> STEP-BY-STEP SYSTEMS NO. 1 OR $350 A$
> 30, 60,120 IFM INERRUPTER
> AND INTERRUPTER ALARM CIRCUIT

CHANGES

D. Description of Changes

D. 1 Precise tone lead designations are added to Figs. 7, 13, 14, 15 and note 117.
D. 2 The title of Fig. 7 is changed to show that it is no longer used to filter 60 and 120 IPM busy tone without flash.
D. 3 The title of Fig. 9 is changed to include the fact that is will aiso be a tone alarm circuit.
D. 4 Additional connecting circuits are added to tables B and K.
D. 5 Keysheet and maintenance BSP information is added to the Supporting Information table.

```
D.6 A "120 IPM BT" Lamp designation is added to Fig. 5B.
```


F. Changes in CD Sections

F. 1 In Section II - 1.05 - Change the 4 th sentence tu read: "Also, Fie. 14 converts continuous low tone from the power rineine circuit into 30 IPM interrupted low tone."
F. z In Section II - 1.07 - Change the second sentence to read: "The $1 M F$ (A) capacitur prevents any steady voltage condition from reaching the tone supply."
F. 3 In Section III - 4. CONNECTING CIRCUITS

Change: D. Switch Trouble Alarm Circuits (b) For Connector Shelves and PBX Trunks -SD-32045-01.
U. Local Test Desk rather than U. Local reat Desk No. 14 .
AOd: A. Alarm Circuits
(c) M1sc. Tone and Tone Alarm Circuit -SD-31521-01.
U. Local Teat Desk
(f) bo and l20 IRM flashing circuit -SD-1C401-01.*
V. Miscellaneous Circuits (q) Centrailzed Repalr Service Trunk Circuit -SD-99374-01.
(r) Auxiliary Line Circuit - SD-99484-01.
(s) Ringing and Tone Power Plant -

SD-81860-01.*
*Typical

BELL TELEFHONE LABORATORIES, INCORPORATED

DEPT 5225-ICB
WECO DEPT 5152-RAF-WEA

notice

STEP BY STEP SYSTEMS
NO. 1 OR 350A
30, 60, AND 120 IPM INTERRUPTER
AND INTERRUPTER ALARM CIRCUITS

CHANGES
A. Changed and Adied Functions
A. 1 Provision is made to remove LTI-30 IPM tone from this circuit.
D. Description of Charges

```
D.1 Provision is made to remove LTI-30 IPM tone and replace
    1t with ITl-120 IPM tone already in tnis circuit.
D. }2\mathrm{ Fig. }13\mathrm{ and 14 and option J are rated Mfr Disc. as well as
    other references to 30 IPM in other figures.
D. }3\mathrm{ Connection to Intertoll Dial ROTS is added to Table K.
D.4 Circuit Note 113 is changed to show reference to Fig. 13
    anc }24\mathrm{ and option J.
D. }5\mathrm{ Conrection of E lead from Fig. 1l formerly read "to Fig.
    11.
D.6 The quantity of the 120 IPM interrupter lead in Table B
    to the auxiliary traffic circuit betweer toll selector
multiple and intercepting trunk for delayirg cut-througn is
changed from orie lead per office to one lead per five circuits.
D.7 Connecting information is added for the Large and Small
        MJ Mobile Radic Telephone System.
F. Changes in CD Sections
```

F. 1 Under 4. CONNECTING CIRCUITS, add:
V. Miscellaneous Circuits
(n) MJ Mobile Radio Telephone System - Duplicate
Switching and Test Access Circuit - SD-2R001-01.
(o) Mi Modile Radio Telepnone System - Common Pulse
Circuit - SD-2RO1z-01.
(p) Small MJ Mobile Radio Telephone S:stem - Line
Circuit - SD-2ROH7-01.

BELL TELEPHONE LABORATORIES, INCORPORATED

```
DEPT 2363-NPS-RJJ
```

STEP BY STEP SYSTEMS
NO. 1 OR 350A
30, 60, AND 120 IPM INTERRUPTER
AND INTERRUPTER ALARM CIRCUITS

TABLE OF CONTENTS PAGE

TABLE OF CONTENTS
pagE

SECTION I - GENERAL DESCRIPTION

1. PURPOSE OF CIRCUIT

1.01 This circuit provides $30 \mathrm{ipm}, 60 \mathrm{ipm}$. and 120 ipm for the various circuits

in an office.

SECTION II - DETAILED DESCRIPIION

1. DESCRIPTION OF OPERATION

TRANSFER KEY CIRCUIT - FIG. 1 OR 12

1.01 With the transfer key A in the norma: position, relays A and B are con-

 nected to the $120-$ and $60-1 \mathrm{pm}$ brushes through resistors C and D (Fig. 1 only). These relays follow the 120 - and $60-i p m$ interruptions and in turn send ground pulses of the same frequency over the Aand B leads to the relays of Fig. 2 or 10. Resistors $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{Cl}, \mathrm{D}, \mathrm{E}$, and D a and capacitors A, Al, B, Bl, C, and D of Fig. 1 or the corresponding networks of Fig. 12 or 13 provide contact protection to the relay and interrupter contacts. The operation of transfer key A connects the $A l$ and Bl relays in place of the A and B relays in case of trouble or as required by the routines prevailing in the office.
A. Fig. 13
1.02 With transfer key D in the normal position, relay T is connected to the 30 -ipm lead through resistor E. This relay follows the $30-i p m$ interruptions and in turn sends ground pulses of 0.3-second duration over the C leads to the relays of Fig. 10. Tone of the same frequency is sent out on leads LTl-30 ipm. The operations of transfer key D connects the Tl relay in place of the T relay in case of trouble or as required by routines prevailing in the office.

INTERRUPTER CIRCUIT

B. Fig. 2

1.03 The keys and relays of Fig. 2 are furnished as required to provide the

 necessary 60- and 120-ipm leads to the various circuits in the office. When used for 120 ipm , the A lead from Fig. 1 is connected through the B key to relay C or D. The connection to the B lead is used for figures supplying 50 ipm . With the associated B key normal, the A or B lead is connected to the C relay causing it to follow the interruptions supplied by the relays of Fig. 1 . This causes ground to be connected to each of the 10 ?eads which are carried through the key contacts to the circuits requiring intermptions. When the C relay releases, the leads from the circuits, except those listed in Tables C and F or designated 60C, 60D, 120C, or 120D, are connected through the back contacts of the C relay to the D lamps of Fig. 3 to provide for sounding an alarm in case of a grounded lead. When the B and C keys are operated, the leads are transferred from the associated C relay to the D relay, which. wili then operate in the same manner as cescribed for the C relay.
C. Fig. 10

> 1.04 The keys and relays of Fig. 10 are furnished as required to provide the necessary $30-, 60-$ and J20-ipm leads to the various circuits in the office. When used for lao-ipm supply, the A lead from Fig. or $121 s$ connected through the B kev to relays C and Cl or D and Dl. The connection to the B lead is used for figures supplying 60 ipm. With the associated B key normal, the A or B lead is connected to the C and Cl relays, causing them to follow the interruptions supplied by the
relays of Fig. l or 12. This causes ground to be connect.ed to each of the 12 leads which are carried through the key contacts to the circuits requiring intermuptions. When the C and $C l$ relays release, the leads from the circuits, except those listed in Table C and F or designated 60C, 60D, líOC, or 120D, are connected through the back contacts of the relay to the D lamps of Fig. 11, to provide for sounding an alarm ir case of a groundec lead. When the B and C keys are operated. the leads are transferred from the associatod C and $C l$ relays to the D and Dl relays, which will then operate in the same manner ic described for the C and C : relays.

D. Fif. 14

1.05 When 30 1pm BRI is not provided, Fig. 14 is used in conjunction with Fig.
10. Fig. 14 converts 120 ipm into 30 ipm.

The 120 ipm is obtalned from Fig. 10, for
1201 pm on lead 120A. Also Fig. 14 converts continuous tone LTl from the power ringing circuit into interrupted tone LTl-30 ipm. The operation of transfer key E connects the $W, W 1, Z$, and $Z l$ relays instead of $R, R 1, S$, and $S l$ relays in case of trouble or as required by the routines prevailing in the office. This circuit operates when the connecting circuit grounds the D lead and shorts A and B.

FILTER CIRCUITS

E. FiE. 7

1.06 This filter is provided to reduce click: which might be received from

 busy flashes in connectors or selectors or toll connections. The A coll retards the build-up of current through the repeatire coil of the coll transmission seiector, and together with the E capacitor and E resistor reduces the surge when the ground is removed from the interrupter lead. When required, low tone is superimposed on the ground interruptions by the F capacitor and X option for line busy flash: or Q option for paths busy flash.
F. F1g. 15

2.07 Fig. 15 is provided for circuits requiring $120-\mathrm{ipm}$ busy tone without
flash. The IMF A capacitor prevents any steady voltafe condition from reachine the LT1 120-\& pm BR2 tone supply. The l49R inductor prevents tone from reaching the office battery supply.

ALARM FOR GROUNDED LEAD

1.08 As described in 1.03 through 1.05 , interrupter leads, except those
associated with the circuits listed in
Tables C and F, or designated $60 \mathrm{C}, 60 \mathrm{D}$, 120C, or 120D, are connected to the D
lamps of Fig. 3 or 11 when the interrupter
relays release. Should a trouble ground occur on one of these leads, a connection will be established every time the relay releases, through the D lamp and associated resistor when Fig. 11 is used and through the Jow resistor E relay of Fig. 4 or 8 . The operation of this relay causes the F relay to operate and in turn, the G relay of Fig. 5 and 9 to operate. The G relay operated operates the H relay of Fig. 5A or 5B, causing an intermittent alarm to be given. With Fig. 5B the H relay operated also lights the (30 IPM NC) or (00 IPM BF) or (120 IPM $B F$) lamp. The lamd of F1g. 3 or 11 will be ilghted on each release of the interrupter relay, thus indicating the lead on which the ground has occurred.
1.09 Since it is possible for a short spurt of ringing current to be sent back over the interrupter lead from a busy toll transmission selector, the alarm equipment is arranged so that no alarm will be sounded under this condition. The E relay is polarized so that it will operate on only one half of the ringing cycle while the slow-operate characteristics of the F relay prevent a short operation of the E relay from sounding an alarm.
1.10 The G relay is made slow-release to insure operation of the single stroke bell of the audible alarm circuit. This is necescary since the E, F, G, and H relays can be operated only when an interrupter relay is released during the open period of the interrupter while the bell of the audible alam circuit can be energized only during the closed period. The G and H relays remain operated long enough to insure that the beil will be sounded.

1.11 The low resistance of the E relay

 provides a path to battery for ring-ing current or other disturbances on one of the leads associated with that relay and thus prevents interference with other leads winch are connected to the same relay.

ALARM CIRCUIT FOR OPEN OR GROUNDED INTERRUPTER BRUSH - FIG. 6

G. Normal Operation

1.12 Fig. 6 is used to bring in an audible and visual alarm whenever a $30-$, 60-, or $120-1 \mathrm{pm}$ interrupter lead or brush becomes grounded or open or whenever the A, B, or C leads of Fig. 1, 12, or 13 become grounded or open. Whenever correct ground pulses are being received from the 30-, 60-, or $120-1 \mathrm{pm}$ brushes and leads A, B, or C, Fig. 6 functions as follows: the PU relay operates from battery from the common timing circuit. The PU relay operated locks under control of the PC relay, connects battery to the PA and PB relays and connects the AL relay of Fig. 6A or $6 B$ to the $A 7$. or $A l$ lead of the common timing circuit. Ground will not be
connected to the A7 or Al lead of the common timing circuit for at least 18 seconds after battery 18 connected to the PUT or PUl lead; therefore, the AL relay does not operate at this time. When ground is connected to the G and H leads, the $P A$ and $P B$ relays will operate. The PA and PB relays, operated, operate the PC relay and supply ground to hold the PU relay operated. At the end of the $30-60$, or $120-1 \mathrm{pm}$ pulse, ground is removed from the G and H leads, releasing the PA and PB relays. The PA and PB relays, released, remove the holding ground for the PU relay, releasing this relay, which releases the PC relay. Since battery may be held on the PUT or PUl lead for approximately 6 seconds, the above cycle of operation will continue until battery is removed from the PU7 or PU1 lead. After battery is disconnected from the PU7 or PUl lead, it is not again connected for approximately 24 seconds. During this interval the PU relay will not operate.

H. Grounded Brush Alarm

1.13 If the G or H lead or both of these leads become grounded, the PA or PB relay or both of these relays will remain operated when the PU relay operates. Should the PA relay be operated continuously while the PB relay follows the impulse: from the interrupter, the PC relay will operate and lock under control of the PU relay. The PU relay will not release, how ever, since the PA relay being operated continuously maintains the locking ground for the PU relay. If the PA relay remains operated until a ground impulse is receivei over the AT or Al lead, the AL relay will operate. The AL relay, operated, locks to the ground that is holding the PU relay, disconnects the $A L$ relay from the A7 or A : lead, connects ground to the 1A or 1 l (lear to light a pilot lamp, and grounds the $A B$ lead to cause the vibrating alarm bell to function. Ground also is connected to th. D lead causing a floor aisle pilot lamp t. be lighted. With Fig. 6B, the AL relay operated also lights the (BRUSH 30 IFM), (BRUSH 60 IPM), or (BRUSH 120 IPM) lamp. The alarm will be indicated in a similar manner should the PB relay be operated continuously. If both the $P A$ and $P B$ rela: $:$ are operated continuousily, the ground for holding the PU relay operated is obtained from both the PA and PB relays. The alarr is brought in as described above.

I. Grounded Brush Alarm - 30 IPM, Fig: 14 option J

1.14 Where Fig. 1418 used, J option is used with Fig. 6 and $6 B$. Option J provides ground through the D lead when the latter is grounded in the connecting circuit. If the $G H$ lead is grounded, the PA and PB relays operate as described in 1.13 and when the AL relay of Fig. $6 B$ operates, it operates relay L in Fig. 14.

Relay I grounds the D lead and shortcircuits leads A and B, thus maintaining the circuit of Fig. 14 operating. Relay L also provides ground to light lamp (BRUSH 30 IPM) of Fig. 6B.

Je Open Lead Alarm

1.15 Should the G or H lead or both of
these leads become open, the PA or PB relay or both of these relays will not operate when the PU relay operates. With the PA or PB relay or both of these relays nonoperated, the $P C$ relay will not operate. Under this condition the PJ relay will be held operated from ground through the back contact of the PC relay. The PU relay being held operated brings in the alarm as described in l.13.

K. Open Lead Alarm - 30 IPM, FiE, 14 Option J

1.16 Should the GH leari become open, the operation of the circuit in Fig. 6 will be as described in 1.15 except for the operation of the circuit of Fig. 6B which will be as described in l.14.

L. Return to Normal from an Alarm Condition

1.17 After the grounded or open condition on the G and H leads has been cleared, the PA and PB relays will operate and release in unison with the pulses from the interrupter. The PA and PB relays,operated, will operate PC. When the PA and PB relays release, the locking ground for the PU and AL relays will be momertarily opened due to the PC relay being locked operated to the PU relay. This momentary openine of the ground will release the $P U$ and $A u^{-}$ relays, restoring the circuit to normal, extinguishing the aiarm lamps, and silercing the alarm.
M. TST Key

1.18 The TST key is provided to facilitate

 testing of the alarm circuit. When the TST Key is operated, the G and H leads are opened and the alarm circuits will funct:on to indicate an open lead alarm as described ir 1.14 . To test for the alarm circuit operation under a "grounded atarm" condition, it will be necessary to block the PA and PB' relays operated. The circuit will then function as described in 1.13. When the TST key is releaced, the G and H leads are connected to the interrupter leads and the pilot lamp is extinguished.
N. Test Jack E - Fig. 8

1.19 The E Jack of Fig. 8 is used when testing or adjusting the E relay.

SECTION III - REFERENCE DATA

1. WORKING LIMITS
1.01 None.
2. FUNCTIONAL DESIGNATIONS
2.01 None.
3. FUNCTIONS
3.01 To provide separate ground leads 1r.terrupted at the rate of 30 lom .
3.02 To provide separate ground leade : : terrupted at the rate of 601 pm .
3.03 To provide separate ground leads 1 r. terrupted at the rate of 1201 pm .
3.04 To provide separate ground leads interrupted at the rate of 30 ipmi ,
601 pm , or 1201 pm and arranged with a filter to eliminate objectionable clicks which otherwise would be received on bus: flasher.
3.05 To provide for superimposed low tone on the ground interruptions supplited
through the filter for line buey, and peine busy, when required.
3.06 When required, to cause an audiolt alarm to be sounded and a visual
eignal to be displayed in case of a trunult ground on any $30-$, $60-$, or $120-1 \mathrm{pm}$ lead.
3.07 To provide means for transferring from the regular equipment to spare equipment in case of trouble or as requirea by the routine prevailing in the particuiar office.
3.08 Arranged to prevent ringing current which may be connected to one of the 30-, 60-, or $120-1 \mathrm{pm}$ leads by the opera 1 c of the ioll sard or the toll board posiltn dial circuit from operating the alarm.
3.09 To cause an audible alarm to be sounded and a visual signal to be
displayed in case the $30-, 60-$, or $120-1$? brush becomes grounded or open.
3.10 To provide for $30-1 \mathrm{pm}$ tone.
3.11 To convert 1201 pm to 301 pm .
3.12 To provide 120-1pm tone.
4. CONNECTING CIRCUITS
4.01 When this circuit is listed on a keysheet, the connecting informati... thereon is to be followed.

STEP-BY-STE CIRCUITS

A. Alarm Circuits

(a) Interrupter and Alarm Circuit for MR Trunks - SD- 31494-01.
(b) Trunk Distributing and Alarm Circi.it -SD-95976-01.

B. AC Power Alarm Circuits

(a) AC-DC Ringing - SD-31559-01.
(b) Superimposed Ringing - SD-31560-01.
(c) AC-DC Ringing, 301C Power Plant -SD-31617-01.
(d) Superimposed Ringing, 301C Power Plant - SD-31618-01.
(e) Pre-Pay Coin Trunk Interrupter and Alarm Circuit - SD-30852-01.
C. Ringing Interrupter and Alarm Circuits
(a) 8-Party TPS - SD-31336-01.
(b) 10-party TPS - SD-31298-01.
(c) 10-Party TPL - SD-31187-01.
D. Switch Trouble Alarm Circuits
(a) For Selector Shelves - SD-32043-01.
(b) For Connector Shelves and PBX Trunks -SD-32043-01.
(c) For Miscellaneous Shelves - SD-32048-01
(d) Alarm Checking Terminal Circuit -SD-31835-01.
(e) Busy-Back Circuit for Toll Switchboard Cords - SD-3109C-01.
(f) Line Load Control Circuit -SD-32108-01.
(g) Jack Circuit - Miscellaneous Tone -ES-241904-01.
E. Line Circuits
(a) Test - Incoming Trunks - SD-31636-01, SD-31642-01.
(b) Test - Local or Toll Train -SD-31932-01.
(c) Number Checking Trunk and Checking First Selector - SD-31291-01.
F. Selectors
(a) $A B$ Toll Preceding - SD-31241-01.
(b) AB Toll Transmission - SD-31646-01.
(c) Coin Control - SD-31853-01.
(d) Intertoll - Toll Transmission -SD-31681-01.
(e) Reverting Call - 4-Party Selective -SD-31556-01.
(f) Reverting Call - 4-Party SemiSelective - SD-31647-01.
(E) Selector Repeater - SD-30872-01.
(h) Sender - Automatic Ticketing -SD-31955-01.
(i) Central A Switchboard Intercept Trurk -SD-31513-O1.
G. B Switchboard Circuits
(a) Link Circuit - SD-31155-01.
(b) Position Circuit - SD-31160-01.
(c) Switch Trouble Alarm Circuit -SD-31517-01.
H. Test Circuits
(a) Automatic Ticketing Trunk - SD-31944-01.
(b) D1al - SD-31138-01.
(c) Permanent Signaling - SD-31402-01.
(d) Common Timing Circuit - SD-31310-01, SD-31558-01.
I. Trunks
(a) Automatic Ticketing - SD-31949-01.
(b) Incoming - CX Signaling - SD-31887-0.
(c) Intercepting - Auxiliary - SD-32084-" .
(d) KP Outcoing Completing - SD-31654-01.
(e) Operator 2-Wire Recordine Completine Trunk Noncoin and Coin - SD-31678-01. SD-31678-02.
(f) Recording - Completing Trunk -2-W1re Coin - SD-31123-01.
(g) Recording - Completing Trunk CX Signaling - SD-32042-01.
(h) Special Service Trunk - SD-31375-01.
(1) Vacant Code - SD-31937-01.
(1) Auxiliary Trunk Line Number Method c Coin Control - SD-32025-01.

TOLL CIRCUITS
J. Toll Switchboard No. 1
(a) Tone Jack Circuit - SD-55163-01.
(b) 3-Wire Recording Completing Trunk Coin - SD-62496-01.
(c) Intertoll Dialing - Rotary Out Trunk Switch - SD-55945-01.
(d) Intertoll Dialing No. Circuit Signal Trunk Circuit - SD-56439-01.
K. Toll Switchboard No. 1, 3, 3C, Etc
(a) Overflow Circuit - SD-64129-O1, SD-63847-01.
(b) Relay Interrupter Circuit - SD-62461-01.
(c) Ringing Control Circuit - SD-62798-01, SD-62113-01.
L. Tol1 Switchboard No. 3. 3C, Etc
(a) Auxiliary Signal and Flashing -SD-62100-0i.
(b) Busy-Back or Reorder Circuit -SD-60803-01.
(c) Discriminating Circuit - Operator's Control Circuit - SD-64136-01.
(d) Tone Jack Circuit - SD-62831-01.
(e) Keyset Circuit - SD-55010-01, SD-64137-01.
(f) Reorder Circuit - SD-62687-01.

M. Test Circuits

(a) Position Test Circuit - SD-55056-01, SD-63971-01.
(b) Key Pulsing - SD-63853-01.
(c) DC and MFKP TS No. 1 - SD-56147-01.
(d) Concentrating Equipment Test Line Circuit - SD-56274-01.
(e) Multiple Lamp Test Circuit -SD-56471-01.
N. Trunis
(a) Intertoll and Rural - SD-64428-01.
(b) Automatic Out to Desk - SD-63820-01.
(c) Outgoing to Temporary Operator Position - SD-53478-01.
(d) Straightforward Switching Trunk -SD-62510-01.
(e) Toll Switching - Repeated Dialing -SD-62022-01.
(f) Toll Switching Key Pulsing Repeated Dialing - SD-55901-01.
(g) 3-Wire Recording Completing - Coin -SD-62441-01.
(h) Ringdown Intertoll-SD-62614-01, SD-62780-01, SD-64823-01.
(i) Intertoll Dial Timing Circuit -SD-64587-01.

0. Toll Testboard 17B and 18B

(a) Keyset Circuit - SD-55037-O1.
(b) Timed Ringing Circuit - SD-64614-01.
(c) Intertoll Dialing - Repeated Dialine Toll Switching Trunk - SD-64487-01.

P. Crossbar Suitching

(a) Link Allotting and Alarm Circuit -SD-64157-01.
(b) Position Group Control Circuit -SD-64155-01.
(c) First Trouble Tracing Selector Circuit - SD-68244-01.

702A PBX CIRCUITS
(a) Audible and Flashing Recall -SD-66216-01.
(b) Auxiliary Line - SD-66333-01.
(c) Interrupter Circuit for Trunk Lamps -SD-66328-01.

COMMON SYSTEMS

Q. General

(a) Major Audible Alarm - SD-95454-01.
(b) Incoming Trunk Register and Connector Circuit - SD-96501-01.
(c) Register Check and Connector Control Circuit - SD-96504-01.
R. Announcement Desk
(a) No. 1 Desk Circuit - SD-90253-01.
(b) No. 1B Desk Circuit - SD-90042-01.
(c) Answering Time Recorder - SD-96235-01.

S. A Switchboard Circuits

(a) Audible and Flashing Recall -SD-90458-01.
(b) Common Timing and Alarm Circuit -SD-95052-01.
(c) Cord Test Circuit - SD-90501-01.
(d) Inccming Trunk from Panel or SXS -SD-95569-01.
(e) Keyset Circuit - SD-90460-01.
(f) Position Circuit - SD-90457-01.

Page 6
(g) Key Monitoring Circuit - SD-96118-01.
(a) Emergency Ringback Circuit -SD-95083-01.
(i) Cable Test Desk No. 3 - Auxillary Signal Circuit - SD-90406-01.
I. Information Desks
(a) Flashing Circuit - SD-90477-O1.
(b) Desk No. 3 Allotter Circuit -SD-90003-01.
(c) Desk No. 3 Sequence Storing Circuit -SD-90004-01.
(d) Desk No. 3 Start Circuit -SD-90006-01.
U. Local Test Desk No. 14
(a) Telephone and Loudspeaker Circuit -SD-90222-01.
(b) Auxiliary Signal Circuit -SD-90628-01.
(c) Howler Circuit - ED-90057-01.
(d) Line Irsulation and Breakdown Circuit - SD-90055-01.
(e) Primary and Secondary Test Circuit -SD-90497-01.
V. Misceilaneous Circuits
(a) Key Cabinet No. 20 Chief Operator's Desk - SD-96136-01.
(c) Operating Room Calling Signal Cir-cuit- SD-96087-01.
(c) 25 Operator's Training Equipment Interposition Tmink - SD-96242-01.
(d) $2 B$ Operator's Training Equipment Signal Cord Circuit - SD-96059-01.
, E) Permanent Signal Holding Trunk -SD-95474-01.
-) Plugsing Up Frame Auxiliary Signal Circuit - SD-90594-01.
(E) Repair Service Desk No. 2 Auxiliary Signal Circuit - SD-90620-OI.
(h) Multiline Service Observing Circuit PBX - SD-95510-01.*
(1) Multiline Service Observing Circuit Speed of Answer - SD-95563-01.
(j) Test Circuit for 209 FA Relays -SD-90411-01.
(k) No Such Number Tone Supply Circui: -SD-96357-01.
(ℓ) Test Line Circuit - One-Way Trar.smission Testing - SD-96000-Ci.
(m) Local Test Cabinet No. 3, Auxiliary Signal and Flashing Circuit -
SD-96230-01.

SECTION IV - REASONS FOR REISSUE

A. Changer and Added Functions
A. 1 Fig. 15 , is added to provide $120-1 \mathrm{~m}^{m}$ busy tone without flash.
B. Changes in Apparatus
B. 1 ADDED:

I - IMF Capacitor designated A - FiE 1 - 149R Inductor designated A - FiE.
D. Description of Changes
D. 1 Added Fig. 15 and Table K.
D. 2 Added reference to Fig. 15 to "Fig.
and Options Used Table."
D. 3 Revised Notes 117 and 118 to show usr of Fig. 15.
D. 4 Added Note 123 to describe use of Fig. 15.
D. 5 Rated Note 122 "A\&M Only."
D. 6 Revised title of Fig. 7.
D. 7 Revised Fig. II to show connection tFig. 15.
D. 8 Revised Fig. 8 to show rate of provision when Fig. 15 is used.
D. 9 Added Note 303.
D. 10 Added connecting circuit informatic to Tables D, E, G, and H.
D. 11 Rate Circuit A\&M Only for 350A cifi a
D. 12 This circuit replaces SD-31207-01 icept for additions on this relssue.
*Typical Circuit

BE: L TELEPHONE LABORATORIES, INCORPORATED

DE. T 2363-NPS-RJJ

