed to reset the CRI flip-flop; then the last operation
would be two GCP instructions (after the ML).

STDRTST3

4.192 The description of the STDRTST3 statement includes:

Function:

The Store Data Register Test macro is used to test the store data register (DR). The DR is written using
the MS instruction to read back the contents of the DR. The general macro expansion is as follows

Control write (MS) to reset the CRI flip-flop

MS instruction

ML instruction

GCP

GCP.

Page 158

?,

.

.

-,

.

.

7,

1SS4, SECTION 254-280-040

Format:

EXPECT($5)
STDRTST3 WORD($l),DATA.EXPECT($2),WROPTS($3), RDADD($4),EXP-ASJV($5),RDOPTS($6),

EXP_P2Pl($5)
NOSTORE

MASK($7),STATE($8),WRASW($9),0DWINDOW

Characteristics of Parameters:

WORD – Specifies the address (bits O through 17) to which the DR is written. The $1 is the address.

DATA.EXPECT – Specifies the data to be written and the expected result of the read unless the
EXPECT, EXP_ASW, EXP_P2Pl or NOSTORE parameter is specified. The $2 is
any arithmetic expression representing the data.

WROPTS – Specifies the mode, parity, and store timing during the write operation. The $3 is a list of
options from the list in Fig. 3. If $3 is not specified, the options are W, C, and M.

RDADD – Specifies the address to be read during the ML instruction. If not specified, the write
address is used. The $4 is the address.

EXPECT – Specifies the expected results of the read operation in a 24-bit word. The $5 is any
arithmetic expression representing the expected results,

EXP_ASW –

EXP_P2Pl –

.- NOSTORE –

Specifies the expect for the ASW, ASWF, and DPWEF leads in the central control.
These three bits are rotated into the bits O, 1, and 2, respectively, of the expect word.
The $5 is any arithmetic expression representing the ASW, ASWF and DPWEF ex-
pected results.

Specifies the expect for the two parity bits P2 and PI, data bits 24 and 25 are rotated into
bits 1 and O of the expect word. The $5 is any arithmetic expression which represents
the expect value for P2 and P1.

Specifies that the results of the read instruction are to be ignored.

●

RDOPTS – Specifies the mode, parity, and store timing during the read. The $6 is a list of options
from Fig. 3. If $6 is not specified, R, C, and M are assumed.

. MASK – Specifies the mask to be used for the read operation. The $7 is any arithmetic expression
which represents the mask value. If not specified, an all ones mask is used.

STATE – Specifies the state of the CRI and MTCE flip-flops during the MS and ML instructions. The
$8 is one of the following

CRIR – Reset CRI flip-flop

CRIS – Keep CRI set

Page 159

-.

SECTION 254-280-040

MTCER – Reset MTCE flip-flop

MTCES – Keep MTCE set.

If not specified, $8 is (CRIR, MTCES).

WRASW – Specifies the expected results of the ASW, ASWF, and DPWEF leads after the MS
instruction. The leads are rotated into bits O,1, and 2, respectively, of the 24-bit word. The
$9 is any arithmetic expression which represents the ASW, ASWF, and DPWEF expect
value.

ODWINDOW – Specifies that three consecutive reads will be performed so output data window faults
can be detected. The first two read results are ignored.

Example:

STDRTST3 WORD(MSIDRWOO),DATA_EXPECT(lDG_BITOl),
WROPTS(W,C,M),EXPECT(O),RDOPTS(R,C,M), STATE(CRIS)

This statement sets the MS options to W, C, and M and the ML options to R, C, and M. The value of
lDG_BITOl is written into address MSIDRWOO. The CRI flip-flop is set and the MSIDRWOO address is
read and expected to be O. After the read, two GCP instructions are executed.

STEXER

‘-l

.

4.193 The description of the STEXER statement includes:

Function:

The STEXER statement exercises the store memory at a high repetition rate–performs memory reads
every store cycle.

Format:

STEXER STARTADD($l),BLOCKS($2),BITS($3)

Characteristics of Parameters:

STARTADD – Specifies the start address to be exercised. The $1 is the address. ?,

BLOCKS – Specifies the number of blocks of addresses to be exercised. A block consists of 512
consecutive reads. The $2 is the number of blocks.

.

BITS – Specifies the address bits to be exercised. The $3 is

BRAIL – B RAIL
-

BCUR – B CURRENT ‘?

AVERT – A VERTICAL

AHOR – A HORIZONTAL
7

ARAIL – A RAIL.

Page 160

1SS4, SECTION 254-280-040

/-,

P Example:

STEXER STARTADD(O(0)), BLOCKS(l)

,P
This statement performs 512 consecutive memory reads starting at address octal zero.

STEXER2

.
4.194 The description of the STEXER2 statement includes:

Function:

The STEXER2 statement is used to perform a series of consecutive memory reads which are executed
every 1400 ns to operate the tested store at system speed. Segment breaks occur automatically within
the associated macro routine after a predetermined number of addresses have been exercised.

Format:

/--.,

●

STEXER2 STARTADD ($1), BLOCKS ($2),BITS ($3)

Characteristics of Parameters:

STARTADD – Specifies the start address to be exercised. The $1 is the address (bits O through 15).

BLOCKS — Specifies the number of blocks of addresses to be read. A block consists of 512 consecutive

BITS –

reads. The $2 is the number of blocks. If $2 is one, then 512 consecutive memory reads will
be executed. A value of zero will result in 512 memory reads of the start address $1.

Specifies the address bits to be held constant during the memory reads. The $3 is

BRAIL – Address bits O, 1, 2

BCUR – Address bits 3, 4

AVERT – Address bits 6, 7, 8

AHOR – Address bits 9, 10, 11

ARAIL – Address bits 12, 13, 14.

Example:

.
STEXER1 STARTADD(0),BLOCKS(l)

.n This statement performs 512 consecutive memory reads starting at address Oand the last address read
being 0(777). The module read is mod O because address bit 15 = O.

P
STEXER3

4.195 The description of the STEXER3 statement includes.

Page 161

SECTION 254-280-040

Function:

The store exercise macro is used to perform consecutive memory reads at operational speed. Memory is
read in blocks of 512 addresses. Segment breaks occur automatically after a predetermined number of
addresses have been exercised. -,

Format:

.

STEXER3 STARTADD($l),BLOCKS($2),MASK($3),KEEP($4)

Characteristics of Parameters:
.

STARTADR – Specifies the address to start with for the exercise routine. The $1 is the address (bits O
-,

through 17).

BLOCKS – S~ecifies the number of blocks of 512 consecutive addresses which are to be exercised. The

MASK –

KEEP –

Example:

$~ can be any number of blocks up to and including 8191.

Specifies the mask of the address bits which are to remain constant. The $3 is any arithmetic
expression which represents the mask value.

Specifies the value which the masked address bits are to be kept at. The $4 is either Oor 1.

STEXER3 STARTADR(O(0)), BLOCKS(1), MASK(O(676)),KEEP(O)

This ,statement will exercise one block of 512 addresses starting with address O.All address bits masked
by the value 0(676) will be kept at a constant value of O.

STLKBUS2

4.196 The description of the STLKBUS2 statement includes:

Function;

The STLKBUS2 statement is used to detect leakage from the standby bus on MS instructions and
leakage to the active bus, while the store is configured to the standby bus on ML instructions. The tests
that are executed use both central controls and both buses. The statement executes a control write to
reset CRI, followed by an MS instruction which is executed by both central controls and then an ML
instruction is executed again by both central controls. Only the active central control looks at the

.

results. This is then followed by one or two GCPS; one if the store is configured to the standby bus, two if
the store is configured to the active bus. The macro is, briefly, expanded as follows:

Control write (MS) to reset CRI flip-flop

MS instruction

ML instruction

GCP

GCP.

Page 162

1SS4, SECTION 254-280-040

Format:

.

/-.

.

f-’

AITEM($l) sITEM($5)
STLKBUS2 AWORD($2),ADATA($3),AKCODE($4),SWORD($6), SDATA($7),SKCODE($8),

MASK($9),

EXPECT($1O)
EXP_P2Pl($10),LPARND, WOPTIONS($ll),ROPTIONS($12),STATE($13),BUS($l4)
EXP_ASW($lO)

Characteristics of Parameters:

AITEM – Specifies the address (bits Othrough 15) to be used by the active central control for the MS
and ML instructions. The $1 is a Datapool-defined item.

AWORD – Specifies the address (bits Othrough 15) to be used by the active central control for the MS
and ML instructions. The $2 is the address (bits O through 15).

ADATA – Specifies data to be used by the active central control for the MS instruction. The $3 is any
arithmetic expression which expresses the data.

AKCODE – Specifies the K-code to be used by the active central control for the MS and ML instruc-
tions. The $4 is the K-code.

SITEM – Specifies the address (bits O through 15) to be used by the standby central control for the
MS and ML instructions. The $5 is a Datapool-defined item.

SWORD – Specifies the address (bits O through 15) to be used by the standby central control for the
MS and ML instructions. The $6 is the address.

SDATA – Specifies the data to be used by the standby central control for the MS instruction. The $7
is any arithmetic expression which expresses the data.

SKCODE – Specifies the K-code to be used by the standby central control for the MS and ML
instructions. The $8 is the K-code.

MASK – Specifies the mask. The $9 is any arithmetic expression which expresses the mask.

EXPECT – Specifies the expected results in a 24-bit word. The $10 is any arithmetic expression which
expresses the data.

EXP_P2Pl – Expected results data parity bits, P2 and Pl, data bits 24 and 25 are rotated into bits 1
and O of the 24-bit words. The $10 is any arithmetic expression which expresses the
expected results data parity bits. The module tested is specified by address bit 15 of the
address used by the active central control for the MS and ML instructions.

EXP_ASW – The ASW and ASWF leads (in central control) are rotated into bits Oand 1 of the 24-bit
word. The $10 is any arithmetic expression which expresses the ASW and ASWF ex-
pected results.

LPARND – If specified, the ML instruction performed is an address loop-around.

Page 163

SECTION 254-280-040

WOPTIONS – Specifies the mode and parity during the MS instruction. The $11 is a list of options. If
not specified, $11 is M, C, and W. Figure 1 shows the list of options for the MS
instruction.

ROPTIONS – Specifies the mode, parity, and store timing during the ML instruction. The $12 is a list
of options. If not specified, $12 is M, C, and R. Figure 1 shows the list of options for the
ML instruction.

STATE – Specifies the state of the maintenance (MTCE) flip-flop during the MS and ML instructions.
The $13 is one of the following

MTCER – Reset MTCE

MTCES – Keep MTCE set.

If not specified, $13 is MTCES,

BUS – Specifies the bus the store is put on during the MS/ML instructions. The $14 is ACT (active
bus) or STB (standby bus). If not specified, $14 is ACT.

Example:

STLKBUS2 AWORD(DGISCR1),ADATA(0(177)),AKODE(DG1 KCODE),
SWORD(DG1SCR2), SDATA(O(711)),SKCODE(DG1KCODE),
MASK(O(711),EXPECT(O(711)

This statement executes a control write to reset the CRI flip-flop. Then both central controls execute an
MS instruction with M, C, and W options. The data for the active central control is octal 177, the K-code
for the active central control is specified by the value of DGIKCODE, and the address for the active
central control operation is contained in DGISCR1. The data for the standby central control is octal 711,
the K-code for the standby central control is specified by the value of DGIKCODE, and the address for
the standby central control operation is contained in DG1SCR2. Then both central controls execute ML
instructions with the M, C, and R options. The address, K-code, and data is the same as for the MS
instruction. The mask is 0(711). The active central control looks for the expected result of 0(711). Then
two GCPS are generated.

STLKBUS3

4.197 The description of the STLKBUS3 statement includes:

Function:

The Store Leaky Bus is used to detect leakage from the standby bus (MS instructions) to the active bus
(ML instructions) while the store is configured to the standby bus. The tests use both central controls
and both buses. A control write to reset CRI is executed followed by an MS instruction which is executed
by both central controls. An ML instruction is then executed from both central controls with only the
active central controls looking at the results. After the ML, one GCP is executed if the store is config-
ured to the standby bus or two GCPS are executed if the store is on the active bus. The general expansion
of the macro would appear as follows:

Control write to reset the CRI flip-flop

MS instruction

ML instruction

GCP

GCP.

Page 164

.

.

.

—.

1SS4, SECTION 254-280-040

Format:

.

AITEM($l) sITEM($5)
STLKBUS3 AWORD($2),ADATA($3),AKCODE($4),SWORD($6),

EXPECT($1O)
SDATA($7),SKCODE($8),MASK($9),EXP_P2Pl($10),

EXP.ASW($1O)

LPARND,WOPTIONS($ll),ROPTIONS($12),STATE($l3),BUS($l4)

Characteristics of Parameters:

P

,n

●

.

AITEM – Specifies the address (bits Othrough 17) to be used by the active central control for the MS
and ML instructions. The $1 is any valid Datapool-defined item.

AWORD – Specifies the address (bits Othrough 17) to be used by the active central control for the MS
and ML instructions. The $2 is any valid arithmetic expression representing the address.

ADATA – Specifies the data to be used by the active central control for the MS instruction. The $3 is
any arithmetic expression which represents the data.

AKCODE – Specifies the K-code to be used by the active central control for the MS and ML instruc-
tions. The $4 is the K-code.

SITEM – Specifies the address (bits Othrough 17) to be used by the standby central control for the MS
and ML instructions. The $5 is any valid Datapool-defined item.

SWORD – Specifies the address (bits O through 17) to be used by the standby central control for the
MS and ML instruction. The $6 is any valid arithmetic expression representing the ad-
dress.

SDATA – Specifies the data to be used by the standby central control for the MS instruction. The $7 is
any valid arithmetic expression which represents the data.

SKCODE – Specifies the K-code to be used by the standby central control for the MS and ML instruc-
tions. The $8 is the K-code.

MASK – Specifies the mask value. The $9 is any valid arithmetic expression which represents the
mask value.

EXPECT – Specifies the expected results of the test in a 24-bit word. The $10 is any valid arithmetic
expression which represents the expect data.

EXP.P2P1 –

EXP_ASW –

Specifies the expected results of the parity bits, P2 and Pl, data bits 24 and 25 are
rotated into bits 1 and O of the 24-bit word. The $10 is any valid arithmetic expression
which represents the expected result of the parity bits.

Specifies the expected results for the ASW, ASWF, and DPWEF. The leads in the
central control are rotated into bits O, 1, and 2, respectively, of the 24-bit word. The $10
is any valid arithmetic expression which represents the expected results for ASW,
ASWF, and DPWEF.

Page 165

SECTION 254-280-040

LPARND – Specifies the ML instruction being executed is an address loop-around; ie, R=W.

WOPTIONS – Specifies the mode and parity during the MS instruction. The $11 is a list of ot)tions

ROPTIONS –

f~om Fig. 3. If $11 is n~t sp&ified, ~he options are W, C, and M.

Specifies the mode, parity, and store timing during the ML instruction. The $12 is a list
of options from Fig. 3. If $12 is not specified, the options are R, C, and M.

STATE – Specifies the state of the MTCE flip-flop during the MS and ML instructions. The $13 is one
of the following

MTCER – Reset MTCE flip-flop

MTCES – Keep MTCE set.

If not specified, $13 is MTCES.

BUS – Specifies the bus which the store is put on during the MS/ML instructions. The $14 is ACT for
active bus or STB for standby bus. If not specified, $14 is ACT.

Example:

STLKBUS3 AWORD(MSIDRWOO),ADATA(lMSDDATAOS),

.

.

AKCODE(O(32)),SWORD(MSIDRWO1),SDATA(1MSDDATA1S),
SKCODE(O(32)),MASK(lMSDDATAIS),EXPECT(lMSDDATAOS),
WOPTIONS(W,M,C), ROPTIONS(R,M,C)

This, statement first executes a control write to reset the CRI flip-flop. Both central controls then ?,
execute an MS instruction with W, M, and C options. The active central controls data is lMSDDATAOS;
the K-code is 32 and the address for the active central control is MSIDRWOO. The data for the standby
central control is lMSDDATAIS. The K-code is 32 and the address for the standby central control is
MSIDRWO1. Both central controls then execute an ML instruction with R, M, and C options. The
address, K-code, and data are the same as for the MS instruction. The mask is lMSDDATAIS and the
expected result for the active central control is lMSDDATAIS. Following this, two GCPS are executed.

STLKYBUS

4.198 The description of the STLKYBUS statement includes

Function:

The STLKYBUS statement is used to detect leakage from the standby bus on MS instructions and
leakage to the active bus, while the store is configured to the standby bus on ML instructions. The tests
that are executed use both central controls and both buses. This statement executes a control write to

.

reset CRI, followed by an MS instruction which is executed by both central controls and then an ML
instruction is executed again by both central controls. Only the active central control looks at the
results. This is then followed by one or two GCPS, one if the store is configured to the standby bus, two if
the store is configured to the active bus. The MS, ML, and GCP instructions are described in Section
254-280-020, Assembly Language–Description, 1A Processor.

Format:

AITEM($l) sITEM($5)
STLKYBUS AWORD($2),ADATA($3),AKCODE($4),SWORD($6),SDATA($7),SKCODE(&),MASK($9),

EXPECT($1O)
EXP_P2Pl($lO),LPARND,WOPTIONS($ll),ROPTIONS($l4),STATE($l3),BUS($l4)
EXP_ASW($lO)

Page 166

1SS4, SECTION 254-280-040

Characteristics of Parameters:

●

AITEM – Specifies the address to be used by the active central control for the MS and ML instruc-
tions. The $1 is a Datapool-defined item.

AWORD –

ADATA –

Specifies the address to be used by the active central control for the MS and ML instruc-
tions. The $2 is the address.

Specifies data to be used by the active central control for the MS instruction. The $2 is any
a~ithmetic expression which expresses the data.

AKCODE – Specifies the K-code to be used by the active central control for the MS and ML instruc-
tions. The $4 is the K-code.

SITEM – Specifies the address to be used by the standby central control for the MS and ML instruc-
tions. The $5 is a Datapool-defined item.

SWORD –

SDATA –

Specifies the address to be used by the standby central control for the MS and ML instruc-
tions. The $6 is the address.

SDecifies the data to be used by the standby central control for the MS instruction. The $7
ii any arithmetic expression which expre&es the data.

SKCODE – Specifies the K-code to be used by the standby central control for the MS and ML
instructions. The $8 is the K-code.

MASK – Specifies the mask. The $9 is any arithmetic expression which expresses the mask.

EXPECT – Specifies the expected results in a 24-bit word. The $10 is any arithmetic expression which
expresses the data.

EXP_P2Pl – Expected results data parity bits, P2 and Pl, data bits 24 and 25 are rotated into bits O
and 1 of the 24-bit word. The $10 is any arithmetic expression which expresses the
expected results data parity bits.

EXP_ASW – The ASW and ASWF leads (in central control) are rotated into bit O and 1 of the 24-bit
word. The $10 is any arithmetic expression which expresses the ASW and ASWF ex-
pected results.

LPARND – If specified, the ML instruction performed is an address loop-around.

/.- WOPTIONS – Specifies the mode and parity during the MS instruction. The MS instruction is de-
scribed in Section 254-280-020, Assembly Language—Description, 1A Processor. The
$11 is a list of option. If not specified, $11 is M, C, and W. Table A is a list of options for*
the MS and ML instructions.

ROPTIONS – Specifies the mode, parity, and store timing during the ML instruction. The ML instruc-
. tion is described in Section 254-280-020, Assembly Language-Description, 1A Proces-

sor. The $14 is a list of options. If not specified, $14 is M, C, and R. Table A is a list of
options for the MS and ML instructions.

P
STATE – Specifies the state of the maintenance (MTCE) flip-flop. The $13 is one of the following

MTCER – reset MTCE

,- MTCES – set MTCE.

If not specified, $13 is MTCES.

Page 167

SECTION 254-280-040

BUS – Specifies the bus the store is configured to during the MS/ML instructions. The $14 is ACT
(active bus) or STB (standby bus). If not specified, the active bus is used.

Example:

STLKYBUS_AWORD(DGISCRl),ADATA(O(177),AKCODE(DGlKCODE), SWORD(DGlSCR2),
sDATA(o(711),sKcoDE(DGIKcoDE),MAsK(o(77777777)),ExPEcT(o(77777777))

This statement executes a control write to reset the CRI flip-flop. Then both central controls execute an
MS instruction with M, C, and W options, The data for the active central control is octal 17~ the K-code
for the active central control is contained in DGIKCODE, and the address for the active central control
operation is contained in DGISCR1. The data for the standby central control is octal 711, the K-code for
the standby central control is contained in DGIKCODE, and the address for the standby central control
operation is contained in DG1SCR2. Then both central controls execute ML instructions with the M, C,
and R options. The address, K-code, and data is the same as for the MS instruction. The mask is all 1s
(0(77777777). The active central control looks for the expected result of all 1s (0(77777777)). Then two
GCPS are generated.

STLREAD

4.199 The description of the STLREAD statement includes:

Function:

The STLREAD loop-around read statement reduces to a STAREAD with the R, W, M, and C bits set.
The R, W, M, and C bits are options which specify the mode of the ML instruction used by this macro.
Refer to Table A.

Format:

ITEM($1) EXPECT($4)

STLREAD ITEMS($2),NOSTORE,MASK($9)
WORD($3)

Characteristics of Parameters:

WORD – Specifies the address of the read. The $3 is the address.

ITEM – Specifies the address of the read which is associated with a Datapool layout. The $1 is an item
name.

●

✎

n

●

ITEMS – Specifies the address of the read which is associated with a Datapool layout. The $2 is a list

EXPECT

MASK –

of items all in the same word. -

– Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results. 7

Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $9 is any arithmetic expression
which expresses the mask. .-,

NOSTORE – Ignore results of the read, keeping the CRI flip-flop set.

Page 168

1SS4, SECTION 254-280-040

Example:

STLREAD

Reduces to

STAREAD
.

STLREAD3

WORD(1MUDADD040), EXPECT(1MUDADD040),
MASK(lMUDLOOPMSK)

WORD(1MUDADD040), EXPECT(1MUDADD040),
OPTIONS(R,W,M,C), MASK(lMUDLOOPMSK)

.

.

,+-. 4.200 The description for the STLREAD3 statement includes:

Function:

The store loop-around read macro expands to a STAREAD3 macro with R, W, M, and C bits set. The
macro is used for address loop-around tests.

Format:

STLREAD3
ITEM($1) EXPECT($4)
ITEMS($2), NOSTORE, MASK($9)
WORD($3)

Characteristics of Parameters:

ITEM – Specifies the address (bits O through 17) of the read which is associated with a Datapool
layout. The $1 is an item name.

ITEMS – Specifies the address (bits O through 17) of the read which is associated with a Datapool
layout. The $2 is a list of items residing in the same word.

WORD – Specifies the address of the read (bits Othrough 17). The $3 is the Datapool-defined name of
a word or some value.

EXPECT – Specifies the expected results in a 25-bit word. The $4 is any arithmetic expression which
expresses the expected results.

NOSTORE – Specifies to ignore the results of the read, keeping the CRI flip-flop set.

MASK – Specifies the mask used for the read. If not specified with WORD parameter, a mask of all
ones is used. If not specified with ITEM(S) parameter, the mask of the item(s) is used. The $9
is any arithmetic expression which expresses the mask.

Example:

STLREAD WORD(1MSDADD090),EXPECT(1MSDADD090),
MASK(lMSDLOOPMSK)

Reduces to:

STAREAD3 WORD(1MSDADD090), EXPECT(1MSDADD090),
OPTIONS(R,W,M,C), MASK(lMSDLOOPMSK)

Page 169

SECTION 254-280-040

STMARCH3

4.201 The description of the STMARCH3 statement includes:

Function:

The store memory march is used to march a data pattern through a complement data pattern. After the
memory has been initialized to some known data pattern by the STWRMEM3 routine, the march
routine starts at address Oor 777777 and reads that address. The complement data is then written back
into that address and the address is incremented or decremented by one. The entire memory is read in

.

this manner. Segment breaks are automatically taken during the march routine.

Format:

STMARCH3 MARCH($l),THRU($2),DIRCTN($3)

Characteristics of Parameters:

MARCH – Specifies the data pattern to be written into each address after the read. The $1 is any
valid arithmetic expression.

THRU – Specifies the data which is expected on the read operation. The $2 is any valid arithmetic
expression.

DIRCTN – Specifies the direction of the march. The $3 can be UP for starting at address O and
incrementing upward or DOWN for starting at address 777777 and decrementing down-

-.

ward. If not specified, direction is assumed UP.

Example:

STMARCH3 MARCH(lDGALTO1),THRU(1DGALTIO)

This statement will read starting at address Oand expect 1DGALTIO. Following the read, a write will be
performed to address Owith data of lDGALTO1. The address will be incremented by one and the above
procedure repeated until the address reaches 777777. Any failures will be stored away for processing by
the pattern analysis routine.

‘?
STMCCRD

?

4.202 The description of the STMCCRD statement includes:

Function: .

The STMCCRD statement is used to read the store status from the master control console. The status is
indicated by the states of the following flip-flops: maintenance (MTCE), answer on bus O (ANSO),
answer on bus 1 (ANS1), bus receive on (RO), and the K-code of the store under test.

Format:

STMCCRD MASK($l),EXPECT($2)

Page 170

1SS4, SECTkON254-280-040

Characteristics of Parameters:

MASK – Specifies the mask to be used. The $1 is any arithmetic expression which expresses the mask.

EXPECT – Specifies the expected results of the read. The $2 is any arithmetic expression which
expresses the expected results.

Example:

STMCCRD MASK (O(07600000)),EXPECT(0)

This statement causes a master control console read to determine the store status as indicated by the
MTCE, RO, ANS1, and ANSO flip-flops, and the K-code of the store under test.

STMCCRD2

4.203 The description of the STMCCRD2 statement includes:

Function:

The STMCCRD2 statement is used to read the store status from the master control console. The status
is indicated by the states of the following flip-flops: maintenance (MTCE), answer on bus O (ANSO),
answer on bus 1 (ANS1), bus receive on (RO), and the K-code of the store under test.

Format:

STMCCRD2 MASK($1),EXPECT($2)

Characteristics of Parameters:

MASK – Specifies the mask to be used. The $1 is any arithmetic expression which expresses the mask.

EXPECT – Specifies the expected results of the read. The $2 is any arithmetic expression which
expresses the expected results.

Example:

STMCCRD2 MASK(O(07600000)),EXPECT(O(07600000))

This statement causes a master control console read to determine the store status as indicated by the
MTCE, RO, ANS1, and ANSO flip-flops, and the K-code of the store under test.

The following shows the status bits as they are read from the PPI master control console.

ANSO – Bit 12
ANS1 – Bit 13
RO – Bit 14
MTCE – Bit 15
KCODE – Bits 16 through 20.

STMCCRD3

4.204 The description of the STMCCRD3 statement includes.

Page l71

F’mctiorl:

The store master control console read macro is used to read the store
console. The status is indicated by the status of the MTCE, answer on
(ANSI) and receive on (RO) flip-flops along with the K-code.

Format:

STMCCRD3 MASK($1),EXPECT($2)

Characteristics of Parameters:

status from the master control
bus O (ANSO), answer on bus 1

.

MASK – Specifies the mask used for the read. The $1 is any valid arithmetic expression which
represents the mask value. m,

EXPECT – Specifies the expected result of the read. The $2 is any valid arithmetic expression which
represents the expect value.

Example:

STMCCRD3 MASK(M(MC2PSRO)),EXPECT(M)MC1PSRO))

This statement will read the status of the RO flip-flop and expect it to be set. The following shows the
status bits which can be read from the PPI master control console:

ANSO – Bit 12
ANS1 – Bit 13
RO – Bit 14
MTCE – Bit 15
KCODE – Bits 16 through 20.

STMHWPM3

4.205 The description of the STMHWPM3 statement includes:

Function:

The store march write protect memory macro is used to exercise the write protect memory. The store is
first initialized using the STWRWPM3 routine. The march routine then starts at address Oor 1777 and

‘?

reads the address. The complement data is then written back into the address. The address is then
incremented or decremented and the procedure is repeated. Segment breaks are automatically gener-

.

ated by the routine. Failures are stored away to be processed by the pattern analysis routine.

Format:

STMHWPM3 EXPECT($l),DIRECTION($2)
n,

Characteristics of Parameters:

EXPECT – Specifies the expected value for the read. The $1 is either 1 of O.

DIRECTION – Specifies the direction of the march. The $2 is UP which starts at address Oor DOWN
which starts at address 1777.

Page 172

1SS4, SECTION 254-280-040

f-
Example:

STMHWPM3 EXPECT(l),DIRECTION(DOWN)

This macro call will start at address 1777 and read the address expecting a 1. The address will be
written with the complement data (0) and the address will be decremented. This process will continue
until all lK of the write protect memory has been exercised.

.
STMREAD

4.206 The description of the STMREAD statement includes:

,-, Function:

The STMREAD maintenance read statement reduces to a STAREAD macro with the M and R bits set.
The M and R bits are options which specify the mode of the ML instruction used by this macro. Refer to

P

e

Table A.

Format:

STMREAD
ITEM($1) EXPECT($4)
ITEMS($2),NOSTORE, MASK($9)
WORD($3)

Characteristics of Parameters:

WORD – Specifies the address of the read, The $3 is the address.

ITEM – Specifies the address of the read which is associated with a Datapool layout. The $1 is an item
name.

ITEMS – Specifies the address of the read which is associated with a Datapool layout. The $2 is a list
of items all in the same word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all ones is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $9 is any arithmetic expression
which expresses the mask.

NOSTORE – Ignore results of the read, keeping the CRI flip-flop set.

ExamzJe:

STMREAD WORD(MUIDRWOO),NOSTORE

Reduces to:

STAREAD WORD(MUIDRWOO),NOSTORE,OPTIONS(M,R)

Page 173

SECTION 254-280-040

STMWALK

4.207 The description of the STMWALK statement includes:

Function:

The STMWALK statement is the second half of a memory test. Prior to the execution of this statement
all memory locations are written with data; ie, all ones. The associated macro routine uses the mainte-
nance load (ML) instruction to read an address expecting the data written (all ones). This is then
followed by a maintenance store (MS) instruction to write new dat% ie, all zeros. All memory locations

,

are read then written either starting at address O and running through address octal 177777 (UP) or
starts at address octal 177777 and running through address O (DOWN). All data bit failures are shown
by the store histogram printout. Segment breaks occur automatically within the routine after a predet-

.

ermined number of addresses are read/written.

Format:

STMWALK WALK($1),THRU($2),DIRCTN($3)

Characteristics of Parameters:

WALK – Specifies that data to be written. The $1 is any arithmetic expression which expresses the
data.

THRU – Specifies the expected result in a 24-bit word. The $2 is any arithmetic expression which
expresses the expected result.

DIRCTN – Specifies the direction (up or down) of the read/write. The $3 is either UP (default) or
DOWN.

Example:

STMWALK WALK (lDG_ONES),THRU(lDG_ZEROS)

Prior to this statement another macro statement, ie, STWRMEMS, would write all memory locations
with data lDG_ZEROS. The STMWALK routine will read
write this address with lDG_ONES starting at address

STMWRITE

4.208 The description of the STMWRITE statement includes:

Function:

an address expecting data lDG_ZEROS, then
O and running through octal 177777.

.

.

The STMWRITE maintenance write statement reduces to a STAWRITE with the W and M bits set. The
W and M bits are options which specify the mode of the MS instruction used by this macro. Refer to
Table A.

Format:

STMWRITE WORD($1),DATA($2)

Page 174

—

1SS4, SECTION 254-280-040

f-

(-

.

-

,/---

●

.

P’

Characteristics of Parameters:

WORD – Specifies the address to be written into. The $1 is the address.

DATA – ~~aifies the data to be written. The $2 is any arithmetic expression which expresses the

Example:

STMWRITE

Reduces to

STAWRITE

WORD(lMUDADDIS),DATA(lMUDADDOS)

WORD(lMUDADDISLDATA(lMUDADDOSl
OPTIONS(W,M) ‘‘ ‘

/,

STPCLKA

4.209 The description of the STPCLKA statement includes

Function:

The STPCLKA statement tests the operational clock control circuitry associated with stopping the
operational clock in the standby central control. Clock control flip-flops are written to start and stop
the operational clock. Clock control and clock status indicators are read and stored in diagnostic scratch
call store. Each clock control flip-flop written causes a particular circuit function to occur and these
functions are monitored by reading and storing the control and status indicators. Other DL-1 state-
ments interrogate the values stored in diagnostic scratch call store. No tests are generated by this
statement.

Format:

STPCLKA

Characteristics of Parameters:

This statement has no parameters.

=:

STPCLKA

This statement writes clock control flip-flops to start and stop the operational clock. Clock control and
clock status indicators are read and stored in diagnostic scratch call store.

STRCLKA

4.210 The description of the STRCLKA statement includes:

Function:

The STRCLKA statement tests the operational clock control circuitry associated with starting the
operational clock in the standby central control. Clock control flip-flops are written which start and
stop the operational clock. Clock control and status indicators are read and stored in diagnostic scratch
call store. The writing of the control flip-flops causes certain clock circuit functions to occur and these
functions are monitored by reading the control and status indicators. No tests are generated by this
statement. The results stored in diagnostic scratch call store are interrogated by other DL-1 state-
ments.

Page 175

—

SECTION 254-280-040

Format:

STRCLKA

Characteristics of Parameters:

This statement has no parameters.

Example:

STRCLKA

This statement writes clock control flip-flops which start and stop the operational clock. Clock control
and status indicators are then read and stored in diagnostic scratch call store.

STRCI.KB

4.21 I The description of the STRCLKB statement includes:

Function:

The STRCLKB statement tests a function of the start-stop control sequence (SSCS) start circuitry. The
statement tests the processor configuration circuit input to the operational clock start circuitry of the
SSCS. The processor configuration input is activated by a control write to the start-stop register (SSR)
in the standby central control. After a brief delay, the SSR and the clock error group (CLE) register are
control read and their contents are stored in diagnostic scratch call store. The results of the control
reads are interrogated by other DL-1 statements.

Format:

STRCLKB

Characteristics of Parameters:

This statement has no parameters.

Example:

STRCLKB

This statement activates the processor configuration input by a control write to the SSR in the standby
central control. After a brief delay, the SSR and SLE are control read and their contents are stored in
diagnostic scratch call store.

STRCSYNC

4.212 The description of the STRCSYNC statement includes:

Functjon:

The STRCSYNC statement tests the standby central control ring counter synchronization circuitry. The
standby central control ring counter is stopped and started twice. Before and after each stopping and
starting of the ring counter, various control and monitor points are initialized and reread. These points
are used to inhibit and to verify certain functions of the synchronization circuitry. All results which are
control read are stored in diagnostic scratch call store and are interrogated by other DL-1 statements.
The standby central control ring counter is left running and in synchronism with the active central
control ring counter,

Page 176

“-’i

?,

.

1SS4, SECTION 254-280-040

Format:

STRCSYNC

.

.

n.

f-

*

.

P

Characteristics of Parameters:

This statement has no parameters.

STRCSYNC

The statement starts and stops the standby central control ring counter twice, initializing and reading
various monitor and control points before and after each stopping and starting. All results of the
control reads are stored in diagnostic scratch call store. The standby central control ring counter is left
running and in synchronism with the active central control ring counter.

STRDGCP

4.213 The description of the STRDGCP statement includes:

Function:

The STRDGCP statement executes an abnormal read to the store (ML instruction), ignoring the results
followed by a GCP to check the effects of the read. The GCP and ML instruction are described in Section
254-280-020, Assembly Language–Description, 1A Processor.

Format:

ITEM($l)

STRDGCP ITEMS($2),EXPECT($4),0PTIONS($5),KCODE($6),MASK($7),BUS($8)
WORD($3)

Characteristics of Parameters:

ITEM – Specifies the address to be read, associated with the address of its layout. The $1 is an item
name.

ITEMS – Specifies the address to be read, associated with the address of its layout. The $2 is a list of
items all in the same word.

WORD – Specifies the address to be read. The $3 is the address.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected result.

OPTIONS – Specifies the mode, parity, and store timing during the read (ML) instruction. The ML
instruction is described in Section 254-280-020, Assembly Language—Description, 1A
Processor. The $5 is a list of options. Table A is a list of options for the MS and ML
instructions.

Page 177

SECTION 254-280-040

KCODE – Specifies the K-code to be used during the ML instruction. It does not have to be the
current-test K-code. The $6 is the K-code.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

BUS – Specifies what GCP results to look ati $8 is ACT – Active bus, first GCP or STB – Standby
bus, second GCP.

Example:

STRDGCP. WORD(MUIDRWOO), EXPECT(O*I(MUIDWVNCLKl)),OPTIONS(R,M,C),
ME MASK(M(MUIDWVNCCK1))

This statement executes two GCPS and sets the ML (read) options to R, M, and C, then reads location
MUIDRWOO, ignoring the results. This is then followed by another GCP. A GCP is executed and the
reply is masked through the MUIDWVNCLK1 item and compared to O*I(MUIDWVNCLK1).

STRDGCP2

4.214 The description of the STRDGCP2 statement includes:

Function:

The STRDGCP2 statement executes an abnormal read to the store ignoring the results followed by a
GCP to check the effects of the read. The associated macro routine uses the maintenance (ML) load
instruction which gives the user complete control over the mode, parity, and store timing pulses. The
macro is, briefly, expanded as follows

GCP

GCP

ML instruction

GCP

GCP.

Format:
.

ITEM($1)

STRDGCP2 ITEMS($2),EXPECT($4),0PTIONS($5), KCODE($6),MASK($7),BUS($8),STATE($9)
-

WORD($3)

Characteristics of Parameters:

ITEM – Specifies the address (bits O through 15) to be read (bits O through 15), associated with the
address (bits O through 15) of its layout. The $1 is an item name.

ITEMS – Specifies the address (bits O through 15) to be read (bits Othrough 15), associated with the
address (bits O through 15) of its layout. The $2 is a list of items all in the same word.

Page 178

1SS4, SECTION 254-280-040

●

.

/-+.

●

-

y-’

WORD – Specifies the address (bits Othrough 15) to be read (bits Othrough 15). The $3 is the address.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected result.

OPTIONS – Specifies the mode, parity, and store timing during the read (ML) instruction. A delay is
taken after the ML instruction if keyword DELAY is specified. The two GCP instructions
prior to the ML instruction are not executed if keyword NGCP is specified. Figure 1
shows the list of options for the ML instruction.

KCODE – Specifies the K-code to be used during the ML instruction. It does not have to be the
current-test K-code. The $6 is the K-code.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all ones is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

BUS – Specifies what GCP results to look at $8 is ACT–active bus, first GCP or STB–standby bus,
second GCP.

STATE – Specifies the state of the maintenance (MTCE) flip-flop during the ML instruction. The $9
is one of the following.

MTCER – Reset MTCE

MTCES – Keep MTCE set.

If not specified, $9 is MTCES. If MTCER is specified, an MS instruction is executed prior to
the ML instruction to reset the MTCE flip-flop.

!&?2U&

STRDGCP2 WORD(MUIDRWOO),EXPECT(0),OPTIONS(R,M,C),
MASK(M(MUIDWVNCLK1))

This statement executes two GCP instructions and sets the ML (read) options to R, M, and C, then reads
location MUIDRWOO, ignoring the results. A GCP is then executed and the reply is masked through the
MUIDWVNCLK1 item and compared to O. This is then followed by another GCP instruction.

STRDGCP3

4.215 The description of the STRDGCP3 statement includes:

Function:

The store read and GCP macro executes an abnormal read ignoring the results followed by a GCP to
check the results of the read. The general description of the macro would appear as follows

GCP

GCP

ML instruction

GCP

GCP.

Page 179

SECTION 254-280-040

Format:

ITEM($l)
STRDCP3 ITEMS($2),EXPECT($4),0PTIONS($5), KCODE($6),MASK($7),BUS($8),STATE($9)

WORD($3)

Characteristics of Parameters:

ITEM – Specifies the address (bits O through 17) to be read associated with the address of the item
layout. The $1 is any Datapool-defined item name.

ITEMS –

WORD –

Specifies the address (bit Othrough 17) to be read associated with the address of the items
layout. The $2 is any Datapool-defined item names in the same word.

Specifies the address (bits O through 17) to be read. The $3 is any arithmetic expression

.

T

which represents the address.

EXPECT – Specifies the expected result of the GCP in a 24-bit word. The $4 is any valid arithmetic
expression which represents the expect value.

OPTIONS – Specifies the mode, parity, and store timing during the read (ML instruction). If DELAY
is specified, a delay of 25 microseconds is taken after the ML instruction. If NGCP is
specified, the two GCPS before the ML are not executed. Figure 3 gives a list of options.

KCODE – Specifies the K-code to be used during the ML instruction. If not specified, the current K-
code will be used. The $6 is the K-code.

MASK – Specifies the mask to be used for the GCP read. If not specified with the WORD parameter, a
mask of all ones is used. If not specified with the ITEM or ITEMS parameters, the mask of
the ITEM or ITEMS is used. The $7 is any valid arithmetic expression which represents the
mask value.

STATE –

Example:

Specifies the state of the MTCE flip-flop during the ML instruction. The $9 is one of the
following

MTCER – Reset MTCE flip-flop

MTCES – Keep MTCE set.
7,

If not specified, MTCES is assumed.

If MTCER is specified, an MS instruction is executed prior to the ML to reset the MTCE
.

flip-flop<

.

STRDGCP3 WORD(MSIDRWOO), EXPECT(O*I(MSIGCPSASWF1)), -,

OPTIONS(R,C,M),MASK(M(MSIGCPSASWF1))

This statement will first execute two GCP instructions. The ML options are set to R, C, and M. Location
MSIDRWOO is read and the results are ignored. A GCP instruction is executed and the reply is masked
by MSIGCPSASWF1 and compared against the expect, O*I(MSIGCPSASWF1). A second GCP is then
executed.

Page 180

1SS4, SECTION 254-280-040

,f-

/-’

*

.

f’-

STRDUPDN

4.216 The description of the STRDUPDN statement includes:

Function:

The STRDUPDN statement is the second half of a memory test in which all addresses are verified. The
data in each location is equal to its address or its address complement. The verification either starts at
address octal O and runs through address octal 177777 (up direction) or starts at address octal 177777
and runs through address octal O (down direction).

Format:

STRDUPDN DIRCTN($1),0PTN($2)

Characteristics of Parameters:

DIRCTN – Specifies the direction (up or down) of the read. The $1 is up or down.

OPTN – If used, specified data equals the complement of address. The $2 is C. If not specified, the data
equals the address,

STRDUPDN DIRCTN(UP),OPTN(C)

This statement verifies the complement of the address starting at octal O and running through octal
177777.

STRD512

4,217 The description of the STRD512 statement includes:

Function:

The STRD512 statement is the second half of a short version of the regular checkerboard memory tests.
The statement verifies the contents of 512 locations using a special algorithm where the combination of
addresses used check most of the current drivers, switches, bridge rails, and diode matrices of the store.

Format:

STRD512 START($l),ADDl($2),ADD2($3),ADD3($4),COUNT($5),EXPECT($6)

Characteristics of Parameters:

START – Specifies the starting address to be used by the algorithm. The $1 is the address.

ADD1,ADD2,ADD3 – Specifies the address increments. The $2, $3, $4 are increments used by the
algorithm.

COUNT – Specifies the total number of addresses to be read. The $5 is any arithmetic expression
which expresses the total number of addresses.

Page 181

.
—

SECTION 254-280-040

EXPECT – Specifies the expected results in a 24-bit word. The $6 is any arithmetic expression which ?,
expresses the expected results. The $6 may also be PWR to indicate power-up K-code.

STRD5l2_START(lMUDACClSTT),ADDl(lMUDACCADDl),ADD2(lMUDACCADD2),
ME ADD3(lMuDAccADD3),couNT(lMuDAccNT), ExPEcT(lDGAcTol)

This statement checks most of the current drivers, switches, bridge rails, and diode matrices of the
store. It starts at address lMUDACCISTT and reads a total number of addresses equal to the value of
lMUDACCNT. The addresses to be read are calculated by the algorithm using lMUDACCADD1,
1MUDACCADD2, and 1MUDACCADD3 as increments. The results are compared to the value of
lDGACTO1.

STREAD

4.218 The description of the STREAD statement includes:

Function:

The STREAD normal read statement reduces to a STAREAD macro with the R bit set. The R bit is an
option which specifies the mode of the ML instruction used by this macro. Refer to Table A.

Format:

ITEM($1) EXPECT($4)
STREAD ITEM($2),NOSTORE, MASK($9)

WORD($3)

Characteristics of Parameters:

WORD – Specifies the address of the read. The $3 is the address.

ITEM – Specifies the address of the read which is associated with a Datapool layout. The $1 is an item
name.

ITEMS – Specifies the address of the read which is associated with a Datapool layout. The $2 is a list of
items all in the same word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results.

NOSTORE – Ignore results of the read, keeping the CRI flip-flop set.
.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $9 is any arithmetic expression
which expresses the mask. .

Example:

STREAD WORD(MUIDRW1l), EXPECT(lMUDDATAIS)

Reduces to:

STREAD WORD(MUIDRW1l), EXPECT(lMUDDATAIS),
OPTIONS(R)

Page 182

1SS4, SECTION 254-280-040

(-

STRUPDN2

4.219 The description of the STRUPDN2 statement includes

Function:

The STRUPDN2 statement is the second half of a memory test in which all addresses are verified. The
data in each location is equal to its address or its address complement. The verification either starts at
address O and runs through address octal 177777 (up direction) Oor starts at address octal 177777 and
runs through address O (down direction). The data parity bits are also checked for correctness. All data
failures are shown by the store histogram printout, Segment breaks occur automatically within the
associated macro routine after a predetermined number of addresses have been verified.

Format:

STRUPDN2 DIRCTN($1),0PTN($2)

Characteristics of Parameters:

DIRCTN – Specifies the direction (up or down) of the read. The $1 is up or down.

OPTN – If specified, specifies data equals the complement of address. The $2 is C. If not specified, the

/-=,
,’

9

data equals the address. -

J@?!?U@

STRUPDN2 DIRCTN(UP),OPTN(C)

This statement verifies the complement
177777.

STSLAVE

of the address starting at octal Oand running thorough octal

4.220 The description of the STSLAVE statement includes:

Function:

The STSLAVE statement causes a faulty store to be used as a duplicate (SLAVE) of some in-service
store. This statement uses the parameters of the diagnosed DGN command.

Format:

DGN:PS $l:PH 94;MARG $2,SLTIM $3,Kc0DE $4!

Characteristics of Parameters:

PS – Specifies program store to be slaved, which must not be duplicated. This may also be call store.
The $1 is the member number of the store.

PH – Specifies phase 94 to be run, which contains the STSLAVE statement.

MARG – Specifies the threshold of the store to be set during the slave time. The $2 is HIGH or LOW;
the default is normal threshold.

Page 183

—

SECTION 254-280-040

SLTIM – Specifies the slave time. The $3 is the time in minutes.

KCODE – Specifies the K-code the store is to be slave to. The $4 is the K-code in octal.

DGNPS 2PH 94,SLTIM 2,KCODE 20!

This statement will specify phase 94 to be run on program store 2. The STSLAVE statement being
called in this phase will thereupon set PS 2 to K-code octal 20. The MTCE flip-flop of the store is then
reset while CRI is set. The RO flip-flop is set to the active bus. The contents of the in-service store
having chosen K-code are next copied into PS 2. The threshold of PS 2 is then set to the level requested,
in this case, NORMAL. The PS 2 is left in this special mode to be exercised by the active system for
duration of 2 minutes. At the end of this waiting period, the MTCE flip-flop of the test store is set while
CRI is reset. The contents of PS 2 and the good store it is slaving are then compared to look for
discrepancies. The results are interpreted by the pattern analyzer program, and are also displayed in
raw data format and summarized format (Histogram).

STSLAVE2

4.221 The description of the STSLAVE2 statement includes:

Fufictiorz:

The STSLAVE2 statement causes a faulty store to be used as a duplicate (SLAVE) of some in-service
store. The statement has no parameters, it uses parameter information from the diagnose (DGN) input
message.

Format:

DGN.PS $l:PH 94,SLTIM $2,KCODE $3!

Characteristics of Parameters:

Ps – Specifies program store $1 to be slaved. This may also be call store. The $1 being the member
.-

number of the store.

PH – Specifies phase 94 to be run, which contains the STSLAVE2 statement.
.

SLTIM – Specifies the slave time. The $2 is the time in minutes. .

KCODE – Specifies the K-code the store is to be slaved as. The $3 is the K-code in octal. If the K-code

specified is duplicated or an on-line store does not have the specified K-code, the test store

will not be slaved.

Exampie:

DGN.CS 2PH 94,SLTIM 2,KCODE 1!

Page 184

—

1SS4, SECTION 254-280-040

p This input message will specify phase 94 to be run on call store 2. The STSLAVE2 statement being
called in phase 94 will set CS 2 to K-code 1. The MTCE flip-flop of the store is then reset while CRI is
set. The RO flip-flop is set to the active bus. The contents of the in-service store having the chosen K-
code are next copied into CS 2. The TWF flip-flop is then set to allow refresh data parity check. The CS 2

,P
is then left in this special mode to be exercised by the active system for a duration of 2 minutes. At the
end of this waiting period, the MTCE flip-flop of the test store is set while CRI is reset. The contents of
CS 2 and the good store it is slaving are then compared to look for discrepancies. All data failures are
shown by the store histogram printout.

*

STSLAVE3

. 4.222 The description of the STSLAVE3 statement includes

,-,
Function:

●

The store slave macro is used to duplicate or slave a faulty store to an in-service store. This macro can
be used to slave to a store with the K-code specified manually through the input message or automati-
cally by the parameters on the macro call.

Format:

STSLAVE3 AUTO,KCODE

r-

Characteristics of Parameters:

AUTO – Specifies that the slave test be run automatically. The K-code information will come from the
data table.

KCODE – Specifies that the routine should locate a nonduplicated stare to slave to. If not specified, the
K-code is assumed to be in the DBT.

Example:

(1) STSLAVE3 KCODE, AUTO

This macro call will search for a nonduplicated store to slave to. If a store is found, the store under
test will be set to the valid K-code. The MTCE flip-flop is reset; the CRI flip-flop is set; and the RO
flip-flop is set to the active bus. The contents of the in-service store with the valid K-code is copied
into the test store. The refresh data parity check (RDPC) flip-flop is set to allow data parity check
on refresh during the slave time. The store is slaved for 10 seconds. At the end of the slave period,
the MTCE flip-flop of the test store is set and CRI is reset. The test store is then checked for parity
failures by using the refresh data parity check circuitry. All discrepancies are recorded and
analyzed by the pattern analysis routine.

(2) DGN CS 2PH 94,SLTIM 2, KCODE 1! (at terminal)
STSLAVE3 (in PH 94)

The input message will cause PH 94 of the diagnostic to be run on call store member number 2. The
STSLAVE3 statement will set CS 2 to K-code 1. The MTCE flip-flop of CS 2 is reseti the CRI flip-
flop is seti and RO is set to the active bus. The contents of the in-service store with the K-code of 1
will be copied into CS 2. The RDPC is set and the store is kept in this configuration for 2 minutes.
At the end of slave time, the MTCE flip-flop in CS 2 is set and CRI is reset. The CS 2 is then
checked for parity failures. All discrepancies are recorded and analyzed by the pattern analysis
routine.

Page 185

—

SECTION 254-280-040

STSLWRD2

4.223 The description of the STSLWRD2 statement includes:

Function:
-t

The STSLWRD2 store slow read statement reads all memory locations. The associated macro routine
uses the maintenance load (ML) instruction to perform the memory reads. A memory read is executed
every fourth store cycle. The results of the read are ignored for the CRI flip-flop is not reset. This
statement will help find faults which occur when the store is operating at slow speed. Segment breaks
occur automatically within the associated macro routing after a predetermined number of addresses
have been read.

Format:

STSLWRD2

Characteristics of Parameters:

This statement has no parameters.

&&@:

STSLWRD2

This store slow read statement reads all memory locations. The associated macro routine starts at
address O and runs through octal 177777.

STSNAP

4.224 The description of the STSNAP statement includes

Function:

-’n

The

(1)

(2)

(3)

The

STSNAP snapshot control read statement reduces to three macros:

STAWRITE with the W, M, and C bits set

STAREAD with options set and the NOSTORE parameter specified .

STAREAD with the R, M, and C bits set.

W, R, M, and C bits are options which specify the mode of the ML/MS instruction used by this
.

macro. Refer to Table A.
T

Format:

ITEM($1)

STSNAP ITEMS($2),AT($4),EXPECT($4),MASK($6)
WORD($3)

Page 186

.— —

1SS4, SECTION 254-280-040

Characteristics of Parameters:

,/-’

*

WORD – Specifies the address of the read. The $3 is the address.

ITEM – Specifies the address of the read which is associated with a Datapool layout. The $1 is an item
name.

ITEMS – Specifies the address of the read which is associated with a Datapool layout. The $2 is a list of
items all in the same word.

AT – Specifies the data to be written by the STAWRITE macro. The $4 is any arithmetic expression
which expresses the data.

EXPECT – Specifies the expected results in a 24-bit word, used by the second STAREAD macro. The $5
is any arithmetic expression which expresses the expected results.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $6 is any arithmetic expression
which expresses the mask.

lVote: Also see the STAWRITE and STAREAD descriptions.

STSNAP ITEM(MUIDRING1),AT(1MUDSNP08),
EXPECT(M(MU1DRC091)),MASK(1MUDRCM91)

Reduces to:

STAWRITE WORD(MUIDRWIO), DATA(1MUDSNP08* I(MU1DWTRPREG)),
OPTIONS(W,M,C)

STAREAD ITEM(MUIDRING1),NOSTORE, OPTIONS(M,C)
STAREAD WORD(MUIDRW1l)EXPECT(M(MU1DRC091)),

OPTIONS(R,M,C),MASK(1MUDRCM91)

STSTATUS

4.225 The description of the STSTATUS statement includes:

,P
Function:

. The STSTATUS statement provides the means of executing a pulse read of the store. The routine
executes two or four GCPS.

Format:.

ITEM($1) NOSTORE

STSTATUS ITEMS($2),EXPECT($3),BUS($4),ADDGCP

Characteristics of Parameters:

ITEM – Specifies the mask. The $1 is an item name.

ITEMS – Specifies the mask. The $2 is a list of items all in the same word.

Page 187

SKTION 254-280-040

EXPECT – Specifies the expected results in a 24-bit word. The $8 is any arithmetic expression which
expresses the expected results. The $3 may also be PWR to indicate power-up K-code.

NOSTORE – Indicated to ignore the results of the GCPS.

BUS – If specified, specifies which GCP results are to be looked at. The $4 is ACT–active bus (first ?

GCP) or STB–standby bus (second GCP).

ADDGCP – If specified, specifies that two additional GCPS will be executed (for a total of four GCPS) -
prior to the normal two GCPS. If not specified, only two GCPS are executed.

&u!@: .

STSTATUS ITEM(MUIDWMTCE1),EXPECT(0), BUS(STB) “7

This statement executes two pulse reads of the store and compares the result of the second GCP to zero
through the mask of the MUIDWMTCE1 item.

STSTATUS3

4.226 The description of the STSTATUS3 statement includes:

Function:

The store status macro is used to pulse read the store, The routine executes two or four GCPS.

Format:

ITEM($1) NOSTORE

STSTATUS3 ITEM($2),EXPECT($3),BUS($4),ADDGCI?

Characteristics of Parameters:

ITEM – Specifies the mask for the GCP read. The $1 is any Datapool-defined item.

ITEMS – Specifies the mask for the GCP read. The $2 is a list of Datapool-defined items in the same
word.

EXPECT – Specifies the expected result of the GCP read in a 24-bit word. The $3 is any valid
T

arithmetic expression which represents the expect value. .

NOSTORE – Specifies that the result of the GCP is to be ignored.

BUS – Specifies which GCP results are to be looked at. The $4 is ACT for active bus (first
GCP) or STB for standby bus (second GCP).

ADDGCP – Specifies that two additional GCPS will be executed prior to the two normal GCPS. -,

STSTATUS ITEM(MSIGCPMTCE1),EXPECT(l*I(MSIGCPMTCE1)), BUS(STB)
-,

This statement will execute two GCP reads of the store and compare the results of the second GCP to
l* I(MSIGCPMTCE1) through a mask of MSIGCPMTCE1.

Page 188

1SS4, SECTION 254-280-040

,- STTRAP

4.227 The description of the STTRAP statement includes:

P Function:

The
&

(1)

(2)

‘-Y
(3)

The

STTRAP trap control read statement reduces to three macros:

STAWRITE with the W, M, and C bits set.

A macro statement is executed which is specified by the EXECUTE parameter.

STAREAD with R, M, and C bits set.

W, R, M, and C bits are options which specify the mode of the ML/MS instructions used by this

macro.

Format:

ITEM($1)

STTRAP ITEM($2),AT($4), EXECUTE($5),EXPECT($6) ,MASK($7)

WORD($3)

P

.

.

WORD – Specifies the mask of the read if the mask parameter is not used. The $3 is the mask.

ITEM – Specifies the mask of the read which is associated with a Datapool layout. The $1 is an item

name.

ITEMS – Specifies the mask of the read which is associated with a Datapool layout. The $2 is a list of
items all in the same word.

AT – Specifies the data to be written by the STAWRITE macro. The $4 is any arithmetic expression

which expresses the data,

EXECUTE – Specifies the next macro call to be executed.

EXPECT – Specifies the expected results in a 24-bit word, used by the STAREAD macro. The $6 is any

arithmetic expression which expresses the expected results.

MASK – Specifies the mask to be used. If not specified with WORD, this mask is used. If not specified

with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression which

expresses the mask.

Note: Also see the STAWRITE and STAREAD descriptions.

Page 189

SECTION 254-280-040

!@!l?@

STTRAP ITEMS(MUIDOD1),AT(1MUDTRP07),
EXECUTE(STAREAD WORD(lMUDADDIS),NOSTORE,
OPTIONS(R,M)),EXPECT(O(()))

Reduces to:

STAWRITE WORD(MU1DRW1O),
DATA(lMuDFRHTRAP/IMuDTRPo7*I(MulDwTRPREG)),
OPTIONS(W,M,C)

STAREAD WORD(lMUDADDIS),NOSTORE,OPTIONS(R,M)
STREAD WORD(MUIDRW1l), EXPECT(O(0)),OPTIONS(R,M,C)

MASK(M(MUIDOD1))

STVERMEM

4.228 The description of the STVERMEM statement includes:

Function:

The STVERMEM statement is the second half of a checkboard memory test. All memory locations are
read and compared with the expected result.

Format:

STVERMEM EXPECT($l)

Characteristics of Parameters:

EXPECT – Specifies the expected result in a 24-bit word. The $1 is any arithmetic expression which
expresses the expected result.

w“

STVERMEM EXPECT (1DGALTIO)

This statement reads all memory locations and compares them to the value of 1DGALTIO.

STVRMEMS

4.229 The description of the STVRMEMS statement includes:

Function:

The STVRMEMS statement is the second half of a memory test. The associated macro routine uses the
maintenance load (ML) instruction to read all memory locations expecting a specified data pattern. The
data parity bits are also checked for correctness. All data failures are shown by the store histogram
printout. Segment breaks occur automatically within the routine after a predetermined number of
addresses have been verified.

P~ge 190

-“%

—

1SS4, SKTION 254-280-040

JJ

.

-%,

/-.

.

Format:

STVRMEM2 EXPECT ($1)

Characteristics of Parameters:

EXPECT – Specifies the expected result in a 24-bit word. The $1 is any arithmetic expression which
expresses the expected result.

Example:

STVRMEM2 EXPECT(lDG.ONES)

This statement reads all memory locations and compares them to the value of lDG_ONES.

STVRMEM2

4,230 The description of the STVRMEM2 statement includes:

Function:

The STVRMEM2 statement is the second half of the checkerboard/column bar type memory test. All
memory locations are read and compared with the expected results of a checkerboard or column bar
data pattern. The data parity bits are also checked for correctness. All data failures are shown by the
store histogram printout. Segment breaks occur automatically within the associated macro routine
after a predetermined number of addresses have been verified.

Format:

STVRMEM2 EXPECT($l),CHECKER,COLUMN

Characteristics of Parameters:

EXPECT – Specifies the expected result in a 24-bit word. The $1 is an arithmetic expression which
expresses a data pattern of alternate one-zero or zero-one.

CHECKER – Specifies that a checkerboard pattern is expected in all memory chips. Due to the
structure of the memory (TI) chip, the expected data pattern is rotated after every 64th
address but not after the 512th address. This parameter cannot be specified along with
COLUMN.

COLUMN – Specifies that a column bar pattern is expected in all memory chips. Due to the structure
of the memory (TI) chip, the expected data pattern is rotated after every 512th address.
This parameter cannot be specified along with CHECKER.

Example:

STVRMEM2 EXPECT(1DGALTIO),CHECKER

This statement reads all memory locations expecting a checkerboard data pattern.

Page 191

SECTION 254-280-040

STWRGCP

4.231 The description of the STWRGCP statement includes:

Function:

The STWRGCP statement executes an abnormal write to the store (MS instruction). The results of the
write are checked by a GCP. The MS and GCP instructions are described in Section 254-280-020,
Assembly Language–Description, 1A Processor.

Format:

ITEM($l)
STWRGCPITEMS($2),EXPE~(@),DATA($5),O~IONS(W),MAsK($7),Kc0DE($8),BuS($9),sTATE($lO)

WORD($3)

Characteristics of Parameters:

WORD – Specifies the address to be written. The $3 is the address.

ITEM – Specifies the address to be written associated with its layout. The $1 is the item name.

ITEMS – Specifies the address to be written associated with its layout. The $2 is a list of items all in
the same word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which T
expresses the expected result.

DATA – Specifies the data to be written to the store. The $5 is any arithmetic expression which
expresses the data.

.

,-.

OPTIONS – Specifies the mode, parity, and store timing during the write (MS) instruction. The MS
instruction is described in Section 254-280-020, Assembly Language-Description, 1A
Processor. The $6 is a list of options. Table A is a list of options for the MS and ML
instructions.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

T,

KCODE – Specifies the K-code to be used. If not specified, current-test KCODE is used. The $8 is the
.

K-code.

BUS – Specifies the GCP results: $9 is ACT–active bus, first GCP. STB–standby bus, second GCP. .

STATE – If specified, specifies the state of the maintenance (MTCE) flip-flops. The $10 is one of the
following

MTCER – Reset MTCE

MTCES – Set MTCE
T

If not specified, $10 is MTCES.

Page 192

1SS4, SECTION 254-280-040

Example:

STWRGCP_ WORD(MUIDRWOO),EXPECT(M(MUIDWVNSYNC1)),DATA(0),
ME 0PTIONS(C,M,W,IST(4T6),IPKA),MASK(M(MUlDWVNSYNCl))

This statement executes two GCPS and sets the MS (write) options to C, M, W, ITS(4T6), and IPKA.
Then the location MUIDRWOO is written with zeros. A GCP is executed and the reply is masked
through the mask of the MUIDWVNSYNC1 item and compared with the mask of the
MUIDWVNSYNC1 item. This is then followed by a second GCP.

STWRGCP2
●

4.232 The description of the STWRGCP2 statement includes:

Function:

The STWRGCP2 statement executes an abnormal write to the store. The results of the write are
checked by a GCP. The associated macro routine uses the maintenance store (MS) instruction which
gives the user complete control over the mode, parity, and store timing pulses during the write. The
macro is, briefly, expanded as follows:

GCP

GCP

/--=.

.

.

MS instruction

GCP

GCP.

Format:

lTEM($l)
STWRGCP2ITEMS($2),EXPECT(@),DATA($5),OpTIONs($6),MASK($7),KCODE($8),BUs($9),sTATE($lO)

WORD($3)

Characteristics of Parameters:

WORD – Specifies the address (bits O through 15) to be written. The $3 is the address.

ITEM – Specifies the address (bits Othrough 15) to be written associated with its layout. The $1 is the
item name.

ITEMS – Specifies the address (bits Othrough 15) to be written associated with its layout. The $2 is a
list of items all in the same word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected result.

DATA – Specifies the data to be written to the store. The $5 is any arithmetic expression which
expresses the data.

Page 193

OPTIONS – Specifies the mode, parity, and store timing during the write (MS) instruction. A delay is
taken after the MS instruction if keyword DELAY is specified. The two GCP instructions
prior to the MS instruction are not executed if keyword NGCP is specified, Figure 1
shows the list of options for the MS instruction, The $6 is a list of options.

MASK – Specifies the mask to be used. If not specified with WORD, a mask of all ones is used. If not T

specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

KCODE – Specifies the K-code to be used. If not specified, current-test KCODE is used. The $8 is the

.

K-code.

BUS – Specifies what GCP results to look at $9 is ACT–active bus, first GCP, STB–standby bus,
second GCP. ,.-. .

STATE – Specifies the state of the maintenance (MTCE) flip-flop during the MS instruction. The $10
is one of the following

MTCER – Reset MTCE

MTCES – Keep MTCE set.

If not specified, $9 is MTCES. If MTCER is specified an MS instruction is executed prior to
the normal MS instruction to reset the MTCE flip-flop.

STWRGCP2 WORD(MUIDRWOO), EXPECT(M(MUIDWVNSYNC1)),DATA(0),
0PTIONS(C,M,W,IST(4T6),IPKA),MASK(M(MUlDWVNSYNCl))

This statement executes two GCPS and sets the MS (write) options to C, M, W, IST(4T6), and IPKA.
Then the location MUIDRWOO is written with zeros. A GCP is executed and the reply is masked
through the mask of the MUIDWVNSYNC1 item and compared with the mask of the
MUIDWVNSYNC1 item. This is then followed by a second GCP.

STWRGCP3

4.233 The description of the STWRGCP3 statement includes:

Function:

The store write and GCP macro executes an abnormal write to the store followed by a GCP read to
verify the write operation. A general expansion of the macro would appear as follows

GCP

GCP

MS instruction

GCP

GCP.

Page 194

——

1SS4, SECTION 254-280-040

P

.

.

*

.

/-’

Format:

ITEM($l)
STWRGCP3 ITEMS($2),EXPECT($4),DATA($5)OPTIONS($6),

WORD($3)

MASK($7),KCODE($8),BUS($9),STATE($1O)

Characteristics of Parameters:

ITEM – Specifies the address (bits Othrough 17) to be written associated with the address of the item
layout. The $1 is any Datapool-defined item name.

ITEMS – Specifies the address (bits O through 17) to be written associated with the address of the
items layout. The $2 is any Datapool-defined item names in the same word.

WORD – Specifies the address (bits O through 17) to be read. The $3 is any valid arithmetic expres-
sion which represents the expect value.

EXPECT – Specifies the expected result of the GCP read in a 24-bit word. The $4 is any valid
arithmetic expression which represents the expect value.

DATA – Specifies the data to be written to the store on the MS instruction. The $5 is any valid
arithmetic expression which represents the data.

OPTIONS – Specifies the mode, parity, and store timing during the write (MS instruction). If DELAY
is specified, a delay of 25 microseconds is taken after the MS instruction. If NGCP is
specified, the two GCPS before the MS are not executed. Figure 3 provides a list of
options.

MASK – Specifies the mask to be used for the GCP read. If not specified with the WORD parameter,
a mask of all ones is used. If not specified with the ITEM or ITEMS parameters, the mask of
the ITEM or ITEMS is used. The $7 is any valid arithmetic expression which represents the
mask value.

KCODE – Specifies the K-code to be used during the MS instruction. If not specified, the current K-
code will be used. The $8 is the K-code.

BUS – Specifies the bus to be used for the GCP results. ACT specifies the active bus (first GCP result)
and STB specifies the standby bus or second GCP result.

STATE – Specifies the state of the MTCE flip-flop during the MS instruction. The $10 is one of the
following

MTCER – Reset MTCE flip-flop.

MTCES – Keep MTCE set.

If not specified, MTCES is assumed.

If MTCER is specified, an MS instruction is executed prior to the normal MS to reset the
MTCE flip-flop.

Page 195

SKTION 254-280-040

Example: ?,

STWRGCP3 WORD(MSIDRWOO), EXPECT(l*I(MSIGCPTMD1)),
DATA(0),OPTIONS(M,IST(5T7),IPKA),
MASK(M(MSIGCPTMD1))

-,

This macro call will execute two GCP instructions. The MS options will be set to M,IST(5T7) and IPKA.
Location MSIDRWOO is written with data of O. A GCP is executed and the reply is masked through
MSIGCPTMD1 and compared with l* I(MSIGCPTMD1). A second GCP is then executed.

STWRITE

4.234 The description of the STWRITE statement includes:

Function:

The STWRITE normal write statement reduces to a STAWRITE with the W bit set. The W bit is an
option which specifies the mode of the MS instruction used by this macro. Refer to Table A.

Format:

STWRITE WORD($1),DATA($2)

Characteristics of Parameters:

WORD – Specifies the address to be written into. The $1 is the address.

DATA – Specifies the data to be written. The $2 is any arithmetic expression
data.

Example:

STWRITE WORD(MUIDRW1l),DATA(1MUDPARADD2)

Reduces to:

STAWRITE

STWRMEMS

WORD(MUIDRW1l),DATA(1MUDPARADD2),
OPTIONS(W)

4.235 The description of the STWRMEMS statement includes:

Function:

which expresses the

The STWRMEMS statement is the first half of a memory test. The associated macro routine uses the
maintenance store (MS) instruction to write all memory locations with specified data. Segment breaks ?,
occur automatically within the routine after a predetermined number of addresses have been written.

Page 196

1SS 4, SECTION 254-280-040

P Format:

STWRMEMS DATA($l)

P
Characteristics of Parameters:

DATA – Specifies the data to be written. The $1 is any arithmetic expression which expresses the
data.*

Example:

STWRMEMS DATA(lDG.ONES)
-

This statement writes all memory locations with the value of lDG_ONES.

STWRMEM2

4.236 The description of the STWRMEM2 includes:

Function:

The STWRMEM2 statement is the first half of the checkerboard/column bar type memory test. All
memory locations are written using the maintenance store (MS) instruction. Segment breaks occur
automatically within the associated macro routine after a predetermined number of addresses have
been written. One module is written at a time.

Format:

f--’.

●

STWRMEM2 DATA($l),CHECKER, COLUMN

Characteristics of Parameters:

DATA – Specifies the data to be written. The $1 is an arithmetic expression which expresses a data
pattern of alternate one-zero or zero-one.

CHECKER – Specifies that a checkerboard pattern be written into all memory chips. Due to the

COLUMN –.

f=

structure of the memory (TI) chip, the data is rotated after every 64th address but not
after the 512th address. The COLUMN parameter cannot be specified along with
CHECKER.

Specifies that a column bar pattern be written into all memory chips. Due to the struc-
ture of the memory (TI) chip the data is rotated after every 512th address. The
CHECKER parameter cannot be specified along with COLUMN.

DATA(lDGALTIO), CHECKER

Example:

STWRMEM2

This statement writes all memory chips with a checkerboard pattern. The data specified 1DGALTIO is
equal to an alternate one-zero pattern, 0(52525252).

Page 197

SKTION 254-280-040

STWRMEM3 -?

4,237 The description of the STWRMEM3 statement includes:

Function:

The store write memory macro is used to write all 256K of memory to a constant data pattern.

Format:

STWRMEM3 DATA($l)

Characteristics of Parameters:

DATA – Specifies the constant data pattern to be written into all 256K addresses. The $1 is any valid
arithmetic expression which represents the data.

Example:

STWRMEM3 DATA(lDGALTO1)

This macro call will write all 256K addresses to a value of lDGALTO1. The routine will automatically
take segment breaks.

STWRNAM2

4.238 The description of the STWRNAM2 statement includes

Function:

The STWRNAM2 statement provides the means of altering the internal K-code name register of the
store. All following test macros will use this K-code name as the “current test K-code” unless another

STWRNAM2 macro is encountered. A common K-code can be specified for program store and call store
or separate K-codes for program store and call store. The macro expands as a maintenance store (MS)
instruction to write the new test K-code. The remaining STATUS bits MTCE, CRI, RO, ANSO, and
ANSI remain unchanged.

Format:

(1) STWRNAM2 KCODE($l)

(2) yTWRNAM2 PsKcoDE($2),csKcoDE($3)

Characteristics of Parameters:

.

?

KCODE – Specifies the new test K-code for program store and call store. The $1 is the K-code; it may
be a number or Datapool-defined symbol. If $1 is PWR, power-up K-code is used, octal 36
for program store and octal 17 for call store.

PSKCODE – Specifies the new test K-code for program store. The $2 is the K-code; it may be a
number or Datapool-defined symbol.

Page 198

1SS4, SECTION 254-280-040

CSKCODE – Specifies the new test K-code for call store. The $3 is the K-code; it may be a number or
Datapool-defined symbol.

Examde:

STWRNAM2 KCODE(lMUDTSTNAME)

This statement executes a control write (MS) to change the K-code of the unit under test to the value of
lMUDTSTNAME.

STWRNAM3.

,- 4.239 The description of the STWRNAM3 statement includes:

Function:

The store write name macro is used to change the internal K-code name of the store. Once the name has
been written, all the following macros will use this name as the “current K-code” value. Separate values
can be specified for both call store and program store or the same name can be used for both. The K-
code is changed by doing an MS instruction to write the new K-code name. All other status bits remain
unchanged. The macro can also be used to specify that the K-code not be restored to power-up K-code
over segment boundaries. This is done to prevent getting parity failures when writing the entire store.
The macro also can provide the capability of storing a K-code name in a scratch word and using the
scratch word to write the K-code name. This feature is used with the error analysis routine.

Formats:

STWRNAM3 KCODE($l),TSTKCSEG, SWORD($2)

/’-

STWRNAM3 PSKCODE($3),CSKCODE($4),TSTKCSEG,SWORD($2)

Characteristics of Parameters:

KCODE — Specifies the new K-code name for both program store or call store. The $1 is a number or
valid Datapool-defined symbol. If $1 is PWR, the power-up K-code for program store (K-
code 34) and for call store (K-code 14) will be used.

PSKCODE – Specifies the new K-code name to be used for the program store. The $3 is a number or
valid Datapool-defined symbol.

CSKCODE – Specifies the new K-code name to be used for the call store. The $4 is a number or valid
Datapool-defined symbol.

TSTKCSEG – Specifies that the K-code will not be changed over the segment break.

SWORD – Specifies a scratch word address which contains the K-code name which is to be written
into the store. The $2 is a valid Datapool-defined address.

Example:

STWRNAM3 KCODE(lMSDTSTNAME)

This macro will cause an MS instruction to be executed to change the K-code name to the value of
lMSDTSTNAME.

Page 199

SECTION 254-280-040

STWRSTAT

4.240 The description of the S’I’WRSTAT statement includes

Function:

The S’I’WRSTAT statement changes the status of the store, checks the results by a’GCP, and then puts
the store back to its original status. The GCP instruction is described in Section 254-280-020, Assembly
Language-Description, 1A Processor.

Format:

ITEM($l) NOSTORE
STWRSTAT ITEMS($2),EXPECT($4),DATA($5),0PTIONS($6),MASK($7),STATE($8)

WORD($3)

Characteristics of Parameters:

WORD – Specifies the address to be written into. The $3 is the address.

ITEM – Symbolic reference of the address to be written into. The $1 is the item name.

.

ITEMS – Symbolic reference of the address to be written into. The $2 is a list of items all in the same
word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which n,

expresses the expected results. The $4 may also be PWR to indicate power-up K-code.

NOSTORE – Indicates to ignore the results of the GCP.

DATA –

OPTIONS

MASK –

STATE –

Page 200

Specifies the data to be written to the store. The $5 is any arithmetic expression which
expresses the data.

— Specifies the mode, parity, and store timing during the write (MS) instruction. The MS
instruction is described in Section 254-280-020, Assembly Language-Description, 1A
Processor. The $6 is a list of options. Table A is a list of options for the MS and ML
instructions.

Specifies the mask to be used. If not specified with WORD, a mask of all 1s is used. If not -,

specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

Specifies the states of the communications reply inhibit (CRI) and maintenance (MTCE)
flip-flops. The $8 is two of the following ..

CRIR – Reset CRI

CRIS – Set CRI

MTCER – Reset MTCE

MTCES – Set MTCE. -

If not specified, $8 is (CRIR,MTCES).

1SS4, SECTION 254-280-040

Example:

STWRSTAT. WORD(MUIDRWIO), EXPECT(O*I(MUIDWVSASWFl)),DATA(lMUDINPR),
ME OPTIONS(W,C,M,NGCP),MASK(M(MUIDWVSASWF1))

This statement sets the MS (write) options to W, C, and M. No GCP is executed before the location
MU1DRW1O is written with lMUDINPR. The GCP reply is masked through the mask of the
MUIDWVSASWF1 item and compared to O*(MUIDWVSASWF1).

*

STWRTMEM

4.241 The description of the STWRTMEM statement includes:

Fullction.-

The STWRTMEM statement is the first half of a checkerboard memory test. A1l memory locations are
written.

Format:

STWRTMEM DATA($l)

Characteristics of Parameters:

DATA – Specifies the data to be written. The $1 is any arithmetic expression which expresses the
data.

Example:

STWRTMEM DATA(1DGALTIO)

This statement writes all memory locations with the value of 1DGALTIO.

STWRTNAM

4.242 The description of the STWRTNAM statement includes:

Function:

/? The STWRTNAM statement alters the K-code name register of the store.

● Format:

STWRTNAM KCODE($l)

. Characteristics of Parameters:

‘P’
KCODE _ ::::iw the new test K-cock. The $1 is the K-code; it may be a number or Datapool-

Example:

,P STWRTNAM KCODE(lMUDTSTNAME)

This statement changes the K-code of the unit under test to the value of lMUDSTNAME.

Page 201

STWRTRTF
T,

4.243 The description of the STWRTRTF statement includes

Function:

The STWRTRTF statement provides the only means of altering the store answer flip-flops.

Format: .

STWRTRTF ROUTE($l)

Characteristics of Parameters:
‘-

ROUTE – Specifies the state of the answer on bus O (ANSO) and answer on bus 1 (ANS1) flip-flops.
The $1 is two of the following

ANSOS – Set ANSO flip-flop

ANSOR – Reset ANSO flip-flop

ANSIS – Set ANS1 flip-flop

ANSIR – Reset ANS1 flip-flop.

If not specified, $1 is (ANSOR,ANSIR)

Example:

STWRTRTF ROUTE(ANSOR,ANSIR)

This statement resets the store answer flip-flops.

STWRUPDN

4.244 The description of the STWRUPDN statement includes:

Function: -,

The STWRUPDN statement is the first half of a memory test in which all addresses are written. The
data written into each location is equal to its address or its address complement. The write either starts

.

at address octal Oand runs through address octal 177777 (up direction) or starts at address octal 177777
and runs through octal O (down direction).

.

Format:

STWRUPDN DIRCTN($l),OI’TN($2)

Characteristics of Parameters:

DIRCTN – Specifies direction of write (up or down). The $1 is up or down.

Page 202

—

*

*

,P

.

.

,f’-

OPTN –

Example:

1SS4, SECTION 254-280-040

If specified, specifies data equals complement of address. The $2 is C. If not specified, data
equals address.

STWRUPDN DIRCTN(UP),OPTN(C)

This statement writes the complement of the address starting at address octal Oand running through
octal 177777.

STWRWPM3

4,245 The description for the STWRWPM3 statement includes

Function:

The store write protect memory macro is used to initialize the lK write protect RAM to a constant
value.

Format:

STWRWPM3 DATA($l)

Characteristics of Parameters:

DATA – Specifies the data to write into all lK of write protect memory. The $1 must be either Oor 1.

Examvle:

STWRWPM3 DATA(0)

This macro will cause all the lK RAM to be written with data of O.

STWR512

4.246 The description of the STWR512 statement includes

Function:

The STWR512 statement is the first half of a short version
The statement writes the contents of 512 memory locations
nation of the addresses used check most of the current
matrices of the store.

Format:

of the regular checkerboard memory tests.
using a special algorithm where the combi-
drivers, switches, bridge rails, and diode

STWR512_ START($l),ADDl($2),ADD2($3),ADD3(W),COUNT($5),DATA($6)

Characteristics of Parameters:

START – Specifies the starting address to be used by algorithm. The $1 is the address.

Page 203

ADD1,ADD2,ADD3 – Specifies the address increments. The $2,$3, and $4 are increments used by the
algorithm.

COUNT – Specifies the total number of addresses to be read. The $5 is any arithmetic expression
which expresses the total number of addresses.

‘n

DATA – Specifies the data to be written. The $6 is any arithmetic expression which expresses the
data.

.
Example:

STWR512. START(lMUDACCIS~),ADDl(lMUDACCADDl),ADD2(lMUDACCADD2),
ME ADD3(lMuDAccADD3),couNT(lMuDAccNT), DATA(lMuDDATAls)

This statement checks most of the current drivers, switches, bridge rails, and diode matrices of the
store. It starts at address lMUDACCISTT and writes a total number of addresses equal to the value of
lMUDACCNT. The addresses to be written are calculated by the algorithm using lMUDACCADD1,
1MUDACCADD2, and 1MUDACCADD3 as increments. The results are compared to the value of
lMUDDATAIS.

STWSLOW3

4.247 The description of the STWSLOW3 statement includes:

Function:

The store write slow macro is used to control the SLOW flip-flop. If the slow flip-flop is set, the store
will operate in the slow mode (1400 ns central control cycle time). If the slow flip-flop is reset, the store
will operate fast (700 ns central control cycle time). All other status bits are unchanged by the MS
operation used to change the SLOW flip-flop.

Format:

STWSLOW3 SPEED($l)

.-.

Characteristics of Parameters:

SPEED – Specifies the speed which the store will operate after the MS instruction is performed. The
$1 is SLOW or FAST. .

Example:

STWSLOW3 SPEED(FAST)
.

This macro call will cause the store’s SLOW flip-flop to be reset. The store will then operate in the fast T,

mode.

STWSTAT2

4.248 The description of the STWSTAT2 statement includes.

Page 204

4

.

<-

,-

.

.

1SS4, SECTION 254-280-040

Functjon:

The STWSTAT2 statement changes the status of the store, checks the results by a GCP, and then puts
the store back to its original status. The associated macro routine uses the maintenance store (MS)
instruction which gives the user complete control over the mode, parity, and store timing pulses during
the control write to the status of the store. The macro is, briefly, expanded as follows:

GCP

GCP

MS instruction change status

GCP

GCP

MS – instruction to write back the tested store’s original status.

Format:

ITEM($l) NOSTORE
STWSTAT2 ITEMS($2),EXPECT($4),DATA($5),0PTIONS($6),MASK($7),STATE($8)

WORD($3)

Characterjstks of Parameters:

WORD – Specifies the address (bits O through 15) to be written into. The $3 is the address.

ITEM – Symbolic reference of the address (bits O through 15) to be written into. The $1 is the item
name.

ITEMS – Symbolic reference of the address (bits O through 15) to be written into. The $2 is a list of
items all in the same word.

EXPECT – Specifies the expected results in a 24-bit word. The $4 is any arithmetic expression which
expresses the expected results. The $4 may also be PWR to indicate power-up K-code.

NOSTORE – Indicates to ignore the results of the GCP.

DATA –

OPTIONS

MASK –

Specifies the data to be written to the store. The $5 is any arithmetic expression which
expresses the data.

– Specifies the mode, parity, and store timing during the write (MS) instruction of the
store status. A delay is taken after the MS instruction if keyword DELAY is specified.
The two GCP instructions prior to the MS instruction are not executed if keyword NGCP
is specified. The $6 is a list of options. Figure 1 shows the list of options for the MS
instruction.

Specifies the mask to be used. If not specified with WORD, a mask of all ones is used. If not
specified with ITEM(S), the mask of the item(s) is used. The $7 is any arithmetic expression
which expresses the mask.

STATE – Specifies the states of the communications reply inhibit (CRI) and maintenance (MTCE)

,F
flip-flops. The $8 is two of the following

CRIR – Reset CR1

Page 205

CRIS – Keep CRI set

MTCER – Reset MTCE

MTCES – Keep MTCE set.
,7

If not specified $8 is (MTCES, CRIS). If MTCER and/or CRIR is specified, an MS instruc-
tion is executed prior to the write of the store’s status to reset the proper flip-flop(s).

*
Example:

STWSTAT2 WORD(MUIDRWO)l,EXPECT(O*I(MUIDWVCRIO)),
DATA(lMUDCRIRO),OPTIONS(W,C,M,NGCP),
MASK(M(MUIDWVCRIO)

This statement sets the MS (write) options to W, C, and M. No GCP is executed before the location
MUIDRWO1 is written with lMUDCRIRO. A GCP is then executed and the reply is masked through the
mask of the MUIDWVCRIO item and compared to O*I(MUIDWVCRIO1). This is followed by one or two
GCPS; then a control write (MS) is executed to write back the store’s original status.

STWSTAT3

4.249 The description of the STWSTAT3 statement includes

Function:

The store write status macro is used to change the status of the store via the MS instruction. The results
are checked by a GCP, then the original status is restored by an MS instruction. A general expansion of
the macro would appear as follows:

GCP

GCP

MS instruction with new status

GCP

GCP

MS instruction to restore the original status.

Format:

ITEM($1) NOSTORE
STWSTAT3 ITEMS($2),EXPECT($4),DATA ($5),0PTIONS($6),MASK($7),STATE($8),BUS($9)

WORD($3)

Characteristics of Parameters:

ITEM –

Page 206

Specifies the address (bits Othrough 17) to be written associated with the address of the item
layout. The $1 is any Datapool-defined item name.

1SS4, SECTION 254-280-040

4

.

e.

.

7-”

ITEMS – Specifies the address (bits O through 17) to be written associated with the address of the
items layout. The $2 is any Datapool-defined item names in the same word.

WORD – Specifies the address (bits O through 17) to be written. The $3 is any valid arithmetic
expression which represents the expect value.

NOSTORE – Specifies to ignore the results of the GCP read.

EXPECT – Specifies the expected result of the GCP read in a 24-bit word. The $4 is any valid
arithmetic expression which represents the expect value.

DATA – Specifies the data to be written to the store on the MS instruction to change the status. The
$5 is any valid arithmetic expression which represents the data.

OPTIONS – Specifies the mode, parity, and store timing during the write of the status. If DELAY is
specified, a delay of 25 microseconds is taken after the MS instruction. If NGCP is
specified, the two GCPS before the MS instruction are not executed. Figure 3 provides a
list of options.

MASK – Specifies the mask for the GCP read. If not specified with WORD parameter, a mask of all
ones is used. If not specified with ITEM or ITEMS, the mask of the item or items is used. The
$7 is any valid arithmetic expression which represents the mask value.

STATE – Specifies the state of the CRI and MTCE flip-flops. The $8 is two of the following

CRIR – Reset CRI flip-flop

CRIS – Keep CRI set

MTCER – Reset MTCE flip-flop

MTCES – Keep MTCE set.

If $8 is not specified, the default is CRIS and MTCES. If MTCER and/or CRIR is specified,
an MS is executed prior to the write of the status to reset the proper flip-flops.

BUS – Specifies the bus to be used for the GCP results. ACT specifies the active bus (first GCP result)
and STB specifies the standby bus or second GCP. If $9 is not specified, ACT is used.

ExamDle:

STWSTAT3 WORD(MS1DRW1O),EXPECT(O*I(MS1GCPSASWF1)),
DATA(1MSDFPR2),0PTIONS(W, C,M,NGCP,DELAY),
MASK(M(MSIGCPSASWF1))

This macro call will set the write options to W, C, and M. No GCPS will be executed before address
MS1DRW1O is written with data 1MSDFPR2. A delay of 25 microseconds is then taken before the first
GCP is executed. The results of the GCP read is masked through the mask of MSIGCPSASWF1 and
then compared to O*I(MSIGCPSASWF1). This is followed by another GCP and a control write (MS) to
restore the original status.

Page 207

—.

SKTION 254-280-040

STWTKBR3

4.250 The description of the STWTKBR3 statement includes:

Function:

The store write K-code blocking register is used to change the state of the K-code blocking flip-flops.
The macro does an MS to change the status of the blocking flip-flops. The state of all other status bits is
unchanged.

Format:

STWTKBR3 BLOCK($l)

Characteristics of Parameters:

BLOCK – Specifies which of the four K-code block flip-flops to set or reset. The $1 is any four of the
following (one for each flip-flop).

0s – Block O set
OR – Block O reset
1s – Block 1 set
lR – Block 1 reset
2s – Block 2 set
2R – Block 2 reset
3s – Block 3 set
3R – Block 3 reset.

Example:

STWTKBR3 BLOCK(OS, 1S, 2S, 3R) -,

This macro call will generate an MS instruction to change the status of the K-code blocking flip-flops.
Flip-flops O, 1, and 2 will be set and 3 will be reset.

STWTRTF2

4.251 The description of the STWTRTF2 statement includes:

Function:

The STWTRTF2 statement provides the only means of altering the store answer flip-flops. The associ-
ated macro routine uses the maintenance load (MS) instruction to write the new status of the answer
flip-flops. The remaining STATUS bits MTCE, CRI, RO, and K-code remain unchanged.

Format:

STWTRTF2 ROUTE($l) .

Characteristics of Parameters:

.ROUTE – Specifies the state of the answer on bus O (ANSO) and answer on bus 1 (ANSI) flip-flops.
The $1 is two of the following

ANSOS – Set ANSO

ANSOR – Reset ANSO

ANSIS – Set ANS1
- ~.,

ANSIR – Reset ANSI.

Page 208

1SS4, SECTION 254-280-040

,e-

.

.

(’-

Example:

STWTRTF2 ROUTE(ANSOR,ANSIR)

This statement executes a control write (MS) to reset the store answer flip-flops.

STWTRTF3

4.252 The description of the STWTRTF3 statement includes:

Function:

The store write routing flip-flops macro is used to change the store answer flip-flops. The macro
generates an MS instruction to change the state of the answer flip-flops. All other status bits are
unchanged.

Format:

STWTRTF3 ROUTE($l)

Characteristics of Parameters:

ROUTE – Specifies the state of the answer flip-flops, answer on bus O (ANSO) and answer on bus 1
(ANSI). The $1 is two of the following

ANSOS – set ANSO
ANSOR – reset ANSO
ANSIS – set ANS1
ANSIR – reset ANSI.

Example:

STWTRTF3 ROUTE(ANSOS,ANSIR)

This macro call will generate an MS instruction to set ANSO and reset ANS1 status bits.

STWUPDN2

4.253 The description of the STWUPDN2 statement includes:

Function:

The STWUPDN2 statement is the first half of a memory test in which all addresses are written. The
data written into each location is equal to its address or its address complement. The write either starts
at address Oand runs through address octal 177777 (up direction) or starts at address octal 177777 and
runs through O (down direction). Segment breaks occur automatically within the associated macro-. .-
routine after a predetermined number

Format:

of addresses have been written.

STWUPDN2 DIRCTN($1),0PTN($2)

Page 209

—

SECTION 254-280-040

Characteristics of Parameters:

DIRCTN – Specifies direction of write (up or down). The $1 is up or down.

OPTN – If specified, specifies data equals complement of address. The $2 is C. If not specified, data
equals address. T

Example:

STWUPDN2 DIRCTN(UP),OPTN(C)

This statement writes the complement of the address starting at address Oand running through octal
177777.

STWUPDN3

4.254 The description of the STWUPDN3 statement includes:

Function:

The store write up down macro is used to write all of memory with data equal to the address or the
address complemented. The data is written in either the UP direction (address Othrough 777777) or the
DOWN direction (address 777777 through 0). Segment breaks are automatically initiated by the rou-
tine.

Format:

.

STWUPDN3 DIRECTN($1),0PTN($2)

Characteristics of Parameters:

DIRECTN – Specifies the direction of the write operation. The $1 is either UP or down.

OPTN – Specifies the complement of the address. The $2 is C. If not specified, the data is equal to the
address.

Example:

STWUPDN3 DIRECT

This macro will write all of the 256K addresses with data equal to the address starting with address O.

ST2EXTST .

4.255 The description of the ST2EXTST statement includes:

Function:

The ST2EXTST statement exercises, reads, a store memory test address at system speed. The test
address range is specified by the DGN and EX input message parameters explained in Fig. 2. The
memory reads are executed from the opposite store community (ensuring the orders are consecutive)
using the LOAD instruction in the normal mode. The LOAD command is a l-word instruction which is
necessary to use when executing out of call store. The memory reads are executed in bursts of 512
addresses. If the address length is less than 512, the start address (or addresses) will be read again to
make full use of the burst of reads. If the start test address is octal 77776 with an address length of
three the burst of reads will be 77776, 77777, 100000, 77776, 77777, 100000, etc, until 512 reads are
executed. Segment breaks occur automatically within the routine after a predetermined number of
addresses have been read,

Page 210

1SS4, SECTION 254-280-040

Format:

ST2EXTST

,/--

*

Characteristics of Parameters:

This statement has no parameters.

ST2RD512

.
4.256 The description of the ST2RD512 statement includes

n

Function:

The ST2RD512 statement is the second half of a short version of the regular checkerboard memory

tests. The statement verifies the content of 512 locations using a special algorithm where the combina-

tion of addresses used check all combinations of the address decoding paths. Segment breaks occur

automatically within the associated macro routine after a predetermined number of addresses have

been written. .

Format:

,n

A

●

P’

ST2RD512 START($l),ADDl($2),ADD2($3),ADD3($4),COUNT($5),EXPECT($6)

Characteristics of Parameters:

START – Specifies the starting address to be used by the algorithm. The $1 is the address.

ADD1,ADD2,ADD3 – Specifies the address increments. The $2,$3, and $4 are increments used by the

algorithm.

COUNT – Specifies the total number of addresses to be read. The $5 is any arithmetic expression

which expresses the total number of addresses.

EXPECT – Specifies the expected results in a 24-bit word. The $6 is any arithmetic expression which

expresses the expected result; $6 may also be PWR to indicate power-up K-code.

Example:

ST2RD512 START(lMUDACCIS~), ADDl(lMUDACCADDl),ADD2(lMUDACCADD2),
ADD3(lMuDAccADD3),couNT(lMuDAccNT), ExPEcT(lDGAcTol)

This statement checks all combinations of the address decoding paths of the store. It starts at address

lMUDACCISTT and reads a total number of addresses equal to the value of lMUDACCNT. The

addresses to be read are calculated by the algorithm using lMUDACCADD1, 1MUDACCADD2, and

1MUDACCADD3 as increments. The results are compared to the value of lDGACTO1.

Page 211

SKTION 254-280-040

ST2STCC ?

4.257 The description of the ST2STCC statement includes:

Function: -,

The ST2STCC statement uses the standby (STB) central control as a helper unit to test for the store’s
proper response. The associated macro routine will do one of the following *

(1)

(2)

Read the tested program store with specified read options from the active (ACT) central control.
This is then followed by a read of the STB CC ABL (mod O)or ABR (mod 1) registers to check data
bits Othrough 23. If the data parity bits are to be checked, then the STB CES register is read. This
will ensure when one mod is referenced on a memory read the other mod will also respond. For T
this operation the macro is, briefly, expanded as follows

(a) Control write to reset the CRI flip-flop

(b) ML instruction

(c) Read STB CC ABL, ABR or CES registers
.

(d) GCP

(e) GCP.

The ACT CC will execute an MS or ML instruction and at the same time the STB CC will GCP the
tested store. The correct response of the store is tested from the results of the ML instruction (if
executed) in the ACT CC. This is followed by a GCP instruction of which the results are compared
with specified expected results. This GCP is executed by the ACT CC. For this operation the macro
is, briefly, expanded as follows:

(a) Control write to reset the CRI flip-flop

(b) ACT CC executes MS or ML instruction at the same time the STB CC GCPS the tested store

(c) GCP
q

(d) GCP.

Format:

ST2STCC WORD($l),DATA_EXPECT($2),0PTIONS($4), MASK($5)
EXP_P2Pl($3)

>

,MOD($6),STATE($6)*,EXML*,GCPEXP($8)*, GCPMSK($9)* ‘T

WORD – Specifies the address (bits Othrough 15) of the ML or MS instruction. The $1 is the address.

DATA_EXPECT – Specifies the data to be written and the expected results of the read (ML) unless -,
EXP_P2Pl is specified. The $2 is any arithmetic expression which expresses the
data.

Page 212

,/=

b

,-
‘.

.

1SS4, SKTION 254-280-040

EXP.P2P1 – Expected results data parity bits, P2 and PI, data bits 24 and 25 are rotated into bits 1

OPTIONS –

and O of the 24-bit word. The $3 is any arithmetic expression which expresses the
expected results data parity bits.

S~ecifies the mode and parity during the MS or ML instructions. The $4 is a list of
options. Figure 1 shows ‘a list of opt~ons for the MS and ML instructions. The inhibit
store timing pulses are not available for this macro routine.

MASK – Specifies the mask to be used for the ML instruction. The $5 is any arithmetic expression
which expresses the mask.

STATE – Specifies the state of the maintenance (MTCE) flip-flop. The $6 is one of the following

MTCER – Reset MTCE during test.

MTCES – Keep MTCE set. If not specified, $7 is MTCES.

EXML – Execute ML instruction. If not specified and the MOD PAR also is not specified,
the MS instruction is executed (from the ACT CC). During the ML/MS instruc-
tion the standby CC executes GCP order.

lVote: The MOD and EXML parameters cannot be specified on the same macro call.

When the MOD PAR is specified, an ML instruction is executed from the ACTIVE CC. The standby CC
ABL or ABR REG is then read to check the program store response.

When the MOD PAR is not specified, an ML or MS instruction is executed from the active central
control at the same time a GCP is executed from the standby central control.

MOD – Module to read response in the STB CC. The $6 is one of the following

1 – Read mod 1 which would be the ABR register.

O – Read mod O which would be the ABL register.

GCPEXP –

GCPMSK –

Example:

Specifies the expected results of the GCP after the MS/ML instruction. The $8 is any
arithmetic expression which expresses the GCP expected results.

Specifies the mask to be used for the GCP after the MS/ML instruction. The $9 is any
arithmetic expression which expresses the GCP mask.

The following is performed only on program store:

(1) ST2STCC woRD(MulDM2oo),DATA_ExPEcT(lDGALTlo),oPTIoNs(M,R),
MASK(lMUDDATAIS), MOD(l)

This statement does a control write (MS) to reset the CRI flip-flop. The STB CC is then stopped
and set up to only run during the read (ML) order. The ML order reads the word at location
MU1DM200 sending the M and R bits. Mod 1 response is teste~ therefore, the STB CC ABR
register is read. The result is compared to the value of 1DGALTIO with a mask of lMUDDATAIS.
This is then followed by two GCPS. The STB CC is restored in the matching and in-step mode.

Page 213

The following is performed on call store and program store

(2) ST2STCC WORD (MU1DM200),DATA.EXPECT(1DGALT01),
OPTIONS(M,R),MASK(lMUDDATAIS),EXML,
GCPEXP(O(20000014),GCPMSK(O(20000014))

This statement does a control write (MS) to reset the CRI flip-flop. The STB CC is then stopped
and set up to GCP the tested store at the same time the ACT CC executes an ML instruction
sending the M and R bits. The results of the ML instruction are compared to the value of

b

lDGALTO1 with a mask of lMUDDATAIS. After the ML instruction the ACT CC performs a GCP
of the tested store and compares the result to octal 20000014 with a mask of octal 20000014. A
second GCP is then performed and the STB CC is restored in the matching and in-step mode.

ST2VRTST
.7

4.258 The description of the ST2VRTST statement includes

Function:

The ST2VRTST statement verifies a store memory test address range specified by the DGN and EX
input messages. Figure 2 explains the input parameters used to specify the store start address, address
length, test data pattern, to rotate the data and to inhibit the store’s refresh. The input parameter
information is obtained from the diagnostic buffer table. The associated macro routine uses the mainte-
nance load (ML) instruction to verify the specified address range. The expected result is the test data
pattern. The data pattern is rotated after each address, if specified. The data parity bits are also
checked for correctness. All data failures are shown by the store histogram printout. Segment breaks
occur automatically within the associated macro routine after a predetermined number of addresses
have been verified.

Format:

ST2VRTST

Characteristics of Parameters:

This statement has no parameters.

ST2WRTST

4.259 The description of the ST2WRTST statement includes:

Function:

The ST2WRTST statement writes a store memory test address range specified by the DGN and EX
input messages. Figure 2 explains the input parameters used to specify the store start address, address
length, test data pattern, to rotate the data and to inhibit the store’s refresh. The input parameter
information is obtained from the diagnostic buffer table. The associated macro routine uses the mainte-
nance store (MS) instruction to write the specified address range. The test data pattern is rotated after
each address if specified. Segment breaks occur automatically within the routine after a predetermined
number of addresses have been written.

Page 214

1SS4, SECTION 254-280-040

Format

ST2WRTST

P

J

Characteristics of Parameters:

This statement has no parameters.

ST2WR512

*

,,.-%\ 4.260 The description of the ST2WR512 statement includes

Function:

The ST2WR512 statement is the first half of a short version of the regular checkerboard memory tests.
The statement writes the contents of 512 memory locations using a special algorithm where the combi-
nation of the addresses used check all combinations of the address decoding paths. Segment breaks
occur automatically within the associated macro routine after a predetermined number of addresses
have been written.

Format:

,r-

.

ST2WR512 START($l),ADDl($2),ADD2($3),ADD3(@),COUNT($5),DATA($6)

Characteristics of Parameters:

START – Specifies the starting address to be used by algorithm. The $1 is the address.

ADD1,ADD2,ADD3 – Specifies the address increments. The $2,$3, and $4 are increments used by the
algorithm.

COUNT – Specifies the total number of addresses to be read. The $5 is any arithmetic expression
which expresses the total number of addresses.

DATA – Specifies the data to be written. The $6 is any arithmetic expression which expresses the
data.

Example:

ST2WR512 START(lMUDACCISTT),ADDl(lMUDACCADDl),ADD2(lMUDACCADD2),
ADD3(lMuDAccADD3),couNT(lMuDAccNT),DATA(lMuDDATAls)

This statement checks all combinations of the address decoding paths of the store. It starts at address
lMUDACCISTT and writes a total number of addresses equal to the value of lMUDACCNT. The
addresses to be written are calculated by the algorithm using lMUDACCADD1, 1MUDACCADD2, and
1MUDACCADD3 as increments.

/’-’

Page 215

SECTION 254-280-040

ST2WVTST

4.261 The description of the ST2WVTST statement includes:

Function:

The ST2WVTST statement will write, then verify, each address of a store memory test address range
specified by the DGN and EX input messages. Figure 2 explains the input parameters used to specify
the store start address, address length, test data pattern, to rotate the data and to inhibit the store’s

*

refresh. The input parameter information is obtained from the diagnostic buffer table. The associated
macro routine uses the maintenance store (MS) instruction to write the specified address and the
maintenance load (ML) instruction to verify the specified address of the address range. The data
written is the specified test data pattern which is also the 24-bit expected result for the verify. If .-,
specified the test pattern is rotated after each address is written, then verified. The data parity bits are
also checked for correctness. All data failures are shown by the store histogram printout. Segment
breaks occur automatically within the associated macro routine after a predetermined number of
addresses are written/verified.

Format:

ST2WVTST

Characteristics of Parameter:

This statement has no parameters.

ST3EXTST

4.262 The description of the ST3EXTST statement includes:

Function:

The store exercise test macro is used to do a continuous exercise of a specified address range at system
speed. The address range is specified on the DGN and EX input messages explained in Fig. 4. The
memory reads are executed from the opposite community to guarantee the orders are consecutive. The
memory reads are executed in groups of 512 addresses. If the address range is less than 512, the address
will be looped through until 512 addresses have been read. Segment breaks occur automatically within
the routine after a predetermined number of addresses have been read. n,

Format:

ST3EXTST

Characteristics of Parameters:

This statement has no parameters. All

Example:

See Fig. 4 for DGN and EX examples.

:,

input is from the DGN and EX input messages.

Page 216

1SS4, SECTION 254-280-040

/“-

.

,7=

#--.,

.

l-w x
DGN CS y

TSTADR –

L–

TSTPAT –

INHREF –

ROTPAT –

PH Z, TSTADR $1, L $2, TSTPAT $3, INHREF, ROTPAT

The start test address. Bits O through 17 of the store to be exercised. $1 is any store
address in octal. Address Bit 15 is the word select bit, 1 = word 1 (odd word) and O= word
O (even word). The default start address is zero.

Length of consecutive addresses to be exercised. If the highest store address (777777) is
reached, the next address is O,1, etc, until the length is reached. The $2 is the number of
addresses in decimal. The default is one.

Specifies the 24-bit data pattern to be used for the test. The $3 is the data pattern in octal.
The default test pattern is zero.

Specifies that refresh will be inhibited during the testing. The default is to not inhibit
refresh.

Specifies to rotate the 24-bit data pattern after each address. The default is to not rotate
the data.

The following example will diagnose PS Ousing Phase 97 of the diagnostic. The start test
address will be 0(1402). The length of addresses tested will be 50 and test data pattern will
be 0(25252525).

DGNPS OPH 97, TSTADR 1402, L 50, TSTPAT 25252525!

If the exercise routine (ST3EXTST) is to be looped over, this can be done by the following
examples.

(1) EX:CS z START!

(2) EX:CS 2PH 97, ADR a-b, L 20, INHREF!

(3) EX:CS 2!

Input message 1 will start the looping process. Input message 2 will then loop over the
segment bounded by “a” and “b” where “a” is the data table (DT) address of the seginit
before the ST3EXTST macro and “b” is the address of the siginit macro following. The
start test address is zero with a length of 20. Refresh will be inhibited during the looping
process. Input message 3 will stop the loop.

Pig. 4—Description of the DGN and EX Input Messages

/--’

Page 217

SKTION 254-280-040

ST3MRH2K

4.263 The description of the ST3MRH2K statement includes

Function:

The store march 2K macro is used to test a cross section of 2000 addresses in the 256K store. All 2K
addresses in a row or column are previously initialized using ST3WR2K. Addresses in a row or column
are read starting at the bottom or top of the row or column. The complement data is then written back
into the address. The address is incremented or decremented and the process is repeated. This tests the
decoding and chip select for all bits of the 25-bit words. Segment breaks occur automatically within the
routine after a predetermined number of addresses.

Formati

ST3MRH2K EXPECT($l),DIRECTION($2),TYPE($3)

Characteristics of Parameters:

EXPECT – Specifies the data which is expected when an address is read. The $1 is any valid arithme-
tic expression which represents the expect value.

T,

b

DIRECTION – Specifies the direction to read the addresses in a row or column. The $2 is UP for
starting at the bottom (low address) of a row or column or DOWN for starting at the 7
top (highest address) of a row or column.

TYPE – Specifies the type of addresses being read. The $3 is ROW for a row of addresses and
COLUMN for a column of addresses.

Example:

ST3MRH2K EXPECT(lDGALTO1),DIRECTION(UP),TYPE(ROW)

This macro call will start reading at the bottom of a ROW. The expect for the read will be lDGALTO1.
The complement of lDGALTO1 is then written back to the same address that was read. The address is
incremented and the process repeated until 2K addresses have been marched through.

ST3PATAN
.

4.264 The description of the ST3PATAN statement includes
>

Function:

The store pattern analysis routine is used to analyze memory failure information obtained from the
failure distribution data from a previous memory exercise (STMARCH3, ST3WR2K, or ST3ERRAN)
routine. The pattern analysis routine takes the failure data and formats it into the histogram.

Page 218

r“-

1SS4, SKTION 254-280-040

Format:

ST3PATAN HISTOGRAM

,p

.

.

,/-

Characteristics of Parameters:

HISTOGRAM – Specifies that a histogram will be printed from the failure distribution data. If not
specified, no histogram is printed and the failure data is stored into decision vectors
only.

Exarn?de:

ST3PATAN HISTOGRAM

This macro call will cause any failure data to be printed as a histogram printout. Figure 5 shows a
sample histogram.

M 16 DGN PS O PH 18 MSG STARTED
MEMORY FAILURE RESULTS:
TSTPAT=7777777~ THRESHOLD=NORM
NUMBER OF FAILING ADDRESSES= 2048; ERROR SUMMARY=OOOOOOOO

ADDRESS
BIT COUNT
o o(o)
1 o(o)
2 o(o)
3 o(o)
4 o(o)
5 o(o)
6 o(o)
7 o(o)
8 2048(0)
9 2048(0)

10 2048(0)
11 2048(0)
12 2048(0)
13 2048(0)
14 2048(0)
15 o(o)
16 o(o)
17 o(o)

DATA
BIT

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

WORD1
1024
1024
1024
1024

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

:
0
0

WORDO
1024
1024
1024
1024

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 PARITY 2
0 PARITY 1

Fig. 5—Example of Histogram Printout

Page 219

ST3STCC

4.265 The description of the ST3STCC statement includes

Function:

The store standby central control routine uses the standby central control as a helper unit. The two
central controls execute the separate instructions specified in the macro for each central control. A read
of some register in the standby central controls is then performed to verify that the operations are
performed as expected.

Format:
,- ,

ST3STCC ACTIVE(($l),BOTHBUS), STANDBY(($2),

ACTBUS, BLKE),ADDRESS($3,MTCE, STBBUS,
WORD($6)

CRI),DATA($4),RUN($5),ITEM($7),
GCP($8)

ExPEcT($9),IDR_DATA($lo),ExP_IDR

Characteristics of Parameters:

ACTIVE – Specifies the active central control. The $1 is the instruction which the active central
control will execute.

‘m

BOTHBUS –

STANDBY –

Specifies that the active central control will send on both buses. The standby central
control will not send at all.

Specifies the standby central control. The $2 is the instruction which the standby
central control will execute.

ACTBUS – Specifies that the standby central control will receive on the active bus.

BLKE – Specifies that the standby central control execution sequencer will be blocked and the
standby central control will not run.

.

ADDRESS – Specifies the address of the store operation. This is placed in the K register in the
central control. The $3 is any valid store address.

MTCE – Specifies the store is in the maintenance mode.

STBBUS – Specifies the bus the store receives on. If specified the standby bus is used. If not specified,
the active bus is used.

CRI – Specifies the state of the CRI flip-flop during the test. If specified, the CRI flip-flop will be set.
If not specified, CRI is reset for the test.

T,

Page 220

—. —

1SS4, SECTION 254-280-040

f-

(-’

DATA – Specifies the data which is put in the G register. If an MS instruction is being performed,
this is the data which is sent to the store. The $4 is any valid arithmetic expression which
represents the data.

RUN – Number of cycles the standby central control will run. The $5 is any valid number of central
control cycles.

WORD – Specifies the address of the read. The $6 is any valid arithmetic expression which represents
the address.

ITEM – Specifies the address of the read. The $7 is any valid Datapool-defined item.

GCP – Specifies the read is a GCP read. The $8 is any valid arithmetic expression or Datapool-defined
items which define the GCP read items.

EXPECT – Specifies the expected results of the test in a 24-bit word. The $9 is any valid arithmetic
expression which represents the expect data.

IDR.DATA – Specifies the data which the Input Data Register (IDR) in the store will be initialized
to. The $10 is any valid arithmetic expression which represents the data. If this param-
eter is not specified, the IDR is not initialized.

EXP_IDR – Specifies the expect value is IDR data. If not specified the expect value is test data.

Example:

ST3STCC ACTIVE((ML O(K),R,C,M)),STANDBY((ML O(K),R,C,M)),
ADDRESS(MSIDRWOO,MTCE),DATA(0),RUN(l),
ITEM((STIIEQ)), EXPECT(lDG_IEQ_04)

This macro call will set up the active and standby central control to perform an ML O(K), R, C, M
instructicm. The address of the ML which is in the K register will be MSIDRWOO. The store will have
maintenance set. The standby central control will run for 1 cycle and execute the ML at the same time
the active central control is executing the ML. The standby central controls execution sequencer
(STIIEQ) will be read and expected to be equal to lDG_IEQ_04.

ST3VRTST

P 4.266 The description of the ST3VRTST statement includes

. Function:

The store verify test routine verifies a store memory test address range specified by the DGN and EX

. input messages. Figure 4 explains the input parameters used to specify the store start address, address
length, test data pattern, and options to rotate the data and to inhibit the stores refresh. The input

P
parameter information is obtained from the diagnostic buffer table. The routine uses the maintenance
load (ML) instruction to verify the specified address range. The expected result is the test data pattern.
The data is rotated after each address if the rotate option is specified. The data parity bits are also
checked for correctness. All data failures are shown by the histogram printout. Segment breaks occur
automatically within the routine after a predetermined number of addresses have been verified.

P

Page 221

Format:

ST3VRTST

Characteristics of Parameters:

This statement has no parameters.

Example:

See Fig. 4 for DGN and EX examples.

ST3WRTST

4.267 The description of the ST3WRTST statement includes

Function:

The store write test routine writes a store memory address range specified by DGN and EX input
messages. Figure 4 explains the input parameters used to specify the store start address, address
length, test data pattern and options to rotate the data and to inhibit the stores refresh. The input
parameter information is obtained from the diagnostic buffer table. The routine uses the maintenance
store (MS) instruction to write the specified address range. The test data pattern is rotated after each
address if the rotate option is specified. Segment breaks occur automatically after a predetermined
number of addresses have been written.

Formak

ST3WRTST

Characteristics of Parameters:

This statement has no parameters.

Example:

See Fig. 4 for DGN and EX examples.

ST3WR2K

4.268 The description of the ST3WR2K statement includes:

Function:

The store write 2K addresses routine is used to write the cross section of memory to a constant data
pattern. A total of 2000 addresses are written with the data pattern. Segment breaks are taken auto-
matically after a predetermined number of addresses.

Format:

ST3WR2K DATA($l),TYPE($2),N0ZRFD

. .

?,

.

Page 222

-

1SS4, SECTlON 254-280-040

Characteristics of Parameters:

DATA –

TYPE –

NOZRFD

Example:

Specifies the data pattern to be written into memory. The $1 is any valid arithmetic expres-
sion which represents the data.

Specifies whether the writes will be done on a row or column of addresses. The $2 is ROW if
writing a row or COLUMN if writing a column.

– Specifies that the existing fault distribution memory should not be zeroed. If not speci-
fied, all fault distribution data is zeroed.

ST3WR2K DATA(lDGALTO1),TYPE(ROW)

This macro
lDGALTOL

ST3WVTST

call will cause the 2K addresses in the row select to be written with the data pattern

4.269 The description of the ST3WVTST statement includes

Function:

The store write and verify test routine is used to write and then verify each address of a store memory
test address range specified by the DGN and EX input messages. Figure 4 explains the input parame-
ters used to specify the store starting address, the address length, the test data pattern and options to
rotate the data and to inhibit the stores refresh. The input parameter information is obtained from the
diagnostic buffer table. The routine uses the maintenance store (MS) instruction to write the memory
and the maintenance load (ML) instruction to verify the address of the given range. The data which is
written is also the expected value of the verify. The data is rotated after each address if the rotate
option is specified. The data parity bits are also checked for correctness. All data failures are shown by
the histogram printout. Segment breaks occur automatically within the routine after a predetermined
number of addresses have been written and verified.

Format:

,-
ST3WVTST

Characteristics of Parameters:
.

This statement has no parameters.

. Example:

See Fig. 4 for DGN and EX examples.
P“

SYNCDET

4.270 The description of the SYNCDET statement includes.

Page 223

SECTION 254-280-040

Function:

The SYNCDET statement tests the synchronization circuit of the standby central control operational
clock error detector. The operational clock in the standby central control is started and then an
unsynchronizing loop is entered. In this loop, an operational clock phase is inhibited and then restored
in an attempt to unsynchronized the clock error detector. If, after a number of attempts, the unsynchron-
izing loop fails to unsynchronized the error detector, a passing test result is generated and stored in
diagnostic scratch caIl store. If the unsynchronizing loop was successful in unsynchronizing the clock
error detector, the error detector is control written to synchronize it. The error detector indicator is
then read and the results stored in diagnostic scratch call store for interrogation by other DL-1
statements. The operational clock in the standby central control is stopped.

Format:

SYNCDET

Characteristics of Parameters:

This statement has no parameters.

Example:

SYNCDET

This statement starts the operational clock in the standby central control, then enters an unsynchroniz-
ing loop in which an operational clock phase is inhibited and then restored in an attempt to unsyn-
chronized the clock error detector. If the unsynchronizing loop fails to unsynchronized the error detector,
a passing test result is generated and stored in diagnostic scratch call store. If the unsynchronizing loop
is successful in unsynchronizing the clock error detector, the error detector is control written to
synchronize it. Then the error detector indicator is then read and stored in diagnostic scratch call store.
The operational clock in the standby central control is stopped.

TAPERETN

4.271 The description of the TAPERETN statement includes:

Function:

The TAPERETN statement calls a DUAD subroutine to inform DUAD that the tape on the TUC
transport has been returned to its original position by the program.

Format:

TAPERETN

Characteristics of Parameters:

This statement has no parameters.

Example:

TAPERETN

This statement calls a DUAD subroutine to inform DUAD that the tape on the TUC transport has been
returned to its original position.

Page 224

1SS4, SECTION 254-28Q-Q40

*TBLDELY

4.272 The description of the TBLDELY statement includes

(- Function:

The TBLDELY statement will verify the effective enable and disable recovery times of the auxiliary
unit bus drivers within the API. Drivers are expected to be enabled in 1.4 microseconds and disabled in
42 microseconds. Disabling and enabling bus drivers are accomplished by setting and resetting the API
trouble flip-flop, respectively.

,-

f-

,/-’

.

D

,/-=

Format:

TBLDELY

Characteristics of Parameters:

This statement has no parameters.

Example:

TBLDELY

This statement will verify the timing specification of the API trouble flip-flop.

TESTDMA

4.273 The description of the TESTDMA statement includes

Function:

The TESTDMA statement performs one of the following

(1) Initializes a block of 511 words in 1A call store with unique patterns. This block is then read by the
API DMA sequencer.

(2) Verifies a DMA write of 1A call store by the API.

Format:

READ
TESTDMA WRITE

Characteristics of Parameters:

READ – Specifies that the initialization of 1A call store is to be performed. A block of 511 words in the
diagnostic raw data area, starting at address F + DGITASKE, is initialized to unique pat-
terns.

WRITE – Specifies that the verification of a DMA write job by the API is to be performed. A block of
511 words is read and verified starting at address F + DGITASKE.

Page 225

—

Example:

This statement will verify a DMA write job of 511 words performed by the API.

TESTDMA READ

This statement will initialize a block of 511 words with unique patterns. The API then reads this block
using the DMA sequencer.t

TPMOTCHK

4.274 The description of the TPMOTCHK statement includes:

Function:

The TPMOTCHK statement writes a command in the TUC command register and then keeps track of
the tape motion indicators in the tape transport status (TTS) register as the command is performed.
The transport should be stopped at the completion time indicated. The TIMEOUT parameter causes the
transport to time out during the specified command. The DELYSTOP parameter causes a stop com-
mand to be issued during the execution of the specified command. The SETMIS parameter causes a
write to the TUC maintenance interject status (MIS) register during the execution of the specified
command. The BUSRQINH parameter causes the bus requests to be inhibited via the request inhibit
group (RIG) register during the execution of the specified command.

Format:

SETMIS
BUSRQINH
TIMEOUT

TPMOTCHK COMMAND($l),~SEXPCT($2),CMPLTIME(MSEC($3)),DELYSTOP

Characteristics of Parameters:

COMMAND –

TTSEXPCT –

Specifies the command. The $1 is the mask of the command as it is in the TUC
command register.

Specifies the expected results of the tape motion indicators while the tape is in motion.
The $2 is the mask of the TTS register tape motion item(s) expected for the specific
command.

CMPLTIME – Specifies the total time in milliseconds to execute the command and stop the transport.
The $3 is a number 13 to 8192.

TIMEOUT – Causes a timeout during the specified command.

DELYSTOP – Causes a stop command to be issued during the execution of the specified command.

SETMIS – Causes a write to the TUC MIS register during the execution of the specified command.

BUSRQINH – Causes the bus requests to be inhibited via the RIG register during the execution of the
specified command.

‘n

poge 226

,n

1SS4, SECTION 254-280-040

Example:

TPMOTCHK.COMMAND(M(TUIREVEOF)),
MC ~SEXPm(M(~lLOWSPD,TUlBSYIDL,TUlREVMOT,TUl~RDY)),CMPLTIME(MSEC(W)),
ME DELYSIVP

This statement writes the command (the mask of TUIREVEOF) in the TUC command register and
compares the TTS register to the mask of the TUILOWSPD, TUIBSYIDL, TUIREVMOT, and TUIT-
TRDY items after the command has been executed. The transport should be stopped in 39 ms. A stop
command is issued during the execution of the TUIREVEOF command.

TUCARIN

4.275 The description of the TUCARIN statement includes

Function:

The TUCARIN statement adds the address of the start of scratch memory, used for autonomous block
transfers for the ADS, to the address of scratch memory (in register F) and puts the sum into the
TUC – address register (AR).

Format:

TUCARIN $1

Characteristics of Parameters;

$1 – The Datapool name given to the start of scratch memory for ADS autonomous block transfers.

Examvle:

TUCARIN DGIADSBLK

This statement adds DGIADSBLK, the Datapool name given to the start of scratch memory for ADS
autonomous block transfers, to the relative address of scratch memory (in register F) and puts the sum
in the TUC-AR register.

TUCAROUT

4.266 The description of the TUCAROUT statement includes:
P

Function:

The TUCAROUT statement reads the contents of the TUC – address register (AR) and compares it
.

with the parameter supplied with the statement after adding the address of scratch memory (in
register F) to the parameter supplied with the statement.

,P
Format:

TUCAROUT $1

Page 227

Characteristics of Parameters:

$1 – The Datapool name given to the start of scratch memory for ADS block transfers (ie,
DGIADSBLK) plus an offset value if any.

?,

Example:

TUCAROUT DG1ADSBLK+O(132) .

This statement reads the TUC-AR register and compares it to the address of DGIADSBLK plus octal
132plus the address of scratch memory (in register F).

TUCMREAD
7

4.277 The description of the TUCMREAD statement includes

Function:

The TUCMREAD statement is a maintenance-read instruction for the TUC.

Format:

ITEM($1) NOSTORE
TUCMREAD ITEMS($2),EXF’ECT($4)

WORD($3)

Characteristics of Parameters:

ITEM – The internal TUC location to be read. This supplies bits O through 6 of the auxiliary unit
address bus; K-code, A-code, and bit 10 are supplied by the task routine. The mask for the
results is also generated from the attributes of this parameter. The $1 is the item name.

ITEMS – The internal TUC location to be read. This supplies bits O through 6 of the auxiliary unit
address bus; K-code, A-code, and bit 10 are supplied by the task routine. The mask for the
results is also generated from the attributes of this parameter. The $2 is a list of items all in
the same word.

WORD – The internal TUC location to be read. This supplies bits O through 6 of the auxiliary unit
address bu% K-code, A-code, and bit 10 are supplied by the task routine. The mask for the
results is also generated from the attributes of this parameter. The $3 is the address.

NOSTORE – If specified, nothing is done with the reply from the TUC.

EXPECT – If specified, this is matched with the reply from the TUC. The $4 is any arithmetic
expression which expresses the expected result.

ExamDle:

TUCMREAD WORD(TUIOIS),EXPECT(M(TU1OPCOM))

This statement reads the TU1OIS word in the TUC and compares the result to the mask of TU1OPCOM.

Page 228

‘-?

.

.

1SS4, SECTION 254-280-040

TUCMWRITE

4.278 The description of the TUCMWRITE statement includes:

T- Function:

The TUCMWRITE statement is a maintenance-write instruction for the TUC.
1

Format:

TUCMWRITE WORD($1),DATA($2)

Characteristics of Parameters:

WORD – Specifies the internal TUC location to be written. This supplies bits O through 5 of the
auxiliary unit address bus. K-code, A-code, and bit 10 of the address are supplied by the task
routine, The $1 is the address of the TUC location.

DATA – Specifies 24 bits of data to be written into the TUC location. This supplies bits Othrough 23
of the auxiliary unit write bus. The $2 is any arithmetic expression which expresses the
data.

Example:

,n

.

.

TUCMWRITE WORD(TUICOM),DATA(M(TUISTOP))

This statement writes the TUC location TUICOM with the mask of the TUISTOP item.

TUCMICHK

4.279 The description of the TUCMICHK statement includes:

Function:

The TUCMICHK statement looks for a maintenance interject (MI) in the TUC–control bus register
(CBR). It waits a designated time (DELAY), does a no-store read of the TUC-CBR, and then reads the
DUS–output buffer register (OBR) looking for an MI. If it finds an MI, TUCMICHK passed. If an MI is
not found, it reads the TUC-CBR again and repeats the check, This procedure is repeated some number
of times (NUM), waiting one delay time (DELTA) between each check. If the loop occurs more than
NUM times, the timed out failing data = 76543210. If a data transfer is to take place, DATAFXR
causes auxiliary unit hard and soft stops to be inhibited.

Format:

SEC($l) SEC($l)
TUCMICHK DELAY(MSEC($2)),DELTA(MSEC($2)),NUM($3),MSG($4),DATAXFR

Characteristics of Parameters:

DELAY – Specifies the time delay before the first read of the TUC-CBR. The $1 specifies the time in
seconds. The $2 specifies the time in milliseconds. Delay time is between 100 ms and 186
seconds inclusive.

Page 229

DELTA – Specifies the time delay between subsequent reads of the TUC-CBR. The $1 specifies the
time in seconds. The $2 specifies the time in milliseconds. Delay time is between 10 ms and
256 seconds inclusive.

NUM — Specifies the number of times a check for an MI is made. The $3 is between 1 and 81 inclusive.

DATAXFR – Inhibits auxiliary unit hard and soft stops if a data transfer is to take place while
TUCMICHK is waitng for an MI.

Example:

TUCMICHK DELAY(SEC(17)),DELTA(MSEC(2W)),NUM(10), MSG(8),DATAXFR

This statement waits 17 seconds, then reads the TUC-C!BR register and looks for an MI. If an MI only is
found, TUCMICHK passed. If an MI is not found, it waits 200 ms, reads the TUC-CBR register again,
and looks for an MI. If an MI only is found, TUCMICHK passed. If it still does not find an MI, the
process of waiting 200 ms, reading the TUC-CBR and looking for an MI is repeated until 10 reads are
completed. If an MI is not found after 10 reads, TUCMICHK timed out. Data is to be transferred during
the time break, and auxiliary unit soft and hard stops are inhibited.

TUCOICHK

4.280 The description of the TUCOICHK statement includes:

Function:

The TUCOICHK statement looks for an operation-complete indication (01) in the TUC–control bus
register (CBR). It waits the designated time (DELAY), does a no-store read of the TUC-CBR, then reads
the DUS–output buffer register (OBR), looking for an 01. If it finds an 01 only, TUCOICHK passed. If
it finds an MI, the MI failing data = 01234567. If neither an MI nor 01 is found, it reads the TUC-CBR
again and repeats the checks. This procedure is repeated some number of times (NUM), waiting one
time delay (DELTA) between each check. If the loop occurs more than NUM times, the timeout failing
data = 76543210. If a data transfer is to take place, time break, DATAXFR causes auxiliary unit hard
and soft stops to be inhibited.

Format:

SEC($l) SEC($l)
TUCOICHK DELAY(MSEC($2)),DELTA(MSEC($2)),NUM($3),MSG($4),DATAXFR

Characteristics of Parameters:

DELAY –

DELTA –

Specifies the time delay before the first read of the TUC-CBR. The $1 specifies the time in
seconds. $2 specifies the time in milliseconds. Delay time is between 100 ms and 186
seconds inclusive.

Specifies the time delay between subsequent reads of the TUC-CBR. $1 smecifies the time in. .
seconds. $2 specifies the time in milliseconds. Delay time is between 10 ms and 256 seconds
inclusive.

NUM – Specifies the number of times a check for an 01 is made. The $3 is between 1 and 31 inclusive.

DATAXFR – Inhibits auxiliary unit hard and soft stops if a data transfer is to take place while
TUCOICHK is waiting for an 01.

Page 230

1SS4, SECTION 254-280-040

Examde:

TUCOICHK DELAY(SEC(l)),DELTA(MSEC(400)),NUM(25),MSG(0)

This statement waits 1 second, then reads the TUC-CBR and looks for an 01. If it finds an 01 only,
TUCOICHK passed. If it finds an MI, TUCOICHK failed. If it finds neither, it waits 400 ms, then reads
the TUC-CBR again and looks for an 01. If an 01 is found, TUCOICHK passed. If it finds an MI,

) TUCOICHK failed. If it still does not find either, the process of waiting 400 ms, reading the TUC-CBR,
and looking for an 01 will be repeated until 25 reads are completed. If an 01 is not found after 25 reads,
TUCOICHK timed out.

VLDWRTPT

,P\
4.281

XCR

/=-’ 4.282

+

●

P

The description of the VLDWRTPT statement includes

Function:

The VLDWRTPT statement calls a DUAD subroutine to determine if the tape on the transport is at a
valid write point. A diagnostic scratch word will be set according to the response from DUAD.

Format:

VLDWRTPT

Characteristics of Parameters:

This statement has no parameters.

Example:

VLDWRTPT

This statement calls a DUAD subroutine to determine if the tape on the transport is at a valid write
point.

The description of the XCR statement includes:

Function:

The XCR statement sets up call store for tests that follow. The XCR statement is concerned with
internal transmission tests for central control. It stores in call store the number of cycles the central
control is to run, the expected results, and the address of the part of the central control to be tested. The
statement also allows a clock to be inhibited on inactive phases.

Format:

ITEM($1)
XCR ITEM($2),CYCLES($4),INHPHASE($5)

WORD($3)

Page 231

SECTION 254-280-040

Characteristics of Parameters:

ITEM – Specifies the address and mask to be stored. The $1 is an item name.

ITEMS – Specifies the address and mask to be stored. The $2 is a list of items all in the same word. -.

WORD – Specifies the address and mask to be stored. The $3 is the address.

CYCLES – Specifies the number of cycles the standby central control is to run. The $4 is a decimal i

number.

INHPHASE – Specifies the clock to be inhibited on inactive phases. The $5 is the clock.

Example:

XCR ITEM(STIA),CYCLE(1),INHPHASE(OOT04)

This statement stores in call store the address and mask of the STIA item and the number of cycles the
standby central control is to run (l). It also inhibits the 00T04 clock during inactive phases in subse-
quent tests.

XREAD

4.283 The description of the XREAD statement includes

Function:

The XREAD statement is a general purpose read of the program store or call store. The result is passed
to the Diagnostic Control Program (DCON).

Format:

ITEM($1) _
$XREAD ITEMS($2),($3),EXPECT($5)t

WORD($4)

Characteristics of Parameters:

ITEM – Specifies the location to be read. The $1 is the name of the item.

ITEMS –

WORD –

Specifies the location to be read. The $2 is a list of items all in the same word. The $3 is
CSREL, PSREL, or NONREL. If $3 is CSREL, the location specified is indexed by the base
address (in register F). If $3 is PSREL, the location specified is indexed by the starting
address of the paging area. If $3 is NONREL, the location is not indexed. If $3 is not *

specified, it is CSREL.

Specifies the location to be read. The $4 is the address.
>

EXPECT – Specifies the expected result of the read. The $5 is any arithmetic expression which
expresses the expected result.

Example:

XREAD ITEMS(MUIITEMA,MUIITEMB),EXPECT(0)

This statement reads the location specified by the address of the word containing the MUIITEMA and
MUIITEMB items plus the base address (in register F) and compares the results to zero.

Page 232

—

1SS4, SECTION 254-280-040

5. STATEMENT INDEX—ALPHABETICAL LISTING OF STATEMENTS FOR TESTING BY EQUIPMENT TYPE

f=

.

/’-

5.01 This part provides an alphabetical listing of the DL-1 statements by the type of equipment to which the
statements apply. The page number on which the explanation of each statement starts is also given.

n
EQUIPMENT TYPE/STATEMENT

PAGE
I

(a) Central Control

F
3!7

AUKCRDCC- O.O." OC""C"""."o-. m"os-- """"""""""""""""""""""""""""""""" 37
AUKCWRCC .

.
42

CCAAS.ST .." 43
CCARR_ST". OO"".""" O-""" "o"" --""" """"" -"""" """"" """"" """"" "........ 44
CCATOTST . 47
CCBITEST .

.”” .“” ””” 48
CCBR_ST O.. O". ".""" .". OO.oo--"-o 'o-"""""""""""""""""""""""""""""""" 49
CCCLR ..". """ O""" O". "O". ".""" ". O"O""".. ~1
CCDAR.ST . 52
CCGATE .." 52
CCGCPTST . 53
CCINT.ST . 54
CCISOL". """. ".""" ".". O". "----o"+-""""""""""""""""""""""""""""""""""" 55
CCMCP3P ...” “. ...” .“” ”””

.
56

CCPAR_ST" :~~~~"-" """".. "O"00-"" Co--c"<""-"""""""""""""'""""""""""""..::::: 57
CCPCCNFG . 58
CCPCINIT ..:::: ~~... """ C"O""... """. """--o-ore"""-""""""""""""""""""""""""""""""" 58
cCPCNOTR . ‘o””

.”” “ 59
CCPCTRIG C"""" "". """"" ".""" -"--o ---o" o-"""""""-""""""""""""""""""""""" 60
CCPCTST1 .

.
61

CCPHAPHB . ~1
CCPHBPHA . 62
CCPHBPHB . 62
CCPHBPHC . 63
CCPHCPHB ..." 63
CCPULSE . +.-so.”

. ...” ‘“”””” 64
CCRDZ . 67
CCREAD .

.
67

CCREC". -"""" """".. O... "o"o-- c"-"-""""""""""""""""""-""""""'"""""""" 69
CCRISTEP . To

CCRUN OC"O.C"". """"" "". "---o -o"m" """""""""""""""""""""""""""""""""" 71
CCRWBR . 71

CCSC_ST""" "'""" . .." O""-" -o-" --o" -o--"<""""""""""""""""""""'"""""" 72
CCSTANTI . 73
CCST_ABL . 74
CCST_AUW . 74
CCST.BR . 75

Ccswcc .
.

76
CCTRAN

.”. 77
CCWALK . 78

CCWRITE ..."... Tg
CCXGCP""... o.. ''" 80
CCXNSYNC .

Page 233

SECTION 254-280-040

EQUIPMENT TYPE/STATEMENT

(a) Central Control (Contd)

CHGICC

(Contd)

.

PAGE

80
82

. . .
,..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
,..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
.,.
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

CKEANTI
CLKINH
DLRCLSBY
DLRRUN .
DLRSTAT
EDINIT. .
EXECUTE
INREAD .
INWRITE .
12MAPTST
12MPTST .
12TESTMP
MBREGTST

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . .

. . . .

. . . .

. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.,. .
. . . .
. . . .
. . . .
.!. .

. . . .

. . . .

. . . .

. . . .

. . . .

... .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.,

. .
,,
. .
. .
. .
. .
.,
. .
. .
. .
.,
. .
. .
. .
.,
. .
. .
. .
.,
.,
.,
.0

.,

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.,

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

82
86
86 y
87
97
99

100
100
107 -
109. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.,

. .

. .

. .

. .

. .

. .

. .

. .
,.
. .
. .
. .
. .
. .
. .

113
117

MCCONFIG .
MEMCHECK
MEMLOAD .
MPRDXRUN

123
129
129
130
130
130
130
131

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

MP
MP 7...
MP 8...

.

.

MPXHEAD
PPCSTRT. 133

136
139 ?

PSWITCHC

&HEAD
RDZREG .

139
140
139
141
141
142
143
175
175
176
176
223

RD6
REGTEiT”
RESMTST
RSTICC. .
SBYPULSE
STPCLKA
STRCLKA .
STRCLKB.
STRCSYNC
SYNCDET .

(b) Call Store/Program Store Busand Call Store/Program Store

(1) Call Store/Program Store Bus

BUSACT .
STBUSACT .
STBUSACT3 .
STLKBUS3 .
STLKYBUS .

(2) Call Store/Program Store

CCMUTIME, .
STAREAD .

42
152
152
166.

.

..

. 166

STAREAD3 .
STAWRITE .

Page 234

—

/=

.’1

,/’”n

.fl

.

n

P

EQUIPMENT TYPE/STATEMENT (Cantd)

(2) Call Store/Program Store (Contd)

STAWRIT3
ST3ERRAN
STCREAD
STCREAD3
STCTRTSTO
STCTST03.
STCWRITE
STDRTEST
STDRTST3
STEER.
STEXER2
STEXER3
STLREAD
STLREAD3
STMARCH3
STMCCRD
STMCCRD2
STMCCRD3
STMHWPM3
STMREAD
STMWALK
STMWRITE
STRDGCP
STRDGCP2
STRDGCP3
STRDUPDN
STRD512
SPREAD
STRUPDN2
STSLAVE
STSLAVE2
STSLAVE3
STSLWRD2
STSNAP
STTRAP
STVERMEM
STVRMEMS
STVRMEM2
STWRGCP
STWRGCP2
STWRGCP3
STWRITE
STWRMEMi: ::::::::
STWRMEM2
STWRMEM3
STWRNAM2
STWRNAM3
STWRSTAT
STWRTMEM
STWRTNAM
STWRTRTF

,.. .
,.. .
,.. .
. . . .
,.. .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
,., .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

. . . .

. . . .

. . . .
,.. .
,.. .
. . . .
,.. .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.,. .
.,. .
... .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

. . .

. . .

. . .

. . .

. . .

. . .
,..
,..
,..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
.!.

.,.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1SS4, SKTION 254-280-040

PAGE

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
,.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

,..
. . .
. . .
. . .
,..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
,..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

151
151
153
154
154
155
156
156
158
160
161
161
168
169
170
170
171
171
172
173
174
174
177
178
179
181
181
182
183
183
184
185
186
186
189
190
190
191
192
193
194
196
196
197
198
198
199
200
201
201
202

Page 235

L —

SECTION 254-280-040

(c)

(d)

(e)

.- ----- ,--------- .- ,- ..
EQUIPMEN I TYPIE/>IAI tMEN I (U311tU)

(2) Call Store/Program Store (Contd)

STWRUPDN
STWRWPM3
STWR512 . .
STWSLOW3
STWSTAT2 .
STWSTAT3 .
STWTKBR3
STWTRTF2 .
STWTRTF3 .
STWUPDN2
STWUPDN3
ST2EXTST
ST2RD512
ST2STCC .
ST2VRTST
ST2WRTST
ST2WR512
ST2WVTST
ST3EXTST
ST3MRH2K
ST3PATAN
ST3STCC .
ST3VRTST
ST3WRTST
ST3WR2K
ST3WVTST
XCR . . .
XREAD .

.

Peripheral Unit Bus

IOCONFIG
IOPUCON.
12READ
12WRITE
PUBCNFIG

.

.

Input/Output Unit Selector

IOCONIOUS
IOMACON
IOPOLL
IOPULSE
IOREAD
IOREQRD
IOWRITE
12MEMR
12MEMW
12PCLOOP

Processor Peripheral Interface and Master Control Console

EQUIPCHK .
12PCPMP ...!

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

PAGE ‘n

202
203 T,
203
204
204
206

i.

208
208
209
209
210
210
211
212
214
214
215
216
216
218
218
220
221
222
222
223
231
232

101
103
112
114
137

101
102
103
104
104
105
106
107
108
109

—

(’-’

P

--. ..—..-. .——--——.- —.——-. —..— .—

1SS4, SECTION 254-280-040

PAGEEQUIPMENT TYPE/STATEMENT (Contd)

(e) Processor Peripheral Interface and Master Control Console (Contd)

12RDADJ . . .
MCCABLEV .
MCCBARTST .
MCCBITOG . .
MCCINTCON .
MCCKEYSET .
MCCKEYTEST
MCCPULSE .
MCCREAD .
MCCTOG . .
MCCWRITE .
MCSDPTC .
PCCWRITE .
PPIMAPO . .
PPIMAP1 . .
PPIMAP2 . .
RDPPI . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
SCANMCCROW24

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
... .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

(f) Auxiliary Units and Auxiliary Unit Bus

(1)

(2)

(3)

Auxiliary Unit Bus

CCAUBRQ . . .
CCAUINIT . . .
CCXAUSYC . .

Auxiliary Units

AUBRQ
AUGCPCLR”
AUMREAD
AUMWRITE
AUPULSE .
AURPLY . .
AUSTADD .
AU.XOVER
CCAURSTR
CCAUSTAT
LCKCODE

File Store

DCREAD
DCWRITE
DKCODE
DMSECR
DMSECW
DNREAD
DNWRITE
DREU . .

.

DSKCLKCK
DTOGGLE .
DWNAME .
RDACTDSK

. .

. .

. .

. .

. .

. .

. .
. .
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
. .
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
,.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.,
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .
. . .
. . .
. . .
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .

. .

. .

. .

. .

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
. .
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

112
117
118
119
120
121
122
124
125
126
127
128
132
134
134
135
140
144

45
45
78

35
36
38
39
39
40
41
41
46
46

116

83
84
85
88
89
90
91
91
92
93

1{

Page 237

SECTION 254-280-040

EQUIPMENT TYPE/STATEMENT

(4)

(5)

(6)

(7)

Auxiliary Data System

31
32

94
95
95

137

81
94

132

83
85
93

144
224
226
227
227
228
229
229
230
231

ADSPULSE
ADSREAD

.

.
.
.

Data Unit Selector

DUSMREAD
.
.
.

.

.

.

.

DUSMWRITE
DUSOARIN

>P1P2TEST

Data Unit Controller

CHKSRDUC
DUCCHK
PDQWRITE” : : : : : : :

.

.

.

.

.

.

Tape Unit Controller

CLRTUCTF . , .
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.

DGSCRTP
DUADRDFL
SRTAPTST
TAPERETN
TPMOTCHK
TUCARIN
TUCAROUT
TUCMREAD
TUCMWRITE ,
TUCMICHK
TUCOICHK
VLDWRTPT

Attached Processor System(8)

35
116
143
225
225

AP3BMSG
LDSAR
SAPADDR: :::::::
TBLDELY
TESTDMA

.

. ..0.

.

.

.

.

.

.

.

. ?,

*(g) Miscellaneous (Data Manipulation, Control and Decision, Defining and Calling
Subroutines and General Testing)

19
23

ARITH .
DELAYIOM .
DLICOLLAPSE .
DLIDELETE .
DLIETERM .
DLIMTSKIP . o
DLIPWRMON .
DLISKPTST .
DLISUB
DLITFZAP: ::::::::::::: :::::::::::::::::::: j

A

?,

22
23
24
24
88
25
29
25

1SS4, SECTION 254-280-040

EQUIPMENT TYPE/STATEMENT PAGE

DTDEST . .
DTJUMP . .
DUSOAROT .
12MEMR . .
12MEMW . .
PHASEEND
PHASEINIT
SEGEND . .
SEGINIT . .
SUBCALL .
SUBRTN . .

. ,O$O. . . .

. .O O..

. .. #co

. .>. .O m.. ,

.+. .<. .OO ,. . .

. .

.O. ..+O. ,.O .

. ..O

. .O O..

. .

.>+ .OOO. .OO. O ~.o.

26
26
96

107
108

27
27
28
29
30
31

6. REFERENCES

6.01 The following document provides further information in related areas

NUMBES TITLE

PK-5AO01 1A Processor Datapool

6.02 The introductory BSP to the application programs (Section 234-180-000) provides a complete list of 1A
Processor and application programs and the sections in which they are described. More detailed infor-

mation about all programs referenced in this section may be found by referring to this BSP.

7. GLOSSARY

,P
7.01 This part of the section provides definitions of terms associated with DL-1.

A – An “A” preceding an item name in parentheses indicates the address attribute. The address of an
item in a memory location is the absolute address of the memory location in which the item
appears. For example, A (DGITEMP) indicates the address of the DGITEMP item.

Aborted – A task is aborted if it is terminated (abnormally) prior to normal end; eg, due to a
maintenance interrupt.

Alphabetic – Alphabetic characters include all the letters in the alphabet, A through Z,

.

8

Alphanumeric – Alphanumeric characters include all the letters in the alphabet and all the numbers
in the decimal numbering system A through Z and O through 9.

AND – When two binary numbers are combined by the logical product (AND) operation, each bit of
one binary number is matched with the corresponding bit of the other binary number, When
corresponding bits are 1s, the result is a 1. When either of the corresponding bits is a O, the
result is a O.

Arithmetic Expression –

.

An arithmetic expression is a number, symbol, function, attribute, indirect
symbol, or a string of these items sep”ar-ated by arithmetic operators. The
resulting expression yields a value of a 24-bit binary integer. 6, STM6,
WRT*6+3 are examples of arithmetic expressions.

Arithmetic Operator – The allowable arithmetic operators (in order of highest to lowest procedure)
are:

** exponentiation

+ ,—,7 unary plus, unary minus, complement

Page 239

SECTION 254-280-040

*J multiplication, division

+ ,— addition, subtraction

B– A “B” preceding a number in parentheses indicates that the number is of the binary number
system (2 numbers). In the binary numbering system, only 0s and 1s are used. B(1OO1O)indicates a
binary number.

Binary – See B.

Block – A block of memory is several adjacent words. A task block is a block of memory containing
the machine language code required to execute the task.

c– A “C” preceding a group of characters in parentheses indicates characters. For example C(ABC)
indicates the characters ABC.

Client – A client program runs under the supervision of another program.

Complement – When any binary number is involved in a complementary (NOT) operation, each of the
bits in the number is changed to its opposite binary representation.

D – A “D” preceding a number in parentheses indicates that the number is of the decimal numbering
system (10 numbers). In the decimal numbering system, numbers O through 9 are used. D(689)
indicates a decimal number. If no numbering system is indicated for a number, it is decimal.

Decimal – See D.

Default – Most optional parameters have default values. If the parameter is not specified, the default
value is used.

E – An “E preceding a number in parentheses indicates a 1 in that bit position. E(8) indicates a 1 in
bit position 8, all other bits in the word O.

Exclusive OR – When two binary numbers are combined by the Exclusive OR operation, each bit of
one binary number is matched with the corresponding bit of the other binary num-
ber. When the corresponding bits agree (both bits are 1s or both bits are 0s), the
result is a O. When the corresponding bits do not agree, the result is a 1.

Execution Time — Execution time is the point in time during which a task is run. Execution time is
also the length of time required to run a task.

Format – The format of a statement is the arrangement of parameters and variables allowed in the
statement as it appears on a program listing.

H – An “H” preceding an item name in parentheses indicates the displacement attribute. The dis-
placement of an item in a memory location is equal to the number of the bit positions the item is
from bit O (the rightmost bit in the item). For example H(DGITEMP) indicates the displacement
of the DGITEMP item.

Hexadecimal – See X.

I – An “I” preceding an item name in parentheses gives a value of 1 in the rightmost bit of the item.
For example, I(DGITEMP) gives the value 1 to the rightmost bit in item DGITEMP.

.

-,

,*

Page 240

1SS4, SECTION 254-280-040

Insertion Mask — To insertion mask an item from a CC register into a memory location, the bit positions in
the data buffer register corresponding to the bit positions in the logic register that contain
1s are replaced by the contents of the corresponding bit positions of the specified CC
register. The other bit positions in the data buffer register remain unchanged, and the new
contents of the data buffer register replace the contents of the memory location.,/-.

Item – An item is a group of adjacent bits within a word. The item may contain any number of bits up to and
including 24. Each item has the following attribdes address, size, displacement, mask, represented by
A, S, H, and M, respectively.

f-

?

Label – A label is a symbolic name given to the address of a memory location; especially a label is the
symbolic name appearing in the location field of a program statement.

M – An “M” preceding an item name in parentheses indicates the mask attribute. The mask of an item in a
memory location is a set of 24 bits having 1s in the position occupied by the item and 0s elsewhere. For
example, M(DGITEMP) indicates the mask of the DGITEMP item.

Macro – A macro is a model for generating assembly language code or pseudo-operations at program assem-
bly time. In diagnostic languages, all macros (statements) generate the DATA pseudo-operation and
result in a table of data.

Mask – See M.

Masking – Masking is the process of performing a logical AND of a MASK on a word. Product masking and
insertion masking are used.

Mnemonic – A mnemonic is an abbreviation or shorthand notation which helps the user understand the
operation. For instance, ML is the mnemonic for MAINTENANCE LOAD; MS is the mnemonic
for MAINTENANCE STORE.

o– An “O” preceding a number in parentheses indicates that the number is of the octal numbering system (8
numbers). In the octal numbering syitem, numbers O through 7 are used. O (777) indicates an octal
number.

Octal – See O.

Op-code – An op-code is an abbreviation for operation-code. A large number of operations have been assigned
a numeric code.

OR – When two binary numbers are combined by the logical union (OR) operation each bit of one binary
number is matched with the corresponding bit of the other binary number. When corresponding bits are
O, the result is a O. When either or both of the corresponding bits is a 1, the result is a 1.

Page – A program page is a block of machine language code or data which resides on file store and must be
constructed in main memory before it can be executed. Paging is the process of reading program pages
from file store and reconstructing them in available main memory for execution.

Parameter – A parameter is a quantity that is assigned a temporarily constant value in order to conduct a
diagnostic test. A parameter followed by a variable in parentheses is assigned the value of that
variable. If a parameter has no variable, the presence or absence of the parameter assigns the
value.

Pest – A pest is a flip-flop that inhibits an interrupt,

Page 241

SECTION 254-280-040

Phase – A phase of a diagnostic program is designed to test part of a unit. A phase is a convenient division of
a diagnostic program.

Product Mask – Product masking is the operation of taking some constant, the contents of a register (other _
than the logic register) or the contents of a memory location and ANDing it with the

7

contents of the logic register before it reaches its destination.

Rawdata – Raw data is generated as a result of diagnostic tests. This raw data is messaged by the Diagnostic L

Control Program and passes to the Input/Output Control Program to be printed in an output
message.

:.

s– An “S” preceding an item name in parentheses indicates the size attribute The size of an item in a
memory location is equal to the number of bits occupied by the item. For example, S(DGITEMP-indicates
the size fo the DGITEMP item.

Segment – A segment is a series of tests executed without a time break. A segment runs for no longer than 3
ms. Diagnostic phases are divided into segments.

Size – See S.

Statement – A diagnostic statement is a macro call.

Syntax – Syntax is the set of rules needed to construct a statement.

Subroutine – A subroutine is a block of machine language code used by other programs. A calling program
transfers to an entry point in the subroutine; upon completion of execution, the subroutine
returns control to the statement immediately following the transfer instruction in the calling
program. Diagnostic subroutinesldiffer from otherlsubroutines in that they contain no executa-
ble code. They are data tables; the first word in each entry in the data table is an index into the
task routine which contains executable code.

Unary – Unary is single.

v– A “V” preceding an arithmetic expression in parentheses indicates the value of the expression. For
example, V(1*8*1DG1TEMP) indicates the value of the expression 1*81DG1TEMP.

?

Value – See V.
.~

Variable – A variable is used to assign a temporary constant value to a parameter. The value a particular
parameter is to take during a diagnostic test is in parentheses following the parameter.

k

Word – A word is 24 consecutive bits in memory addressable by central control.

x–
-,

An “X” preceding a number in parentheses indicates that the number is of the hexadecimal numbering
system (16 numbers). In the hexadecimal numbering system, numbers Othrough 9 and the letters A, B, C,
D, E, and F are used. (XFO) indicates a hexadecimal number.

T

Page 242

1SS4, SECTION 254-280-040

8. ABBREVIATIONS AND ACRONYMS

8.01 The following is a defined list of abbreviations and acronyms used in this section.

ADS
API
ASW
ASWFi
AUA
AUFR
BC

r BPS

,(’=
cc
CATP
CPD
CRI
DCON
DUAD
DUC
DUFR
DUS
GCP
Iouc
IOUS
LDI
LED
MA
MACP
MB
MC
MCL
ME
MI
ML
MS
01
PAGS
PKA
PPI
SAP
SD
SR
SWAP
TUC
UB

Auxiliary Data System
Attached Processor Interface
All Seems Well
All-Seems-Well Failure
Auxiliary Unit Access Bus
Auxiliary Unit Fault Recovery Program
Bit Control
Buffer Pulse Source
Central Control
Conditional All Tests Pass
Central Pulse Distributor
Communications Reply Inhibit
Diagnostic Control Program
Data Unit Administration Program
Data Unit Control
Data Unit Fault Recovery Program
Data Unit Selector
Generate Control Pulse
Input/Output Unit Controller
Input/Output Unit Selector
Laboratories Design Information
Light Emitting Diode
Maintenance Access
Maintenance Control Program
Masked Bus
Macro Continue
Millisecond Clock
Macro End
Maintenance Interject
Maintenance Load
Maintenance Store
Operation Complete Indication
Paging Program
Address Parity Bit
Processor Peripheral Interface
Store Access Permitted
Signal Distributor
System Reinitialization
Switching Assembly Program
Tape Unit Controller
Unmasked Bus

Page 243
243 Pages

	General
	Basic Structure of DL-1
	Statement Format
	Detailed Explanation of Each DL-1 Statement
	Statement Index - Alphabetical Listing of Statements for Testing by Equipment Type
	References
	Glossary
	Abbreviations and Acronyms
	Figure 1 - Example Data Table Expansion as it appears on a Program Listing
	Figure 2 - Table-Driven Diagnostic Test Structure
	Figure 3 - Options Used by the 256K Semiconductor Store
	Figure 4 - Description of the DGN and EX Input Messages
	Figure 5 - Example of Histogram Printout
	Table A - Options for the ML and MS Instructions

