Property of
Engineering

1A ESS ${ }^{\text {m }}$ Switch
 Traffic Measurements
 Feature Document

Lucent Technologies Inc. - Proprietary
This document contains proprictary information of Lucent Technologies Inc. and is not to be disclosed or used except in accordance with applicable agreements

Copyright © 1999 Lucent Technologies Inc.
Unpublished and Not for Publication
All Rights Reserved
Printed in U.S.A.

Contents Page
4. Administration 14
Measurements 14
5. Supplementary Information 16
Glossary 16
References 16
A. Lucent Technologies Practices 16
B. Other Documentation 17
6. Abbreviations and Acronyms 18
Figures

1. Example of H and C BlockOutput Message Format andList Number Identification25
2. Total Network Data System Configuration 26
3. C Schedule Traffic
Translator- Primary Translation Words 28
4. DA15 Schedule Traffic
Translator- Primary Translation Words 30
5. S Schedule Traffic Translator 32
6. Procedure for Incorporating Traffic Measurements 33

1. Overview

Defmition

1.01 The Traffic Measurements feature provides measurements internal to the 1A ESS Switch. These measurements are used to evaluate the performance of the switching system or to identify possible trouble conditions. The Periodic Traffic Count enhancement provides the capability to separately accumulate both incoming and outgoing trunk time-outs. The output message TN24 is printed each hour at the maintenance TTY displaying the hourly accumulated counts.

NOTE:
231-090-207 and 231-090-207, Appendix 1 (1 and 1A ESS Switches) are combined into two practices: 231-190-207 (1 ESS Switch) and 231-390-207 (1A ESS Switch).
1.02 This practice is being reissued to include EGOs 040-043 for TMC 180 and EGO 009 for TMC 130 to support the AIN Originating Called Party Busy/No Answer Office Trigger feature. Changes from Addendum Issue 1 have also been included.

1.03 This practice does not contain admonishments.

1.04 Lucent Technologies welcomes your comments on this practice. Your comments aid us in improving the quality and usefulness of Lucent Technologies documentation. Please use the Feedback Form provided in this practice or call the Lucent Technologies Documentation Preparation Group at 630-224-7053.
1.05 Additlonal copies of this practice, associated appendices, and all referenced practices may be ordered from the Lucent Technologies Customer Information Center. One of the foliowing methods should be used:
(a) Lucent Technologies Employees: Lucent Technologies employees should mail Form IND 1-80.80, available from the Lucent Technologies Customer Information Center, to: Lucent Technologies Inc.

Customer Information Center Attention: Order Entry Department 2855 N. Franklin Road
P. O. Box 19901

Indianapolis, Indiana 46219-1999

or

Call 1-888-LUCENT-8 (1-888-582-3688)

NOTE:

When ordering documentation from the Lucent Technologies Customer Information Center, each Lucent Technologies Business Unit/Division must be identified and all required billing information must be provided.
(b) Local Exchange Carrier (LEC): Orders shoutd be processed through your Technical Information Resource Management (TIRM) coordinator. If you are unsure who your TIRM coordinator is, call 1-888-LUCENT-8.
(c) Federal Government: These orders should be processed through:

Lucent Technologies Inc.
P. O. Box 20046

Greensboro, NC 27420

or

Call 919-279-7424
(d) All Others: Call 1-888-LUCENT-8.
1.06 Every effort has been made to ensure that the information in this practice is complete and accurate at the time of printing. However, information is subject to change.

1.07 Part 6 lists the abbreviations and

 acronyms with applicable terms used in this practice.1.08 This practice is issued by:

Document Preparation Group c/o M. W. Auter
Lucent Technologies Inc.
Network Software Center
2600 Warrenville Road
Lisle, IL 60532

Background

1.09 The 1A ESS Switch traffic data measurement programs generate, accumulate, collect, transmit, and print out traffic data. This traffic data consists of peg, usage, and overflow counts generated by call processing system and maintenance programs as specific events occur, and by traffic data measurement programs as requested according to a time schedule.

1.10 The Periodic Traffic Count

 enhancement assists the maintenance personnel in determining if the number of TNOBs has been reduced by repairs made to faulty carrier systems.
1.11 Peg Counts are cumulative counts of

 the number of times a specific event occurs during a fixed time interval. Examples are the number of times the system attempts to seize a customer digit receiver for dial tone in an hour, the number of times an attempt is made by an incoming call to seize a multifrequency receiver in an hour, and the number of times the system completes a cycle through all levels of the base level programs (E-to-E cycle) in a 15-minute period.
1.12 Usage (the total load measured on a

 group of facilities) is a cumulative count of the number of items found in a busy state during each periodic scan of a particular group of items. The busy conditions found during each scan are totaled for a fixed period of time (for example, 1 hour) to obtain usage. Usage measurement with scanning frequencies of 36 scans per hour (one every 100 seconds) results in hundred call seconds (CCS) data. A fast scan usage measurement is scanned once every 10 seconds rather than once every 100 seconds. All fast scan (AFS) refers to a usage measurement item that is generically assigned to fast scan. Fast scan and AFS data must be divided by 10 to obtain CCS data. Fast scan usage measurements include trunk and service circuits. Usage measurements obtained on service circuit groups are traffic usage (maintenance usage excluded), and usage measurements obtained on trunk groups are generally total usage (maintenance usage included). Fast scan usage measurements must be assigned to the first 128 registers of the hourly busy hours (H), hourly continuous through day (C), or special studies selection (S) schedules. The AFS usage measurementsdo not have to be assigned to the first 128 registers of these schedules.

1.13 Overflow is a cumulative count of the

 number of times an attempt to cause a specific event failed (during a fixed time interval) because of the lack of specific facilities (circuits or paths). When an overflow count is scored, its associated peg count is also scored. A score in an overflow register does not always indicate that a call has been "lost." A score sometimes indicates that a call has been delayed, that is, placed on queue and held untll the desired circuit becomes avallable. An example of a "lost" call is an outgoing call requiring an outgoing trunk in a full direct trunk group and all trunks are busy (call routed to reorder). An example of a delay calli is a customer initializing a request for dial tone by going off-hook and all customer digit receivers are busy. This request is queued until service can be provided.
1.14 Traffic measurements output schedules

 are described below.(a) The H traffic output schedule collects items selected by the telephone company for measurement during the office and component busy hour periods.
(b) The C traffic output schedule collection involves an hourty or halfhourly count for a continuous period of time. Counts available on this schedule are selected by the telephone company.
(c) The selected quarter hour (Q or DA15) traffic output schedule provides traffic data at 15-minute intervals selected by the telephone company.
(d) The local quarter hour (TC15) traffic output schedule is a fixed collection of 15-minute traffic counts on the quarter-hour determined by the generic program.
(e) The division of revenue (TDR01) traffic output schedule is a 24-hour peg count of items pertaining to the Division of Revenue Peg Counts feature. Refer to Part 5 A(8).
(f) The S1 (special studies collection) and S2 traffic output schedules are collections of items singled out by the telephone company for special studies. An S3 schedule is used for
other common carrier trunk group traffic counts.
(g) The TC24A schedule contains a 24 hour cumulative total of office counts determined by the generic program.
(h) The TC24C schedule is a general purpose measurement schedule utilizing a minimum of 50 up to a maximum of 150 registers associated with chart column class of service, subscriber line busy, and office or foreign area preroute.
(i) The TC24Z schedule provides a count of coin zone initial charge calls.
(j) The HILO quarter hour (HL15) traffic output schedule prints generically determined information concerning traffic conditions on the HILO 4-wire network.
(k) The REPT TRFRSS schedule reports the cumulative traffic data for all remote switching systems (RSSs) served by the host switch.
(0) The NM10 message gives a limited set of traffic data for the network management personnel. An indication of the level of traffic being handled by the office is given by printing the total number of incoming, originating, and tandem calls for the last clock quarterhour. In addition, peg counts for originating and tandem no-circuit (that is, no trunk) condition and transmitter time-out (to include preemption) by transmitter type are printed for the last clock quarter-hour.
(m) The NM11 message gives the traffic counts of the number of calls affected by each active code block control. The counts are identified by code and are printed for the last clock quarter-hour.
(n) The NM12 message gives the traffic counts of the number of calls affected by each network management preprogrammed trunk group control and peg, and overflows on the trunk group for which the preprogram is defined. The counts are identified by the preprogram number and are printed for the last clock quarter-hour.
(0) The NM24 message gives the traffic counts of the number of calls affected
by each network management flexible trunk group control and peg, and overflows for the trunk group on which control is active. The counts are identified by trunk group number, and are printed for the last clock quarterhour.
(p) The connected trunks per group (CT/G) schedule, when activated by the traffic map, caused the programs to compute and print the total number of trunks connected (in memory) to each of the trunk groups assigned on the H and C schedules. Any trunk group with a 10 -second scan rate (fast scan) is excluded from the count.
(q) The weekly (M) schedule provides CCS usage data related to office line link networks and trunk link networks load distribution. It is recommended that the W schedule print at a time other than during the 2:30 a.m. printout.

Periodic Traffic Count

1.15 A separate count of the incoming and outgoing time-outs is being kept. However, this count is only accessible to the craft personnel when the piant measurements (PM) report is printed. This report is printed automatically at 2:30 a.m. or can be manually requested at the TTY. A manual request displays the accumulated total for the entire month up to the time the request is made.

1.16 The Periodic Traffic is used to

 separately accumulate the incoming and outgoing trunk time-out on an hourly basis. Then every hour, on the hour, these accumulated counts are printed at the assigned maintenance TTY. This hourly accumulation enables the craft personnel to easily determine if repairs that have been made to faulty carrier systems have affected the number of time-outs. After each printing, the two counts are zeroed, giving the craft personnel only the accumulated counts for the past hour.
Availability

1.17 The Traffic Measurement feature avaliability of individual traffic measurements with category page headings is shown in paragraph 4.02.

The Traffic Measurement feature is a
base feature available with all active generic programs. Various optionally loaded 1A ESS Switch features have associated traffic measurements. These too can be identified using the category heading in paragraph 4.02.

```
1.19 The Periodic Traffic Count enhancement is initlally available with
the 1AE8A.16, 1AE9.12, 1AE10.07, and
1AE11.01 periodic partial updates.
```


Feature Assignment

1.20 Traffic measurements are provided on a per generic program basis.

2. User Perspective

User Profile

A. Customer

2.01 A customer with the Traffic Data to Customer (Pollable) - Electronic Tandem Switching feature may obtain (via a dial-up data links facility) selected traffic data on trunk groups, simulated facility groups, and queues. This data may be polled by the customer either hourly or dally. The customer selects measurements from the following facility and/or queue counts. Trunk/simulated facility group counts consist of an incoming peg count, outgoing peg count, total usage, maintenance usage, overflow, and overflow to reorder/queue. Queue counts include peg counts, usage, overflow, abandons, and timeouts. Refer to Part 5 A(3) for details.
2.02 A customer having the basic Automatic Call Distribution (ACD) feature with a TTY terminal on customer premises may receive traffic count data, nonusage trunk scan (NUTS) data, and locked up trunk scan (LUTS) data. Refer to Part 5 A(4) for details.
2.03 A customer with the ACD - Phase 1 feature with a 90A Customer Premises System and/or 1A terminal on premises may receive traffic, NUTS, and LUTS data. Refer to Part 5 A(6) for detalls.

2.04 A customer with the ACD-Phase 2 feature may have the ACD-ESS

 Management Information System feature or the 12A Customer Information System feature. These features provide an interface with a minicomputer located on the customer premises; the minicomputer can produce analysis of traffic count data. The customer may request data or have it sent according to a predefined schedule. Refer to Part 5 A(9) for details.
B. Telephone Company

2.05 In a 1 A ESS Switch without the Engineering and Administrative Data Acquistion System (EADAS), traffic information is provided through the dial service supervisor 1A terminal channel, commonly referred to as the administrative traffic channel. In a 1A ESS Switch with the EADAS, some traffic data is outputted by the TTY, but most of the traffic data is sent to the EADAS upon request. See Table A for traffic schedule destination and frequency information. For information on activation and deactivation of Network Management and EADAS features, refer to Part $5 \mathrm{~A}(14)$ and $\mathrm{A}(15)$ for details.
2.06 Part $5 B(3)$ shows an example of the use of the ESS 1400 form, Traffic Register Assignment Record, to specify H schedule information. Figure 1 shows an example of the H schedule output as printed on the dial service supervisor 1A terminal channel. There is a direct relationship between the position of the counts in the output message and the entries made on the ESS 1400 form. For instance, the underlined count of 000006 in the first row of Figure 1 corresponds to list number 0004 on the example Traffic Register Assignment Record and represents the measurement for TMC 005, equipment group or office count number (EGO) 031, intraoffice calls peg count. The list number is found from the output message in the following manner. The first digits (up to three) of the list number are printed in parentheses above each left count in the various rows of the output message. In Figure 1, these digits are (0), (1), (2), (41), and (42). The columns in the output message are 0 through 9 reading from left to
right; therefore, the underlined count is in column 4. This represents the last digit in the list number. The row number corresponding to the underlined count is 0 , so the list number becomes 0004 (filled out to four digtts with leading 0 s). The corresponding list number in row 42 is 0424.

2.07 The ESS 1401 form, Traffic Register

Layout Record, is a tool for planning traffic register assignment to the H and C schedules. It is organized in the same row arrangement as the printout to make the planning job easier. However, the ESS 1400 form must be prepared for translation and administration purposes. It is also satisfactory for planning, and it may eliminate the need for preparing the ESS 1401 form.
2.08 On the ESS 1401 form, each traffic register has a rectangular space in which the pertinent details of the measured them may be included. There are spaces for 100 register assignments per page. The sequence of assignments are the same as those printed on the network administration 1A ESS Switch terminal data printouts for the H and C schedules. The vertical row number identifies the tens digit of the register number and the horizontal number represents the units digtt of the register number.
2.09 The lower portion of each register space is divided into segments to include the TMC and the EGO. Traffic measurements assigned to the H, C, or S schedules are identified by two translation fields, the TMC field and the EGO field. A TMC indicates the classification of the measurement such as office counts, trunk group counts, centrex counts, etc. An EGO defines a specific group or count within the classification. An EGO may identify a specific trunk group associated with a traffic count, or may identify a specific office total such as originating calls.
2.10 Traffic registers, whether standard or variable, are identified by the TMC. The TMC describes the type of measurement being made.
2.11 The EADAS collects data from a number of central offices, transmits exception reports back to the network administrator site, and prepares magnetic tapes for downstream processing via the Traffic Data Administration System, etc. When the EADAS is used to collect traffic data, three basic assignment considerations are: decade scale register
assignments, cycle count register assignment, and coordination of the traffic map with the EADAS. The EADAS automatically counts decade scale assignments from 1A ESS Switches which exceed 32,767.

2.12 A cycle count register is assigned via

 the 100 -second usage scan cycle count feature. This is a base feature, but it must be assigned to a traffic measurement schedule to be active. It is defined as TMC 005, EGO 100, and can be assigned to the H, C, and/or DA15 schedules. This cycle count must be assigned to the S schedule. The cycle count must appear on both the H and C schedules as register 0000 for all 1A ESS switches processing H and C schedule data through the traffic data administration system (Flgure 2). Even if data is not being sent through it, it is recommended that the count still appears on both H and C schedules for local validations. If traffic data is not transmitting to EADAS or the traffic data administration system, it is recommended that the count still be assigned to register 0000 to preclude any transition problems in the event of conversion to mechanized data coliection.
2.13 Collection of the H and C schedule is

 entirely under control of the EADAS.However, it is still avallable to maintain traffic map coordination with EADAS for backup in case of EADAS or data link failures.

2.14 Telephone companles can conduct

 several traffic related studies; one of these studies is the subscriber line usage study. This study generates automatic message accounting records on all originating and terminating traffic. An indicator causes automatic message accounting records to be marked as a subscriber line usage study call. This is accomplished on originating callis by assigning dedicated chart columns to applicable lines. For terminating calls, subscriber line usage study is dependent on the 800 Service feature.
2.15 Verification of H, C, S1, S2, and S3

 schedule traffic register data can be done with the TRF-VFY input message. The LIST option of the input message is used to identify all or part of these registers. The TC17 output message follows. Another option, SRCH (search) is used to identify a specific type of TMC or EGO. The TC18 output message follows. Another option, ABRT (abort), can be used to terminate either output message at any time. Refer to Part $5 \mathrm{~B}(1)$ and $\mathrm{B}(2)$ for details.
Feature Description

A. General

2.16 Traffic measurements program consists of several routines which are periodically executed according to the traffic timetable matrix (traffic map). The matrix activates the collect routines, print routines, and activate routines. [When the office has EADAS, 4 controls printing of the H and C schedule data (see Table A).] This matrix consists of a 70 -word block of call store which is provided in every office. The timetable routines are scheduled via a message from elther the traffic or local maintenance 1A ESS Switch terminal. This message sets 35 memory bits with a 0 or 1 which identifies the exact period, or periods, to be measured or printed out by quarter-hour, hour, and day. The routines are numbered from 00 through 45; routines 00 through 22 are on the ESS 1402-1 form; routines 23 through 45 are on the ESS 1402-2 form. The routines that may be scheduled are shown in Table B.
2.17 The collect routines tell the program at which times of day to collect data.
These routines cause all the traffic data associated with a specific schedule to be transferred from the accumulators to the holding registers or added to the totaling registers. When this action takes place, the totaling registers are reset to 0 after the last totaling/holding register is processed, and the previous data in the holding registers is replaced by the data from the totaling registers. If the H or C collect routine is not performed for an interval of several hours, the totaling registers will continue to collect data and the data when transferred to the holding register will reflect the entire period of time. For example, if the H or C routine is set for 12 midnight and for 9:00 a.m., the data collected at 9:00 a.m. will be the accumulation from 12 midnight to 9:00 a.m. The data will remain in the holding registers until the next collection.

2.18 The print routines tell the program when

 to print the holding registers associated with the various registers on the network administration 1A ESS Switch terminal channel or send the data to EADAS. If data is being collected hourty, the holding registers will retain the data for the 1 -hour period. The data may be printed out at any time during that hour. Some routines ($07,08,13,14,15,16,17$,19, 20, 21, and 22) cannot be scheduled to print out at the same quarter-hour. Most traffic data printouts are received on the network administration 1A ESS switch terminal only. The TC15 schedule is transmitted to both the network administration, master control center, and network management 1A ESS Switch terminals, and to EADAS if the office has the EADAS feature capabilities.

2.19 The traffic measurement program contains a routine corresponding to

 each collect and print routine of the traffic map. Every 15 minutes the executive control program interrogates the traffic map to determine what schedule(s) is to be activated and flags those routines that are to be activated.
2.20 Traffic data collection, accumulation,

 and printing are executed during E level of the routine main program cycle. After identifying the routine to be collected (for example, the H 1 routine), control is transferred to the traffic routines. After storing the time of day, the traffic routine accesses the master head table word 22 (F4HHTP + 22) which contains the starting address of the H schedule head table. The first word of the head table contains the starting address of the subtranslator. The first primary translation word in the first subtranslator is always associated with the traffic register 0000 and the second primary translation word with register 0001. The first primary translation word of the second subtranslator is associated with traffic register 0128. After locating the first primary translation word, the traffic routine reads the TMC (assume TMC is 01). Type measurement codes $00,01,02,03,04$, and 06 are all associated with counts of service circuits and trunk groups. The program then reads the trunk group number (equivalent to the EGO). With this information, the parameter area in call store is accessed to locate the head cell for the trunk group assigned in the primary translation word. The routine reads the starting address of the trunk head cell table. To locate the head cell for the trunk group assigned in the primary translation word, the routine multiples the trunk group number by 4 (4 words constitute a trunk group head cell) and adds the result to the stanting address of the head cell table. This calculated address permits the program to have access to the first word of the specified trunk group head cell. The routine accesses the specified trunk corresponding to TMC 01 ; this word containsthe accumulator for the trunk group peg count. The routine reads the data from the accumulator and adds it to the totaling register. The routine zeros the accumulator after the last totaling register is processed to start a new collection period. The traffic routine returns to the parameter area of program store to locate the block of call store words containing the totaling and holding register for traffic counts. Using the starting address from parameter word B6SCHA, the routine locates the words associated with the primary transiation word being used for this count.
2.21 The traffic routine also accesses the parameters to get the totaling register.
The traffic routine does not return to parameters to get the holding register because the holding register always follows the totaling register.

B. Totaling Register Operation

2.22 When a peg count or usage event

 occurs, or for an overflow count each time a given event falls, one is added to an accumulator associated with the particular event. After a specified time, the contents of the accumulator are moved into the corresponding holding register. Holding registers are provided for all items when counts are assigned to a collection schedule. If a count is assigned to a schedule collecting data over a period greater than 15 minutes (that is, 4 quarter-hour totals are added in an hourly totaling register to obtain both quarter-hour and hourly counts), the contents of the accumulator are added to a totaling register. After a specified time, the contents of the totaling register are moved into the corresponding holding register. The totaling register is zeroed. When a printout of the traffic data is requested, the contents of the holding register are printed, or the contents of the holding register are transferred out of the 1A ESS switch to EADAS when EADAS requests data.
C. Peg Count and Overflow Register Operation

2.23 When a peg count or overflow event occurs in a central office, a one is added to the accumulator associated with that particular event. After a specified interval of time (every 15 minutes), the contents of the accumulator are transferred into the associated holding register or added to the corresponding
totaling register (counts assigned to a schedule collecting data over a period greater than 15 minutes). The accumulator is zeroed after the last totaling/holding register is processed. If a totaling register is required, the contents of the totaling register are transferred to a holding register, and the totaling register is zeroed. The contents of the holding register can be printed out via the 1A ESS Switch terminal at any time; however, the print request must take place before the unioading of the accumulator or totaling register, or the hodding register is rewritten with new measurement data.
D. Usage Register Operation-Truak and Service Circuits

2.24 An up-down counter is increased or

 decreased by one corresponding to a specific group of items whenever one ltem of that group becomes busy or ide, respectively. (Thus, the up-down counter reflects the number of busy counts in a group at any given instant.)2.25 At a specified frequency (once every 10 seconds for fast scan or once every 100 seconds for regular scan), the contents of an up-down counter are read and its contents are added to the contents in the usage accumulator. After a specified time, usually every 15 minutes, the contents of the usage accumulator are transferred into an associated holding register. The usage accumulator is then zeroed if the count is a quarter-hour count. A printout of the contents of the holding register must be requested before the next unloading of the usage accumulator or the holding register is rewritten with new data.

E. Usage Register Operation - Junctor Type

2.26 The Traffic Measurements feature

 accumulates the usage counts for certain items by adding the assoclated busy bits that are set in the busy-idle words to an accumulator. The busy bits are examined and added to the accumulator every 100 seconds for long holding time items, such as junctors, and every 10 seconds for short holding time items. After a specified time, the contents of the usage accumulator are transferred into an associated holding register. When the contents are transferred, the usage accumulator is zeroed. A printout of the contents of the holding register can be requested; however,the request must occur before the next unloading of the usage accumulator or the holding register is rewritten with new data.

F. Usage Register Operation - Weekly Measurements

2.27 The number of busy bits corresponding to the item to be measured are examined every 100 seconds. If found busy, the number of items found busy are added to the contents of the weekly usage register corresponding accumulator. The items measured are as follows:
(a) Selected Lines and Concentrator Usage accumulates the usage of each line by counting each line activity bit (line item) that is indicating a busy condition.
(b) Line Concentrator Usage accumulates the usage by counting the number of busy fems corresponding to the activity of that concentrator A link.
(c) Trunk Link Network-Grid Usage accumulates the usage by counting the number of busy items corresponding to the activity of that trunk switch frame or trunk switch circuit grid A link.

All of the above counts are added to the contents of its corresponding accumulator. The contents of the accumulator can be requested at any time via the 1A ESS Switch terminal.

Special Planning Considerations

2.28 Parameter set cards are required to

 allocate call store memory to serve as traffic registers for the H and C schedules. Coordination between the network administrator and traffic engineer is required to assure that sufficient traffic registers are allocated. The network administrator is responsible for completing the ESS 1400 form which specifies the use of the traffic registers.
2.29 In 1A ESS Switches with the EADAS

 feature, the collection of hourly and dally traffic data is under control of the EADAS However, weekly data collection is still controlled by the traffic map even when the EADAS is operational. Therefore, it is essentialthat the traffic map be kept current at all times. The traffic ESS administrator should also maintain a feasible collect and print schedule for all traffic schedules. This action is necessary so that 1A ESS Switch terminal output during the EADAS fallures are useful. The W schedule print specifications may be in conflict with the objective since they are normally set for the EADAS collection times. It may, therefore, be necessary to quickly modify these specifications at the 1A ESS Switch in the event of the EADAS failure to avoid garbled hourly schedule outputs.

230 In order to preclude 1A ESS Switch terminal channel overload and loss of

 data, the network administrator should consider the quantity of registers involved when scheduling traffic measurement printouts. In the event that the network administrator channel is terminated at a switching control center, procedures to minimize printing of all schedules and hours of data must be implemented to avoid potential switching control center real-time problems during the EADAS fallure.
Interactions

231 To evaluate existing service and to plan

 for future needs of the office, empirical data is required. Converting traffic data into the form required for engineering use and maintaining history files of traffic data can be costly and subject to error. To help simplify conversion and maintenance of traffic data, a package of time-shared computer programs calied Stored Program Control System-Central Office Equipment Reports (SPCS-COER) is avallable to the operating companies.2.32 The input to the SPCS-COER reports are the traffic counts assigned to the H schedule. The input medium is either punched paper or magnetic tape containing the H schedule data. If the office is not equipped with the EADAS feature, the required tape is generated at the tape perforator associated with the administrative traffic 1A ESS switch terminal. In an office with EADAS, H schedule data and optional C schedule data are transmitted to the EADAS and a magnetic tape containing H schedule (and possibly C schedule) data is generated by the EADAS. The EADAS generated tapes are processed by the traffic data administration system. One of
the functions of this system is to generate a magnetic tape containing the H schedule data.

2.33 The Division of Revenue Peg Counts feature enables the 1A ESS Switch to

 display various traffic measurements that are required to perform the division of revenue function. This feature and related measurements are covered in Part 5 A(B).2.34 The Recelver Attachment Delay Report feature provides a 1A ESS Switch with an indication that the office is experiencing delays in providing receiver connections for incoming traffic. Measurements data include the H, C, TC15, DA15 schedules, and the PM output messages, PM01 and PM02. Refer to Part 5 A(5) for detalls.

2.35 The Fast Repeat of Answer Supervision

 (FANS) feature reduces the time required to repeat answer supervision from an outgoing intertoll trunk to an incoming trunk on through switched toll calls, and from a toll completing trunk to an incoming trunk on through-switched toll calls. (The FANS feature does not apply to incoming centralized automatic message accounting trunks.) This feature also reduces the possible distortion of the gateway wink signal on the international direct distance dialing. Six traffic counts, available on the H, C, and DA15 schedules, are unique to the feature. These counts are the fast answer junior register peg, overflow, and usage counts for the fast answer senior register peg, overflow, and usage counts.
236 There is an added capability of rapidly transmitting traffic data to the EADAS

 through the use of a high-speed interface (1200 baud). To utilize the high speed mode of operation, the EADAS Network Management optional feature is provided. When this feature is used in a 1A ESS switch, the network administrative 1A ESS Switch terminal will not print hard copy of the H and/or C schedules. That is, these schedules are transmitted directly to EADAS for downstream processing and are not printed on the network administrative 1A ESS Switch terminal. If an operational fallure causes the EADAS to go down, the IA ESS Switch automatically switches (after failing to receive polls within a specified time period) to the non-EADAS mode. Once the IA ESS Switch changes modes from the EADAS to the non-EADAS, data collection and printing become a function of the traffic map.
Assignment Limitations

2.37 Scheduling printout of traffic data

 requires coordination. Do not schedule overlapping printout; overlapping printout results in mutlated data.2.38 If the chart column class of service count is desired as a dally count, remove all general purpose registers associated with the desired chart column from the H and/or C schedules. Otherwise, the dally TC24C output message will contain invalid data.
239 The subscriber line busy count should onty be made on individual lines and/or the last line of a series completion group. This assures that the count reflects those calls routed to busy tone.

2.40 Lines that have either the Call

 Forwarding and/or Call Waiting feature should not be assigned to a subscriber line busy count. Activation or deactivation of these general purpose counts may destroy the recent change information on the line, thus causing a waiting or forwarding call to be lost.2.41 If the subscriber line busy count is desired on an hourly basis, select a general purpose register assigned to the H or C schedule to handle the count. If the coumt is desired on a daily basis, select a general purpose register not assigned to the H or C schedule.
2.42 The subscriber line busy count may not be taken concurrently with other general purpose counts except office or foreign area preroute counts. Likewise, this count may not be taken at the same time with other general purpose counts except subscriber line busy count.

Hardware

2.43 These guidelines are for planning
 purposes only. The Central Office

Equipment Engineering System (COEES) Information System engineering document should be used to manually order and engineer the 1A ESS switch. The standard recommended automated procedure is COEES-Mechanized Ordering (COEES-MO).

A. With EADAS

2.44 For hardware requirements of the EADAS and Network Management features, refer to Part $5 \mathrm{~A}(13)$ and $\AA(14)$ for details.

B. Without EADAS

2.45 The 1A ESS Switch has three ports associated with the administrative dial service channel, each of which must be equipped with a DATASPEEDe 40 terminal set. There are also three ports associated with the supplementary dial service (TR2) channel, one of which must be equipped and two of which may be equipped with elther a DATASPEED 40 terminal set or 1A Model 35 terminal. Data sets are required if the terminal device is more than 200 cable feet from its associated input/output frame.

Software

A. Base Generic Program

2.46 The Traffic Measurement feature requires approximately 5,400 words of program store memory.

B. Optionally Loaded Feature Groups

2.47 Not applicable.
C. Parameters/Call Store Areas
2.48 The following 2-word parameters are required:
(a) Parameter word B6SCHA contains the size of the H schedule traffic list and points to a call store block which contains the registers used for collecting counts on the H schedule.
(b) Parameter word B6SCCA contains the size of the C schedule traffic list and points to a call store block which contains the registers used for collecting counts on the \mathbf{C} schedule.
(c) Parameter word B6CLTK contains the size of the call store tables used to measure customer line usage on selected concentrators and their locations.
(d) Parameter word B6CLSK contains the number of lines selected for individual
counts on the W schedule and the address of the call store block used to store these counts.
(e) Parameter word B6LIGP contains the address of a call store block used for line group traffic counts and the quantity of line groups on which traffic counts are desired.
(f) Parameter word B6QSCS contains the starting address of a call store block used for accumulating and holding traffic counts for the DA15 schedule.
(g) Parameter word B6S1CS contains the address of a call store block used for accumulating and holding traffic counts for the Si schedule.
(h) Parameter word B6S2CS contains the address of a call store block used for accumulating and holding traffic counts for the S2 schedule.
(i) Parameter word B653CS contains the address of a call store block used for accumulating and hoiding traffic counts for the S3 schedule.
2.49 The following call store memory is required:
(a) The H schedule traffic list consists of two words (a register) per count to be collected. The range of this block of call store is from 200 through 12,800 words determined via set card HSL.
(b) The C schedule traffic list consists of two words/registers/counts to be collected. The range of this call store block is 200 through 10,000 words determined via set card CSL
(c) The individual line usage measurements require a block of call store to provide the number of concentrators. The size of this selected concentrator for usage measurement block can vary from 1 through 8 words (9 words maximum cost) determined via set card SLC.
(d) The traffic usage measurements require a block of call store to provide the specific lines selected. The size of this call store block varies from 1 through 128 words (129 words maximum cost) defined via set card

NSL

(e) The single directory numbers, or groups of lines, require a block of call store to accumulate traffic counts. The size of this block is $2 \times$ NTLG where NTLG is the quantty of line groups on which traffic counts are desired.
(f) The selected quarter-hour traffic counts require a call store block to provide accumulators and holding registers. The size of this block is $2 \times$ SOHTC where SQHTC is the quantity of items to be entered on the DA15 schedule (maximum of 50 words).
(g) The S1, S2, and S3 traffic schedule requires three call store blocks to provide totaling and holding registers. The length of these call store blocks is determined via set cards TSS1 (S1), TSS2 (S2), and TSS3 (S3) where TSS1, TSS2, and TSS3 are the maximum quantity of items to be entered on their respective traffic schedules. The size of each block is 2 times the appropriate set card.
(h) A 70-word block of call store is required for the traffic map.

D. Translations

2.50 A selected concentrator traffic translator is pointed to from the master head table +24 , consisting of a single table which is the selected concentrator table (that is 9 words long with the last word containing all Os). The selected concentrator table is built by a translation data assembler run with all zeros. The selected line concentrator numbers are entered via recent change message RC:TRFLCU. This translator is used for accumulating usage counts for individual lines for a maximum of eight selected concentrators (determined by the operating company).
2.51 A selected lines traffic translator is used to accumulate usage counts on individual customer lines. This translator, pointed to from the master head table +25 , consists of a single table which is the selected lines table. The selected lines table can be up to 129 words long (that is, 129 words long with the last word containing all Os, 128 counts maximum). The length of the selected lines table is specified on the ESS form 1500A. The table is built via the translation data assembler with all 0 s , and the line equipment number of a
selected customer line for which usage is to be accumulated is entered In the table via an RC:TRFLCU input message.

2.52 The C schedule traffic (Figure 3)

 translator is pointed to from the master head table +23 . The selector, the five most significant bits of the traffic register number from the ESS 1400 form, selects the head table entry containing the address of the subtranslator. There can be a maximum of 39 subtranslators (each of which is 129 words long).
2.53 The H schedule traffic (Figure 3) translator is pointed to from the master

 head table +22 (similar to the C schedule). The selector, which is the six most significant bits of the traffic register number, selects the head table entry containing the address of the subtranslators. There can be a maximum of 50 subtranslators.
2.54 Translators required for the Selected

Traffic Data to Customer feature consist of a customer traffic group transiator, nonusage trunk scan translator, and the customer traffic label translator. Each customer is assigned one or more customer traffic group numbers. This customer traffic number is used to index into the customer traffic group translator, which describes the trunk facilities and the counts that are collected and displayed for the customer. The customer traffic group number is also used to locate lists of trunk network numbers on which nonusage trunk scanning is to be done. This information is found in the nonusage trunk scan translator. The customer traffic label is used to print a 3character label for the customer traffic counts.
2.55 The DA15 schedule translator (Figure 4) is pointed to by word 21 of the auxiliary master head table. The master head table +27 contains the address of the auxliary master head table. The DA15 schedule translator contains the length of the translator (-1 word), data words (words 0 through 49), and an all 0 word (word 50). The translator contains up to 50 traffic items to provide the dial administrator a means to obtain data on selected traffic items at more frequent intervals than the normal schedules provide.
2.56 The S schedule traffic translator (Figure 5) contains the master head table
annex words 54, 55, and 56. This annex word consists of the address of the S1, S2, and S3 schedule head tables, respectively. The head
table of these translators consists of a maximum of 10 words containing the address of tts associated subtranslators in word 0 through 9. The length of the head table is contained in the -1 word of their subtranslators. The type of primary translation words found in the subtranslations of these three schedules is the same as for the H or C schedules.

Real Time

2.57 The real time impact of the Traffic

Measurements feature varies depending on the number of counts assigned to each of the traffic schedules in a particular 1A ESS
Switch. The cycle time for the 1A ESS switch is 0.7 microsecond.

3. Implementation

Set Cards
3.01 The procedure for incorporating the Traffic Measurements feature is given in Figure 6. The H, C, and DA-15 measurements can be substtuted or deleted via a 1A ESS Switch terminal message.
3.02 The following parameter set cards are required for the traffic measurements:

Set Cards	Function
CSL	This set card defines the quantity of registers required for the C schedule (range 200 through 10,000).
HSL	This set card defines the quantity of registers required for the H schedule (range 200
through 12,800).	

SLC	This set card defines the quantity of selected lines per concentrator to be included on the W schedule (range 1 through 8).
SQHTC	This set card defines the maximum number of traffic counts to be assigned to the DA15 schedule (range 0 through 50).
TMSPC	Thls set card defines the quantity of general purpose registers (range 50 through 150).
TSS1	This is the maximum number of lines to be entered on the S1 schedules (range 0 through 1,280).
TSS2	This is the maximum number of lines to be entered on the S2 schedules (range 0 through 1,280).
TSS3	This is the maximum number of lines to be entered on the S3 schedules (range 0 through 1,280).
Transla	orms

3.03 The following translation forms are applicable to the Traffic Measurement feature. Refer to Part $5 \mathrm{~B}(3)$ for details.

Forms	Tite
ESS 1400	Traffic Register Assignment Record
ESS 1401	Traffic Register Layout Record
ESS 1402	Traffic Measurement Schedule
ESS 1403A	Traffic Measurement Assignments Originated by Traffic Teletypewriter
ESS 1403B	Traffic Measurement Assignments Originated by Local Maintenance Teletypewriter Customer Traffic Group
	ESS 1406A/B Record

ESS 1407A/B	Nonusage Trunk Scan Record	RC:CTRF	This message is used to assign, change, or	
ESS 1408	Customer Traffic Label Translator Record		unassign a customer traffic group. Refer to Part $5 \mathrm{~A}(1)$ or $\mathrm{A}(12)$ for details.	
ESS 1408A	Customer Traffic Label Translator Record for ETS Pollable Traffic Data	RC:NUTS	This message is used to add, replace, or delete trunks for nonusage trunk scan counts. Refer to Part 5 A(1) or A(12) for detalls.	
ESS 1409A	CLAM Mask Index Record			
ESS 1410	AMA Call Code Record			
ESS 1412	Customer Traffic Measurement Schedule.	RC:CLAM	This message is used to add or delete coin lines from activity monitoring schedules. Refer to Part 5 $A(2)$ or $A(11)$ for details.	
Recent Change Messages				
3.04 The fol		Verification		
	grecent change messages le to the Traffic			
Measurement feature.		3.05 The translation for H, C, and S schedules must be verified to ensure		
Message RC:TRFLCU	Function This message is used to enter selected line concentrator numbers in the selected traffic concentrator traffic translator. This message also initiates or cancels traffic usage counts for customer lines individually or by line concentrator. Refer to Part 5 A(1) or $A(10)$ for detalis.			
RC:TRFLCU		translations are correct. (Fallure to do this jeopardizes the validity of the traffic data.) Verification of traffic register assignments for the H, C, S1, S2, and S3 schedules is accomplished via the TRF-VFY input message. This message lists a range of registers, searches for a unique assignment, or aborts the previous request. The list request produces a TC17 reply output message, the search request produces a TC18 reply, and the abort message responds with OK.		
		3.06 If verification of an S schedule block isdesired, use the DUMP:CSS input		
RC:DIGTRN	This message initiates or cancels a preroute peg count on a dialed code. Refer to Part 5 A(1) or $A(12)$ for details.	message. resultant particular VFY-PSW recomme	the DUMP:CSS input uires an interpretation of the tout. If verification of a assignment is required, the ge can be used. It is all S schedule register	
RC:TRFSLB	This message initiates or cancels a subscriber line busy peg count. Refer to Part 5 A(1) or A(12) for details.	assignme (after inst and that via the VF	rified at least once a year via the DUMP:CSS message igned registers be veritied message.	
RC:TRFHC	This message initiates, cancels, or suspends traffic counts on the H, C, DA15, S1, S2, and S3 schedule or a customer traffic group. Refer to Part $5 \mathrm{~A}(1)$ or $\mathrm{A}(12)$ for details.		of the customer traffic lator register assignments is the DUMP:CSS or VFYage as previously described mer traffic group translato ols or headers can be Y-CTG input message. particular customer traffic the message. The output a TR66 or a TR09 output	

message. The TR66 message prints information (header) identifying the counts of the input customer traffic group. The TR09 message results from an input error. Refer to Part $5 \mathrm{~B}(1)$ and $\mathrm{B}(2)$ for detalls.
3.08 Validation of traffic measurements is required in the 1A ESS Switch as in other types of switching systems.
4. Administration

Measurements

4.01 Table C supplies the following traffic measurement data concerning each available traffic measurement count.
(a) The TMC and EGO columns are selfevident.
(b) Under the NAME column is the common name or titie. Some names contain acronyms where useful. Since the traffic count type is identified under a separate column, this information has been deleted from the name.
(c) The DESCRIPTION column is selfexplanatory.
(d) The TYPE column designates the type of traffic count (that is, peg, usage, overflow, or maintenance).
(e) The AVALLABILITY column identifies in which base generic programs the traffic count is available.
(f) The OUTPUT SCHEDULE column identifies which traffic measurement output schedules apply to which traffic counts. A traffic count is assigned to one or more output schedules.
(g) The AVAILABLE TO CUSTOMER column indicates which traffic counts are available to a customer with an associated feature.
4.02 For ease of reference, traffic measurements are organized into the following categories. Page references to Table C are included.

36 Advanced Services Interface - Proxy

Item Measured

Advanced Services Platform - Network Access Point

Advanced Services Platform/ Service Switching Point (ASP/SSP)
Automatic Callback Calling
Automatic Call Distribution
Automatic Queuing of Trunks and Lines
Auxiliary Line History Block
Busy/Idle Status Indicator
Call Forwarding Over Private Facilities
Calling Name Delivery
Call Processing Registers
Call Waiting Deluxe
Call Waiting With Distinctive Tones and Ringing for Long Distance Calls Feature

Cancel Call Walting
Carrier Identification Code Expansion
Carrier Interconnect
CCS-Common Interface
Centralized Automatic Message
Accounting
Centrex
Centrex Data Facility Pooling
Centrex Electronic Key
Centrex Station Rearrangements
Circult Switched Digital Capability
City-Wide Centrex
Coin Zone
Common Channel Interoffice Signaling
Common Channel Interoffice Signaling, Common
69 Common Channel Interoffice Signaling Inward Wide Area Telecommunications Service Originating Screening Office
Common Channel Interoffice Signaling, Local

70	Common Channel Interoffice Signaling	97	Networks-Standard
71	6 Traffic Enhancement Common Channel Signaling System 7-intergrated Services User Part	98	Number Portablility (NP) - Location Routing Number (LRN) Method Feature
75	Common Channel Signaling System 7-Integrated Services User PartProtocol Evolution Feature	99 112	Office Totals Originating Pool Registers
77	Common Channel Signaling System 7-Message Interface Processor	112 112	Outpulsing Annexes Registers Pay Per View
78	Common Channel Signaling System 7-Retrieval of Distant Line Status	113	Per I/O Channel Traffic Measurement Enhancement (ASI-Proxy)
78	Common Systems Recorded Announcement Frame	114	Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI)
79	Custom Calling Services	150	Privacy Access Codes
81	Daily Measurements on H - or C Schedule	151	Remote Access Service Remote Access to Call Forwarding
82	Data Link Input/Output	151	Remote Switching System
83	Digital Carrier Trunks	154	Residential Data Facility Pooling
84	Display Text Register	154	Screen List Editing
84 86	Electronic Tandem Switching	154	Selective Call Acceptance/ Computer Access Restriction
86	ESSX-1	155	Separation of Automatic Recall Whth
87	Expanded Inband Signaling		Histor
88	HILO Capablilities for Common Channel Signaling System 7	$\begin{aligned} & 155 \\ & 161 \end{aligned}$	Service and Miscellaneous Circuits Service Switching Point
88	Junctor Groups	164	Service Switching Point - Number Service
89	Line History Block Improvement	164	Simplified Message Service Interface
89	Line History Blocks (LHBs) to DLN30 Enhancement	164	Simulated Facllities Groups
90	Local Area Signaling Services	165	Supervisory Control Registers
93	Message Service System	166	Tandem Tie Trunk Registers or 11XX
94	Message Service System-Per 1/0 Channel Traffic Measurements	166	Three-Port Conference
94	Message Service System-VMWI Queue Enhancement	170	Tone and Announcement Time-Out Traffic Line Groups
94	Multiline Hunting Groups -Including Centrex	171	Trunk Groups Usage Sensitive Three-Way Calling
95	Network Interconnect	175	Voice/Data Protection.
95	Network Management Engineering and Administrative Data Acquisition System and Common		
96	Network Management-Variable		

5. Supplementary Information

Glossary

5.01 The following terms are defined as they apply to this feature.

Engineering and Administrative Data Acquisition System (EADAS): The EADAS is a centralized traffic data gathering system capable of collecting data from a number of central offices. The system provides near real time surveillance of switching performance, hourly status reports for requested periods each day, and recording of traffic data on magnetic tape for subsequent down stream processing.

Equipment Group or Office Count Number (EGO): An EGO defines a specific group or count. An equipment group number identifies a specific trunk group associated with a traffic count; an office count identifies a specific office total.

Type Measurement Code (TMC): A TMC describes the type of traffic measurement being made. It consists of a 3 -digit code related to a traffic item.

References

5.02 The following practices contain information related to or affected by the Traffic Measurement feature.
A. Lucent Technologies Practices
(1) 231-048-307-Traffic Measurement Recent Change Formats (1AE6 Through 1AE8A Generic Programs)
(2) 231-048-310-Miscellaneous Recent Change Formats (1AE6 Through 1AE8A. 04 Generic Programs)
(3) 231-090-168 - Traffic Data to Customer (Pollable)-Electronic Tandem Switching
(4) 231-090-269-Basic Automatic Call Distribution Service Feature
(5) 231-090-309-Receiver Attachment Delay Report Feature
(6) 231-090-334-Automatic Call Distribution-Phase 1 Feature
(7) 231-090-340-Selected Traffic Data to Customer Feature
(8) 231-090-350-Division of Revenue Peg Counts Feature
(9) 231-090-399-Automatic Call Distribution-Phase 2 Feature
(10) 231-301-020 - Input/Output SystemDescription
(11) 231-318-331-Miscellaneous Recent Change Formats (1AE8A. 05 and Later Generic Programs)
(12) 231-318-338-Traffic Measurement Recent Change Procedures (1AE9 and Later Generic Programs)
(13) 231-318-375-Common Channel Signaling System 7 Recent Change Implementation Procedures and Trunk Conversion (1AE10.01 and Later Generic Programs)
(14) 231-390-305-Network Management Feature
(15) 231-390-314-Operation With Engineering and Administrative Data Acquisition System
(16) 231-390-500-Common Channel Signaling System 7
(17) 231-390-502-Integrated Services User Part Common Channel Signaling Systern 7
(18) 231-390-509-Service Switching Point Common Channel Signaling System 7
(19) 231-390-510-800 Service Common Channel Signaling System 7
(20) 231-390-515-Local Area Signaling Services Common Channel Signaling System 7
(21) 231-390-519-Advanced Services Platform/Service Switching Point (ASP/SSP) Feature Document
(22) 231-390-520-Advanced Services Platform-Network Access Point Feature
(23) 231-390-522-Advanced Intelligent Network (AIN) Release 0.1 Protocol and Capabilities Feature Document
(24) 231-390-528-Number Portability (NP) Feature Document
B. Other Documentation
(1) Input Message Manual IM-6A001
(2) Output Message Manual OM-6A001
(3) Translation Guide TG-1A
(4) Translation Output Configuration PA-6A002
(5) Parameter Guide PG-1A
(6) Office Parameter Specification PA-64001.
6. Abbreviations and Acronyms
A
ABC
Auto-Bill Calling
ACAutomatic Callback
ACBCAutomatic Callback Calling
ACC
Automatic Congestion Control
ACD
Automatic Call Distribution
ACGAutomatic Call Gapping
AFS
All Fast Scan
AINAdvanced Inteligent Network
ALHBAuxiliary Line History Block
AMA
Automatic Message Accounting
AMASE
Automatic Message Accounting StandardEntry
ANC
Answer, Charge
ANIANSIAmerican National Standards Institute
APSAttached Processor System
AQTL
Automatic Queuing of Trunks and Lines

AR

Automatic Recall
ASI
Advanced Services Interface
ASP
Advanced Services Platiorm
ASP/SSP
Advanced Services Platform/
Service Switching Point
AT
Access Tandem
ATP
Access Transport Parameter

B

BAT
Off-Hook Condition Less Than Minimum Charge Delay Timing Interval

BATB

Buffer Administration Timing Block

BISI

Busy/Idie Status Indicator

C

C
Hourly Continuous Through Day
CAC
Carrier Access Code
CAMA
Centralized Automatic Message Accounting

CAR
Computer Access Restriction
CCIS
Common Channel Interoffice Signaling

CWI
City-Wide Centrex Identification

D

DA
Distinctive Alerting
DA15
Selected Quarter-Hour (also known as Q)
DAG
Data Accumulation Group
DAL
Direct Access Line
DB
Data Base
DCT
Digital Carrier Trunks
DDD
Direct Distance Dialing
DID
Direct Inward Dialing
DLGN
Data Link Group Number
DLIO
Data Link Input/Output
DLN
Direct Link Node
DLS
Distant Line Status
DLSR
Distant Line Status Request
DN
Directory Number
DOC
Dynamic Overioad Control
DOR
Division of Revenue

DP
Dial Pulse
DTR
Display Text Register
DWS
Distant City-Wide Centrex Line Status

E

E911
Enhanced 911 Service
EADAS
Engineering and Administrative Data Acquisition System

EAEO
Equal Access End Office
EAMF
Equal Access Multifrequency
EgO
Equipment Group or Office Count Number
EIS
Expanded Inband Signaling
EO
End Office
ETS
Electronic Tandem Switching

F

FANS
Fast Repeat of Answer Supervision
FCI
Forward Call Indicator
FEO
Far End Office
FX
Foreign Exchange

G
GAPGeneric Address Parameter
GRPGroup
GSC
Group Signaling Congestion
H
HHourly Busy Hours
HLO7
HILO Capabilities of Common ChannelSignaling System 7
HL15HILO Quarter-Hour Traffic Schedule
I
11XX
Improved Tandem Tie Trunk Service
IAMInitial Address Message
ICLIDIndividual Calling Line Identification
IC
Inter-LATA Carrier
IDDD
International Direct Distance Dialing
INC
International Carrier
INFInformation Message
INR
Information Request
INWATS
Inward Wide Area TelecommunicationsService
ISUPIntergrated Services User Part
J
JCTJunctor
L
\mathbf{M}
MDRMessage Detail Recording
MF
Multifrequency
MIP
Message Interface Processor
MLHG
Multiline Hunt Group
MSC
Message Service Center
MSS
Message Service System
MWI
Message Waiting Indicator
N
NAP
Network Access Point
NEO
Near End Office
Ni
Network Interconnect
NM10
Set of Traffic Data for Network
Management Personned
NMCG
Network Management Call Gap
NMER
Network Management Enhanced Reroute
NMP
Network Modem Pooling
NP
Number Portability
NPA
Numbering Plan Area
Page 22

Q

0

Selected Quarter-Hour (also known as DA15)

QTL
Queuing of Trunks and Lines
\mathbf{R}

RACF

Remote Access to Call Forwarding

RADR

Receiver Attachment Delay Recorder

RAS

Remote Access Service

RASR

Remote Access Service Register

RCLDN

Retrieval of Calling Line Directory Number

RDFP

Residential Data Facility Pooling

RDLS

Retrieval of Distant Line Status
RG
Reporting Group

RP

Revertive Pulse
RSS
Remote Switching System
\mathbf{S}

S
Special Studies Selection
SAN
Special Access Number

SAR2LHB

Separation of Automatic Recall With Two Line History Blocks

SCA

Selective Call Acceptance

SCCP

Signaling Connection Control Part

SCF

Selective Call Fonwarding

SCP

Service Control Point

SCR

Selective Call Rejection
SFG
Simulated Facilities Group
SLE
Screen List Editing
SMS
System Management System

SMSI

Simplified Message Service Interface

SPCS-COER

Stored Program Control System-Central Office Equipment Report

SPLIT

Split Groups
SSP
Service Switching Point
STP
Signal Transfer Point
SVP
Single Line Variety Package
SYU
Synchronization Signal Unit

T

TATO
Tone and Announcement Time-Out

18

Traftic Butfer

TC15

Local Quarter-Hour Traffic Schedule
TC24A
24-Hour Cumulative Total of Office Counts
TCN
Terminal Count Number
TDR01
Division of Revenue
TG
Trunk Group
TIRM
Technical Information Resource
Management
TLN
Trunk Line Network

TMC

Type Measurement Code

TMN

Terminal Pair Member Number
TN
Termination Notification

TNN

Trunk Network Number

TOMB

Temporary Output Message Buffer
TPN
Terminal Pair Number

TSJR

Timed Scan Junior Register
TSPS
Traffic Service Position System

UUI
User-to-User Information

V

VCN
VFL Count Number
VDP
Voice/Data Protection
VFL
Voice Frequency Link

W

W
Weekdy

H OR C OUTPUT MEsSAOE FORMAT

CO BLO (0) 000138	$\begin{aligned} & \text { CK HP } 00 \\ & 000621 \end{aligned}$	(14:30222 001001	5/25/19 000121	75 000008	13:30	000014	$25 / 1975$ 000240	000079	000000
(1)									
000913	003004	000515	000822	000061	001113	003619	000417	000900	000016
(2)									
000743	002251	005138	000362	000812	000088	000111	000000	000000	000011
1	1		\dagger		1	1	1	1	
(41) 001621	000094	000098	000083	000071	000184	000000	000000	000000	000000
(42)									
000013	000515	000188	000000	000000	000277	000811	000000	000000	000000
FIMEH									
	$5 / 25$	14804							

The block type idenefiee the achedule.

Figure 1. Example of I and C Block Output Message Format and List Number Identification

See lagend next paga.

Figure 2. Total Network Data System Configuration (Sheet 1 of 2)

```
LEGEND:
    1XB - NO. 1 CROSSBAR
        4XB - NO. }4\mathrm{ CROSSBAR
    COER - CENTRAL OFFICE EQUIPMENT REPORTS
COSMOS - COMPUTER SYSTEM FOR MAIN FRAME
            OPERATIONS
        CSAR - CENTRALIZED EYSTEM FOR ANALYSIS
            AND REPORTWNG
        CU - COMMNON UPDATE
        DIXC - DATA MTERCHANEE
        DMS-10 - DATA MANAGEMENT SYSTEM
        DPR - DNISION OF REVENUE REPORTS
        EADAS - ENGINEERING AND MDMINISTRATIVE
            DATA ACOUIBITION SYSTEM
        EQ - EQUIPMENT
    FACS - FACILTIES ASSIGNMENT SYSTEM
    ICAN - WDIVIDUAL CIRCUITT ANALYSIS PAOGRAM
    ICUR - INDIVIDUAL CIRCUIT USAGE PROGRAM
        LBS - LOAD BALANCE 8YSTEM
```

Figure 2. Total Network Data System Configuration (Sheet 2 of 2)

MASTER HEAO TABLE +23

TYPES OF PRIMARY TRANSLATION WORDS

	23, 22, 21, 2			$13,121_{11}^{110}$				0 7, $0,5,4,3,2,1,0$		
TYPE 1	0	c	1	TMC	0	\#	EQPT CRP			
TYPE 2	0	c	1	TMC	\#	5	0	EOPT GAP 1	EOPT GRP 24	4 CTC
TYPE3	0	C	1	TMC	0	0		DAG	Spurt of	OR RO
TYPE 4	0	0	1	TMC	TEN	†		TCN	TPN	nem
TVPE 5	0	0	1	TMC	TEN	\ddagger		VCN	TPN	Tma V
TYPE 6	0	0	1	TMC	Ten	\ddagger		HUNDREDS,	S. TENS U	UNITS
TYPE 7	ALL ZEROES									

NOTES:

1. Theee primery tranalation worde are for 1 AE7 and tatar generic programe. For IAE6 generce progrem only, refor to PA-8A002 for the prinary trenalation worde.
2. Type 7 will appear as the laet word (word 128) of the evboranalutor and in all unued words in the lent subbranstator.
See logend and footnotes on noxt pege.

Figure 3. C Schedule Traftic Trandator-Primary Translation Words (Sheet 1 of 2)

```
    LEGEND:
            C - 100-SECOND SCAN. 1 IF TYPE OF MEASUAEMENT IS USAGE AND FAST BCAN IS NOT CALLED FOR. OTHERWISE 0.
        EQPT GRP - EQUIPMENT OR GROUP NUMBER.
            EQ - BIT4 OF EQLIPMENT OR GROUP NUMBER 2.
        ECPT GRP 1 - EQUIPNENT OR GROUP NLMBER 1.
        EQPT GRP 2L - BITS 3-0 OF EQUPMENT OR GROUP NUMEER 2.
            CTC - CONNECTION TVPE CODE.
            DAG - DATA ACCLMUULATION GROUP NUMBER.
        8PLIT OR RG - 8PLT OR REPORTING GROUP NUMBER.
            TEN - 10-SECOND SCAN. IIF FABT SCAN IS
                MNICATED.
            SMAN - I IF COUNT IS TO BE ACCUMLLLATED ON
                A S-MAMUTE BASIS AND TRANSMITTED TO
                THE EADAS FACHITIES. OTHERWISE O.
            TCN - TERMMNAL COUNT NUMBER, RANGE 0-18.
            TPN - TERMMNAL PAIR NLMBER, RANGE 0-7.
            TMN - TERMMNAL PANR MEMBER NUMBER.
            VCN - VOICE FREOUENCY LNKK NFL) COUNT
                NMMEER, RANGE OTO2.
            V - VFL MEMBER MUMBER.
HUNDREDS, TENS - HUNDREDS AND TENS DIGIT OF ECO.
            UNITS - UNTTS DIGIT OF EGO.
            TMC - TYPE MEASUREMENT CODE.
* THE SELECTOR IS THE MOSt SGNIFICANT BTS OF THE TRAFFIC REGISTER LIST NLMBER. \(t\) THE MNDEX IS THE LEAST SGGNFICANT BTTS OF THE TRAFFIC REGISTER LIST NUMBER. \(\ddagger 54 \mathrm{~min}\).
\(f\) EOPT GRP 24.
```

Figure 8. C Schedule Traffic Translator-Primary Translation Worde (Sheet 2 of 2)

MASTER HEAD TABLE +27

TYPES OF PRMMARY TRANSLATKON WORDS

	$123,22,21,20$			$13 / 12$ [11/10				$9 \quad 7,6,5,4,3,2,1,0$		
TYPE 1	0	c	1	TMC	0	-		EQPT GPP		
TYPE 2	0	c	1	TMC	-	t	0	ECPT GRP 1	EOPT CRP 24	CTC
TYPE8	0	c	1	TMC	0	0		DAG	SPLTT OR	OR PGE
TYPEA	0	0	1	TME	TEN			TCN	TPN	$\mathrm{T}_{\mathbf{N}}$
TYPE 5	0	0	1	TMC	TEN			VCN	TPN	${ }^{T} M / V$
TYPE 6	0	0	1	TMC	Ten	-		HUNDREDS,	, TENS	UNITS
TYPE 7	ALL ZEROES									

NOTES:

1. Theee primary translation worde are for 1AE7 end later generic prograns. For 1AES generic progran only, reler to PA-BAOC2 for the pimery trardetion worde.
2. Type 7 will sppear as the tast word (word 50) of the tranelator and in at unueed worde in the tranaletor.
See legend and footnotes on next pege.

Figure 4. DA15 Schedule Tratile Tranelator-Primary Transiation Worda (Sheet 1 of 2)

```
LEGEND:
            C - 100-GECOND SCAN. }1\mathrm{ IF TYPE OF
                        MEASUREMENTT IS USAGE AND FAST SCAN
                        IB NOT CALLED FOR. OTHERWISE O.
        EQPT GRP - EQUIPMENT OR GROUP NUMBER.
            EO - EIT 4 OF EOUHPNENT OR GROUP NUNSER 2.
    EOPT GRP 1- EQULPMENT OR GROUP NUMBER 1.
    EQPT GRP 2L - EITS 30 OF EQUIPNENT OR GROUP NUMBER 2.
            CTC - CONNECTION TYPE CODE.
            DAG - DATA ACOUMULATION GROUP MUMBER.
        GPLTT OR RG - SPLIT OR REPORTING GROUP NUMBER.
            TEN - 10-SECOND SCAN. I IF FAST SCAN IS INDICATED.
            TCN - TERMMNAL COUNT NUMBER, RANGE O-18.
            TPN - TERMMNAL PARR NUMBEEA, PANGE 0-7.
            TMNN - TERMMNLL PAIR MEMEEER NLAMBER.
            VON - VOICE FREQUENCY UNK NFLI) COUNT
                NUMBER, RANCE OTO2.
            V - VFLMEMBER NMMBER.
MUNDREDS, TENS - HUNDREDS AND TENS DHOIT OF ECO.
            UNITS - UNITS DIEIT OF EGO.
            TMC - TYPE MEASUREMENT CODE
        * Sman
        t EOPT GRP 2H.
```

MASTER HEAD TABLE +27

Figure 5. S Schedule Trafic Tranalator

Figure 6. Procedure for Incorporating Traficic Measurements

Table A. Destination and Frequency of Traffic Measurement Schedules Output

Schedule	Destination			Frequency (Note)
	Without EADAS	Wih EADAS	With Network Management	
H	Print at Switch	To EADAS only	To EADAS only	Variable
C	Print at Switch	To EADAS only	To EADAS only	Variable
TC15	Print at Switch	Print at Switch + to EADAS in H and C	Print at Switch + to EADAS in H and C	Every 15 minutes
DA15 or Q	Print at Switch	Print at Switch + to EADAS in H and C	Print at Switch + to EADAS in H and C	Every 15 minutes if turned on
TDRO1	Print at Switch	To EADAS only	To EADAS only	Every 24 hours at 2:30 a.m.
W	Print at Switch	To EADAS only	To EADAS only	Variable
S1, S2, S3	Print at Switch	Print at Switch	Print at Switch	Variable
$\begin{aligned} & \text { TC24A, TC24C, } \\ & \text { TC24Z. } \end{aligned}$	Print at Switch	To EADAS only	To EADAS only	Every 24 hours at 2:30 a.m.
HL15	Print at Switch	Print at Switch	Print at Switch	Every 15 minutes in HILO office
CT/G	Print at Switch	Print at Switch	Print at Switch	Variable
NM10, NM11, NM12, NM24	-	-	To EADAS only	On demand
REPT TRFRSS \mathbf{Q}	Print at Switch	Print at Switch + to EADAS in H and C	Print at Switch + to EADAS in H and C	Every 15 minutes for RSS office
REPT TRFRSS D (peak vakue)	Print at Switch	To EADAS only	To EADAS only	Every 24 hours at 2:30 a.m.

Note: Variable frequency may be specified for daily, hourly, or quarter-hourly output.

Table B. Traffic Measurement Routines

Routine	Schedule	Type of Routine
00	-	Start-ALIT (automatic line installation test)
01	-	Stop-Automatic Trunk Progression
02	H(1)	Collect-Recycle Accumulator
03	H(2)	Collect-Recycie Accumulator
04	H(3)	Collect-Recycte Accumulator
05	C	Collect-Recycle Accumulator
06	W	W-Schedule Tape Perforate
07	H	Print Connected Trunks/Group
08	C	Print Connected Trunks/Group
09	W	Recycle Weekly Usage Counter
10	W	Start Weekly Accumulators
11	W	End Weekly Accumulators
12	D	Daily Print
13	H(1)	Hourly H(1) Print
14	H(2)	Hourly H(2) Print
15	H(3)	Hourly H(3) Print
16	C	C Schedule Print
17	W	Weekly Print
18	-	Start-Automatic Trunk Progression Tests
19	H(1)	Hourly H(1) Tape Perforate
20	H(2)	Hourly H(2) Tape Perforate
21	H(3)	Hourly H(3) Tape Perforate
22	C	C Schedule Tape Perforate
23	-	Reserved
24	1	CLAM Period 1 Print
25	2	CLAM Period 2 Print
26	3	CLAM Period 3 Print
27	S(1)	Special Hourly S(1) Collect
28	S(2)	Special Hourly S(2) Collect
29	S(3)	Special Hourly S(3) Collect
30	S(1)	Special Hourly S(1) Print
31	S(2)	Special Hourly S(2) Print
32-45	S(3)	Special Hourly S(3) Print Reserved

Table C. Traffic Measurements

TMAC	EGO	Name	Description	Type	Availability	Output Schedute	Available to Customer
Advanced Services Intartace-Proxy*							
191	1000	ATMPT	Count of the number of times the ASI-Proxy Explicit Access Code is dialed	Peg	1AE12.04	H, C, S	Yes
191	001	ACTN	Count of the number of times the ASL-Proxy Implicit Mode "toggle" Access Code is dialed	Peg	1AEt2.04	H, C, S	Yes
191	002	Not Assigned	Unassigned traffic measurement for ASI-Proxy	N/A	IAE12.04	H, C, S	No
191	003	Not Assigned	Unassigned traffic measurement for ASI-Proxy	N/A	IAE12.04	H, C, S	No
191	004	Not Assigned	Unassigned traffic measurement for ASI-Proxy	N/A	1AE12.04	H, C, S	No
191	005	Not Assigned	Unassigned tratfic measurement for ASI-Proxy	N/A	1AE12.04	H, C, S	No
191	006	Not Assigned	Unassigned traffic measurement for ASI-Proxy	N/A	1AE12.04	H, C, S	No
Advanced Services Platiorm-Network Access Point							
171	1000	Dialing Success	Accurnulates the number of ASP. NAP originating call attempts that have successtulty completed dialing and are attempting to outpules.	Peg	\| 1AE11.01	H, C, Q, S	Yes
171	001	Unassigned	Unassigned				
171	002	Unassigned	Unassigned				
171	003	Unassigned	Unassigned				
Advanced Services Platiorm/Service Swtiching Polnt (ASP/SSP)							
180	[000	Signaling Failure - TimeOut at SSP count	This count is pegged when the SSP times-out while waiting for a reply from the SCP.	Peg	1AE11.09	H, C, Q, S	
180	001	Invalid Command Message count	This count is pegged when the SSP receives a response from the SCP that is undecipherable or has bad data.	Peg	1AE11.09	H, C, Q, S	

* TMC 192 (similar format as TMC 176) is also needed for ASI-Proxy. See 231-318-372.

Table C. Traffic Measurements (Contd)

Advanced Services Platform/Service Switching Point (Contad)
$180\left|\begin{array}{l|l}002 & \left|\begin{array}{l}\text { Return Error or } \\ \text { Reject } \\ \text { Message count }\end{array}\right|\end{array}\right|$
This count is pegged when the SSP receives a Return Error message or a Reject mossage in reply to a Query or Conversation message. A Return Error message is retumed from the SCP for an invalid command sent from the SSP. The Raject message is returned from the SCP for a valid command sent from the SSP that is elither incomplete or out of sequence. This count is pegged when an onhook is received from the calling party before the SSP receives and interprets a routing response.
This count is pegged when an ASP call cannot be completed because there are no available public trunks to any of the carriers specified in a Routing Response or Autonomous routing does not find an available facility.
This count is pegged when an ASP call cannot be completed because there are no Private Facility routes available.
This count is pegged for all ASP line originated calls at the SSP that attempt to query in general, for each origination (including $3 / 6 / 10$ digit triggers), the originating peg count should only be pegged once. This includes forwarded calls. This court is not pegged for Serial Triggers.
This count is pegged for all ASP queries to the SCP including each Serial Trigger.
This count is pegged when a route response is received from the SCP on ASP calls.

\begin{tabular}{|c|c|c|}
\hline Peg

Peg \& 1AE11.09 \& H, C, Q, S

H, C, Q, S

\hline Peg \& 1AE11.09 \& H, C, Q, S

\hline Pog \& 1AE11.09 \& H, C, Q, S

\hline Peg \& 1AE11.09 \& H, C, Q, S

\hline Peg \& 1AE11.09 \& H, C, Q, S

\hline Peg \& 1AE11.09 \& H, C, Q, S

\hline
\end{tabular}

Table C. Traffic Measurements (Contd)

Advanced Services Platform/Service Swittching Point (Contrd)

180	009	Call Processing Failure Before Initial Query count	This count is pegged when an ASP call is terminated before the quary to the SCP is sent. The reason for an ASP call being terminated could either be from a harctware or software initialization, or because of a failure in the normal call processing routine. Any pre-Query call processing fallure that can be detected by the SSP is counted under this failure (e.g., TCAP unable to send Query).	Peg	1AE11.09	H, C, O, S
180	010	Call Processing Failure After Initial Query count	This count is pegged when an ASP call is terminated after the query is sent The reason for an ASP call being terminated could either be of a hardware or software initialization, or because of a fallure in the normal call processing routine. Any postQuery call processing failure that can be detected by the SSP is counted under this tailure. This count indicates a more serious ovent than the previous one because of the waste in resources.	Peg	1AE11.09	H, C, O, S
180	011	Resource Unavailable Before Initial Query count	This court is pegged when an ASP call fails because a resource (i.e., BATB, TPT, ORs, etc.) which is normally provided by the SSP; is unavailable because of maintenance or engineering reasons before the query to the SCP is sent. The resources might either be engineerable, or might be fixed internally via the switch software release.	Peg	1AE11.09	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMCC	EGO	Name	Description	Type	Avallabllity	Output Schedule

Advanced Services Plattorm/Service Switching Point (Contd)

180	012	Non-Fatal Aesources Unavailable count	This count is pegged for the number of tirnes a non-fatal "resource unavailable" condition occurs (e.g., AMA). This is the number of times the SSP is unable to obtain a data block resource, or encounters an error while processing the data block, but is able to route the call with some loss of functionality. This applies specifically to data blocks required for AMA recording.	Peg	1AE11.09	H, C, Q, S
180	013	ASP Calls Received From Another Switch count	This count is pegged for all ASP calls that have been received from another switch (that is, the ASP call did not originate on the SSP switch). This count is not pegged for Serial Triggers.	Peg	1AE12.01	H, C, Q, S
180	014	The Conversation Messages from the SCP count	This count is pegged when a Conversation message is received from the SCP. It is not pegged when a Play Announcement message is received.	Peg	1AE12.03	H, C, Q, S
180	015	The Play Announcement Massages from the SCP count	This count is pegged when a Play Announcement message is received from the SCP. It is not pegged when a Play and Collect message is received.	Pag	1AE12.03	H, C, Q, S
180	016	The ASP Attempts to Access Announcement Circuit count	This count is pegged when the SSP attempts to play an announcernent due to a play announcement, or play an announcement and collect digit command received from the SCP. Note that the SSP pegs this measurement for each announcement request message received from the SCP.	Peg	1AE12.03	H, C, Q, S
180	017	The ASP attempts Failed to Access Announcement Circuit count	This overflow count is the number of times a request to use an ISPI announcement circuit failed because all circuits were unavaitable.	Peg	1AE12.03	H, C, Q, S

Table C. Traffic Measurements (Contd)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TMAC \& EGO \& Name \& Description \& Type \& Avaliability \& Output Schedule \& Avallable to Customer \\
\hline \multicolumn{8}{|l|}{Advanced Services Piatform/Service Switching Point (Contd)} \\
\hline 180 \& 018 \& The Serial Triggering Overilow count \& Serial Triggering can occur when the routing number provided by the SCP in response to a query encounters another trigger at the SSP. An office parameter controls the number of triggers which can be encountered serially on a call at an SSP before the call is routed. The Serial Triggering Overflow count counts the number of times the Serial Triggering limit has been exhausted or overflowed. \& Peg \& 1AE12.03 \& \(H, C, Q, S\) \& \\
\hline 180 \& 019 \& \begin{tabular}{l}
The \\
Termination Notification Requests Received by the SSP count
\end{tabular} \& This count is pegged every time a valid request for Termination Notification is received by the SSP. \& Peg \& 1AE12 03 \& H, C, Q, S \& \\
\hline 180 \& 020 \& \begin{tabular}{l}
The \\
Termination Notification Responses count
\end{tabular} \& This count is pegged every time the SSP sends a response to a request for Termination Notlfication. Essentially, this counts the number of times the SSP sends Return Result containing Termination Notification information to the SCP. \& Peg \& TAE12.03 \& \(H, C, O, S\)

$H, C O S$ \&

\hline 180 \& 021 \& The Invalid Command Sequence count \& This count is pegged when the SSP receives a response from the SCP that contains an incomplete or out of sequence valid command For example, the SSP receives a valid command from the SCP, but its order or completeness, with reference to the current dialogue sequence, is incorrect, (e.g., Play Announcerment component received with a Routing component). \& Peg \& 1AE12.03 \& H, C, Q, S \&

\hline
\end{tabular}

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Typo	Avallability	Output Schedule	Avallable to Customer
Advanced Services Plattorm/Service Switching Point (Contd)							
180	022	The Resource Unavailable After Initial Query count	This count is pegged when an ASP call tails because a resource, which is normally provided by the SSP, is unavailable because of maintenance or engineoring reasons after the initial query to the SCP is sent. This includes the case where the SCP has sent more than the allowed conversation messages per call (per office parameter), or no Announcement circuits were avallable for a call. This count indicates a more serious event than EGO 011 because of the waste of resources. This count is pegged for any fatal resource failure after the first query is launched in a Serial Triggering querying sequence. Regardiess of the type of ACG	Peg	1AE12.03	 H, Q,	
180	023	Management (NM) Control Blocks count	control, this count is pegged on every occurrence of an ASP query blocked at the SSP due to an ACG control. This count can be pegged due to one of the two following reasons: 1) SCP Overboad Automatic Call Gap (SCPO) contro! or 2) Selective Originating Code Control (SOCC) (also known as Service Management System (SMS) Originated). This count is not pegged when a call is blocked after the SCP has provided routing instructions.		TAE12.03	H,C, Q, S	
180	024	The ASP/SSP calls blocked by SCP Overload control count	This count is pegged whenever a query is blocked due to encountering an SCP Overload control.	Peg	1AE12.03	H, C, Q, S	

Table C. Trafic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	$\begin{aligned} & \text { Avallabla ic } \\ & \text { Customer } \end{aligned}$

Advanced Services Plattorm/Service Switching Point (Contd)

180	025	The ASP/SSP calls blocked by SMS control count	This count is pegged whenever a query is blocked due to encountering an SMS (SOCC) control.	Peg	1AE12.03	H, C, Q, S
180	026	The ASP/SSP SCP Overtaad control not accepted due to control block being full count	This count is pegged whenever an attempt to enter an SCP Overioad control into the SCP Overtoad control block failed because the block was full. The maximum number of SCP Overload controls is 64.	Peg	1AE12 03	H, C, Q, S
180	027	The ASP/SSP SMS control not accepted due to control black being full count	This count is pegged whenever an attempt to enter an SMS control into the SMS control block failed because the block was full The maximum number of SMS controls is 64 .	Peg	TAE12.03	H, C, Q, S
180	028	Termination Notification Register Usage count	This count is the accumulation of the usage of the Termination Notification Registers.	Peg	1AE12.03	H, C, Q, S
180	030	Termination Notification Pegister Peg count	This count is incremented when an attempt is made to seize a TN register.	Peg	1AE12.03	H, C, Q, S
180	031	Termination Notification Register Overflow count	This count is incremented when an attempt to seize a TN register fails.	Peg	1AE1203	H, C, Q, S
180	032	ASP/SSP Message Block Usage count	This count is the accurmulation of the usage of the ASP/SSP Message Blocks.	Peg	1AE12.03	H, C, Q, S
180	034	ASP/SSP Message Brock Peg count	This count is incremented when an attempt is made to seize an ASP/SSP Message Block.	Peg	1AE12.03	H, C, C, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availabillty	Outpert Schedule	Avallable to Customer
Advanced Services Platiorm/Service Switching Point (Contd)							
180	035	\|ASP/SSP Message Block Overfiow count	This count is incremented when an attempt to seize an ASP/SSP Message Block fails.	Peg	1AE12.03	H, C, Q, S	
180	036	ASP/SSP Update Request Message Peg Count	This count is incremented when an update request message is received from the SCP.	Peg	1AE12 07	H, C, O, S	
180	037	ASP/SSP Update Request Message Failed Due to Unavailable Resources	This count is incremented when an update request message fails with a tailure cause of Unavailable Resources.	Peg	1AE12.07	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$	
180	038	ASP/SSP Update Request Message Failed Due to Rate Too High count	This count is incremented when an update request message fails with a failure cause of Rate Too High.	Peg	1AE12.07	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$	
180	039	ASP/SSP Display Text Non-Fatal Application Error count	This count is incremented when no information is displayed on the terminating line's CPE due to a non-fatal application error.	Peg	1AE12.07	H, C, Q, S	
180	040	AlN-TN Register Peg Count	Counts the number of attempts to seize a TN register for Originating No Answer or Originating Called Party Busy office trigger needs Note: EGO 030 is also incremented.	Peg	1AE13.04	H, C, Q, S	
180	041	AIN-TN Register Overflow Count	Counts the number of failed attempts to seize a TN reglister for Originating No_Answer or Originating Called Party Busy office trigger needs. Note: EGO 031 is also incremented.	Overflow	1AE13.04	H, C, Q, S	
180	042	Originating No_Answer Trigger Holding Originating Register	Counts the number of attempts to use an OR to save call data while quarying the SCP data base for an Originating No Answer trigger.	Peg	1AE13.04	H, C, Q, S	
180	043	Originating No Answer Trigger Holding Originating Pegister	Counts the number of calls which cannot receive Originating No Answer trigger treatment because of the unavailability of an OR to save call data while querying the SCP data base.	Overilow	1AE13.04	H, C, Q, S	
180	044		EGOS 044 through 049 are marked spare and are reserved for future development.				

Table C. Traficic Measurements (Contd)

TMC	EGO	Name	ton	pe	Avaliability	Output Schedule	Avallable Customer

Automatic Callback Colling-Standard

5	469	\|ACBC Activation Attempts	Counts the number of times a centrex line with the ACBC feature dials the ACBC activation code.	Peg	All Active	H, C, Q, S
5	470	ACBC Activation Successes	Coumts the number of times a centrex line with the ACBC feature dials the ACBC activation code and successfully activates the ACBC feature.	Peg	All Active	H, C, O, S
5	471	ACBC Data Facilities	Counts the number of times a centrex line with the ACBC feature finds the called line busy but fails to seize an ACBC data taclility because all facilties are in use.	Overiow	All Active	H, C, Q, S
5	473	ACBC Data Facilities	Count taken on 100-second intervals of the usage on ACBC data facilities.	Usage	All Active	H, C, Q, S
113	CTXN \#	ACBC Activation Attempts	Counts the number of times a centrex line with the ACBC feature dials the ACBC activation code.	Peg	All Active	H, C, Q, S
114	CTXN *	ACBC Activation Successes	Counts the number of times a centrex line with the ACBC feature dials the ACBC activation code and successfully activates the ACBC feature.	Peg	All Active	H, C, Q, S
115	CTXN \#	* ACBC Data Facilities	Counts the mumber of times a centrex line with the ACBC feature finds the called line busy but fails to seize an ACBC data facility because all facilities are in use.	Overflow	All Active	H, C, O, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedute	Avaliable to Customer
Automatic Call Distribution-Variable							
59	DAG \#. SPLIT *	\|Agent Originating	Counts the origination by agents in the split specified.	Peg	All Active	H, C, O, S	Yes
60	DAG*, SPLIT *	Calls Transferred to Agent	Counts the calls transferred to an agent in the split spectfied.	Peg	All Active	H, C, Q, S	Yes
61	DAG \#, SPLIT \#	Cals Transferred by Agent	Counts the calls transterred by an agent in the split specified.	Peg	All Active	H, C, Q, S	Yes
62	DAG *, SPLIT \#	Auxiliary Work	Count taken at 100-second intervals of the agents that have their "AUXWORK" key operated.	Usage	All Active	H, C, Q, S	Yes
63	DAG *, SPLIT \#	Positions Occupiad	Coumt taken at 100 -second intervals of the number of consoles that are occupied.	Usage	All Active	H, C, Q, S	Yes
64	DAG \#, SPLIT \#	Agents idle and Available	Count taken at 100 -second intervals of the agents that are idle and avail- able to receive incoming catts.	Usage	All Active	H, C, Q, S	Yes
65	DAG \#, SPLT \#	Agents on Incoming Calls	Count taken at 100 -second imervals of the agents that are actively working on and connected to an incoming call.	Usage	All Active	H, C, Q, S	Yes
66	DAG \#, SPLT \#	Agents on Outgoing Calls	Count taken at 100 -second intervals of the agents that have originated an outgoing call.	Usage	All Active	H, C, O, S	Yes
67	DAG\# SPLIT \#	Atter Call Work	Count taken at 100-second intervals of the agents doing "after call" work.	Usage	All Active	H, C, Q, S	Yes
68	DAG \#	Positions Out of Service	Count taken at 100 -second intervals of the positions that are out of service.	Usage	All Active	H, C, O, S	Yes
69	\|DAG \#	Agents Originating	Counts the originations by agents in the reporting group specified.	Peg	All Active	H, C, O, S	Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallablity	Output Schedule	Avalitable to Customer

Automatic Call Distribution - Variable (Contd)

70	$\left\|\begin{array}{l} D A G \# \\ R G \# \end{array}\right\|$	Calls Transferred to Agent	Counts the calls transferred to an agent in the reporting group specified.	Peg	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$	Yes
71	$D A G *,$ RG \#	Calls Transferred by Agent	Counts the calls transforred by an agent in the reporting group specified.	Peg	All Active	H, C, Q, S	Yes
72	$\left\|\begin{array}{l} \text { DAG \# } \\ \text { RG \# } \end{array}\right\|$	Auximary Work	Same as TMC 62 except kept by reporting group. Count taken at 100 -second intervals.	Usage	Al Active	H, C, Q, S	Yes
73	$\left\lvert\, \begin{aligned} & \text { DAG } \#, \\ & \text { RG } \# \end{aligned}\right.$	Positions Occupled	Same as TMC 63 except kept by reporting group. Count taken at 100 -second intervals.	Usage	All Active	H, C, O, S	Yes
74	DAG \#, RG \#	Agents latie and Avalable	Same as TMC 64 except kept by reporting group. Count taken at 100 - second intervals.	Usage	All Active	H, C, O, S	Yes
75	$\begin{aligned} & \text { DAG \#, } \\ & \text { RG \# } \end{aligned}$	Agents on Incorming Calls	Same as TMC 65 excopt kept by reporting group. Count taken at 100 - second intervals.	Usage	All Active	H, C, Q, S	Yes
76	$\begin{aligned} & \text { DAG \#, } \\ & \text { RG \# } \end{aligned}$	Agents on Outgoing Calls	Same as TMC 66 except kept by reporting group. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S	Yes
77	$\begin{aligned} & \mathrm{DAG} \#, \\ & \mathrm{RG} \# \end{aligned}$	Atter Call Work	Same as TMC 67 except kept by reporting group. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S	Yes
78	AOTL *	Calls Abandoned From Queue	Counts the calls that abandoned before they were served.	Peg	All Active	H, C, Q, S	Yes
79	AOTL\#	Calls Answered in Greater THAN "X" Seconds	Counts the calls that were answered, that is, removed from the AQTL queue and served in more than " X " seconds, where " X " is a whole decimal number defined by the customer.	Peg	All Active	H, C, Q, S	Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedule	Avallable to Customer

Automatic Call Diatribstion-Variable (Contd)

80	\|ACTL \#	Calls Answered in Less Than or Equal to " X " Seconds	Counts the calls that were answered, that is, removed from the AQTL queue and served within (in less than or equal to) "X" seconds, where " X " is a whole decimal number defined by the customer	Peg	All Active	H, C, Q, S	Yes
84	AQTL \#	Tratfic Service Index	Provides the parcentage of calls on the AOTL quels that are answered within " X " seconds, where " X " is a whole decimal number detined by the customer.	-	All Active	H, C, Q, S	Yes
82	AQTL \#	Intrafiow Into Quene	Counts the calls that intraflowed into the AQTL queve specified.	Peg	All Active	H, C, Q, S	Yes
83	AOTL \#	Intrafiow Out of Queue	Counts the calls that intraflowed out of the AQTL queue specified.	Peg	All Active	H, C, Q, S	Yes
84	AQTL\#	Calls Offered to Queue	Counts the calls offered to the specified AQTL queue.	Peg	All Active	H, C, Q, S	Yes
85	AOTL *	Calls Delayed in Oueue	Counts the calls that were in queue for greater than 1 second before being removed from the OTL queue.	Peg	All Active	H, C, Q, S	Yes
86	AQTL \#	Queve Usage of Answered Calls	Counts (in seconds) the amount of time spent in the QTL queue before being answered.	Peg	All Active	H, C, O, S	Yes
87	AQTL \#	Oueue of Priority Calls	Counts the number of times a priority call cannot be placed on a QTL queus because the queue is tull.	Overtlow	Al Active	H, C, O, S	Yes
88	AQTL \#	Priority Calls Abandoned From Queue	Counts the number of priority calls that abandoned from the OTL queue before they were served.	Peg	All Active	H, C, O, S	Yes
89	AQTL \#	Priority Calls Queue	Count taken at 100 -second intervals of the priority calis waiting in queue to be served	Usage	All Active	H, C, Q, S	Yes
90	AQTL \#	Priority Calls Delayed in Queue	Counts the number of priority calls that were in queue for greater than 1 second before being removed from the QTL queue.	Peg	All Active	H, C, Q, S	Yes
91	AOTL \#	Queue Usage of Answered Priority Calls	Counts (in seconds) the amount of time priority calls spent in the QTL. queue before being answered.	Peg	All Active	H, C, Q, S	Yes

Table C. Trafiric Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabllity	Output Schedute	Avaliable to Customer

Automatic Cell Distribution-Variable (Contd)

92	AAOTI*	Ouene Usage of Long Delayed Calls
94	DAG \#, SPLIT \#	Incoming Extension Calls Answered
95	DAG \#, SPLIT *	Incoming ACD Calls Answered
96	DAG\#. AG:	Incoming Extension
97	DAG \#, RG *	Incoming Extension Calls Answered
98	DAG*, RG \#	Incoming ACD Calls Answered

Count taken at $100-$-eccond
intervals of the calls that have
been In queve more than "X"
seconds, where "X" is a whole
decimal number defined by
the customer.
Counts the number of
incoming extension calls that
are answered in the given
split.
Counts the number of
incoming ACD calls answered
in the given split.
Count taken at 100 -second
intervals of the amoum of time
agents in a given split spent
on extension calls kept by
reporting group
Same as TMC 94 except kept
by reporting group.
Same as TMC 55 except kept
by reporting group.

Automatic Queuing of Trunks and Lines-Variable

48	AOTL GRP *	AQTL
49	AOTL GRP \#	AGTL
50	AQTL GRP *	AOM

Courns the nurmber of
attempts to place calls into
queue.
Counts the number of calls
that fail to find a space in
queue.
Measures the calls waiting in
queue for an ide line or trunk.
Count taken at 100-second
intervals.

Peg	All Active	H, C, Q, S	Yes
Overflow	All Active	H, C, Q, S	Yes
Usage	All Active	H, C, Q, S	Yes

Auxillary Line Hlatory Block (Not available 1AE12.01 and later)

Table C. Traffic Measurements (Contd)

TANC	ECO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer
Auxiliary Line History Block (Contd) (Not availabte IAE12.01 and later)							
173	002	Name Access Code	Counts the number of times an ALHB is used to store the name access code information dialed (or received whth an incoming call and maintained following an Automatic Callback feature activation.)	Peg	1AE11.07	H, C, Q, S	
173	003	Name Access Code Unassigned.	Counts the number of times an ALHB is not available to store the name access code information dialed (or received with an incoming call and maintained following an Automatic Callback feature activation.) Unassigned.	Overflow	1AE11.07	H, C, C, S	
Busy/ldle Status Indicator-Standard							
5	567	Blind Period Timing	Counts the number of times a simulated facirities group number is placed on the blind period tirning list.	Peg	All Active	H, C, O, S	
5	568	Bind Pariod Timing	Counts the number of attempts to place a simulated facilities group number on the blind period timing list when it is full.	Overtlow	All Active	H, C, O, S	
5	570	Direct Signaling Messages Sent	Counts the number of messages placed in the terminal transmit buffer which are being sent by the BISI feature to the 800 Service data base. These messages consist mainiy of busy/idie messages.	Peg	All Active	H, C, Q, S	
5	571	Direct Signaling Messages Received	Counts the number of messages received by the BISI feature from the 800 Service data base.	Peg	All Active	H, C, O, S	
5	592	Direct Signaling Messages Misrouted	Counts the number of direct signaling messages received in error.	Peg	All Active	H, C, Q, S	

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallablity	$\begin{aligned} & \text { Output } \\ & \text { Schectule } \\ & \hline \end{aligned}$	Availathe to Customer
Call Forwarding Over Private Facillities-Standard							
5	576	CFPF 6-Word CORC Block	Counts the number of times a 6 word CORC block is seized for CFPF.	Peg	All Active	H, C, Q, S	
5	577	CFPF 6-Word CORC Block	Counts the number of times CFPF could not seize a 6-word CORC block.	Overflow	All Active	H, C, Q, S	
5	579	CFPF 6-Word CORC Block	This is the count taken at 100 second intervals of the number of 6 -word CORC blocks that are currentily busy storing CFPF information.	Usage	All Active	H, C, O, S	
5	584	CFPF Holding OR	Counts the number of attempts to use an originating register for saving call data while CFPF announcement is being given.	Peg	An Active	H, C, Q, S	
5	585	CFPF Holding OR	Counts the number of CFPF calls routed to overflow because of unavallability of originating registers for holding call data during CFPF announcement.	Overflow	All Active	H, C, Q, S	
130	004	CFPF Holding OR	Count taken at 10 -second intervals of the number of ORs held by CFPF calls at the announcement prior to final routing.	Usage (AFS)	All Active	H, C, O, S	
Calling Name Delivery							
179	000	CNAM Time-Outs	Counts the number of time-outs while waiting for the response from the service control point (SCP) name data base to the query message.	Peg	14E11.07	H, C, Q, S	
179	001	CNAM TCAP Cuery	Counts the number of query messages sent to the SCP name data base.	Peg	1AE11.07	H, C, Q, S	
179	002-009	Unassigned.					

Table C. Traffic Measurements (Contd)

TAC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallabie to Customer
Cas Proceselng Registors-Standard							
5	39	\|Call Forwarding Register	Measures cail forwarding register usage. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, O, S	
5	41	Disconnect Register	Measures disconnect register usage. Count taken at 10-second intervals.	Usage (AFS)	All Active	H, C, Q, S	
5	43	Operator Trunk Register	Measures operator trunk register usage. Count taken at 10-second intervals.	Usage (AFS)	All Active	H, C, O, S	
5	45	Timed Scan Register	Measures tirned scan register usage. Coumt taken at 10 -second intervals	Usaga (AFS)	All Active	H, C, Q, S	
5	47	POB	Measures POB usage. Count taken at 10-second intervals.	Usage (AFS)	All Active	H, C, C, S	
5	53	13-Word AMA Register	Measures 13-word AMA register usage. Count taken at 100-second intervals.	Usage	All Active	H, C, Q, S	
5	55	Coin Charging Register	Measures coin charging register usage. Count taken at 100 -second intervals.	Usage	Al Active	H, C, Q, S	
5	111	Conference Assistance Register	Measures conference assistance register usage. Count taken at 10second intervals.	Usage (AFS)	All Active	H, C, Q, S	
5	112	Hotel-Motel Register	Measures hotel-motel register usage. Count taken at 100 -second intervals	Usage	All Active	H, C, Q, S	
5	113	Originating Coin Zone Register	Measures originating coin zone register usage. Count taken at 100 second intervals.	Usage	All Active	H, C, Q, S	
5	121	Trunk Flash Tirning Register	Measures trunk flash tirming register usage. Count taken at 10-second intervals	Usage (AFS)	All Active	H, C, Q, S	
5	123	Reverting Call Register	Measures reverting call register usage. Count taken at 10-second intervats.	Usage (AFS)	All Active	H, C, Q, S	
5	129	Bylink Dialing Senior Register	Measures bylink dialing senior register usage (includes FX area register usage). Count taken at $10-$ second intervals.	Usage (AFS)	All Active	H, C, Q, S	
5	135	Bylink Dialing Junior Register	inteasures bylink dialing junior register usage. Count taken at 10 second intervals.	Usage (AFS)	All Active	H, C, Q, S	

Table C. Traffic Measurements (Contd)

TMC	60	Name	Deacription	Type	Availability	Output Schedule	Avallable to Customer

Call Proceasing Regiaters - Standard (Conta)

5	137	Hit Tirning Junior Register
5	198	9-Word AMA Pegister
5	264	Fast Answer Junior Pegister
5	268	Fast Answer Senior Registar
5	319	18-Word AMA Register
5	342	Simulated Facilities Register
5	378	HILO Intraprocessor Incoming Register

Call Waèting Deluxe

Usage (AFS)	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
(AFS)		
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S

$193 |$| 000 | FORWARD Option |
| :--- | :--- |
| 193 | 001 |

Counts the number of times the switch receives a valid FORWARD option.
Counts the number of times the switch receives a valid ANNOUNCEMENT option.
Counts the number of times the switch receives a valid DROP option, irrespective of the call state (wait state and hold state), from which the option was applied.
Counts the number of times the switch receives a valid CONFERENCE option, irrespective of the call state (waik state and hold state), from which the option was applied.

Peg	\| 1AE12.05	H, C, Q, S
Peg	1AE12.05	H, C, Q, S
Peg	TAE12.05	H, C, Q, S
Peg	TAE12.05	H, C, Q, S

Measures hit timing junior register usage used in 1 ESS SP offices only. Count taken at 10 -second intervals.
Measures the usage of 9-word AMA registers. Count taken at 100 sacond intervals.
Measures the usage of the fast answer junior register. Count taken at 10-second intervals.
Measures the usage of the fast answer senior register Count taken at 100 -second intervals.
Count taken at 100 -second intervals of the usage of the 18 word AMA register.
Count taken at 100 -second intervals of simulated facilities registers busy.
Measures the usage on HILO intraprocessor incoming registers. Count taken at 100 -second intervals.

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Call Walting Detuxe (Contd)						
193	004	DROP FIRST option	Counts the number of times the switch recelves a valid DROP FIRST option.	Peg	1AE12.05	H, C, Q, S
193	005	DROP LAST option	Counts the nurnber of times the switch receives a valld DROP LAST option.	Peg	1AE12.05	H, C, Q, S
193	006	Forwarding default treatment	Counts the number of times T_ defaut timed out resulting in the switch applying the default treatment of forwarding the incoming call to the CFDA destination.	Pag	1AE12.05	H, C, Q, S
193	007	Announcement defauth treatment	Counts the number of times T_detault timed out resulting in the switch applying the default treatment of connecting the incoming call to an announcement.	Peg	1AE12.05	H, C, Q, S
193	008	Audible ringing dafaut treatment	Counts the number of times T_default timad out resulting in the switch applying the default treatment of continuing to provide the audlble ringing to an incoming call.	Peg	1AE12.05	H, C, Q, S
193	009*	Usage sensitive CONFERENCE option users count	Counts the number of usage sensitive users of the CONFERENCE option.	Peg	1AE12.05	H, C, Q, S
193	010*	CWD Usage Sensitive Conference Count subtable tull	Counts the number of times AMA overflow processing is initiated due to lack of room in a CWDUSCC subtable. One subtable in the CWDUSCC table is allocated per equipped Line Switch Frame (LSF) to record use of the CONFERENCE option from lines assoclated with that LSF.	Peg	1AE12.05	H, C, Q, S

* These EGOs are provided as an aid to engineering the CWD Usage Sensitive Conference Count Table (CWDUSCCT).

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avaliability	Output Schedule	Avaliable to Customer

Call Waiting Deluxe (Contd)

193	011	HOLD option	Counts the number of times the switch recelves a valid HOLD option.	Peg	1AE12.06	H, C, O, S
193	2-014	Not Assigned	Not Assigned (Spare)			

Call Watting with Disilnctive Tones and Finging for Long Distance Calls Feature

5	636	Long Distance Call Waiting Tone

Counts the number of times the	
long distance call waiting tone is	Peg
appliad.	

| 1AE11.07 $|$| $\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$ |
| :--- |
| |

Cancel Call Watting

139	000	CCW Regiater Unavailable	Counts the number of times the CCW access code is denied because of unavailable resources.	Overflow	1AEBA	H, C, Q, S
139	001	POTS Activation	Counts the number of times a POTS customer attempts to dial the CCW access code.	Peg	IAEBA	H, C, O, S
139	002	Centrex Activation	Counts the number of times a centrex customer attempts to dial the CCW access code.	Peg	1AEBA	H, C, O, S
139	003	Call Waiting Blocked	Counts the number of times a customer's call waiting feature is blocked because the CCW feature had been activated.	Peg	1AE8A	H, C, Q, S
139	004	Centrex Call Waiting Blocked	Counts the number of times a centrex customer's call waiting feature is blocked because the CCW feature had been activated.	Peg	1AE8A	H, C, Q, S

Carrier Identfication Code Expanston

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availabillty	Outpurt Schedule	Avallable to Customer

Carrier Identificmtion Code Expansion (Contrit)

182	$\left.\right\|^{0-999} \left\lvert\, \begin{gathered} \mathrm{T} \\ \mathrm{~T} \\ \mathrm{ir} \end{gathered}\right.$	Transmitter Timeouts for CIC Index's 2000-2999
183	0-999T 	Transmitter Timeouts for CKC Index's 3000-3999
184	0-999	Transmilter Timeouts for CIC index's 4000-4999
185	0.999	Transmitter Timeouts for CIC index's 5000-5999
186	0-999	Transmitter Timeouts for CIC Index's 6000-6999
187	0-999	Transmitter Timeouts for CIC Index's 7000-7999
188	0-999	Transmitter Timeouts for CIC Index's 8000-8999
189	0-999	Transmitter Timeouts for CIC Index's 9000-9999

Counts the number of times transmitter
time-outs ocur due to the IC/INC fallure
to return the first wink to the EAEO or AT
within the timing interval on a per IC/INC
basis.
Counts the number of times transmilter time-outs occur due to the IC/INC failure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.
Counts the number of timas transmitter time-outs occur due to the IC/INC failure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.
Counts the number of times transmitter time-outs occur due to the IC/INC fallure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.
Counts the number of times transmitter time-outs occur due to the IC/INC fallure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.
Counts the number of times transmitter time-outs occur due to the IC/INC tallure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.

Counts the number of times transmitter time-outs occur diee to the IC/INC fallure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.
Counts the number of times transmitter time-outs occur due to the IC/INC fallure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Available to Customer

Carrier interconnect

142	IC/INC*	Transmitter TimeOuts by IC/INC
143	000	IC/INC Call Attempts With Now Signaling Format
143	001	IC/INC Call Attempts
143	002	IC/INC Call Attempts With 10XX Dialed
143	003	IC/INC Call Attempts With Now Signaling Format and 950 10XX Dialed
143	004	IC/INC Call Attempts With New Signaling Format and Routed Tandem
143	005	IC/INC Call Attempts Routed Tandem
143	006	IC/INC Call Attempts With New Signaling Format and ANI
143	007	IC/INC Tandem Call Attempts

Counts the number of times transmitter time-auts occur due to the IC/INC failure to return the first wink to the EAEO or AT within the timing interval on a per IC/INC basis.
Counts the number of originating IC/INC call attempts which require the now signaling format.
Counts the number of originating IC/INC call attempts which do not require the new signaling format but instead use traditional signaling.
Counts the number of originating IC/INC call attempts for which the 10XX access code is dilaled.
Counts the number of originating IC/INC call attempts which require the now signaling format and for which 950-10XX is dialed.
Counts the number of originating IC/INC call attempts which require the new signaling format and which are routed to a tandem office instead of being routed directly to the inter-LATA carrier.
Counts the number of originating IC/INC call attempts which do not require the new signaling format and which are routed to a tandem office instead of being routed directly to the inter-LATA carrier.
Counts the number of originating IC/INC call attempts which require the new signaling format and for which AN information is provided.
Counts the number of IC/INC call attempts which require the new signaling format, enters the office as tandem calls, and are routed to an inter-LATA carrier.

Peg	1AE8A	H, C, Q, S
Peg	1AEBA	H, C, Q, S
Peg	1AEBA	H, C, Q, S
Peg	1AE8A	H, C, Q, S
Peg	1AE8A	H, C, Q, S
Peg	1AESA	H, C, Q, S
Peg	1AE8A	H, C, Q, S
Peg	IAEBA	H, C, O, S
Peg	1AE8A	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Тур	Avaliability	Output Schedule	Avallable to Customer

CCS-Common Interfice

163	0	[BATB Requests	Counts the number of times a BATB (buffer administration timing block) is requested for use.	Peg	1AE10.01	H, C, Q, S
163	1	BATB Requests	Counts the number of requests made for the BATB when all BATBs are in use.	Overflow	1AE10.01	H, C, Q, S
163	2	BATB Requests	Measures the number of BATEs in use. This count is provided on a 100 -second scan basis. In the 1AE10.11 and 1AE11.06 PPU, the scan rate is changed to 10-seconds.	Usage	1AE10.01	H, C, O, S

Centralized Automatic Message Accoumting-Standard

5	152	[CAMA ANI and ONI PORT O Registers	Measures the usage of the ANI and ONI registers. Count taken at 10-second intervals.	Usage (AFS)	All Active	H, C, O, S
5	154	CAMA Position Occupied	Usage count taken at to0-second intervals of the number of CR1 registers being used by CAMA operators. This is equal to the number of occupied CAMA operators.	Usage	All Active	H, C, O, S
5	157	CAMA Operator Positions Available	Usage count taken at 10 -second intervals of the number of CAMA operator trunks which are occupled with senvice calls. Prior to 1AE7, count taken at 100 -sacond intervals.	Usage (AFS)	All Active	H, C, Q, S
5	179	CAMA Operator Calls Handled	Peg count of the total number of calls handled by the CAMA positions.	Peg	All Active	H, C, Q, S
5	180	CAMA ONI	Peg count of the total number of calls requiring operator identification because they were received from an ONI trunk group or an ANI trunk group with an information digit indicating multiparty line or special bllling line. This count does not include calls routed to the operator due to ANI failure.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avaliability	Output Schedule	Avallable to Cuatomer

Centrallized Automatic Message Accounting-Standard (Contd)

5	181	CAMA ANI Tme-Out	Peg count of the number of calls routed to an operator because the ANI information was not received within the 8 -second time-out interval.	Peg	All Active	H, C, C, S
5	182	CAMA ANI Failure	Peg count of the number of calls routed to an operator because the ANI tallure information digit was received.	Peg	All Active	H, C, O, S
5	183	CAMA Position Disconnect	Peg count of the number of calls routed to reorder signal because the operator depressed the position disconnect key. This count also includes the number of calls routed to reorder because an operator unoccupied the position betore keying a valid 7 -digit calling number.	Peg	All Aotive	H, C, Q. S
5	184	Cama Queue	Peg count of the number of calls placed in the CAMA operator queue to walt for an idle operator.	Peg	All Active	H, C, Q, S
5	186	Cama Queve	Usage count taken at 10 -second intervals of the total number of calls waiting on the CAMA operator queue.	Usage (AFS)	All Active	H, C, Q, S
5	187	CAMA Queue	Peg count of the number of callis given overflow treatment because they encountered a full CAMA operator queue.	Peg	All Activo	H, C, Q, S
5	188	CAMA Match Check Failure	Peg count of the total number of times that the number keyed by the operator is the same as the called number.	Peg	All Active	H, C, C, S
5	189	CAMA Wrong Dialing Code	Peg count of the total number of times that the office code keyed by the operator is not an office code that could originate over the trunk group on which the call arrived.	Peg	All Active	H, C, O, S
5	190	CAMA MAsrouted CAMA Treatment	Peg count of the number of calls given intercept treatment for superiluous prefixes as a result of a nontoll call received over a CAMA trunk group.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deseription	Type	Avallability	Output Schedule	Avaliable to Customer

Centralized Automatic Message Accounting-Standard (Conta)

5	191	[CAMA Queue Abandoned	Peg count of the number of calls that abandon while queued for a CAMA operator. This count plus the CAMA position peg count and dalay limiting loss count gives the total volume of CAMA calis offered for operator number identification.	Peg	All Active	H, C, Q, S
5	388	CAMA-Abandons During ANI Collection	Peg count of the total number of CAMA incoming trunk abandons while the 1A ESS switches are collecting ANI information from the originating office.	Peg	All Active	H, C, Q, S

Centrex-Variable

7	$\begin{aligned} & \text { CONS } \\ & \text { GRP \# } \end{aligned}$	\|Centrex Attendant	Measures the usage on all attendant trunks in a console group. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S	Yes
19	CTXN \#	Centrex Originatling Call	Counts the originating calls from a centrex group, stations, and consoles for which one or more digits have been dialed.	Peg	All Active	H, C, Q, S	Yes
20	CTXN \#	Centrex incoming Call to LDN	Counts call attempts to reach the attendant through the use of the LDN assigned to a specific centrex number.	Peg	All Active	H, C, Q, S	Yes
21	CTXN \#	Centrax Extension Dial "0"	Counts the attermpts by an extension of a specific centrex group to call the attendant by dialing " 0. ."	Peg	All Active	H, C, Q, S	Yes
22	CTXN \#	Centrex Calls Transferred to Attendant	Counts the incoming calls transferred to the attendant by a centrex station.	Peg	All Active	H, C, Q, S	Yes
24	CTXN \#	Centrex Attendant Queue	Measures the usage of calls waiting in queve for an attendant in a given CTXN. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S	Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Cen	Variab	able (Contd)					
25	\|CTXN \#	Centrex Attendant Queue	Counts the calls entering queue because all attendant trunks are busy.	Peg	All Active	H, C, Q, S	Yes
26	CTXN \#	Centrex Attendant Querre	Counts the number of calls that failed to find an idie attendant and also falled to find a place in the queue in a given CTXN.	Overflow	All Active	H, C, Q, S	Yes
32	CTXN \#	Centrex Routine Autovon Calls	Counts the outgoing routine call attempts to access a preemptible trunk to an Autovon switching machine.	Peg	All Active	H, C, Q, S	Yes
33	CTXN \#	Centrex Routine Autovon Calls	Counts the failures to seize a preemptible trunk to an autovon switching machine for routine autovon calls.	Overfiow	All Active	H, C, Q, S	Yes
34	CTXN \#	Centrex Prlority Autovon Calls	Counts the priority calls made on an autovon trunk group.	Peg	All Active	H, C, Q, S	Yes
35	CTXN \#	Centrex Autovon Preemptions Exercised	Counts the priority calls that have preempted other calls on an autovon trunk group.	Peg	All Active	H, C, Q, S	Yes
36	CTXN \#	Centrex Autovon Preemptions Falled	Counts the priority calls that have failed to preempt other calls via an autovon trunk group.	Peg	All Active	H, C, Q, S	Yes
37	CTXN \#	Centrex Calls Forwarded Don't Answer	Counts the number of attempts to forward calls because the called line is busy.	Peg	All Active	H, C, O, S	Yes
38	CTXN \#	Centrex Calls Forwarded Don't Answer	Counts the number of attempts to forward calls because the called party did not answer.	Peg	All Active	H, C, Q, s	Yes
39	CTXN *	Centrex Calls Forwarded Regular (Variable)	Counts the calls that have been forwarded to the attendant or to another line.	Peg	All Active	H, C, O, S	Yes
40	CTXN \#	Centrex Calls - Call Hold	Counts the number of times the call hold code is dialed within a specific CTXN.	Peg	All Active	H, C, O, S	Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avellable to Customer

Centrex-Varlable (Contd)

41	[CTXN *	Centrex Call Forwarding Activations	Counts the number of times the regular call forwarding activation cods is dialed within a specific CIXN.	Peg	All Active	H, C, Q, S	Yes
42	CTXN \#	Centrex Call Pickup	Counts the number of times the call pickup code or directed call pickup code is dialed within a specific CTXN.	Peg	All Active	H, C, Q, S	Yes
43	CTXN \#	Centrex Calling intragroup	Counts the number of attempts to dial intragroup, station to station, and attendant to station.	Peg	All Active	H, C, Q, S	Yes
44	CTXN*	Centrex DID Calls	Counts the number of DID attempts into a centrex group.	Peg	All Active	H, C, Q, S	Yes
45	CTXN \#	Centrex Dial "B" Calls	Counts the number of times " 8 " is dialed from a centrex group.	Peg	All Active	H, C, Q, S	Yes
46	CTXN \#	Centrex Dial "g" Calls	Counts the number of times " 9 " is dialed from a centrex group.	Peg	All Active	H, C, Q, S	Yes
52	CTXN \#	Centrex Directed Call Pickup	Counts the number of times a centrex station user dilals a directed call pickup answer code plus the extension number of a station with the directed call pickup feature within a specific CTXN.	Peg	All Active	H, C, Q, S	Yes
53	CTXN \#	Centrex Use of Distinctive Ringing Patterns B and C	Counts the number of times the centrex used distinctive ringing patterns B and C.	Peg	All Active	H, C, Q, S	Yes

Contrex Data Facility Pooling
$\left.\begin{array}{l|l|l|l}156 & 000 & \begin{array}{l}\text { CDFP (PFP) Data- } \\ \text { Only Calls }\end{array} & \begin{array}{l}\text { Counts the total number of times CDFP } \\ \text { (PFP) data-only calls are suocessfully } \\ \text { completed using private facility pooling } \\ \text { configuration. }\end{array} \\ \text { Counts the total number of times CDFP }\end{array}\right\}$

Peg	1AEBA.08	H, C, Q, S
Peg		
1AE8A.08	H, C, Q, S	

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallablity	Output Sehedule	Avallable to Customer

Centrex Data Facllity Pooling (Contd)

156	002	CDFP (NMP) DataOnly Calls	Counts the total number of times CDFP (NMP) data-only calls are successfully completed using network modem pooling configuration.	Peg	1AE9.03	H, C, O, S
156	003	CDFP (NMP) Add Data Onto Voice Calls	Counts the total number of times CDFP (NMP) data calls are successtully added onto a voice call using network modem pooling conflguration.	Peg	1AE9.03	H, C, Q, S

Centrex Electronic Key

152	000	CEK Register Seizure	Counts the number of times a CEK register has been seized for ringing a multibution electronic telephone set or for placing a call on hold.	Peg	1AE8A 06	H, C, Q, S
152	001	CEK Register Seizure Failure	Counts the number of times a CEK register is not seized because all registers were busy.	Overilow	1AEBA. 06	H, C, O, S
152	002	CEK Register	Measures the usage of CEK registers while ringing a multibutton electronic telephone set or while a call is on CEK hold. This count is provided on a 100 -second scan basls.	Usage	1AE8A. 06	H, C, Q, S

Centrex Station Rearrangements-Standard

5
591 Failure to Bill Due to Nonhardware Failure

Peg count for the number of CSR messages not billed because AMA resources, excluding tape drive failures, are avalable.

Peg
1AE7

$|$| 1AE7 | |
| :--- | :--- |
| | |
| | |

Centrex Station Rearrangements-Variable

131	PUCDL \#	Successful PUCDL Accesses	Peg count of the number of successful logons by a PUCDL customer on a PUCDL basis.	Peg	1AE7	H, C, Q, S	Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Neme	Description	Type	Avallablity	Output Schedule	Avallable to Customer

Centrex Station Rearrangements-Variable (Contal)

132	PUCDL \#	PUCDL	PUCDL count, taken at 100-second intervals, counts the customer usage of a particular PUCDL	Usage	1 AE 7	H, C, Q, S	Yes
133	PUCDL \#	Data Unk Maintenance Busy	Usage count taken at 100 -second intervals to count the maintenance busy condition of each PUCDL	Usage	1AE7	H, C, Q, S	Yes
134	CSR \#	CSR Messages Rejected Due to Input Error	Peg count of the number of invalld CSR input messages by each CSR customer.	Peg	1AE7	H, C, O, S	Yes
135	CSR \#	CSR Messages	Peg count of the number of CSR input messages by each CSR customer.	Peg	1AE7	H, C, Q, S	Yes
136	CSR \#	CSR Inhibited Conclition	Usage count taken at 100-second intervals to count CSR unavailability for each CSR customer due to manual intervention.	Usage	4AE7	H, C, O, S	Yes
137	CSR \#	CSR Messages Rejected Due to System Error	Peg count of the number of CSR input messages which are aborted due to a system error for each CSA customer.	Peg	1AE7	H, C, Q, S	Yes

Circult Switched Digltal Capability-Variable

5	630	Originating CSDC Calls	Counts the number of originating CSDC call attempts. It is incremented after receipt of the CSDC access code	Peg	Al Active	H, C, Q, S
5	631	$\begin{aligned} & \text { Incoming CSDC } \\ & \text { Calls } \end{aligned}$	Counts the number of CSDC calls terminating within the 1A ESS switch office.	Peg	All Active	H, C, Q, S
5	633	CSDC Tandem Calls	Counts the number of CSDC tandern calls through a 1A ESS switch office.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillty	Output Schedule	Avalleble to Customer

City-Wide Centrex

5	404	Remote Access Data Messages Transmitted	Counts the number of remote access data and remote access forwarding direct signaling messages transmitted to the near end office.	Peg	1AE9	H, C, Q, S
5	405	Remote Access Register	Counts the number of attempts to seize a CWC remote access register	Peg	4AE9	H, C, Q, S
5	406	Remote Access Rogister	Counts the total number of failures to find an idle CWC remote access register.	Overflow	1AE9	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$
5	407	Remote Access Register	Counts the usage on the CWC remote access register on a 10 second scan basis.	Usage	1AE9	H, C, Q, S
150	CTG\#	Remote Access	Counts the number of times that a remote access code is dialed for each selected centrex group.	Usage	1AE9	H, C, Q, S

Coin Zone-Standard

5	36	Coin Zone Overtime
5	193	Coin Overtime Announcement
5	194	Coin Overtime Operator Routed

Counts the total number of times a coin zone trunk is seized for overtime collection.
Counts the number of local coin calls that are successfully connected to a coin overtime announcement.
Counts the number of calls that are routed to an operator that has been previousty given an announcement requesting additional money for overtime.

Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S

Coin Zone-Variable

| 47 | Coin
 Zone
 Initial
 Charge
 Condition | Coin Attempt by
 Initial Charge
 Condition | Counts the number of initial
 attempts to a coin zone operator
 trunk group by a charge condition. | Peg | Al Active |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| | |
| :--- | :--- |

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Con	Ch	Interoffice Sign	-Standard			
5	414	CIR	Counts the total number of attempts to selze a CIR.	Peg	All Active	H, C, Q, S
129	1	CIR	Standard call register usage, provided on a 10 -second basis.	Usage (AFS)	All Active	H, C, Q, S
5	417	CIR	Counts the total number of fallures to find an idle CIP.	Overilow	All Active	H, C, Q, S
5	418	CCIS Timing Block	Counts the total number of attempts to see a CCIS timing block.	Peg	All Active	H, C, Q, S
5	420	CCIS Timing Block	Measures usage on CCIS timing blocks, provided on a 10-second scan interval.	Usage (AFS)	All Active	H, C, Q, S
5	421	CCIS Timing Block	Counts the total number of fallures to find an idle CCIS timing block.	Overtiow	All Active	H, C, Q, S
5	422	CCIS Deferred Processing	Counts the total number of attempts to place an entry on the deferred processing butfer.	Peg	All Active	H, C, Q, S
5	424	CCIS Deferred Processing Buffer	A 10-second scan usage accumulation of the number of 2 word entries on the deferred processing buffer.	Usage (AFS)	All Active	H, C, Q, S
5	425	CCIS Deforred Processing Buffer	Counts the number of failures to place an entry on the deferred processing buffer due to all slots being in use.	Overflow	All Active	H, C, Q, S
5	426	CCIS IAM Refusal	The number of times an incoming IAM is not processed because incoming overload controls are in effect.	Peg	All Active	H, C, Q, S

Common Channel Interofice Signalling-Varieble

$109 |$| (TCN) 00/ | Outgoing Data | |
| :--- | :--- | :--- |
| TPN/TMN | Filled Signal Units | |
| | | |
| 109 | | |
| (TCN) 01/ | | Incoming Data |
| TPN/TMN | Filled Signal Units | |

Counts the number of non-SYU, non-ACU signal units that are transmitted by the CCIS terminal specified in the EGO.

Counts the number of non-SYU, non-ACU signal units that are received by the CCIS terminal specified in the EGO.

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabilly	Output Schedule	Available to Customer

Common Channel Intoroffice Signailing-Variable (Contd)

109	(TCN) 02/ TPN/TMN	Outgoing IAMs	Counts the number of IAMs transmitted by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 03/ TPN/TMN	Incoming IAMs	Counts the number of IAMs transmitted by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 04/ TPN/TMN	Outgoing ANC Signal Units	Counts the number of ANC signal units transmitted by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 05/ TPN/TMN	incoming ANC Signal Units	Counts the number of ANC signal units received by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 06/ TPN/TMN	Outgoing Total Transitions	Counts the number of outgoing total transitions from the CCIS terminal speecified in the EGO. A total transition occurs whenever a signal unit passes from an information type (includes all signal units except SYU and ACU) to SYU or vice versa.	Peg	All Active	H, C, Q, S
109	$\begin{aligned} & \text { (TCN) 07/ } \\ & \text { TPN/TMN } \end{aligned}$	Incoming Total Transitions	Counts the number of total transitions incoming to the CCIS terminal specified in the EGO	Peg	All Active	H, C, Q, S
109	$\begin{aligned} & \text { (TCN) 08/ } \\ & \text { TPN/TMN } \end{aligned}$	Total Outgoing Messages	Counts the messages transmitted by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	$\begin{aligned} & \text { (TCN) 09/ } \\ & \text { TPN/TMN } \end{aligned}$	Total Incoming Messages	Counts the messages received by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 10/ TPN/TMN	Terminal Buffer	Counts the number of times the terminal specified in the EGO denies signaling traffic due to all of its terminal buffer locations boing in use	Overflow	All Active	H, C, O, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillty	Output Schedule	Avallable to
Customer							

Common Channel Interoffice Signaling-Variable (Contd)

109	(TCN) 11/ TPN/TMN	Signal Units in Error	Counts the number of signal units in error received by the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 12/ TPN/TMN	Retransmiasion Requests	Counts the number of retransmission requests received by the terminal specified in the EGO.	Peg	All Active	H, C, O, S
109	(TCN) 13/ TPN/TMN	Failures That Clear in 3 Minutes	Counts the number of times a signaling link is not avalable for service. This is a total for the CCIS terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 14/ TPN/TMN	Recelved Repeated ACU	Counts the number of times the terminal specified in the EGO recelves an ACU containing a block acknowledgment number equal to the block acknowledgment number in the previous ACU.	Peg	All Active	H, C, Q, S
109	(TCN) $15 /$ TPN/TMN	Recelved Skipped ACU	Counts the number of times an ACU received by the terminal specified in the EGO does not contain the next cyclical block acknowledgment number expected.	Peg	All Active	H, C, Q, s
109	(TCN) 16/ TPN/TMN	Emergency Restarts	Counts the number of times communication is reestablished via emergency restart procedure on the terminal pair of the terminal specified in the EGO.	Peg	All Active	H, C, O, S
109	(TCN) 17/ TPN/TMN	Minutes in Emergency Restart	Measured from when both terminals of a pair have failed untll a communication path is reestablished via emergency restart Counted for the terminal pair of the terminal specified in the EGO.	Peg	All Active	H, C, Q, S
109	(TCN) 18 / TPN/TMN	Direct Signaling Messages Transmitted	Counts the number of direct signaling messages transmitted by the CCIS terminal specified.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillity	Output Schodule	Avallable to Customer

Common Channel Interofilice SIgnaling-Variable (Contd)

109	(TCN) 19/ TPN/TMN	Direct Signaling Messages Received	Counts the total number of direct signaling messages recetved.	Peg	All Active	H, C, Q, S
109	(VCN) $00 /$ TPN/TMN/ VFL	Near-End Initlated Automatic Changeovers	Counts the number of times a link failure occurs and is detected on the near-end of the VFL.	Peg	All Active	H, C, Q, S
109	(VCN) 01/ TPN/TMN/ VFL	Far-End Initiated Automatic Changeovers	Counts the number of times a VFL is automatically relieved of its traffic load and this event is initiated by the far-end of the VFL.	Peg	All Active	$H, \mathbf{C}, \mathrm{Q}, \mathrm{S}$
109	(VCN) 02/ TPN/TMN/ VFL	Half-Hour in Service	The in-service counter for the actlve VFL of a pair is set to one and the counter for the standby VFL. of the pair is set to zero each quarter-hour during which no changeovers occurred. It changeovers occur during the quarter-hour, the in service counters for both VFLs are set to zero. Every 15 minutes, the traffic program adds this count to accumulated counts of quarterhours in service. When the count is output, it is divided by two to give half-hours in service.	Peg	All Active	H, C, Q, S

Common Channel Interofifice Signaling, Common-Standard

5	619	\|CCIS Backward Failure Messages Received	Counts the number of national switching congestion, address incomplete, and call fallure backward fallure messages that a class 5 CCIS office receives. This count should be subtracted from the office raw overflow count for the network switching performance measurement plan.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Nem	Desteription	Type	Avallability	Output Schedulo	Avallable to Customer

Common Channel Interolitice Signaling, Common-Standard (Contd)
\(\left.5\left|$$
\begin{array}{l|l|l|l|l|}620 & \begin{array}{l}\text { CCIS Backward } \\
\text { Fallure Messages } \\
\text { Transmitted }\end{array}
$$ \& \begin{array}{l}Counts the number of national switching

congestion, address incomplete, and call

failure backward fallure mossages that a

class 5 CCIS office transmits. This count

should be added to the office raw

overflow count for the network switching

performance measurement plan.\end{array} \& Peg\end{array}\right|\)| All Active |
| :--- | \right\rvert\, | H, C, Q, S |
| :--- |

Common Channel Interofice Signaling Inwerd Wide Area Telecommunications Service Originating Screening Ofice-Varlable

128	0	NWATS Queries Sent	Counts the number of times an INWATS query is sent to the INWATS data base.	Peg	All Active	H, C, Q, S
128	1	Successiul Replies	Counts the number of times a successful reply, which contains a 10 -digit DDD number, is sent from the INWATS data base.	Peg	All Active	H, C, O, S
128	2	Ineffective Attempts	Counts the number of times an ineffective attempt massage, which indicates a call should be terminated, is sent from the INWATS data base. The reason for the termination is coded within the message.	Peg	All Active	H, C, Q, S
128	3	Time-Outs for Replies	Counts the number of fallures to recelve replies to INWATS data base queries within the allotted time period of 3 seconds.	Peg	All Active	H, C, Q, S
128	4	Calls Peaching Office	Counts the number of INWATS calls that reach the originating screening office.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

						Output Schedule	Avallable to Customer
TMC	EGO	Name	Description	Type	Avallability	Schedule	

Common Channel Interoffice Signalling Inward Wide Area Telecommunications Service Orlginating Screening Office-Variable (Contd)

128	5	INWATS Calls Blocked by Network Management	Counts the number of times a call is blocked by INWATS network management code controls. Code controls limit the number of querles allowed to be sent to the INWATS data base.	Peg	All Active	H, C, Q, S
128	6	INWATS Calls Blocked by CCIS Failures	Counts the number of times a call is blocked by a CCIS failure code control or a CCIS tailure.	Peg	All Active	H, C, O, S
128	7	INWATS Request Block	Counts the number of times an INWATS request block is seized.	Peg	All Active	H, C, Q, S
128	8	INWATS Request Block	Counts the number of failures to seize an INWATS request block. This is caused by not having an idle request blook avallable.	Overflow	All Active	H, C, Q, S

Common Channel Interofflee Signaling, Local-Standard

128	9	INWATS Request Block	Count taken at 10 -second intervals of the number of INWATS request blocks that are currently being used.	$\begin{aligned} & \text { Usage } \\ & \text { (AFS) } \end{aligned}$	All Active	H, C, Q, S
5	582	Local CCIS Outpulsing Annex Register	Counts the number of attempts to seize an outpulsing annex register to hold call related information for a limited period of time for local CCIS.	Peg	All Active	H, C, Q, S
5	583	Local CCIS Outpulsing Annex Register	Counts the number of fallures to seize an outpulsing annex register to hold call related information for a limited period of time for local CCIS.	Overtlow	All Active	H, C, Q, S

Common Channel Interofifice Slgnaling 6 Traffic Enhancement
\(\left.158|000| $$
\begin{array}{l|l}\text { Incoming Local } \\
\text { CCIS }\end{array}
$$ \left\lvert\, \begin{array}{l}Counts the number of calls entering the

office via a local CCIS trunk and

terminating in the office.

Counts the number of successful calls\end{array}\right.\right\}\)| Outgoing Local |
| :--- |
| originating in the office and going out via |
| a local CCIS trunk. |

Peg	1AE9.03	H, C, Q, S
Peg	1AE9.03	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedule	Avallable to Customer

Common Channel Interoffice Signalling 6 Traffic Enhancement (Contd)

158	002	Tandem Local CCIS	Counts the number of tandem calls via local CCIS trunks.	Peg	1AE9.03	H, C, Q, S
158	003	Tandom 2-Wire Toll CCIS	Counts the number of tandem calls via 2-wire toll CCIS trunks.	Peg	1AE9.03	H, C, Q, S
158	004	Incoming 2-Wire Toll CCIS	Counts the number of calls incoming via 2-wire toll CCIS trunks and outgoing via PTS trunks.	Peg	1AE9.03	H, C, Q, S
158	005	Outgoing 2-Wire Toll CCIS	Counts the number of calls incoming via PTS trunks and outgoing via 2-wire toll CCIS trunks.	Peg	1AE9.03	H, C, Q, S
158	006	Tandem HILO CCIS Trunks	Counts the number of local and tandem calls via HILO CCIS trunks.	Peg	1AE9. 03	H, C, Q, S
158	007	Incoming HILO CCIS Trunks	Counts the number of local and tandem calis incoming via HILO CCIS trunks and outgoing via PTS trunks.	Peg	1AE9.03	H, C, Q, S
158	008	Outgoing HILO CCIS Trunks	Counts the number of local and tandem calls incoming via PTS trunks and outgoing via HILO CCIS trunks.	Peg	1AE9.03	H, C, Q, S

Common Channel Signaling Syatem 7-Integrated Services User Part

| 159 | 0 | CCS7 Timing Block |
| :--- | :--- | :--- | :--- |
| 159 | 1 | CCS7 Timing Block |
| 159 | 2 | CCS7 Incoming
 Register |
| 159 | 3 | CCS7 Incoming
 Register
 CCS7 IAM |
| 159 | 4 | |

Counts the total number of attempts to
seize a CCS7 timing block.
Counts the total number of failures to
find an idie CCS7 timing block.
Counts the total number of times a CCS7
Incoming register is seized.
Counts the total number of fallures to
find an idle CCS7 incoming register.
Counts the total number of times a CCS7
IAM (initial address message) is not
processed.

Peg	1AE10.01	H, C, Q, S
Overflow	1AE10 01	H, C, Q, S.
Peg	1AE10.01	H, C, Q, S
Overflow	1AE 10.01	H, C, Q, S
Peg	1AE10.01	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schodule	Avallable to Customer

Common Channel Signaling System 7-Integrated Services User Part (Contd)

159	5	CCS7 Outpulsing Annex Register	Counts the total number of attempts to seize an outpulsing annex register to hold call related information for limited period of time for CCS7.	Peg	1AE10.01	H, C, Q, S
159	6	CCS7 Outpulsing Annex Register	Counts the total number of fallures to seize an outpulsing annex register to hold call related information for limited period of time for CCS7.	Overflow	1AE10.01	H, C, Q, S
159	7	Incoming CCS7 2 Wire Calls	Counts the number of calls that come into the office via 2-wire CCS7 trunks.	Peg	1AE10.01	H, C, Q, S
159	8	Outgoing CCS7 $2-$ Wire Calls	Counts the number of calls that originate in the office and go out via 2-wire CCS7 trunks.	Peg	1AE10.01	H, C, Q, S
159	9	Undefined Message	Counts the number of times a message with unknown message type from MiP (message interface processor) is recelved.	Peg	1AE10.01	H, C, Q, S
159	10	Unknown TNN	Counts the number of times a message is received for a non-CCS7 trunk or IDPC/CIC to TNN (trunk network number) translation returns with unknown or invalid TNN.	Peg	1AE10.01	H, C, Q, S
159	11	TOMB	Counts the number of times information is successfully loaded in the TOMB (temporary output message buffer).	Peg	1AE10.01	H, C, Q, S
159	12	TOMB	Counts the number of failures to load information in the TOMB.	Overflow	1AE10.01	H, C, Q, S
159	13	Message Block Size "A"	Counts the total number of attempts to seize a message block of size " A ".	Peg	1AE10.01	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avaliability	Output Schedule	Available to Customer

Common Channel Signalling System 7-Integrated Services User Part (Contd)

159	14	Message Block Size "B"	Counts the total number of attempts to seize a message block of size "B".	Peg	1AE10.01	H, C, Q, S
159	15	Message Block Size "C"	Counts the total number of attempts to seize a message block of size "C."	Peg	1AE10.01	H, C, Q, S
159	16	Message Biock Size "D"	Counts the total number of attempts to selze a message block of size "D."	Peg	1AE10.01	H, C, Q, S
159	17	Message Block Size "A"	Counts the total number of fallures to seize a message block of size " A ".	Overflow	1AE10.01	H, C, O, S
159	18	Message Block Size "B"	Counts the total number of fallures to seize a message block of size " B ".	Overflow	1AE10.01	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$
159	19	Message Block Size "C"	Counts the total number of fallures to seize a message block of size "C."	Overilow	1AE10.01	H, C, O, S
159	20	Message Block Size "D"	Counts the total number of failures to seize a message block of size "D."	Overflow	1AE10.01	H, C, Q, S
159	21	Message Size "0-31" Octets	Counts the total number of times messages of sizes 0 through 31 octets are received.	Peg	1AE10.01	H, C, Q, S
159	22	Message Size "32-63" Octets	Counts the total number of times messages of sizes 32 through 63 octets are received.	Peg	1AE10 01	H, C, C, S
159	23	Message Size "64-95" Octets	Counts the total number of times messages of sizes 64 through 95 octets are received.	Peg	1AE10.01	H, C, Q, S
159	24	Message Size "96-127" Octets	Counts the total number of times messages of sizes 96 through 127 octets are recelved.	Peg	TAE10.01	H, C, Q, S
159	25	Message Size "128159" Octets	Counts the total number of times messages of sizes 128 through 159 octets are received.	Peg	1AE10.01	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$

Table C. Trafific Measurements (Contd)

TMAC	EGO	Name	Description	Type	Avaliability	Output Schedule	Avallable to Customer

Common Channel Signalling System 7-Integrated Services User Part (Contd)

159	26	Message Size "160191" Octets	Counts the total number of times messages of sizes 160 through 191 octets are received.	Peg	1AE10.01	H, C, Q, S
159	27	Massage Size "192223" Octets	Counts the total number of times messages of sizes 192 through 223 octets are received.	Peg	1AE10.01	H, C, Q, S
159	28	Message Size "224- 2555^{\prime} Octets	Counts the total number of times messages of sizes 224 through 255 octets are received.	Peg	1AE10.01	H, C, Q, S
159	29	CCS7 Trunk Maintenance Unloaded Message	Counts the number of times a message could not be loaded in the delayed message processing buffer for CCS7 trunk maintenance.	Peg	1AE10.01	H, C, O, S
159	30	CCS7 Incoming Register	Measures the number of times a CCS7 incoming register is used at a 10 -second scan basis.	Usage	1AE10.01	H, C, Q, S
159	31	CCS7 Outpulsing Annex Register	Measures the number of times a CCS7 outpulsing annex register is seized on a 10 -second scan basis.	Usage	1AE10.01	H, C, Q, S
159	32	CCS7 Timing Block	Measures the number of times CCS7 a timing block is used. This count is provided on a 10 -second scan basis.	Usage	1AE10.01	H, C, Q, S
159	33	Message Block Size "A"	Measures the number of times a message block of size " A " is used. This count is provided at a 10 -second scan interval.	Usage	1AE10.01	H, C, O, S
159	34	Message Block Size "B"	Measures the number of times a message block of size " B " is used. This count is provided at a 10-second scan interval	Usage	1AE10.01	H, C, Q, S
159	35	Message Block Size "C"	Measures the number of times a message block of size "C" is used. This count is provided at a 10 -second scan interval.	Usage	1AE10.01	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallabillty	Output Schedule	Available to Customer

Common Channel Signalling Syatom 7-Integrated Services User Part (Contd)

159	36	Message Block Size "D"	Measures the number of times a message block of size " D " is used. This count is provided at a 10 second scan interval.	Usage	1AE10.01	H, C, Q, S
159	42	CCS7 to CCS7 Tandem Calla	Counts the number of calls which enter the office via 2-wire CCS7 trunk and tandem out of the office via a 2 -wire CCS7 trunk.	Peg	1AE10.01	H, C, Q, S
159	43	CCS7 to PTS (Per Trunk Signaling) Tandem Calls	Counts the number of calls which enter the office via a 2-wire CCS7 trunk and tandem out of the office via a 2-wire trunk which is not CCS7.	Peg	1AE10.01	H, C, Q, S
159	44	PTS to CCS7 Tandem Calls	Counts the number of calls which enter the office via a 2 -wire trunk which is not CCS7 and tandem out of the office via a 2-wire CCS7 trunk.	Peg	1AE10.01	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$
159	46	CCS7 Calls that Failed due to a Fault in the Signaling Network	Counts CCS7 calls that failed due to a fault in the signaling network.	Peg	1AE10.01	H, C, Q, S
159	47	Available CCS7 Trunk State Block	Counts the number of available (unused) CCS7 trunk state blocks in the office.	Peg	1AE10.01	H, C, Q, S

Common Channel Signaling System 7-Integrated Services User Part-Protocol Evolution Feature

$177 |$| 177 | 000 | CFN Messages Sent |
| :--- | :--- | :--- |
| 177 | 002 | CFN Messages
 Received
 Protocol Error Class
 Messages Sent |

Counts the number of ISUP Confusion (CFN) messages sent on a per switch basis.
Counts the number of ISUP CFN messages received on a per switch basis.
Counts the number of ISUP

Peg	1AE11.06	H, C, Q, S
Peg	1AE11.06	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$
Peg	1AE11.06	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description			Output Schedule	Avaliable to Customer
Juc	ceo	Name	Descripuon	Type	Avaliability		

Common Channel Signaling Syatom 7-Integrated Services User Part-Protocol Evolution Feature (Contd)

| 177 | 003 | Protocol Error Class
 Messages Received |
| :--- | :--- | :--- | :--- |
| 177 | 004 | MUl Parameters
 Dropped due to
 Message or
 Parameter Length
 Violations |
| 177 | 005 | ATP Parameters
 Dropped due to
 Message or
 Parameter Length
 Violations |
| 006 | Initial Address
 Message (IAM)
 Received | |
| 177 | $008-025$ | Release Messages
 Recelved
 Unassigned. |

Counts the number of ISUP messages received with cause = protocol error class on a per switch basis.
Counts the number of User-to-User Information (UUI) parameters dropped on a per switch basis, due to maximum message length violations of 272 bytes and/or maximum parameter length violations of 129 bytes.
Counts the number of Access Transport Parameters (ATP) dropped on a per switch basis, due to maximum message length violations of 272 bytes and/or maximum parameter length violations of 129 bytes.
Counts the number of IAMs received of size larger than the largest available message block in the office. Some optional parameters (those that were not saved in the call register) are lost. Counts the number of release messages received with a cause value of either "call rejected" or "no user responding". Unassigned.

Peg	1AE11.06	H, C, Q, S
Peg	1AE11.06	H, C, Q, S
Peg	1AE11.06	H, C, Q, S
Peg	1AE11.06	H, C, Q, S
Peg	1AE11.07	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallebility	Output Schodule	Avallable to Customer
Common Channel Signaling Syatem 7-Meesage Interface Processor							
160	0	Unloading Limit of Received Messages Reached	Counts the total number of times the TB (traffic buffer) unloading limit for received messages is reached. This limit applles to a single unloading entry.	Peg	\| 1AE10.01	H, C, Q, S	
160	1	TB Send Buffers	Counts the total number of messages that were not loaded because the 1A ESS switch TB sent buffer was full.	Overflow	1AE10.01	H, C, Q, S	
160	2	TB Send Buffier Congestion	Counts the total number of messages that were rejected because the 1A ESS switch TB send buffer congestion threshold has been reached. (These are lower priority messages that were rejected even though the 1A ESS switch TB send buffer was not completely filled).	Overfiow	1AE10.01	H, C, Q, S	
160	3	Returned Messages by CNI Ring	Counts the total number of messages returned by the CNI (common network interface) ring. [This does not include SCCP (signaling connection control processing) unit data messages which are returned to an SCCP user as a unit data service message].	Peg	1AE10.01	H, C, Q, S	
160	4	CNI Traffic Stream Down	Measures the number of times the traffic stream is down. This count is provided at a 10 -second scan interval.	Usage	1AE10.01	H, C, Q, S	
160	5	Successfully Loaded Words into the 1A ESS Switch TB Send Buffer.	Counts the total number of words that are successfully loaded into the 1A ESS switch TB send buffer.	Peg	1AE10.01	H, C, Q, S	
160	6	Unloaded Words From the 1A ESS Switch TB Send Buffer	Counts the total number of words that are unloaded from the 1A ESS switch receive buffer.	Peg	1AE10.01	H, C, Q, S	

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

167	0	Number of Query Mossages	Counts the number of times query messages are transmitted successfully from NEO (near-end office).	Peg	TAE10.01	H, C, O, S
167	1	Query Message Attempts	Counts the number of times query messages are attempted but not transmitted from the NEO.	Peg	1AE10.01	H, C, Q, S
167	2	Cuery Messages Received	Counts the number of times query messages are received at the FEO (lar-end office).	Peg	1AE10.01	H, C, Q, S
167	3	Messages Transmitted	Counts the number of times messages are transmitted from the EO (end office) but not transported to the final destination.	Peg	1AE10.01	H, C, Q, S
167	4	Response Messages Transmitted	Counts the number of times response messages are transmitted successfully from the FEO.	Peg	1AE10.01	H, C, O, S
167	5	Pesponse Messages Attempted	Counts the number of times response messages are attempted but not transmitted from the FEO.	Peg	1AE10.01	H, C, Q, S
167	6	Response Messages Received	Counts the number of times response messages are received at the NEO	Peg	1AE10.01	H, C, Q, S
167	7	Time-outs	Counts the number of time-outs while waiting for response messages at the NEO.	Peg	1AE10.01	H, C, Q, S

Common Systems Recorded Announcement Frame-Varlable

| 99 | CTXN \# | CSRAF Accesses | Counts the number of times a
 customer is successfully connected
 to a CSRAF channel after dialing an
 access code. | Peg | All Active | H, C, Q, S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Custom Caliling Services - Standard

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5 \& 24 \& Activate Call Forwarding \& Counts the attempts to activate call torwarding service (noncentrex only). \& Peg \& All Active \& H, C, Q, S

H

\hline 5 \& 26 \& Number of Calls Forwarded \& Counts the number of times a terminating call finds the called line in a call forwarding activated state (noncentrex only). \& Peg \& All Active \& H, C, O, S

\hline 5 \& 51 \& Call Forwarding Recent Change \& Measures the usage of lines with call forwarding activated. Count taken at 100-second intervals. \& Usage \& All Active \& H, C, Q, S

\hline 5 \& 130 \& Centrex Transfer Individual \& Counts the centrex station attempts to transfer, "consutation hold," or "add on to" an existing connection by use of a 3 port conference circuit. \& Peg \& All Active \& H,C, Q, S

\hline 5 \& 133 \& Call Waiting \& Counts the terminating calls to busy lines with the call walting feature. \& Peg \& All Active \& H, C, Q, S

\hline 5 \& 238 \& Speed Call List Change Attempts Noncentrex \& Counts the attempts to change speed calling lists by noncentrex customers. \& Peg \& All Active \& H, C, Q, S

\hline 5 \& 241 \& Speed Call list Change Attempts Centrex \& Counts the attempts to change speed calling lists by centrex customers \& Peg \& All Active \& $\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$

\hline 5 \& 386 \& Call Waiting Noncentrex \& Counts the number of times the call waiting feature is activated on a noncentrex line. \& Peg \& All Active \& H, C, O, S

\hline 5 \& 387 \& Call Waiting Centrex \& Counts the number of times the call waiting feature is activated on a centrex line. \& Peg \& All Active \& H, C, Q, S

\hline
\end{tabular}

Table C. Trafific Measurements (Contd)

						Output Schedule	Avalleble to Customer
TMC	EGO	Name	Description	Type	Avallability	Schedule	Customer

Custom Calling Services -Standard (Contd)

5	547	CFV CORC Block	Count taken at 100-second intervals of the 2-word CORC blocks currently busy storing CFV information.	Usage	All Active	H, C, Q, S
5	548	CFV CORC Block	Counts the number of times a 2-word CORC block is seized for CFV.	Peg	All Active	H, C, Q, S
5	549	CFV CORC Block	Counts the number of times CFV could not seize a 2 -word CORC block.	Overflow	All Active	H, C, Q, S
5	550	4-Word CORC Block	Count taken at 100 -second intervals of the 4-word CORC blocks currently busy storing CFPF or CFV information.	Usage	All Active	H, C, Q, S
5	551	4.Word CORC Block	Counts the number of times a 4 -word CORC block is seized for CFPF or CFV.	Peg	All Active	H, C, Q, S
5	553	4-Word CORC Block	Counts the number of times CFPF or CFV could not seize a 4-word CORC block.	Overflow	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avaliablity	Output Schedule	Avallable to Custorner

Daily Measurements on H - or C-Schedulo-Standard						
5	63	Links Maintenance Busy	Measures total number of A, B, and C links that are made busy for maintenance purposes in the LLNs or TLNs.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 24 \mathrm{~A} \end{aligned}$
5	65	Originating Tol (AMA)	Measures the total AMA register usage for nonmessage rate interoffice calls. Count taken at 100 -second intervals.	Peg	All Active	H, C, Q, S
5	72	Permanemt Signals	Scores whenever a customer dight receiver times out and no digits have been received.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 24 \mathrm{~A} \text { TC15 } \end{aligned}$
5	73	3-Way Calling	Counts the attempts to add a third party to an existing connection, excluding centrex/ESSX-1 calls.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24A } \end{aligned}$
5	74	Speed Calling "1" Digit	Counts the originating attempts by customers to utilize their 1-digit speed calling feature.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC24A } \end{aligned}$
5	75	Speed Calling "2" Digit	Counts the originating attempts by customers to utilke their 2-digit speed calling feature.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24A } \end{aligned}$
5	76	Originating Toll Attempts	Counts the total number of times an AMA register is seized for nonmessage rate interoffice calls.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 24 \mathrm{~A} \end{aligned}$
5	77	Disconnect Hits	Counts the number of switchhook hits for which disconnect timing was incomplete.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC15 TC24 } \end{aligned}$
5	78	Blocked Dial Tone Queue	Counts the calls that are placed in the dial tone queue for the first time.	Peg	All Active	H, C, Q, S
5	83	Intercept-Temporary Disconnect	Counts the number of calls to directory numbers assigned to route index 83.	Peg	All Active	$\begin{aligned} & H_{1} \mathrm{C}, \mathrm{O}, \mathrm{~S} \\ & \text { TC24A } \end{aligned}$
5	84	Intercept-Changed Number	Counts the number of calls to directory numbers assigned to route index 84.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC24A } \end{aligned}$
5	85	Intercept- Unassigned	Counts the number of calls to directory numbers assigned to route index 85.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24A } \end{aligned}$

Table C. Traffic Measurements (Contd)

| EGO | Name | Description | Type | Avallability | Output
 Schedule | Avaliable to
 Customer |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Dally Measurements on H- or C-Schedule-Standard (Contal)

5	86	\|Intercept-Blank Number	Counts the number of calls to directory numbers	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24A } \end{aligned}$
5	87	Block Dlal Tone Delay	Counts the number of times, after a predetermined program sequence (4 to 5 seconds) a line fails to receive dial tone due to line link network, trunk link network, or junctor blockage and continues to increment the counter avery 4 seconds thereater.	Peg	All Active	$\begin{aligned} & H_{1} C_{1} Q_{1} S \\ & \text { TC24A } \end{aligned}$
5	88	Trouble Intercept	Counts the number of calls to route index 88.	Pog	Ah Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC24A } \end{aligned}$
15	General Purpose Register Number of Chart Column 000-149	General Purpose Registers	This is a count of the number of calls orliginated by lines according to chart column class of service.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24C } \end{aligned}$
15	000-149	Coin Zone Initial Charge	This is a count of calls routed to each of eight possible coin zone charge conditions on a coin zone trunk group for initial charge only.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC24Z } \\ & \text { TC24C } \end{aligned}$
15	000-149	Chart Column Class Service	This is a count of the number of calls originated by lines according to chart column classes of service.	Peg	All Active	$\begin{aligned} & H_{1} \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC24C } \end{aligned}$
15	000-149	Office or Foreign Area Preroute	This is a count of the number of calls to an area code or central office code.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24C } \end{aligned}$

Data LInk Input/Output-Varlable

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deseription	Type	Avallability	Output Schedule	Avallable to Customer

Data Link Input/Output-Variable (Contd)

102	JLGN \#	Data Link Group	Count taken on 100-second intervals of the number of data link orders currently in the output buffer waiting to be sent over the data link.	Usage	All Active	H, C, Q, S

Digital Carrier Trunks-Standard

5	461	DCT Originating Register	This count keeps track of anl DCT calls which must maintain communication with the peripheral unit controller for pulsing purposes. Counts the number of times the register has been seized under any of the following conditions: (1) The call is a DCT DP or RP incoming call. (2) The call is a DCT DP or RP outgoing call. (3) The call is a DCT touch-tone service incoming call with a dial tone start pulising signal.	Peg	All Active	H, C, Q, S
5	462	DCT Originating Plegister	Measures DCT originating register usage for the same three conditions covered under TMC5, EGO461. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S
5	464	DCT Originating Register	Counts the number of times a DCT call is unable to keep the originating register that has been seized because DCT has already used its allotment of originating registers.	Overflow	All Active	H, C, Q, S
5	465	DCT Annex	Counts the number of times a DCT DP or RP outgoing call has seized an outgoing annex	Peg	All Active	H, C, Q, S
5	466	DCT Annex	Measures DCT DP or RP outgoing call outpulsing annex usage on a 100-second scan basis.	Usage	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedule	Avaliable to Customer

Digital Carrier Trunks-Standard (Contd)

	468	

Counts the number of times a DCT call is unable to keep the outpulsing annex that has been seized because DCT has already used its allotment of annexes.

Overflow	All Active	H, G, Q, S

Display Text Register (DTR)

194	000	DTR Usage Count	This counts the number of DTRs in use.		
194	002	003	DTR Peg Count This counts the number of attempts to seize a DTR.		
DTR Overflow					
Count				\quad	This counts the number of attempts
:---					
to seize a DTR when none are					
available.					

Usage	1AE12.07	H, C, Q, S
Peg	1AE12.07	H, C, Q, S
Overflow	1 AE12.07	H, C, Q, S

Electronic Tandem Switching-Standard

5	560	ETS MDR 18 -Word AMA Register	Incremented whenever the register is seized and decrernented when it is released. Count taken at $100-$ second intervals.	Usage	All Active	H, C, Q, S	
5	562	ETS MDR 13-Word AMA Register	increments whenever the register is seized and decremented when it is released. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, Q, S	
5	572	ETS MDR 18-Word AMA	Counts the number of attempts to seize an 18 -word AMA register for an originating MDR call.	Peg	All Active	H, C, Q, s	
5	573	ETS MDR 18-Word AMA	Counts the number of times the upper limit is exceeded for 18 -word AMA register usage on originating MDR calls.	Overflow	All Active	H, C, Q, S	
5	574	ETS MDR 13-Word AMA	Counts the number of attempts to seize a 13 -word register for a terminating MDR call.	Peg	All Active	H, C, Q, S	
5	575	ETS MDR 13-Word AMA	Counts the number of times the upper limit is exceeded for 18 -word AMA register usage on originating MDR calls.	Overflow	All Active	H, C, Q, S	
Electronic Tandem Switching-Variable							
54	QUEUE \#	ETS Priority Queue	Counts the number of attempts to place ETS priority calls into queue.		All Active	H, C, Q, S	Yes
55	QUEUE \#	ETS Routine Queue	Measures the ETS routine calls waiting in queue. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S	Yes

Table C. Traffic Measurements (Contd)

TME	EGO	Name	Description	Type A	Avallabillty	Output Schedule	Avallable to Customer
Electronic Tandem Switching-Variable (Contd)							
56	QUEUE \#	ETS Priority Queue	Measures the ETS priority calls waiting in queue. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S	Yes
93	QUEUE \#	ETS Routine Queue	Counts the number of attempts to place ETS routine calls into queve.	Peg	All Active	H, C, O, S	Yes
119	QUEUE \#	ETS Routine Queue	Counts the number of failures to put calls on the ETS routine queue.	Overilow	Al Active	H, C, O, S	Yes
120	QUEUE \#	ETS Priority Queue	Counts the number of fallures to put calls on the ETS priority queue.	Overflow	All Actlve	H, C, Q, S	Yes
121	QUEUE \#	ETS Routine Queue Abandon	Counts the number of routine calls abandoned before they are answered or timed out. See TMC 123.	Peg	All Active	H, C, Q, S	Yes
122	QUEUE \#	ETS Priority Queue Abandon	Counts the number of priority calls abandoned before they are answered or timed out See TMC 124.	Peg	All Active	H, C, Q, S	Yes
123	QUEUE *	ETS Routine Queue Time-Out	Counts routine calls which were in queue and were routed over another facillty or to overliow upon time-out. Routing and length of time-out are specifled by customer.	Peg	All Active	H, C, Q, S	Yes
124	QUEUE \#	ETS Priority Queve Time-Out	Counts priority calls which were in queue and were routed over another faclity or to ovarflow upon time-out. Routing and length of time-out are specified by the customer.	Peg	All Active	H, C, Q, S	Yes
125	TG \#	Reorder/Queue for Trunk Groups	Counts the number of calls placed on queue or sent to reorder because all routes in the route list are busy. Routing to queue or reorder is a customer option.	Overilow	All Active	H, C, Q, S	Yes
126	SFG \#	Reorder/Queue for Simulated Facility Groups	Counts the number of calls placed on queue or sent to reorder because all routes in the route list are busy. Routing to queue or reorder is a customer option.	Overflow	All Active	H, C, Q, S	Yes
131	PUCDL \#	Successful PUCDL Accesses	Counts the number of successful logons by a PUCDL customer on a per PUCDL basis.	Peg	All Active	H, C, Q, S	Yes

Table C. Traffic Measurements (Contd)

| TMC | EGO | Name | Description | Type | Avallablity | Output
 Schedule | Avallabla to
 Customer |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Electronic Tandem Switching-Variable (Contal)

$132 |$| 133 | PUCDL * |
| :--- | :--- |
| PUCDL * | PUCDL |
| Data Link Maintenance | |
| Busy | |

Count taken at 100 -second
intervals of the customer
usage of a particular PUCDL.
Count taken at 100 -second
intervals of the maintenance
busy condition of each
PUCDL.

Usage	All Active	H, C, Q, S	Yes
Usage	All Active	H, C, Q, S	Yes

Enhanced 911 Service-Standard

5	429	911 ANI Fallure Digit
5	430	911 ANI Time-Out
5	431	911 ANI Format Failure
5	498	E911 Intraotitice Calls
5	499	E911 Intraoffice Calls

ESSX-1-Variable

| 103 | CFGN | CFG 1-Way Group | Counts the number of
 attermpts to seize a tacility
 within the customer facility
 group. | Peg | All Active | H, C, Q, S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availabillity	Output Schedule	Avallable to Customer
ESSX-1-Varlable (Contd)							
104	\|CFGN	CFG	Counts the number of call attempts that failed to seize a facility within a specified group because all of the customer facillties were in use.	Overflow	All Active	H, C, Q, S	Yes
105	CTXN	CFG	Measures the usage of a specified customer facllity group. Count taken at 5-second intervals.	Usage	All Active	H, C, C, S	Yes
106	CTXN	Centrex Total	Counts the number of times a centrex call or service request could not be completed and was routed to reorder, busy tone, or an announcement because a customer specified facllity or piece of equipment was not avallable.	Overilow	All Active	H, C, Q, S	Yes
107	CFGN	CFG Incoming on 2-Way Group	Counts the number of incoming call attempts to seize a facility within the facility group specified.	Peg	All Active	H, C, Q, s	Yes
108	CFGN	CFG Outgoing on 2-Way Group	Counts the number of outgoing call attempts to seize a facilly within the facility group specified.	Peg	All Active	H, C, Q, S	Yes

Expanded Inband Signalling-Standard

$5 \left\lvert\, 555$| 5 | MF Receiver/
 Transmitter
 Attachment to
 Operator/Incoming
 Trunk Failure | Counts the failures to attach an MF
 recelver to an operator trunk in response
 to an inbend signaling request at the end
 office (EO) or access tandem (AT).
 Counts the failures to attach an MF
 transmitter to an incoming trunk
 connected at the AT in response to an
 inband signaling request.
 A count of the number of on-hook winks
 (non-EIS) and/or flashes (EIS) recelved
 by the 1/1A ESS switches which
 precede an operator inband signal. This
 inband signal indicates that some
 operator function is to be performed. |
| :--- | :--- | :--- |
| Operator On-Hook
 Wink and Flash | | |\right.

\begin{tabular}{|c|c|c|}
\hline Overflow|

Peg \& | 1E6/1AE6 |
| :--- |
| (for EO) |
| 1AEBA. 18 |
| 1AE9. 13 |
| 1AE10.09 |
| 1AE11.03 |
| 1AE8A. 02 |
| (for AT) |
| 1E6/1AE6 |
| (for EO) |
| 1AEBA. 18 |
| 1AE9. 13 |
| 1AE10.09 |
| 1AE11.03 |
| 1AE8A. 02 |
| (for AT) | \& H, C, Q, S

H, C, Q, S

\hline
\end{tabular}

Table C. Traficic Measurements (Contd)

| TMC | EGO | Name | Descripition | Type | Avallability | Output
 Schedule | Avaliable to |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Customer | | | | | | | |

Expanded Inband Signaling-Standard (Contd)

5	564	No Signal Present/Invalid inband Operator Signal	The 1/1A ESS switches will attach an MF receiver to an operator trunk in response to an inband signaling request. This count is incremented when either no-tone or invalid tone frequencies are detected at the MF receiver at the EO, and when notone is detected at the AT.	Overflow	1E6/taE6 (for EO) 1AEBA. 18 1AE9. 13 1AE10.09 1AE11.03 1AE8A. 02 (for AT)	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$

HILO Capabilittes for Common Channel Signailing System 7

169	0	HILO7 to HILO7 Tandem Calls
169	1	HLO7 to PTS Tandem Calls
	2	PTS to HILO7 Tandem Calls

Counts the number of calls which
enter the office via a HILO 4-wire
CCS7 trunk and tandem out of the
office via the HILO 4-wire CCS7
trunk.
Counts the number of calls which
enter the office via a HILO 4 -wire
CCS7 trunk and tandem out of the
office via the per trunk signaling
(PTS) trunk.
Counts the number of calls which
enter the office via a PTS trunk and
tandem owt of the office via the
HILO 4-wire CCS7 trunk.

Peg	1AE10.02	H, C, Q, S
Peg	1AE10.02	H, C, Q, S
Pog	1AE10.02	H, C, Q, S

Junctor Groups-Variable

8	JJCT GRP \#	Line-to-Line	Measures intraoffice junctor usage including resarve path usage. Count taken at 100 -second intervals.	Usage	All Active	H, C, O, S
8	JCT GRP \#	Line-to-Trunk	Measures usage, including reserve path, on each line-to-trunk junctor group. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S
8	JCT GRP \#	Trunk-ro-Trunk	Measures usage, including reserve path of each trunk-to-trunk junctor group. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S

Table C. Trafiric Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedule	Avallable Customer
Line History Block improvement Feature (Not avallable 1AE12.01 and later)							
172	000	\|Per LSF \#	Accumulates the number of times an auxiliary line history block (ALHB) is required but unavailable for Line Switch Frame (LSF) 0 and the number of ALHB table words found busy at a particular time for LSF 0 . An ALHB is a variable size block allocated from the ALHB table built for LSF 0 .	Usage, Overflow	1AE11.01	H, C, Q, S	Yes
172	001	Per LSF \#	Accurnulates the number of times an ALHB is used for LSF 0 during a fixed time interval.	Peg	1AE11.01	H, C, Q, S	Yes
172	$\left\|\begin{array}{c} 002- \\ 511 \end{array}\right\|$	Per LSF \#	Even numbered EGOs between 002-511 are the same as EGO 000, but apply to LSF 1-255, respectively.	Usage, Overflow	1AE11 01	H, C, Q, S	Yes
			Odd numbered EGOs between 002-511 are the same as EGO 001, but apply to LSF 1-255, respectively.	Peg	1AE11.01	H, C, Q, S	Yes

Une History Blocks (LHBs) to DLN30 Enhancement

190	000	Line History Worklist Usage count	Counts the number of worklists in use at 10-second intervals.	Usage	1AE12.01	H, C, Q, S
190	001	Line History Block Change Message Send Success count	Courts the number of times a zero all LHBs, an LHB update, or a zero specified LHBs message is successfully sent to the APS DLN3O.	Peg	1AE12.01	H, C, O, S
190	002	Line History Block Change Message Send Faliures count	Counts the number of times a zero all LHBs, an LHB update, or a zero specified LHBs message cannot be sent to the APS DLN30.	Peg	1AE12.01	H, C, Q, S
190	003	Line History Block Update Requests Replaces by Zero Specified LHB Requests count	Counts the number of times a zero specified LHB request replaces the requested LMB update because a zero alert" event is in-progress.	Peg	1AE12.01	H, C, Q, S
190	004	Line History Block Update Request Failures count	Counts the number of times a LHB update request cannot be processed because a "zero all LHBs" event is inprogress.	Peg	1AE12.01	H, C, Q, S

Table C. Traficic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Available to Customer

Line History Blocks (LHBs) to DLN30 Enhancement (Contd)

190	005	Successful Processing Acknowledgement Message count
190	006	Ouery Line History Block Message Sent count
190	007	Query Line History Block Message Send Failures count
190	008	Query Line History Block Request Success count
190	009	Cuery Line History Block Request Failure count
190	010	Query Line History Block Request Time-Out count
190	$\begin{aligned} & 011- \\ & 014 \end{aligned}$	Unassigned

Counts the number of times an acknowiedgement to a LHB update, a zero specified LHBs, or a zero all LHBs message is successfully processed.
Counts the number of times a query LHB message is successtully sent to the APS DLN30.
Counts the number of times a query LHB message cannot be sent to the APS DLN30.
Counts the number of times a response message is successfully processed.

Counts the number of times a response message is not successfully processed.

Counts the number of times the Buffer Administration Timing Block (BATB) times-out before the response to the query LHB message is received from the APS DLN30.
Unassigned

Local Area Signailing Services

148	000	COT Successful Activation COT Calling
148	001	Directory Number Unavailable
148	002	COT Denials
148	003	DA Screen List Access DA Calls Distinctive

Counts the number of times that a customer activates COT successfully Counts the number of times that a calling directory number is unavallable.	Peg	1AE9	H, C, O, S
Counts the number of times that a customer is denied access to COT.	Peg	H, C, Q, S	
Counts the number of times that a customer dials the DA access code lounts the number of calls which were distinctive alerted due to DA service.	Peg	Peg	1AE9

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillty	Output Schedule	Avallibito to Customer

Local Arou Signaling Services (Contd)

148	005	ICLID Privacy Access	Counts the number of times that a customer dials the privacy access code.	Peg	1AE9	H, C, Q, S
148	006	Display Deactivation	Counts the number of times the display deactivation access code is successfully dialed. This access code can only be diated by ICLID and/or Calling Name Delivery (CNAM) customers with usagesensitive billing.	Peg	1AE9	H, C, Q, S
148	007	Display Activation	Counts the number of times the display activation access code is successtully dialed. This access code can only be dialed by ICLID and/or CNAM customers with usage-sensitive billing.	Peg	1AE9	H, C, Q, S
148	008	Invalid Display Activation/ Deactivation Attempts	Counts the number of times the display activation access code and display deactivation access code are unsuccessfully dialed. This count is pegged each time a customer not assigned either ICLID with usagesensitive billing or CNAM with usagesensitive billing attempts to dial the display activation/deactivation access codes.	Peg	1AE9	H, C, Q, S
148	$\begin{aligned} & 009 \\ & 011 \end{aligned}$	Unassigned	Unassigned			
148	012	ACBPN	Counts the number of times that an $A C$ activation attempt was denied to a private directory number.	Peg	1 AE11	H, C, Q, S
148	$\begin{aligned} & 013 \\ & 025 \end{aligned}$	Unassigned	Unassigned			

Table C. Traffic Measurements (Contd)

						Output Schedule	Avallable to Customer
TMC	EGO	Name	Description	Type	Avallabillty	Schedule	Customer

Local Area Signalling Services (Contd)

148	026	SCF Screen List Access 148
148	027	028
148	029	SCF Calls Forwarded SCR Soreen List Access SCR Calls Rejected
148	030	AR Activation 148
148	039	AC Activation
148	033	Combined AR/AC Activation
148	034	AR Immediate Processing
148	035	AR Delay Processing
148	038	AR Ringback AR Ringback Answered AR Request Block Time-Outs
Combined AR/AC		
Deactivation		

Table C. Trafific Measurements (Contd)

Local Area Signaling Services (Contd)

148	039	AR Busy Found After Ringback	Counts the number of times that a called party is found busy after a calling party answered the ringback.	Peg	1AES	H, C, Q, S
148	040	AR Request Blocks	Counts the number of times that an AR customer failed to get a request block.	Overflow	1AE9	H, C, Q, S
148	041	AR Long-Term Denials	Counts the number of long-term clenials given to the AR customers.	Peg	1AE9	H, C, Q, S
148	042	AR Temporary Denials	Counts the number of temporary denials given to the AR customers.	Peg	1AE9	H, C, O, S
148	043	AR Request Black	Counts the number of requests to allocate an AR request block.	Peg	1AE9	H, C, O, S
148	044	AR Request Blocks	Measures usage on AR request blocks used by AR. This count is provided on a 100 -second scan basis.	Usage	1AE9	H, C, O, S
148	$\left\lvert\, \begin{aligned} & 046- \\ & 048 \end{aligned}\right.$	Unassigned	Unassigned			

Message Service Syatom

147	000	MSS Unsuccessfui Attempts	Counts the number of unsuccessful attempts to deliver call information to message desk display station sets due to the CCIS errors.	Peg	1AE9	H, C, Q, S
147	001	MSC Activation of MWI	Counts the number of times that an MSC attempts to activate message waiting indicator (MWI).	Peg	TAE9	H, C, Q, S
147	002	MSC Deactivation of MWI	Counts the number of times that an MSC attempts to deactivate message waiting indicator.	Peg	1AE9	H, C, Q, S

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedula	Avallable to Customer

Message Sorvice Systrm (Coned)

147	003	MSS Client Deactivation of NMMI	Counts the number of times that a message service client dials the message walting indicator deactivation access code.	Peg	1AE9.03	H, C, Q, S
147	004	MSS Terminating Calls	Counts the number of calis terminating to an input/output message desk.	Peg	1AE9.03	H, C, Q, S
147	005	Voiceband Digital Interface Terminating Calls	Counts the number of calls terminating to a voiceband digital interface message desk.	Peg	1AE9.03	H, C, Q, S

Message Service System - Por 1/O Channel Trafilic Measurements
$176\left|\begin{array}{l}000- \\ 575\end{array}\right| \quad\left|\begin{array}{l}\text { See Per I/O Channel Traffic } \\ \text { Measurement Enhancement for } \\ \text { MSS/SMSI. }\end{array}\right| \quad|\quad|$

Message Service System - VMWN Queue Enhancement

175	000	VMWVIQ Addition Attempts	Counts the number of attempts to add an item to the Visual Message Waiting Indicator Queue.	Peg	$\begin{aligned} & \text { 1AE } 10.10 \\ & \text { 1AE11.03 } \end{aligned}$	H,C,Q,S	Yes
175	001	VMWIQ Addition Failures	Counts the number of failed attempts to add an item to the Visual Mossage Waiting Indicator Queue.	Overilow	$\begin{aligned} & \text { 1AE10.10 } \\ & \text { 1AE11.03 } \end{aligned}$	H,C,O,S	Yes
175	002	VMWIQ Usage	Measures usage of Visual Message Waiting Indicator Queue. Count taken at 100 second intervals.	Usage	1AE10. 10 1AE11.03	H,C,Q,S	Yes

Multiline Hunting Groups - Including Centrex-Variable

16 MLHG \# \begin{tabular}{l|l|l|l|l|l|l}

MLHG \& MLHG \# \& MLHG \& | Counts the attempts to terminate |
| :--- |
| to the LDN of the MLHG. |
| Counts the number of times all |
| lines/runks of the MLHG were |
| found busy on a terminating call |
| when the LDN was dialed. The |
| maximum value of this count is |
| 2047 after which it recycles to |
| zero and starts over. | \& Overflow \& All Active \& H,C,Q,S

\end{tabular} Yes

Table C. Trafiic Measurements (Contd)

TMC	EGO	Name	Deacription	Type	Avallablity	Output Schedule	Avallable to Customer
Multilne Hunting Groups - Lnclucing Centrex-Varlable (Contd)							
18	MLFGG \#	\|MLHG	Measures originating and terminating usage of MLHG. Count taken at 100 second intervals.	Usage	Al Active	H, C, Q, S	Yes
Network interconneot							
170	000	Originating EAEO Diractly Connected CCS7 Trunk	Accumulates number of NI call attempts at the originating EAEO using a CCS7 trunk directly connected to an IC/INC.	Peg	1AEI1	H, C, O, S	Yes
170	001	Originating EAEO Indirectly Connected CCS7 Trunk	Accumulates number of Ni cah attempts at the originating EAEO using a CCS7 trunk indirectly connected to an IC/INC.	Peg	1AE11	H, C, Q, S	Yes
170	002	Originating LATA AT Using CCS7 Incoming and CCS7 Outgoing Trunks	Accumulates number of Ni call attempts entering the originating LATA AT on CCS7 trunk and leaving the AT via a CCS7 trunk to an IC/INC.	Peg	1AE11	H, C, Q, S	Yes
170	003	Originating LATA AT Using EAMF incoming and CCS7 Outgoing Trunks	Accumulates number of Ni call attempts entering the originating LATA AT on an EAMF trunk and leaving the AT via a CCS7 trunk to an IC/INC.	Peg	1AE11	H, C, Q, S	Yes
170	004	Originating LATA AT Using CCS7 Incoming and EAMF Outgoing Trunks	Accumulates number of NI call attempts entering the originating LATA AT on a CCS7 trunk and leaving the AT via an EAMF trunk to an IC/INC.	Peg	1AEI1	H, C, Q, S	Yes
170	005	Incoming CCS7 Calls to First Switch in the Terminating LATA	Accumulates number of NI call attempts incoming to the first switch in the terminating LATA.	Peg	1AE11	H, C, Q, S	Yes
170	006-009	Unassigned	Unassigned				
Network Management Engineering and Administrative Data Acquisition System and Common-Standard							
5	621	\|CCIS INWATS Calls	Counts the number of CCIS INWATS originating calls within a CCIS originating screening office.	Peg	All Active	H, C, Q, S	

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avaliability	Output Schedule	Avallable to Customer

Network Management Engineering and Adminietrative Data Acquisltion Syatem and Common-Standard (Contd)

5	622	Processor Signaling Congestion Received	Counts the total number of times a processor signaling congestion signal is received from a CCIS STP.	Peg	All Active	H, C, Q, S
5	623	CCIS Butier Full	Counts the total number of times a CCIS link terminal is found to be above its buffer full threshold.	Peg	All Active	H, C, Q, S
5	624	CCIS Buffer	Counts the total number of times a CCIS link terminal buffer overilows.	Overfilow	All Active	H, C, Q, S
5	625	Calls Cancelled by CCS DOC/ACC Control	Counts the total number of calls affected by an automatically activated (via a CCS DOC/ACC signal) "cancel-to" trunk group control.	Peg	Al Active	H, C, Q, S
5	626	Calls Skipped by CCS DOC/ ACC Control	Counts the total number of calls affected by an automatically activated (via a CCS DOC/ ACC signal) "skip" trunk group control	Overflow	All Active	H, C, Q, S
5	627	Calls Cancelled by GSC Control	Counts the total number of calls affected by an automatically activated (via a GSC signal) "cancel-to" group control.	Peg	All Active	H, C, Q, S
5	628	Calls Skipped by GSC Control	Counts the total number of calls affected by an automatically activated (via a GSC signal) "skip" trunk group control.	Peg	All Active	H, C, Q, S

Network Management-Variable

5	250	NMER (Network Management Enhanced Reroute) Attempts

Counts the number of successful

Peg	1AE8A	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Descripion	Type	Avallability	Output Schedute	Avallabla to Customer

Network Management-Variable (Contd)

5	252	NMCG (Notwork Management Call Gap) Attempts	Counts the number of attempts which are subjected to possible action of the control.	Peg	1AEBA	H, C, Q, S
5	253	Network Management Call Gaps Successful Attempts	Counts the number of attempts which are subjected to possible action, but were not blocked.	Peg	1AESA	H, C, Q, S
51	PREPROG \#	Preprogram Number	Counts the calis affected by activated preprogrammed controls.	Peg	All Active	H, C, Q, S

Networks-Standard

11	LLN \#	LLLN Incoming Calls	Counts all incoming calls for which a talking path from the incoming trunk to the called ESS switch line equipment has been found and reserved.	Peg	All Active	H, C, Q, S
12	LLN \#	LLN Incoming Calls	Counts the incoming calls for which the system failed to find and reserve a talking path from the incoming trunk to the called line equipment due to network or junctor blockage.	Overflow	All Active	H, C, Q, S
13	TLN \#	TLN Incoming Calls	Counts the incoming calls for which a taiking path from the incoming trunk to the called ESS switch line equipment has been found and reserved. Scores the peg count register corresponding to the TLN on which the incoming trunk is located.	Peg	All Active	H, C, Q, S
14	TLN \#	TLN incoming Calls	Counts all incoming calls for which the system falled to find and reserve a talking path from the incoming trunk to the called line equipment due to network or junctor blockage.	Overflow	All Active	H, C, Q, S

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Outpart Schedule	Avaliable to Customer

Number Portablity-Location Routing Number (LRN) Method Feature

195	000	JPP Query Initiated	Counts the number of calls encountering a Number Portablity (NP) trigger that result in a Service Control Point (SCP) query.	Peg	1AE13.00	H, C, Q, S
195	001	NP Query Failures	Counts the number of calls encountering an NP trigger that result in an SCP query fallure.	Peg	1AE13.00	H, C, Q, S
195	002	NP Ported Number Calk	Counts the number of NP query responses containing a Location Routing Number (LAN) (not the dialed number).	Peg	1AE13.00	H, C, Q, S
195	003	NP Data Inconsistencies with REL	Counts the number of calls encountering an Integrated Services User Part (ISUP) REL message with an American National Standards Institute (ANS!) cause value of "misrouted call to a ported number (26)".	Peg	1AE13.00	H, C, O, S
195	004	NP Unallocated Number Calls	Counts the number of calls which encounter an unallocated number indication in the donor switch following an NP query in this switch or in another switch as indicated by the Forward Call Indicator (FCI) parameter Translated Called Number Indicator set to "number translated (1)" and no "ported number" Generic Address Parameter (GAP).	Peg	1AE13.00	H, C, Q, S
195	005	NP Data inconsistencies	Counts the number of NP calls encountering an unallocated indication when a switch's own LRN has been detected after an NP query in this switch or in another switch as indicated by the FCl parameter Translated Called Number Indicator set to "number translated (1)" and the "ported number" GAP.	Peg	1AE13.00	H, C, Q, S
195	006-019	Spare	Reserved for future development.			

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Office Totals-Standard

5	14	Originating Calls	Counts office originated calls for which at least one digit has been dialed.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { NM10 } \\ & \text { TC15 } \\ & \text { TC24A } \end{aligned}$
5	15	Incoming Calls	Counts the number of incoming terminating and incoming throughswitched calls recognized by the seizure of an incoming trunk and incoming register, or in the case of step-by-step calls, after receipt of the first digin.	Peg	All Active	$\begin{aligned} & H_{1} \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \\ & \text { NM10 } \end{aligned}$
5	16	Incoming Matching Loss	Counts the fallures to match a talking path between the incoming trunk and the called line, or on a last trial falure to find a path between the trunk and a service circuit, or the called line and a ringing clrcuit.	Overflow	All Active	H, C, Q, S
5	17	Dial Pulse Dial Tone Speed Tests	Dial tone speed test initlations from dial pulse lines.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	18	Touch-Tone Service Dial Tone Speed Tests	Dial tone speed test initiations from touch-tone service lines.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	19	Dial Puise Dial Tone Speed Delays	Counts dial pulse dial tone delays greater than 3 seconds.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC15 } \end{aligned}$
5	20	Touch-Tone Service Dial Tone Speed Delays	Counts touch-tone senvice dial tone delays greater than 3 seconds.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \end{aligned}$
5	21	Partial Dial Abandon	Counts all calls on which at least one, but not all, digits have been dialed and the call has been abandoned before an interdigital time-out occurred.	Peg	All Active	H, C, Q, S
5	22	Partial Dial - Timed Out	Counts all calls on which one ar more, but not all, digits have been dialed and an interdigital time-out occurred	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avalieble to Customer

Office Totals-Standard (Contd)

5	23	False Starts	Counts the customer digit recelver seizures, with no digits dilaled, abandoned before time-out.	Peg	All Active	H, C, Q, S
5	28	Line Busy-Incoming	Counts the incoming calls to busy lines without the Call Waiting feature	Peg	All Active	H, C, Q, S
5	29	Line Busy-Intraotfice	Counts the number of intraoffice originating calls to busy lines without the Call Waiting feature.	Peg	All Active	H, C, O, S
5	30	Reverting Calls	Counts the calls from one party to another party on the same line.	Peg	All Active	H, C, Q, S
5	31	Intraoffice Calls	Counts the originated calls to stations within the control group.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & T C 15 \end{aligned}$
5	32	Intraoffice Calls	Scores on all intraoffice calls that fail to reach the called number due to network blockage.	Overflow	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	33	Outgoing Calls	Scores on all office originated outgoing calls that fail to obtain a line-to-trunk connection due to network blockage.	Overflow	Al Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 24 \mathrm{~A} \end{aligned}$
5	34	Trunk-to-Trunk Memory	Counts the number of times a trunk-to-trunk path memory register is seized.	Peg	All Active	H, C, O, S
5	35	Trunk-io-irunk Memory	Counts the number of times the system attempts to seize a trunk-totrunk path memory register but fails due to all registers boing busy.	Overflow	All Active	H, C, Q, S
5	49	Trunk-to-Trunk Mamory	Measures trunk-to-trunk path memory usage. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, Q, S
5	100	100-Second Usage Scan Cycle	Counts the number of times there has been a 100 -second usage scan accurnulation of items on the H and C schedules.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avallable 80 Customer

Office Totals-Standard (Contd)

5	116	Total Line Link Network "A" link	Measures total usage of concentrator " A " links and may include some reserved path "A" link usage. Count taken at 100second intervals.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 24 \mathrm{~A} \end{aligned}$
5	126	Main Program Cycles - E to E	Counts the number of tlmes the main program cycles all base levels.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \\ & \mathrm{HL} .15 \end{aligned}$
5	127	Processor Occupancy (1A ESS switch)	Percent of time the processor is doing essential work, that is, processing calls (1A ESS switch only).	Peg	All Active	H, C, Q, S
5	131	Tandern Call Attempts	Counts the total number of attempts to complete calls coming in over trunks identified in translations as tandem and destined to be routed out of the office via the $3 / 6$-digit tandem translation tables.	Peg	All Active	H, C, Q, S TC15 NM10
5	132	Tandem Call Attempts	Counts the total number of failures to complete a tandem call due to network blockage.	Peg	All Active	H, C, O, S
5	146	IDDD Calls	Counts IDDD call attempts after receipt of access code 011, 01, or 010.	Peg	All Active	H, C, Q, S
5	147	AMA Register Detall Biled	Counts the attempts to seize a 13-word AMA register.	Peg	All Active	H, C, C, S
5	148	Incoming Overload Control Queue	Counts the incoming calls placed in overload queus.	Peg	All Active	H, C, Q, S
5	150	Incoming Overload Control Queue	Measures incoming overload control queue usage. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, Q, S
5	155	DID Calls to Unequipped CTXN Translator	Counts the direct inward dialing calls to centrex DNs not equipped with DN to CTXN translators.	Peg	All Active	H, C, O, S

Table C. Traffic Measurements (Contd)

TMMC	EGO	Name	Description	Type	Avallabllity	Output Schedule	Avallable to Customer

Office Totals-Stiandard (Conta)

5	162	Originating Outgoing Calls Failure	Counts the originating outgoing calls that were blocked because all trunks were busy.	Peg	All Active	H, C, Q, S NM10
5	165	MF Transmitter Time-Outs	Counts the number of times an MF transmitter times out or is preempted while waiting for a receiver at the distant end.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{~S} \\ & \text { TC24A } \\ & \text { NM10 } \end{aligned}$
5	168	DP Transmitter Time-Outs	Same as TMC 5 EGO 165 except kept for DP transmitters.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC24A } \\ & \text { NM10 } \end{aligned}$
5	171	RP Transmitter Time-Outs	Same as TMC 5 EGO 165 except for revertive transmitters.	Pog	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC24A } \\ & \text { NM10 } \end{aligned}$
5	174	PCI Transmitter Time-Outs	Same as TMC 5 EGO 165 except for PCI transmitters.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 24 \mathrm{~A} \end{aligned}$
5	177	2-Wire Touch-Tone Service Transmitter Time-Outs	Same as TMC 5 EGO 165 except for touch-tone service transmitters.	Peg	All Active	H, C, Q, S
5	192	AOTL Queue Abandons	Counts the calls that abandoned while on an AQTL queue.	Peg	All Active	H, C, Q, S
5	195	AMA Register Detail Billed	Counts the attempts to seize a 13-word AMA register that failed because all registers were busy.	Overílow	All Active	H, C, Q, S
5	196	AMA Registered Measured Rate	Counts the number of attempts to seize a 9-word AMA reglster.	Peg	All Active	H, C, Q, S
5	199	AMA Register Measured	Counts the calls that fail to find an idle 9-word AMA register due to all registers busy.	Overflow	All Active	H, C, O, S
5	202	Tandem First Fallure to Match	This is a count of first trial failures to reserve a talking path between the initially chosen outgoing trunk or, if the final outgoing trunk group is busy, on first trial failures to connect to the tone or announcement trunk group.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{~S} \\ & \mathrm{TC15} \end{aligned}$

Table C. Trafiic Measurements (Contd)

Ofilice Totals-Standard (Contd)

5	205	Incoming First Failure to Match	Counts the fallures to reserve a talking path between the incoming trunk and the terminating line.	Peg	All Active	H, C, Q, S TC15
5	208	Tandem Calls Failure Due to Outgoing Trunk Busy	Counts the tandem calls that failed to be routed out of the office because all outgoing trunks were busy.	Peg	All Active	H, C, Q, S
5	217	MF RADR Tests	Counts the attempts to simulate a RADR test from an incoming trunk requiring an MF receiver.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC15 } \end{aligned}$
5	220	MF RADR Delays	Counts the MF RADR test failures to establish a path between the incoming trunk and an MF receiver.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{~S} \\ & \mathrm{TC15} \end{aligned}$
5	223	DP RADR Tests	Counts the attempts to simulate a RADR test from an incoming trunk which requires a DP recelver.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	226	DP RADR Delays	Counts DP RADR test failures to establish a path between the incoming trunk and the DP receiver.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC15} \end{aligned}$
5	229	RP RADR Tests	Counts attempts to simulate a RADR test from an incoming trunk which requires an RP receiver.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	232	RP Radar Dolays	Counts the RP RADR test failures to establish a path between the incoming trunk and the RP receiver.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC15} \end{aligned}$
5	233	Preprogram Controls Affected Calls	Counts the calls affected by network management preprogram controls.	Peg	All Active	H, C, Q, S
5	234	Flexible Controls	Counts the calls affected by network management flexible controls.	Peg	All Active	H, C, Q, S
5	245	bat	Counts the number of BATs detected by the system.	Peg	All Active	H, C, Q, S
5	246	DOR (Division of Revenue) Reglster Attempt	Counts the number of attempts to seize an idle usage measurement register.	Peg	1AEBA	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$

Table C. Traffic Measurements (Contd)

TMC	EgO	Name	Description	Type	Avallabilly	Output Schedule	Avalitable to Customer

Office Totals-Standard (Contd)

5	247	DOR Usage Moasurement Ragister	Counts the number of failures to find an idls usage measurement register.	Overflow	1AEBA	H, C, Q, S
5	248	DOR Usage Measurement Register	Measures usage on usage measurement registers in use on DOR. Provided on a 100 -second scan basis	Usage	1AEBA	H, C, Q, S
5	259	Home Intercom Calls	Counts the number of times a customer indiates a Home Intercom call.	Peg	1AE9	H, C, Q, S
5	265	Fast Answer Junior Register	Counts the attempts to seize an idle fast answer junior register.	Peg	All Active	H, C, Q, S
5	266	Fast Answer Junior Register	Counts the fallures to find an idie fast answer junior register.	Overflow	All Active	H, C, Q, S
5	269	Fast Answer Senior Register	Counts the attempts to seize an idie fast answer senior register.	Peg	All Active	H, C, Q, S
5	270	Fast Answer Senior Pegister	Counts the fallures to find an idie fast answer senior register.	Overfiow	All Active	H, C, Q, s
5	271	HILO Incoming Calls	Counts the last trial fallures to reserve a talking path between an incoming HiLO trunk and an out-going trunk or between the incoming trunk and a tone or announcement trunk, or between the transmitter and an outgoing trunk.	Overflow	All Active	H, C, Q, S
5	272	HILO CAMA Misrouted	Counts the number of calls given intercept treatment because nontoll calls are being received over a CAMA incoming trunk group on a HILO TLN.	Peg	All Active	H, C, Q, S
5	273	Calls Lost Due to Glare	Counts the number of times an outgoing call is lost due to second trial fallures to complete the call when giare is encountered on a yielding trunk.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

| TMC | EGO | Name | Deecription | Type | Avallability | Output
 Schedule | Avaliable to
 Cuatomer |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Oflice Totals-Standard (Contd)
5 | 274 Occurrences of \quad Counts the number of times glare was encountered on an outgoing call on a yielding trunk.
Counts the number of times glare was encountered on an outgoing call on a controlling trunk.
Counts the number of fallures to find an idile disconnect register.
Counts the number of failures to find an idie bylinik dialing senior register.
Counts the incoming call attempts on the HILO network as recognized by the seizure of an incoming or 2-way trunk on a HILO TLN.
Counts the attempts to complete calls on the HILO network that come in on intertoll or DDD access trunks, and are destined to be outpulsed over intertoll or toll completing trunks.
Counts first trial failures to reserve a talking path between the incoming HILO trunk and the initially chosen outgoing trunk or, if all outgoing trunks in the final trunk group are busy, on first trial failures to reserve a path to the tone or announcement trunk.
Counts the number of PADR test calls

Peg	All Active	H, C, Q, S
Peg	All Active	H, C, O, S
Overflow	All Active	H, C, Q, S
Overilow	All Active	H, C, Q, s
Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{HL} 15 \end{aligned}$
Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { HL15 } \end{aligned}$
Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{HL} 15 \end{aligned}$
Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & H L 15 \end{aligned}$

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Availability	Output Schedule	Avallable to Customer

Olifice Totals-Standard (Contr)

5	298	HILO RADR-MF Test Failures	Counts the number of RADR test calls performed on HILO incoming and 2-way MF trunks that failed to get a receiver connection within 3 seconds.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{HL}, 5 \end{aligned}$
5	301	HILO RADR-DP Tests	Counts the number of RADR test calls performed on HILO incoming and 2-way DP trunks.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & H L 15 \end{aligned}$
5	304	HILO RADR-DP Test Fallures	Counts the number of RADR test calls performed on HILO incoming and 2-way DP trunks that falled to get a receiver connection within 3 seconds.	Peg	All Active	$\left.\begin{aligned} & H, C, Q, S \\ & \text { HL15 } \end{aligned} \right\rvert\,$
5	307	HILO Tandem Call Failures Due to All Outgoing Trunks Busy	Counts the HILO tandern call attempts not routed successfully out of the office because all outgoing trunks were busy.	Peg	All Active	H, C, Q, S
5	310	Hilo mF Tranemitter TimeOuts	Counts the number of times an MF transmitter on a HILO TLN times out or is preempted while waiting for a receiver attached signal from the distant end.	Peg	All Active	H, C, O, S
5	315	HILO DP Transmitter TimeOuts	Same as TMC 5 EGO 310 except for DP transmitter.	Peg	All Active	H, C, Q, S
5	318	18-Word AMA Registers	Counts the number of attempts to seize an 18-word AMA register to record a tandem tie line call on the AMA tape.	Peg	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$
5	320	18-Word AMA Registers	Counts the number of attempts to seize all 18-word AMA registers that falled because all registers were busy.	Overflow	All Active	H, C, Q, S
5	322	Coin Charge Registers	Counts the number of attempts to seize an idle coin charge register.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	$\begin{aligned} & \text { Avallable to } \\ & \text { Customer } \end{aligned}$

Office Totals-Standard (Conta)

5	323	Coin Charge Registers	Counts fallures to find an idle coin charge register.	Overflow	All Active	H, C, O, S
5	325	Hotel-Motel Reglsters	Counts the number of attempts to selze an idle hotel-motel register.	Peg	All Active	H, C, Q, S
5	326	Hotel-Motel Registers	Counts fallures to find an idie hotel-motel register.	Overflow	All Active	H, C, O, S
5	327	Bylink Dialing Senior Register	Counts the number of attempts to seize an idie bylink senior register.	Peg	All Active	H, C, Q, S
5	328	Foreign Exchange Area Registers	Counts the number of attempts to seize an idle bylink dialing senior register for use on an incoming foreign exchange area call.	Peg	Al Active	H, C, Q, S
5	330	Operator Trunk Registers	Counts the number of attempts to seize an idle operator trunk register.	Peg	All Active	H, C, O, S
5	331	Operator Trunk Registers	Counts the number of failures to find an idie operator trunk register.	Overflow	All Active	H, C, Q, S
5	332	Conference Assistance Registers	Counts the number of attempts to seize an idle conference assistance register.	Peg	All Active	H, C, Q, S
5	333	Conference Assistance Register	Counts the number of failures to find an idte conference assistance register.	Overtlow	All Active	H, C, Q, S
5	334	3-Port Conference Register	Counts the number of tallures to find an idle conference register.	Overflow	All Active	H, C, Q, S
5	335	3-Port Conference Register Seizures Not Requiring a 3Port Conference Circuit	Counts the number of 3 -port conference register seizures for services that do not require a 3 -port conference circuit.	Peg	All Active	H, C, Q, S
5	336	Reverting Call Registers	Counts the number of attempts to seize an idle reverting call register (marine switched calls only)	Peg	All Active	H, C, Q, S
5	337	Reverting Call Registers	Counts the number of fallures to find an idle reverting call register (marine switched calls only)	Overfiow	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Oniice Totals-Standard (Contd)

5	338	Call Fonwarding Registers	Counts the number of attempts to seize an idie call forwarding register.	Peg	All Active	H, C, Q, S
5	339	Call Forwarding Registers	Counts the number of fallures to find an idie call forwarding register.	Overflow	All Active	H, C, O, S
5	340	Simulated Facilities Registers	Counts the number of attempts to seize an idle simulated facillties register.	Peg	All Active	H, C, O, S
5	343	Simulated Facilities Registers	Counts the number of fallures to find an idle simulated facilities register.	Overflow	All Active	H, C, O, S
5	344	Coin Control Junior Registers	Counts the number of fallures to find an idle coin control junior register.	Overflow	All Active	H, C, O, S
5	376	POB Cueue	Counts the number of attempts to find an idie POB that was placed on queue because all POBs were busy.	Peg	All Active	H, C, O, S
5	379	HILO Intraprocessor Incoming Pegister	Counts the number of attempts to seize a HILO intraprocessor incoming register.	Peg	All Active	H, C, Q, S
5	380	HILO intraprocessor Incoming Register	Counts the number of failures to selze a HILO intraprocessor incoming register because the engineered count would have been exceeded.	Overifow	All Active	s
5	382	Hit Tlming Junior Registers	Counts the number of fallures to find an idle hit timing junior register.	Overflow	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	383	TSJAs	Counts the number of failures to find an idile TS.JR.	Overflow	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S}$ TC15
5	384	Byllink Dlating Junlor Registers	Counts the number of failures to find an idle bylink dialing junior register.	Overflow	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC15} \end{aligned}$

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Туре	Avallability	Output Schedule	Avaliable to Customer

Office Totals-Standard (Conld)

5	385	\|Incoming Bylink Seizures	Counts the number of attempts to seize an incoming bylink junior register.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC15 } \end{aligned}$
5	402	POTS CFBL	Counts the number of attempts to fonward calls because they terminate to busy POTS (non-centrex) lines with CFBL.	Peg	1AE9	H, C, Q, S
5	403	POTS CFDA	Counts the number of attempts to forward calls because they terminate to unanswered POTS lines with CFDA.	Peg	1AE9	H, C, O, S
5	432	Trunk Scan Completion	Counts the number of times all trunk scanners were scanned.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathbf{Q}, \mathbf{S} \\ & \mathrm{TC15} \end{aligned}$
5	433	Disconnected Calls Due to Nonpresence of Overtime Coin Deposit	Counts the number of calls disconnected due to the nonpresence of overtime coin deposits following an overtime deposit prompting announcement.	Peg	All Active	H, C, O, S
5	510	3-Word CFV CORC Block	Counts the number of times a 3-word CORC block is seized for CFV use.	Peg	1AE8A	H, C, Q, S
5	511	3-Word CFV CORC Block	Counts the number of failures to find an idle 3-word CFV CORC block.	Overfiow	1AE8A	H, C, Q, S
5	512	3-Word CFV CORC Block	Measures usage on 3-word CORC blocks in use for CFV. Provided on a 100-second scan basis.	Usage	1AE8A	H, C, Q, S
5	593	Extended Dial Tone Speed Test Failures	Counts the number of 11-second failures.	Peg	All Active	H, C, C, S
5	594	Fallures to Scan	Counts the number of times all nonsupervisory work was not completed within a 5 -millisecond interval.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$

Table C. Trafiric Measurements (Contd)

						Output Schedule	Avallable to Cuatomer
TMC	EGO	Name	Description	Type	Availability	Schedule	Custorner

Orice Totals-Stendard (Conte)

5	595	POB Complation	Counts the number of times POB execution (cycles) occurred.	Peg	Al Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC15 } \end{aligned}$
5	596	LSR Hopper	Counts the number of times the oldest entry in the hopper was removed to make room for a new hopper entry.	Overflow	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	598	K ievel Interrupts	Counts the number of all hoppers that overtlowed.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC15 } \end{aligned}$
5	599	J POB	Counts the number of failures to find an idle bylink J POB.	Overtlow	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S}$ TC15
5	600	Trunk Seizure and Answer Hopper	Counts the number of times the hopper was full when trying to place a now entry in it.	Overilow	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \end{aligned}$
5	601	Incoming Locally Terminated Answer Calls	Counts the number of times an incoming locally terminated call was answered.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \end{aligned}$
5	802	Intraoffice Answered Calls	Counts the number of times an incoming locally terminated call was answered.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \end{aligned}$
5	603	Outgoing Answered Calls	Counts the number of times an outgoing call was answered.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \text { TC15 } \end{aligned}$
5	604	False Starts from LSR Hopper	Counts the number of times a line equipment number was found onhook when it was scanned after coming out of the LSR hopper.	Peg	All Active	$\begin{aligned} & H, C_{1} Q_{1} S \\ & \text { TCi5 } \end{aligned}$
5	605	False Starts	Counts the customer dial pulse receiver seizures, when no digits dlaled, abandoned before time-out	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$
5	606	False Starts from Recelver or Blocked Dial Tone Queues	Counts the number of abandons from the receiver or blocked dial tone queues.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{~S} \\ & \mathrm{TC} 15 \end{aligned}$

Table C. Traffic Measurements (Contd)

						Output Schedule	Avaliable to Customer
TMC	EGO	Name	Description	Type	Avallability	Schectule	Customer

Ollice Totals-Standard (Contd)

5	607	Partial Dial Abandoned	Counts all calls on which one or more, but not all, digits have been dialed and the call has been abandoned before an interdigital time-out occurred.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC15 } \end{aligned}$
5	608	Partial - Timed Out	Counts all calls on which one or more, but not all, dights have been dialed and an interdigital time-out occurred.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC15 } \end{aligned}$
5	609	LSR Off-Hook Time-Outs	Counts the number of 20 - through 30 second time-outs of lines in the LSR hopper that are in an off-hook state.	Peg	All Active	$\begin{aligned} & \mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{~S}_{\mathrm{TC} 15} \end{aligned}$
5	610	LSR On-Hook Time-Outs	Counts the number of 20 - through 30 second time-outs of lines in the LSR hopper that are in an on-hook state.	Peg	All Active	$\begin{aligned} & H, C, Q, S \\ & \text { TC15 } \end{aligned}$
5	611	Outgoing Calls	Counts the number of outgoing calls.	Peg	All Active	$\begin{aligned} & \text { H, C, Q, S } \\ & \text { TC15 } \end{aligned}$
5	632	Line Scan Completion	Counts the number of times the system scans all lines (1A ESS switch onfy)	Peg	All Active	H, C, Q, S
5	634	CFDA Holding Originating Register	Counts the number of attempts to use an originating register for saving call data while querying an SCP data base for a CFDA call.	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S
5	635	CFDA Holding Originating Register	Counts the number of CFDA calls that could not be forwarded because of unavallability of originating registers for holding data while quarying an SCP data base for a CFDA call.	Overilow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avaliable to Customer

Originating Pool Regietors-Variable

130	001	Local and Toll CCIS	Counts the total number of OR pool registers, at 10-second intervals, in use for tocal and toll CCIS.	Usage (AFS)	All Active	H, C, Q, S
130	002	DCTs	Counts the total number of OR pool registers, at 10-second Intervals, in use for DCT.	Usage (AFS)	All Active	H, C, O, S
130	003	HiLO 4-Wire Intraprocessor	Counts the total number of OR pool registers, at 10-second intervals, in use for HILO 4-wire intraprocessor.	Usage (AFS)		H, C, Q, S
130	005	CWC Remote Access Service Originating Register	Counts the number of originating register pool registers, at 10 -second intervals, in use for CWC Remote Access Service.	Usage (AFS)	1AE9	H, C, Q, S
130	006	CCS7 Incoming Register	Counts the total number of incoming register pool registers, at 10-second intervals, in use for CCS7.	Usage (AFS)	1AE10	H, C, Q, S
130	007	Remote Access Service Originating Register	Counts the total number of originating register pool registers, at 10 -second intervals, in use for Remote Access Service.	Usage (AFS)	1AE10.05	H, C, O, S
130	008	CFDA Holding Originating Register	Counts the total number of originating register pool registers, at 10-second Intervals, in use for CFDA during an SCP data base query.	Usage (AFS)	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { IAE } 11.05 \end{aligned}$	H, C, Q, S
130	009	Originating No Answer Trigger Holding Originating Register	Counts the total number of originating register pool registers, at 10 -second intervals, in use for an Originating No_Answer trigger while messages are exchanged with an SCP data base.	Usage (AFS)	1AE13.04	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Available to Customer

Outpulaing Annexes Regieters-Variable

129	1	Local CCIS
129	2	DCTs

At 10 -second intervals, counts the number of outpulaing annex registers in use for local CCIS.
At 10-second intervals, counts the number of outpulsing annex registers in use for DCT.

Usage (AFS)	All Active	H, C, Q, S
$\begin{aligned} & \text { Usage } \\ & \text { (AFS) } \end{aligned}$	All Active	H, C, Q, S

Pay Per View

155	000	\|PPV Order Placement Access Code	Counts the number of times the PPV order placement access code is dialed (that is, attempts to place an order).	Peg	1AE9.02	H, C, Q, S
155	001	PPV Canceliation Access Code	Counts the number of times a PPV cancellation access code is dialed (that is, attempts to cancel the order).	Peg	1AE9.02	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$
155	002	Unavailable or a Private CLDN	Counts the number of fallures to access PPV because of CLON being private or unavailable.	Peg	1AE9.02	H, C, O, S
155	003	Unassigned Vendor Code Dialed	Counts the number of PPV fallures due to dialing unassigned vendor codes.	Peg	1AE9. 02	H, C, Q, S
155	004	PPV Transmitted Messages	Counts the number of PPV messages transmitted.	Peg	14E9.02	H, C, Q, S
155	005	PPV Oigit Mismatch	Counts the number of PPV fallures because of check digit mismatch.	Peg	4AE9.02	H, C, Q, S
155	006	PPV Output Buffer	Counts the number of lost messages due to output buffer being full.	Peg	1AE9.02	H, C, Q, S

Per I/O Channel Traficic Measurement Enhancoment (ASI-Proxy)
For a description of these traffic measurements for TMC 192, refer to
Practice 231-390-372, Advanced Services Interface - Proxy
Feature Document (1AE12.04 and Later Generic Programs).

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Per 1/O Chennel Traffic Measurement Enhancement (MSS/SMSI)

176	000	(Message Waiting Indicator (MWI) Activation Peg Count	Counts the number of "OP:MM1" messages received over customized I/O channel \#24 (if channel is used for MSS or SMSI).	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	001	MWM Deactivation Pag Count	Counts the number of "RMN:MWi" messages received over customized I/O channel \#24 (if channei is used for MSS or SMSI).	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	002	"MD" Messages Transmitted	Counts the number of "MD" (Message Service call information) messages sent to a Message Service Center (MSC) over customized I/O channel \#24 (if channel is used for MSS or SMSI).	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	003	Output Message Buffier (OMB) Overflow Count	Counts the number of OMB overflows which occur when attempting to send an "MD" message to an MSC over customized I/O channel \#24 (if channel is used for MSS or SMSI).	Overflow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	004	INV Peg Count	Counts the number of MWI requests which result in an invalid (INV) error return message being sent to an MSC over customized I/O channel \#24 (if channel is used for MSS or SMSI).	Peg	$\begin{aligned} & \text { IAE } 0.11 \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	Yes
176	005	BLK Peg Count	Counts the number of MWI requests which result in a blocked (BLK) error return message being sent to an MSC over customized I/O channel \#24 (if channel is used for MSS or SMSt)	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	006	Not Assigned	Unassigned traffic measurement for customized I/O channel \#24	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	007	Not Assigned	Unassigned traffic measurement for customized I/O chánnel \#24	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallabilty	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Consd)

176	008	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#25	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	009	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#25	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	010	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#25	Peg	1AE10.11 IAE11.05	H, C, Q, S	Yes
176	011	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#25	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	012	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#25	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	013	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#25	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	014	Not Assigned	Unassigned traffic measurement for customized I/O channel \#25	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	015	Not Assigned	Unassigned traffic measurement for customized I/O channel \#25	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	016	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#26	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	017	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized 1/O channel \#26	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	018	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#26	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	019	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#26	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	020	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#26	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	021	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#26	Peg	$\begin{array}{\|l\|} \text { 1AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	Yos
176	022	Not Assigned	Unassigned traffic measurement for customized I/O channel \#26	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	023	Not Assigned	Unassigned trattic measurement for customized I/O channel \#26	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	024	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#27	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	025	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#27	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes

Table C. Trafiic Measurements (Contd)

						Output Schedule	Avallabla to Customer
TMC	EGO	Name	Description	Type	Avallability	Schedule	Customer

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deecription	Type	Avaliabllity	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Moasurement Enhancement (MSS/SMSI) (Contcl)

176	044	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#29	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	045	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#29	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	046	Not Assigned	Unassigned traffic measurement for customized I/O channel \#29	N/A	1AE10.11 1AE1 1.05	H, C, Q, S	No
176	047	Not Assigned	Unassigned traffic measurement for customized I/O channel \#29	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	048	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#30	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	049	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#30	Peg	IAE10.11 1AE11.05	H, C, Q, S	Yes
176	050	"MD" Messages Transmitted	Same as EGO 002 but applies to customized 1/O channel \#30	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	051	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#30	Overifow	$\begin{array}{\|l\|} \hline \text { 1AE10 } 11 \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	Yes
176	052	INV Peg Count	Same as EGO 004 but appiles to customized !/O channel \#30	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	053	BLK Peg Count	Same as EGO 005 but applies to customized 1/O channel \#30	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	054	Not Assigned	Unassigned traffic measurement for customized I/O channel \#30	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	055	Not Assigned	Unassigned traffic measurement for customized I/O channel \#30	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	056	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#31	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	057	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#31	Peg	1AE10.11 IAEt1.05	H, C, O, S	Yes
176	058	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#31	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	059	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#31	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	060	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#31	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	061	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#31	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabrilty	Output Schedule	Avallable to Customer

Por 1/O Chamel Traffic Measurement Enhancement (MSS/SMSI) (Contr)

176	062	Not Assigned	Unassigned traffic measurement for customized I/O channol \#31	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	063	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#31	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	064	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#32	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	065	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#32	Pog	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	066	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#32	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	067	OMB Overtlow Count	Same as EGO 003 but applies to customized I/O channel \#32	Overilow	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	068	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#32	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	069	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#32	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	070	Not Assigned	Unassigned traffic measurement for customized I/O channel \#32	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	071	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#32	N/A	TAE10.11 1AE11.05	H, C, Q, S	No
176	072	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#33	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	073	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channe! \#33	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	074	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#33	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	075	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#33	Overfiow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	076	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#33	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	077	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#33	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	078	Not Assigned	Unassigned traffic measurement for customized I/O channel \#33	N/A	1AE10.11 1AE11. 05	H, C, Q, S	No
176	079	Not Assigned	Unassigned traffic measurement for customized I/O channel \#33	N/A	1AE10.11 1AE11.05	H, C, Q, s	No

Table C. Trafific Measurements (Contd)

TMC	ECO	Name	Description	Type	Avallabllity	Output Schedule	Avallable to Customer
Por 1/O Channel Trafit Measurement Enhancement (MSS/SMSi) (Contd)							
176	080	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#34	Peg	$\begin{array}{\|l\|l\|} \text { 1AE10 } 11 \\ \text { 1AE1 } 1.05 \end{array}$	H, C, Q, S	Yes
176	081	MWI Deactivation Peg Count	Same as EGO 001 but applies to custornized I/O channel \#34	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	Yes
176	082	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#34	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE } 11.05 \end{aligned}$	H, C, Q, S	Yes
176	083	OMB Overfiow Count	Same as EGO 003 but applies to customized I/O channel \#34	Overilow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	084	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#34	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	085	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#34	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	086	Not Assigned	Unassigned traffic measurement for customized I/O channel \#34	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	No
176	087	Not Assigned	Unassigned traffic measurement for customized I/O channel \#34	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	088	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#35	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	089	MWI Deactlvation Peg Count	Same as EGO 001 but applies to customized I/O channel \#35	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	090	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#35	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	091	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#35	Overfiow	1AE10.11 TAE1 1.05	H, C, Q, S	Yes
176	092	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#35	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	093	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#35	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	094	Not Assigned	Unassigned traffic measurement for customized I/O channel \#35	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	095	Not Assigned	Unassigned traffic measurement for customized I/O channel \#35	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Dascriptlon	Type	Availabillity	Output Schedule	Avallable t: Customer

Per 1/O Channel Traffic Measurement Enhancernent (MSS/SMS) (Contd)

176	096	IMW Activation Peg Count	Samo as EGO 000 but applies to customized 1/O channel \#36	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	097	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#36	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	098	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#36	Peg	1AE10.11 1AE1 1.05	H, C, Q, S	Yes
176	099	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#36	Overflow	$\begin{aligned} & \text { IAE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	100	INV Peg Count	Same as EGO 004 but applies to customized 1/O channel \#36	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	101	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#36	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	102	Not Asslgned	Unassigned traffic measurement for customized I/O chamnel \#36	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	103	Not Assigned	Unassigned traffic measurement for customized I/O channel \#36	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	104	MNI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#37	Peg	IAE10.11 1AE11.05	H, C, Q, S	Yes
176	105	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#37	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	106	"MD" Messages Transmitted	Same as EGO 002 but applies to customized 1/O channel \#37	Peg	1AEt0.11 1AE11.05	H, C, Q, S	Yes
176	107	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#37	Overtlow	TAE10.11 TAE11.05	H, C, Q, S	Yes
176	108	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#37	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	109	BLK Peg Count	Same as EGO 005 but applies to custornized I/O channel \#37	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	110	Not Assigned	Unassigned traffic measurement for custornized I/O channel \#37	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	111	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#37	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

						Output Schedule	Avallable to Customer
TME	EGO	Name	Descripilon	Type	Avallabllity	Schedule	Customer

Per 1/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Conti)

176	112	(MWI Activation Peg Count
176	113	MWI Deactivation Peg Count
176	114	"MD" Messages Transmitted
176	115	OMB Overflow Count
176	116	INV Pog Count
176	117	BLK Peg Count
176	118	Not Assigned
176	119	Not Assigned
176	120	MNI Activation Peg Count
176	121	MWI Deactivation Peg Count
176	122	"MD" Messages Transmitted
176	123	OMB Overflow Count
176	124	INV Peg Count
176	125	BLK Peg Count
176	126	Not Assigned
176	127	Not Assigned

Same as EGO 000 but applies to customized I/O channel \#38	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 001 but applies to customized I/O channel \#38	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 002 but applies to customized I/O channel \#38	Peg	IAE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 003 but applies to customized I/O channel \#38	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 004 but applies to customized I/O channel \#38	Pag	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 005 but applies to customized I/O channel \#38	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Unassigned traffic measurement for customized I/O channel \#38	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
Unassigned traffic measurement tor customized 1/O channel \#38	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Same as EGO 000 but applies to customized I/O channel \#39	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 001 but applies to customized I/O channel \#39	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 002 but applies to customized I/O channel \#39	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 003 but applies to customized I/O channel \#39	Overflow	1AE10 11 1AE11.05	H, C, Q, S	Yes
Same as EGO 004 but applies to customized I/O channel \#39	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
Same as EGO 005 but applies to customized I/O channel \#39	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Unassigned traffic measurement for customized I/O channel \#39	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Unassigned traffic measurement for customized I/O channel \#39	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMS) (Contd)

176	128	MWVI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#40	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	129	MaN Dasctivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#40	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	130	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#40	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	131	OMB Overfiow Count	Same as EGO 003 but applies to customized I/O channel \#40	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	132	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#40	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	133	BLK Peg Count	Same as EGO 005 but applies to customized 1/O channel \#40	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yos
176	134	Not Assigned	Unassigned traffic measurement for customized I/O channel \#40	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	135	Not Assigned	Unassigned traffic measurement for customized I/O channel \#40	N/A	1AE10.11 1AE11.05	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$	No
176	136	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#41	Peg	पAE10.11 1AE11.05	H, C, Q, S	Yes
176	137	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#41	Peg	1AE10.11 tAE11.05	H, C, Q, S	Yes
176	138	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channet \#41	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	139	OMB Overtlow Count	Same as EGO 003 but applies to customized //O channel \#41	Overflow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
178	140	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#41	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	141	BLK Pog Count	Same as EGO 005 but applies to customized I/O channel \#41	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	142	Not Assigned	Unassigned trafflc measurement for customized I/O channel \#41	N/A	1AE10.11 1AE11.05	H, C, Q, s	No
176	143	Not Assigned	Unassigned traffic measurement for customized I/O channel \#41	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Trafilic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avaliability	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	144	MWI Activation Peg Count	Sarne as EGO 000 but applies to customized I/O channal \#42	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
178	145	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#42	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	146	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#42	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	147	OMB Overflow Count	Same as EGO 003 but applies to customized 1/O channel \#42	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	148	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#42	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	149	BLK Peg Count	Same as EGO OO5 but applies to customized I/O channel \#42	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	150	Not Assigned	Unassigned traffic measurement for customized I/O channel \#42	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	151	Not Assigned	Unassigned traffic measurement for customized I/O channel \#42	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	152	MWM Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#43	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	153	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#43	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	154	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#43	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	155	OMB Cverflow Count	Same as EGO 003 but applies to customized I/O channel \#43	Overfiow	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	156	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#43	Peg	1AE10.11 TAE11.05	H, C, Q, s	Yes
176	157	BLK Peg Count	Same as EGO 005 but applles to customized I/O channel $\# 43$	Peg	TAE10.11 IAE11.05	H, C, Q, S	Yes
176	158	Not Assigned	Unassigned traffic measurement for customized I/O channel \#43	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
176	159	Not Assigned	Unassigned traffic measurement for customized I/O channel \#43	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedule	Avallable to Customer

Per 1/O Channel Traffic Measurement Enhancement (MSS/SNSI) (Contd)

176	160	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#44	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	161	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#44	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	162	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#44	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	163	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#44	Overilow	IAE10.11 1AE11.05	H, C, Q, S	Yes
176	164	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#44	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	165	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#44	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	166	Not Assigned	Unassigned traffic measurement for customized I/O channel \#44	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	167	Not Assigned	Unassigned traffic measurement for customized I/O channel \#44	N/A	TAE10.11 1AE11.05	H, C, Q, S	No
176	168	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#45	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	169	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#45	Peg	1AE10.19 1AE11.05	H, C, Q, S	Yes
176	170	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channol \#45	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	171	OMB Overfiow Count	Same as EGO 003 but applies to customized I/O channel \#45	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	172	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#45	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	173	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#45	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	174	Not Assigned	Unassigned traffic measurement for customized I/O channel \#45	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	175	Not Assigned	Unassigned traftic measurement for customized I/O channei \#45	N/A	TAE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallabillty	Output Schedule	$\begin{aligned} & \text { Avallable to } \\ & \text { Customer } \end{aligned}$

Por 1/O Channet Trafilc Measurement Enhancement (MSS/SMSY) (Contd)

176	178	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel *46	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	177	MWI Deactivation Peg Count	Same as EGO OOt but applies to customized I/O channel \#46	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	178	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#46	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	179	OMB Overfiow Count	Same as EGO 003 but applies to customized I/O channel \#46	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	180	INV Peg Count	Sarne as EGO 004 but applies to customized I/O channol \#46	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	181	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#46	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	182	Not Assigned	Unassigned traffic measurement for customized I/O channel \#46	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	No
176	183	Not Assigned	Unassigned traffic measurement for customized I/O channel \#46	N/A	1AE10.11 1AE1 1.05	H, C, Q, S	No
176	184	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#47	Peg	1AE10.11 1AE1 1.05	H, C, Q, S	Yes
176	185	MWI Deactivation Peg Count	Same as EGO OO1 but applies to customized I/O channel \#47	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	186	"MD" Messages Transmilted	Same as EGO 002 but applies to customized I/O channel \#47	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	187	OMB Overtlow Count	Same as EGO 003 but applies to customized I/O channel \#47	Overflow	1AE10.11 1AE11.05	H, C, O, S	Yes
176	188	INV Peg Count	Same as EGO OO4 but applies to customized I/O channel \#47	Peg	1AE10.11 tAE11.05	H, C, Q, S	Yes
176	189	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#47	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	190	Not Assigned	Unassigned traffic measurement for customized I/O channel \#47	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	No
176	191	Not Assigned	Unassigned traffic measurement for customized I/O channel \#47	N/A	$\begin{array}{\|l\|l\|} \hline \text { AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

Per I/O Channol Traffic Measurement Enhancement (MSS/SMSI) (Conta)

176	192	MWM Activation Peg Count
176	193	MWI Deactivation Peg Count
176	194	"MD" Messages Transmitted
176	195	OMB Overflow Count
176	196	INV Peg Count
176	197	BLK Peg Count
176	198	Not Assigned
176	199	Not Assigned
176	200	MWM Activation Peg Count
176	201	MWI Deactivation Peg Count
176	202	"MD" Messages Transmitted
176	203	OMB Overflow Count
176	204	inv Peg Count
176	205	BLK Peg Count
176	206	Not Assigned
176	207	Not Assigned

Same as EGO 000 but applies to customized I/O channel \#48	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 001 but applies to customized 1/O channel \#48	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 002 but applles to customized I/O channel \#48	Peg	1AE10.11 1AE11.05	H, C, C, S	Yes
Same as EGO 003 but applies to customized I/O channel *48	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 004 but applies to customized I/O channel \#48	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 005 but applies to customized I/O channel \#48	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
Unassigned traffic measurement for customized I/O channel \#48	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Unassigned traffic measurement for customized I/O channel \#48	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Same as EGO 000 but applies to customized I/O channel \#49	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 001 but applies to customized I/O channel \#49	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 002 but applies to customized I/O channel \#49	Peg	tAE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 003 but applies to customized I/O channel \#49	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 004 but applies to customized I/O channel \#49	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 005 but applies to customized I/O channel \#49	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Unassigned traffic measurement for customized I/O channel \#49	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Unassigned traffic measurement for customized I/O channel \#49	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

MC EGO	Name	Description	Type	Avallabillity	Output Schedule	Avallimble to Customer

Per 1/O Channel Traficic Measurement Enhancement (MSS/SMSI) (Contd)

176	208	MMW Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#50	Peg	TAE10.11 1AE11 05	H, C, Q, S	Yes
176	209	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#50	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	210	"MD" Messages Transmitted	Same as EGO 002 but applles to customized 1/O channel \#50	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	211	OMB Overilow Count	Same as EGO 003 but applies to customized I/O channel \#50	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	212	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#50	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	213	BLK Peg Count	Sarne as EGO 005 but applies to customized I/O channel \#50	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	214	Not Assigned	Unassigned traffic measurement for customized I/O channel \#50	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	215	Not Assigned	Unassigned traffic measurement for customized !/O channel \#50	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	216	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#51	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	217	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#51	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	218	MD' Mossages Transmitted	Same as EGO 002 but applies to customized I/O channel \#51	Peg	1AE10.11 1AE11.05	H,C, O, S	Yes
176	219	OMB Overifow Count	Same as EGO 003 but applies to customized I/O channel \#51	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	220	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#51	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	221	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#51	Peg	1AE10.11 1AE 11.05	H, C, Q, S	Yes
176	222	Not Assigned	Unassigned traffic measurement for customized I/O channel \#51	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	223	Not Assigned	Unassigned traffic measurement for customized I/O channel \#51	N/A	TAE10.11 1AE11.05	H, C, Q, S	No

Table C. Trafific Measurements (Contd)

TMEC	EGO	Name	Description	Type	Avallabillity	Output Schedule	Avallablo to Customer

Per 1/O Chamnel Traflic Measurement Enhancement (MSS/SMSI) (Contd)

176	224	MWI Activation Peg Count	Sarme as EGO 000 but applies to customized I/O channel \#52	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	225	MWM Deactwation Peg Count	Same as EGO 001 but applies to customized I/O channel \#52	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	226	"MD" Messages Transmitted	Same as EGO 002 but applles to customized I/O channel \#52	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	227	OMB Overfiow Count	Same as EGO 003 but applies to customized 1/O channel \#52	Overflow	1AE10.11 1AE11 05	H, C, Q, S	Yes
176	228	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#52	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	229	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#52	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	230	Not Assigned	Unassigned traffic measurement for customized I/O channel \#52	N/A	1AE10.11 1AE11 05	H, C, O, S	No
176	231	Not Assigned	Unassigned traffic measurement for customized I/O channel \#52	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	232	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#53	Peg	1AE10.1t 1AE11.05	H, C, Q, S	Yes
176	233	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#53	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	234	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#53	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	235	OMB Cuerflow Count	Same as EGO 003 but applies to customized I/O channel \#53	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	236	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#53	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	237	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#53	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	238	Not Assigned	Unassigned traffic measurement for customized I/O channel \#53	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	239	Not Assigned	Unassigned traffic measurement for customized I/O channel \#53	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deecription	Type	Avallability	Output Schedule	$\begin{aligned} & \text { Avallable to } \\ & \text { Customer } \end{aligned}$

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	240	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#54	Peg	TAE10.11 1AE11 05	H, C, Q, S	Yes
176	241	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel *54	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	242	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#54	Peg	$\begin{aligned} & \text { tAE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	243	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#54	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	244	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#54	Peg	1AE10.11 1AE11.06	H, C, Q, S	Yes
176	245	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#54	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	246	Not Assigned	Unassigned traffic measurement for customized I/O channel \#54	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	247	Not Assigned	Unassigned traffic measurement for customized I/O channel \#54	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
178	248	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#55	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	249	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#55	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	250	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#55	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	251	OMB Overilow Count	Same as EGO 003 but applies to customized I/O channel \#55	Overilow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE } 11.05 \end{aligned}$	H, C, O, S	Yes
176	252	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#55	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	253	BLK Peg Count	Same as EGO OO5 but applies to customized I/O channel \#55	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	254	Not Assigned	Unassigned traffic measurement for customized I/O channel \#55	N/A	1AE10.11 1AE11.05	H, C, Q, s	No
176	255	Not Assigned	Unassigned traffic measurement for customized I/O channel \#55	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, s	No

Table C. Trafiic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	256	MWI Activation Peg Count	Same as EGO 000 but applles to customized I/O charnel \#56	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	257	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#56	Peg	1AE10.11 1AE11 05	H, C, O, S	Yes
176	258	"MD" Messages Transmilted	Same as EGO 002 but applies to customized I/O channel \#56	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	259	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#56	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	260	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#56	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	261	BLK Peg Count	Same as EGO 005 but applles to customized I/O channel \#56	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	262	Not Assigned	Unassigned tratfic measurement for customized I/O channel \#56	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	263	Not Assigned	Unassigned traffic measurement tor customized I/O channel \#56	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	264	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#57	Peg	1AEt0.11 1AE11.05	H, C, C, S	Yes
176	265	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channe! \#57	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	266	"MD" Mossages Transmitted	Same as EGO 002 but applies to customized I/O channel \#57	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	267	OMB Overilow Count	Same as EGO 003 but applies to customized I/O channel \#57	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	268	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#57	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	269	BLK Peg Count	Same as EGO 005 but applies to customized I/O channe! *57	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	270	Not Assigned	Unassigned traffic measurement for customized I/O channel \#57	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	271	Not Assigned	Unassigned traffic measurement for customized I/O channel \#57	N/A	1AE10.11 iAE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Dascription	Type	Avallabllity	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancoment (MSS/SMSy (Contd)

176	272	MWVI Activation Peg Count	Same as EGO 000 but applies to custornized I/O channel \#58	Peg	$\begin{array}{\|l\|} \text { 1AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	Yes
176	273	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#58	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	274	"MD" Messages Transmitted	Same as EGO OO2 but applies to customized I/O channel \#58	Peg	1AE10.11 1AE11.05	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$	Yes
176	275	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#58	Overtiow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	276	INV Peg Count	Same as EGO 004 but appiles to customized I/O channel \#58	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	277	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#58	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	278	Not Assigned	Unassigned traffic measurement for customized I/O channel \#58	N/A	1AE10.11 1AE11.05	H, Cs, Q, S	No
176	279	Not Assigned	Unassigned traffic measurement for customized I/O channel \#58	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	280	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#59	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	281	MWI Deactivation Peg Count	Same as EGO OO1 but applies to customized I/O channel \#59	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	282	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#59	Peg	tAE10.11 1AE11.05	H, C, Q, S	Yes
176	283	OMB Overtiow Count	Same as EGO 003 but applies to customized 1/O channel \#59	Overflow	1AE10.19 1AE11.05	H, C, Q, S	Yes
176	284	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#59	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	285	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#59	Peg	1AE10 11 1AE11.05	H, C, Q, S	Yes
176	286	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#59	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	287	Not Assigned	Unassigned traffic measurement for customized I/O channel \#59	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Meme	Description	Type	Availabillty	Output Schedule	Avaliable to Customer

Por 1/O Channel Trafic Measuroment Enhancement (MSS/SMSi) (Conta)

176	288	\|MNI Activation Peg Count	Same as EGO 000 but applles to customized I/O channel \#60	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	289	MWI Deactlvation Peg Count	Same as EGO 001 but applies to customized I/O channel \#60	Peg	1AE10.11 1AE11.05	H, G, Q, S	Yes
176	290	"MD" Messages Transmilted	Same as EGO 002 but applies to customized I/O channel \#60	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	291	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#60	Overtlow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	292	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#60	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	293	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#60	Peg	1AEt0.11 TAE11.05	H, C, Q, S	Yes
176	294	Not Assigned	Unassigned traftic measurement for customized I/O channel \#60	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	295	Not Assigned	Unassigned traffic measurement for customized I/O channei \#60	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	296	MWI Activation Peg Count	Same as EGO 000 but applles to customized I/O channel \#61	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	297	MNI Deactivation Pag Count	Same as EGO 001 but applies to customized I/O channei \#61	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	298	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#61	Peg	1AE10 11 1AE11.05	H, C, Q, S	Yos
176	299	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#61	Overilow	1AE 10.11 1AE11.05	H, C, Q, S	Yes
176	300	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#61	Peg	1AE10.11 1AE11.05	$\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$	Yes
176	301	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#61	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	302	Not Assigned	Unassigned traffic measurement for customized I/O channel \#61	N/A	1AE10.11 1AE1 1.05	H, C, Q, S	No
176	303	Not Assigned	Unassigned traffic measurement for customized I/O channel \#61	N/A	1AE10.11 1AE11.05	H, C, O, S	No

Table C. Trafific Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Sehedule	Avalimble to Customer

Per I/O Channol Tratic Measurement Enhencement (MSS/SMSI) (Contet)

176	304	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#62	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	305	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#62	Peg	$\begin{array}{\|l\|} \hline \text { 1AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	Yes
178	306	"MD" Messages Transmitted	Sarne as EGO 002 but applies to customized I/O channel \#62	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	307	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#62	Overiow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	308	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#62	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	309	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#62	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	310	Not Assigned	Unassigned traffic measurement for customized I/O channel \#62	N/A	TAE10.11 1AE11.05	H, C, Q, S	No
176	311	Not Assigned	Unassigned traffic measurement for customized I/O channel \#62	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	312	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#63	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	313	MWI Deactivation Peg Count	Same as EGO OD1 but applies to customized I/O channel \#63	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	314	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#63	Peg	1AE10 11 1AE11.05	H, C, Q, S	Yes
176	315	OMB Overflow Count	Same as EGO 003 but applies to customized 1/O channel \#63	Overtiow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	316	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#63	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	317	BLK Peg Count	Same as EGO 005 but applies 10 customized 1/O channel \#63	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	318	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#63	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
176	319	Not Assigned	Unassigned traffic measurement for customized I/O channel \#63	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSt) (Conta)

176	320	MWI Activation Peg Count	Same as EGO OOO but applies to customized I/O channel \#64	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	321	MWI Deactivation Peg Count	Sarme as EGO 001 but applies to customized I/O channel \# 64	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	322	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#64	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	323	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#64	Overtlow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	324	INV Peg Count	Same as EGO 004 but applies to customized I/O channol \#64	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	325	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#64	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	326	Not Assigned	Unassigned trafflc measurement for customized I/O channel \#64	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
176	327	Not Assigned	Unassigned traffic measurement for customized I/O channel \#64	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	328	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#65	Peg	1AE10.11 4AE11.06	H, C, Q, S	Yes
176	329	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized 1/O channel \#65	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	330	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#65	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	Yes
176	331	OMB Overflow Count	Same as EGO 003 but applies to customized 1/O channel \#65	Overtlow	1AE10.11 1AE1 1.05	H, C, O, S	Yes
176	332	INV Peg Count	Same as EGO 004 but applies to customized 1/O channel \#65	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	333	BLK Keg Count	Same as EGO 005 but applies to customized I/O channel \#65	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	334	Not Assigned	Unassigned traffic measurement for customized I/O channel \#65	N/A	1AE10.11 1AE11. 05	H, C, O, S	No
176	335	Not Assigned	Unassigned traffic measurement for customized I/O channel \#65	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO		Description			Output Schedule	Avallable to Customer
TMC	EGO	Name	Dascripion	Type	Avallability		

Por I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	336	MNM Activation Peg Count
176	337	MMM Deactivation Peg Count
176	338	"MD" Messages Transmitted
176	339	OMB Overfiow Count
176	340	INV Peg Count
176	341	BLK Peg Count
176	342	Not Assigned
176	343	Not Assigned
176	344	MWI Activation Peg Count
176	345	MMI Deactivation Peg Count
176	346	"MD" Messages Transmitted
176	347	OMB Overflow Coumt
176	348	INV Peg Count
176	349	BLK Peg Count
176	350	Not Assigned
176	351	Not Assigned

Same as EGO 000 but applles to customized I/O channel \#66 Same as EGO 001 but applies to customized I/O channel \#66 Same as EGO OO2 but applles to customized I/O channel \#66 Same as EGO 003 but applies to customized I/O channel \#66 Same as EGO 004 but apples to customized I/O channel \#66 Same as EGO 005 but applies to customized I/O channel \#66 Unassigned traffic measurement for customized I/O channel \#66 Unassigned traffic measurement for customized I/O channel \#66 Same as EGO 000 but applies to customized I/O channel \#67 Same as EGO 001 but applies to customized 1/O channel \#67 Same as EGO 002 but applies to customized I/O channel \#67 Same as EGO 003 but applies to customized I/O channel \#67 Same as EGO 004 but applies to customized I/O channel \#67
Same as EGO 005 but applles to customized I/O channel \#67
Unassigned traffic measurement for

Peg	1AE10.11 1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	TAE10.11
	1AE11.05
Overflow	1AE10 11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
N/A	1AE10.11
	1AE11.05
N/A	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Overflow	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	1AE10.14
	1AE11.05
N/A	1AE10.11
	1AE11.05
N/A	1AE10.11
	1AE11.05

H, C, Q, S	Yes
H, C, Q, S	Yes
H, C, Q, S	No
H, C, Q, S	No
H, C, Q, S	Yes
H, C, Q, S	No
H, C, Q, S	No

Table C. Trafific Measurements (Contd)

Por I/O Channel Traficic Measurement Enhancement (MSS/SMSi) (Contd)

176	352	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#68	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	353	MWI Deactlvation Peg Count	Same as EGO 001 but applies to customized I/O channel \#68	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	354	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#68	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	355	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#68	Overtiow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	356	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#68	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
178	357	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#68	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	358	Not Assigned	Unassigned traffic measurement for customized I/O channel \#68	N/A	1AE10.11 1AE11.05	H, C, Q, s	No
176	359	Not Assigned	Unassigned traffic measurement for customized I/O channel \#68	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
178	360	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O ohannel \#69	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	361	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#69	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	362	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#69	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	363	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#69	Overflow	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	364	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#69	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	365	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#69	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	366	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#69	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	367	Not Assigned	Unassigned traffic measurement for customized I/O channel \#69	N/A	TAE10.11 1AE11 05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Cond)

176	368	MWI Activation Peg Count
176	369	MWI Deactivation Peg Count
176	370	"MD" Messages Transmitted
176	371	OMB Overflow Count
176	372	INV Peg Count
176	373	BLK Peg Count
176	374	Not Assigned
176	375	Not Assigned
176	376	MWI Activation Peg Count
176	377	MWI Deactivation Peg Count
176	378	"MD" Messages Transmitted
176	379	OABB Overflow Count
176	380	INV Peg Count
176	381	BLK Peg Count
176	382	Not Assigned
176	383	Not Assigned

Same as EGO 000 but applies to customized I/O channel \#70
Same as EGO 001 but applies to customized I/O channel \#70
Same as EGO 002 but applies to customized I/O channel \#70 Same as EGO 003 but applies to customized I/O channel \#70 Same as EGO 004 but applies to customized I/O channel \#70 Same as EGO 005 but applies to customized I/O channel \#70 Unassigned traffic measurement for customized I/O channel \#70 Unassigned traffic measurement for customized I/O channel \#70 Same as EGO 000 but applies to customized I/O channel \#71 Same as EGO 001 but applies to customized I/O channel \#71 Same as EGO 002 but applies to customized I/O channel \#71 Same as EGO 003 but applles to customized I/O channel \#71 Same as EGO 004 but applies to customized I/O channel \#71 Same as EGO 005 but applies to customized I/O channel \#71 Unassigned traffic measurement for customized 1/O channel \#71 Unassigned traffic measurement for customized I/O channel \#71

Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Overflow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
N / A	1AE10.11 1AE11.05	H, C, Q, S	No
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
Overflow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No

Table C. Trafific Measurements (Contd)

						Output Schedule	Avallable to Customer
TMC	EGO	Name	Description	Type	Avallability	Schedule	Customer

Per 1/O Channel Traffic Measurement Enhancement (MSS/SMSi) (Contd)

176	384	IMWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#72	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	385	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#72	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yas
176	386	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#72	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	387	OMB Overflow Count	Same as EGO 003 but applies to customtzed I/O channel \#72	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	388	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#72	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	389	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#72	Peg	1AE10 11 1AE11.05	H, C, Q, S	Yes
176	390	Not Assigned	Unassigned traffic measurement for customized I/O channel \#72	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
176	391	Not Assigned	Unassigned traffic measurement for customized I/O channel \#72	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	392	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#73	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	393	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#73	Peg	1AE10.11 1AE11.05	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$	Yes
176	394	"MD" Messages Transmilted	Same as EGO 002 but applies to customized I/O channel \#73	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	395	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#73	Overtlow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	396	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#73	Peg	1AE10 11 1AE11.05	H, C, Q, S	Yes
176	397	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#73	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	398	Not Assigned	Unassigned traffic measurement for customized I/O channel \#73	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	399	Not Assigned	Unassigned traffic measurement for customized I/O channel \#73	N/A	1AE10.11 1AE11.05	H, C, O, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Por 1/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

| 176 | 400 | MWI Activation Peg
 Count |
| :--- | :--- | :--- | :--- |
| 176 | 401 | MWI Deactivation
 Peg Count |
| 176 | 402 | MD" Messages
 Transmitted |
| 176 | 403 | OMB Overtlow
 Count |
| 176 | 404 | INV Peg Count |
| 176 | 405 | BLK Peg Count |

Same as EGO 000 but applies to customized I/O channel \#74 Same as EGO 001 but applies to customized I/O channel \#74
Same as EGO 002 but applies to customized I/O channel \#74
Same as EGO 003 but applies to customized I/O channel \#74 Same as EGO 004 but applles to customized I/O channel \#74
Same as EGO 005 but applies to customized I/O channel \#74
Unassigned traffic measurement for customized I/O channel \#74
Unassigned traffic measurement for customized I/O channel \#74 Same as EGO 000 but applies to customized I/O channel \#75
Same as EGO 001 but applies to customized I/O channel \#75
Same as EGO 002 but applies to customized I/O channel \#75
Same as EGO 003 but applies to customized I/O channel \#75
Same as EGO 004 but applies to customized I/O channel \#75
Same as EGO 005 but applies to customized I/O channel \#75
Unassigned traffic measurement for customized I/O channel \#75
Unassigned traffic measurement for customized I/O channel \#75

Peg	$\begin{array}{\|l\|l\|} \text { 1AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	Yos
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	1AE10 11 1AE11.05	H, C, Q, S	Yes
Overflow	TAE10.11 1AE11.05	H, C, Q, S	Yes
Peg	$\begin{aligned} & \text { AE10.11 } \\ & \text { AET1 } \end{aligned}$	H, C, Q, S	Yes
Peg	1AE10 14 1AE11.05	H, C, Q, S	Yes
N/A	1AE10.11 1AE11.05	H, C, Q, S	No
N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
N/A	1AE10.11 1AE11.05	H, C, Q, S	No
N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Neme	Description	Type	Availability	Output Schodule	Available to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSi) (Contd)

176	416	MW Activation Peg Count	
176	417	MWI Deactivation Peg Count	
176	418	MD" Messages Mransmitted	
176	419	IMB Overflow OM Count	
176	420	NV Peg Count 176	421

Same as EGO 000 but applies to customized I/O channel \#76 Same as EGO 001 but applies to customized I/O channel \#76 Same as EGO 002 but applies to customized I/O channel \#76 Same as EGO 003 but applies to customized 1/O channel \#76 Same as EGO 004 but applies to customized I/O channel \#76 Same as EGO 005 but applies to customized I/O channel \#76 Unassigned traffic measurement for customized I/O channel \#76 Unassigned traftic measurement for customized I/O channel \#76 Same as EGO 000 but applies to customized I/O channel \#77 Same as EGO 001 but applies to customized I/O channel \#77 Same as EGO 002 but applies to customized I/O channel \#77
Sarne as EGO 003 but applies to customized 1/O channel \#77 Same as EGO 004 but applies to customized I/O channel \#77 Same as EGO 005 but applies to customized I/O channel \#77 Unassigned traffic measurement for customized I/O channel \#77 Unassigned traffic measurement for customized 1/O channel \#77

Peg	TAE10.11 1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Overflow	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
N/A	1AE10.11
	IAE11.05
N/A	TAE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Peg	TAE10.11
	1AE11.05
Peg	1AE10.11
	1AE11.05
Overfiow	1AE10.11
	1AE11.05
Peg	1AE10.11
	1AE1 1.05
Peg	1AE10.11
	1AE11.05
N/A	1AE10.11
	1AE11.05
N/A	1AE10.11
	1AE11.05

H, C, Q, S	Yes
H, C, Q, S	Yes
H, C, O, S	No
H, C, Q, S	No
H, C, O, S	Yes
H, C, Q, S	No
H, C, Q, S	No

Table C. Traffic Measurements (Contd)

| TMC | EGO | Name | Deecription | Type | Avallabillty | Output
 Schedule | Avalleble to
 Customer |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	432	MWI Activation Peg Count			
176	433	MWI Desctivation Reg Count			
176	434	MD Messages Transmitted			
176	435	OMB Overfiow Count			
176	436	NV Peg Count			
176	437	BLK Peg Count 176	439		Not Assigned
:---					
176	440	Not Assigned			
:---					
MWi Activation Peg					
Count					

Same as EGO 000 but applies to customized I/O channel \#78
Same as EGO 001 but applies to customized I/O channel *78
Same as EGO 002 but applies to customized I/O channel \#78
Same as EGO 003 but applles to customized I/O channel \#78 Same as EGO 004 but applies to customized I/O channel \#78
Same as EGO 005 but applies to customized 1/O channel \#78
Unassigned traffic measurement for customized 1/O channel \#78
Unassigned traffic measurement for customized I/O channel \#78 Same as EGO 000 but applies to customized I/O channel \#79 Same as EGO 001 but applies to customized I/O channel \#79
Same as EGO 002 but applies to customized I/O channel \#79
Same as EGO 003 but applies to customized I/O channel \#79 Same as EGO 004 but applies to customized I/O channel \#79 Same as EGO 005 but applies to customized 1/O channel \#79 Unassigned traffic measurement for customized I/O channel \#79 Unassigned traffic measurement for customized I/O channel *79

Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	1AE10.11 1AE11 05	H, C, Q, s	Yes
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Overfiow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
N/A	1AE10 11 1AE11.05	H, C, Q, S	No
N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE1 } 1.05 \end{aligned}$	H, C, Q, S	No
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE1 } 1.05 \end{aligned}$	H, C, Q, S	Yos
Overflow	$\begin{aligned} & \text { 1AE10. } 11 \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
Pag	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE } 1105 \end{aligned}$	H, C, Q, s	Yes
Peg	$\begin{aligned} & \text { 1AE10 } 11 \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	Yes
N/A	1AE10.11 1AE11.05	H, C, O, S	No
N/A	$\begin{array}{\|l\|l\|} \hline \text { 1AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	No

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Deserijption	Type	Avallability	Output Schedule	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	448	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#80	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	449	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#80	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	450	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#80	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	451	OMB Overfiow Count	Same as EGO 003 but applies to customized I/O channel \#80	Overifow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	452	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#80	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	453	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#80	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	454	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#80	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	455	Not Asslgned	Unassigned traffic measurement for customized I/O channel \#80	N/A	$\begin{aligned} & \text { 1AE } 10.11 \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
176	456	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O chanrel *81	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	457	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#81	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	458	"MD" Messages Transmilted	Same as EGO 002 but applies to customized I/O channel \#81	Peg	1AE10.11 iAE 11.05	H, C, Q, S	Yes
176	459	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#81	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	460	INV Peg Count	Same as EGO 004 but applies to customized I/O channol \#81	Peg	TAE10.11 1AE11.05	H, C, O, S	Yes
176	461	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#81	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	462	Not Assigned	Unassigned traffic measurement for customized I/O channel \#81	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	463	Not Assigned	Unassigned traffic measurement for customized I/O channel \#81	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Deacription	Type	Availability	Output Schedule	Avallable to Customer

Per I/O Channel Tratilic Measurement Enhancement (MSS/SMSi) (Contd)

176	464	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#82	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	465	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channol \#82	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	466	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#82	Peg	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	467	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#82	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	468	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#82	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	469	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#82	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	470	Not Assigned	Unassigned traffic measurement for customized I/O channel \#82	N / A	1AE10.11 1AE11.05	H, C, Q, S	No
176	471	Not Assigned	Unassigned traffic measurement for customized I/O channel \#82	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	472	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#83	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	473	NWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#83	Peg	$\begin{array}{\|l\|l\|} \text { 1AE10.11 } \end{array}$	H, C, Q, S	Yes
176	474	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#83	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	475	OMB Overflow Count	Same as EGO 003 but applies to custormized 1/O channel \#83	Overflow	1AE10.11 1AE1 1.05	H, C, Q, s	Yes
176	476	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#83	Peg	1AE10.11 1AE11 05	H, C, Q, s	Yes
176	477	Bla Peg Count	Same as EGO 005 but applies to customized I/O channel \#B3	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	478	Not Assigned	Unassigned traffic measurement for customized I/O channel \#83	N/A	1AE10.11 1AE11.05	H, C, Q, s	No
176	479	Not Assigned	Unassigned traffic measurement for customized I/O channel \#83	N/A	1AE10.11 1AE11.05	H, C, Q, s	No

Table C. Traffic Measurements (Contd)

TMCIEGO	Name	Descriptlon	Type	Availability	Output Schedula	Avallable to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	480	MM Activation Peg Count	Same as EGO 000 but applies to customized I/O channal \#84	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	481	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channol \#84	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	482	"MD" Messages Transmitted	Same as EGO 002 but applles to customized I/O channel \#84	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	483	OMB Overfiow Count	Same as EGO 003 but applies to customized I/O channel \#84	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	484	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#84	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	485	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#84	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	486	Not Assigned	Unassigned traffic measurement for customized I/O channel \#84	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	487	Not Assigned	Unassigned traffic measurement for customized 1/O channel \#84	N/A	1AE10.11 TAE11.05	H, C, Q, S	No
176	488	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#85	Peg	1AE10.11 TAE11.05	H, C, Q, S	Yes
176	489	MWI Deaclivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#85	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	490	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#85	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	491	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#85	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	492	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#85	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	493	BLK Peg Count	Same as EGO 005 but applles to customized I/O channel \#85	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	494	Not Assigned	Unassigned traffic measurement for customized I/O channel \#85	N/A	TAE10.11 1AE11.05	H, C, Q, S	No
176	495	Not Assigned	Unassigned traffic measurement for customized I/O channel \#85	N/A	1AE10.11 TAE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallabillty	Output Schedule	Availatole to Customer

Por 1/O Channed Traffic Moasurement Enhancoment (MSS/SMSI) (Const)

176	496	IMWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#86	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	497	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#86	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	498	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#86	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	499	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#86	Overtlow	TAE10.11 1AE11.05	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{s}$	Yes
176	500	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \$86	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	501	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#86	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	502	Not Assigned	Unassigned traffic measurement for customized I/O channel \#86	N/A	$\begin{aligned} & \text { IAE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	No
176	503	Not Assigned	Unassigned traffic measurement for customized I/O channel \$86	N/A	IAE10.11 1AE11.05	H, C, Q, S	No
176	504	MWI Activation Peg Count	Same as EGO 000 but applles to customized I/O channel \#87	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	505	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#87	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	506	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#87	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	507	OMB Overflow Count	Same as EGO 003 but applies to customized 1/O channel \#87	Overfiow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	508	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#87	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	509	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#87	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	510	Not Assigned	Unassligned traffic measurement for customized I/O channel \#87	N/A	1AE10.11 1AE11.05	$\boldsymbol{H}, \mathrm{C}, \mathrm{Q}, \mathrm{s}$	No
176	511	Not Assigned	Unassigned traftic measurement for customized I/O channel \#87	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillty	Output Schedule	Available to Customer

Per I/O Channel Traffic Measurement Enhancement (MSS/SMSI) (Contd)

176	512	MWI Activation Pag Count	Same as EGO 000 but applies to customized I/O channel \#BB	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	513	MW1 Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#88	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { TAE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	514	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#88	Peg	1AE10.1 TAE11.05	H, C, Q, S	Yes
176	515	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#88	Overflow	$\begin{array}{\|l\|} \hline \text { 1AE10.11 } \\ \text { 1AE11.05 } \end{array}$	H, C, Q, S	Yes
176	516	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#88	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	517	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#88	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	518	Not Assigned	Unassigned traffic measurement for customized I/O channel \#88	N/A	TAE10.19 1AE11.05	H, C, O, S	No
176	519	Not Assigned	Unassigned traffic measurement for customized I/O channel \#88	N/A	1AE10.11 1AE11.05	H, C, C, s	No
178	520	MWI Activation Peg Count	Same as EGO ODO but applies to customized I/O channel \#89	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	521	MMI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#89	Peg	1AE10.11 1AE11.05	H, C, Q, s	Yes
176	522	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#89	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	523	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#89	Overfiow	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	524	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#89	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	525	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#89	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	526	Not Assigned	Unassigned traffic measurement for customized I/O channel \#89	N/A	1AE10.11 1AE11.05	H, C, O, S	No
176	527	Not Assigned	Unassigned traffic measurement for customized I/O channol \#89	N/A	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	No

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deacription	Type	Avallability	Output Schedule	Available to Cuatomer

Per I/O Channed Traffic Measurement Enhencement (MSS/SMSi) (Conda)

176	528	MWI Activation Peg Count
178	529	MWI Deactivation Peg Count
178	530	"MD" Messages Transmitted
176	531	OMB Overflow Count
176	532	INV Peg Count
176	533	BLK Pog Count
176	534	Not Assigned
176	535	Not Assigned
176	538	MWI Activation Peg Count
176	537	MWI Deactivation Peg Count
176	538	"MD" Messages Transmitted
176	539	OMB Overflow Count
176	540	INV Peg Count
176	541	BLK Peg Count
176	542	Not Assigned
176	543	Not Assigned

Same as EGO 000 but applies to customized I/O channel \#90	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 001 but applies to customized I/O channel \#90	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 002 but applies to customized I/O channel \#90	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 003 but applies to customized 1/O channel \#90	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 004 but applies to custornized I/O channel \#90	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 005 but applles to customized I/O channel \#90	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Unassigned traffic measurement for customized I/O channel \#90	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Unassigned traffic measurement for custornized I/O channel \#90	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Same as EGO 000 but applies to customized I/O channel \#91	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 001 but applies to customized I/O channel \#91	Peg	1AE10.11 1AE11 05	H, C, Q, S	Yes
Same as EGO 002 but applies to customized I/O channel \#91	Peg	1AE10.11 1AE1 1.05	H, C, O, S	Yes
Same as EGO 003 but applies to customized I/O channel \#91	Overilow	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 004 but applies to customized I/O channel \#91	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Same as EGO 005 but applies to customized I/O channel \#91	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
Unassigned traffic measurement for customized I/O channel \#91	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
Unassigned traffic measurement for customized I/O channel \#\#1	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallablity	Output Schedule	Avallable to Customer

Por I/O Channed Traffic Measurement Enhancement (MSS/SMSi) (Conted)

176	544	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#92	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	545	MNI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#92	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	546	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#92	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	547	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#92	Overflow	TAE10.11 1AE11.05	H, C, Q, S	Yes
176	548	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#92	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	548	BLK Peg Count	Same as EGO 005 but applies to customized $1 / 0$ channel \#92	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	550	Not Assigned	Unassigned traffic measurement for customized I/O channel \#92	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	551	Not Assigned	Unassigned traffic measurement for customized I/O channel \#92	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	552	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#93	Peg	1AE10.11 1AE1 1.05	H, C, Q, S	Yes
176	553	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#93	Peg	1AE10.11 1AE11.05	H, C, O, S	Yes
176	554	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#93	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	555	OMB Overtlow Count	Same as EGO 003 but applies to customized I/O channel \#93	Overflow	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	556	INV Peg Count	Same as EGO 004 but applles to customized I/O channel \#93	Peg	TAE10.11 1AE11.05	H, C, Q, s	Yes
176	557	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#93	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	558	Not Assigned	Unassigned traffic measurement for customized I/O channel \#93	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	559	Not Assigned	Unassigned traffic measurement for customized l/O channel \#93	N/A	1AE10.11 1AE11.05	H, C, O, S	No

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Deseriplion	Type	Avallability	Output Schedule	$\begin{aligned} & \text { Avaliabie x } \\ & \text { Customer } \end{aligned}$

Per 1/O Channel Traflic Measurement Enhancement (MSS/SMSI) (Contd)

176	560	MMM Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#94	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, S	Yes
176	561	MWM Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channol \#94	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	562	"MD" Messages Transmitted	Sarre as EGO 002 but applies to customized I/O channel \#94	Peg	$\begin{aligned} & \text { 1AE10.11 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, Q, s	Yos
176	563	OMB Overflow Count	Same as EGO 003 but applies to customized I/O channel \#94	Overflow	1AE10.11 1AE11.05	H, C, O, S	Yes
176	564	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#94	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	565	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#94	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	566	Not Assigned	Unassigned traffic measurement for customized I/O channel \#94	N/A	1AE10.11 1AE1 1.05	H, C, Q, S	No
176	567	Not Assigned	Unassigned traffic measurement for customized I/O channel \#94	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	568	MWI Activation Peg Count	Same as EGO 000 but applies to customized I/O channel \#95	Peg	$\begin{array}{\|l\|l\|} \hline \text { 1AE10.11 } \\ \hline \text { 1AE1 } 1.05 \end{array}$	H, C, Q, S	Yes
176	569	MWI Deactivation Peg Count	Same as EGO 001 but applies to customized I/O channel \#95	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	570	"MD" Messages Transmitted	Same as EGO 002 but applies to customized I/O channel \#95	Peg	1AE10.11 1AE1 1.05	H, C, Q, S	Yes
176	571	OMB Overilow Count	Same as EGO 003 but applies to customized I/O channel \#95	Overflow	$\begin{aligned} & \text { 1AEE0.14 } \\ & \text { 1AE11.05 } \end{aligned}$	H, C, O, S	Yes
176	572	INV Peg Count	Same as EGO 004 but applies to customized I/O channel \#95	Peg	1AE10.11 1AE11.05	H, C, Q, S	Yes
176	573	BLK Peg Count	Same as EGO 005 but applies to customized I/O channel \#95	Peg	1AE10.11 TAE 11.05	H, C, Q, S	Yes
176	574	Not Assigned	Unassigned traffic measurement for customized I/O channel \#95	N/A	1AE10.11 1AE11.05	H, C, Q, S	No
176	575	Not Assigned	Unassigned traffic measurement for customized I/O channel \#95	N/A	1AE10.11 1AE11.05	H, C, Q, S	No

Table C. Trafific Measurements (Contd)

TMC	EGO		Dascripfion			Output Schedule	Avallable to Customer
TMC	EGO	Name	Descripition	Type	Avaliabinty		

Privacy Accens Codes

178	000	Name/Number Delivery Allowed (NNDA)	Counts the number of times the NNDA access code is successtully dialed. However, this count is pegged only once when NNDA is dialed more than once curing a single dialing sequence.	Peg	1AE11.07	H, C, Q, S
178	001	Name/Number Private (NNP)	Counts the number of times the NNP access code is successfully dialed. However, this count is pegged only once when NNP is dialed more than once curing a single dialing sequence.	Peg	1AE11.07	H, C, O, S
178	002	Name Private (NAP) Toggle	Counts the number of times the NAP access code is successfully dialed. However, this count is pegged only once when NAP is dialed more than once during a single dialing sequence.	Peg	1AE11.07	H, C, Q, S
178	003-005	Unassigned.	Unassigned.			

Table C. Traffic Measurements (Contd)

						Ouput Schedule	Avallable to Customer
TMC	EGO	Name	Description	Type	Avaliabillty	Schodule	Customer

Remota Aceess Service

157	0	RAS Attempts	Counts the total number of attempts to dial RAS (remote access service) SAN (special access number).	Peg	1AE10.02	H, C, Q, S
157	1	RAS Completed Call	Counts the number of completed RAS calls (that is, the number of times RAS passes control of a call to another feature).	Peg	1AE10.02	H, C, Q, S
157	2	RAS Disconnect Calls	Counts the number of times RAS disconnects a call because a customer has made an error.	Peg	1AE10.02	H, C, Q, S
157	3	RASR	Counts the number of times customers attempt to connect to RAS but could not because of RASR (remote access service registers) being unavallable.	Overflow	1AE10.02	H, C, Q, S
157	4	RASR	Counts the number of attempts to seize an RASR for the RAS feature.	Peg	1AE10.02	H, C, Q, S
157	5	RASR	Measures the usage of PASR in providing the RAS. This count is provided on 10-8econd scan basis.	Usage	1AE10.02	H, C, Q, S

Remote Access to Call Forwarding

| 5 | 409 | RACF Access
 Attempts |
| :--- | :--- | :--- | | Counts the number of RACF (remote |
| :--- |
| access call forwarding) activation |
| attempts. |

$|$| Peg | 1AE10.02 | H, C, Q, S |
| :--- | :--- | :--- |
| | | |

Remote Switching System-Standard

5	455	RSS Call Register	Counts the number of times an RSS call register is seized.	Peg	All Active	H, C, Q, S
5	457	RSS Call Register	Counts the number of times a request for an RSS call register cannot be filled due to none being available.	Overflow	All Active	H, C, Q, S
5	459	RSS Call Register	Measures RSS call register usage. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, Q, S
5	580	Remote Order Butfer Queue	Counts the number of times a request for a remote order buffer is put on queue due to nonavailability.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	$\begin{aligned} & \hline \text { Output } \\ & \text { Schedule } \end{aligned}$	Aualleblie to Customer
Remote Switching Syatem - Standard (Conto)							
5	581	Remote Order Buffer	Measures remote order buffer usage. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, Q, S	
Remote Swltching System - Variable							
112	$\left\lvert\, \begin{aligned} & 352+\text { RSS } \mid E \\ & \text { No. } \end{aligned}\right.$	Blocked Dial Tone	Counts the number of times the host ESS switch dropped an origination due to blockage in the ESS network, on the channels, or in the ESS switch network.	Peg	All Active	H, C, Q, S	
112	$\begin{aligned} & 384+\text { RSS } \\ & \text { No. } \end{aligned}$	Terminating Call Failure	Counts the number of times a call fails to terminate due to problems with the called party's line or with a universal service circult.	Peg	All Active	H, C, Q, S	
112	$\begin{aligned} & 416+\text { RSS } \\ & \text { No. } \end{aligned}$	No USC/Bus Call Failure	Counts the number of times a call falls due to no universal service circuit or metallic bus.	Peg	All Active	H, C, Q, S	
112	$\begin{array}{\|l\|} 448+R S S \\ \text { No. } \end{array}$	No Channel Call Failure	Counts the number of times a terminating call failed due to no channel.	Peg	All Active	H, C, Q, S	
112	$\begin{array}{\|l\|} 480+R S S \\ \text { No. } \end{array}$	Reswitch Up Attempts	Counts the number of times an attempt was made to reswitch an intra-RSS call from an ESS network connection to an ESS swilth network connection.	Peg	All Active	H, C, Q, S	
112	$\left\lvert\, \begin{aligned} & 512+\text { RSS } \\ & \text { No. } \end{aligned}\right.$	Reswitch Up Failure	Counts the number of times an attempt to complete a reswitch up falled.	Peg	All Active	H, C, Q, S	
112	$\mid 544+\text { RSS } \mid$ No.	Intra-RSS Network Matching Loss	Counts the number of fallures to find a path in the RSS network between two RSS lines.	Peg	All Active	H, C, Q, S	
122	$\left\lvert\, \begin{aligned} & 576+\text { RSS } \\ & \text { No. } \end{aligned}\right.$	First Failure to Match	Counts the first failures to find a path through the RSS network for terminating calls.	Peg	All Active	H, C, Q, S	
122	$\begin{aligned} & 608+\text { RSS } \\ & \text { No. } \end{aligned}$	Final Failure to Match	Counts the final fallures to find a path through the RSS network for terminating calls to the RSS.	Peg	All Active	H, C, Q, S	

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	tion	pe	Aval	Output Schedule	Avallable to Customer

Remote Switching System-Variable (Contd)						
122	$640+\text { RSS }$ No.	Call Failure Due to RSS	This count is a total of RSS office counts 384, 416, 448, and 608.	Peg	All Active	H, C, O, S
122	$\begin{aligned} & 832+\text { RSS } \\ & \text { No. } \end{aligned}$	Channel Interface	Count taken at 100 -8econd intervals of each channel found busy.	Usage	All Active	H, C, Q, S
122	$\begin{aligned} & 864+\text { RSS } \\ & \text { No. } \end{aligned}$	Channel Interface	Counts the number of attempts to seize a channe.	Peg	All Active	H, C, Q, S
122	$\begin{aligned} & 896+\text { RSS } \\ & \text { No. } \end{aligned}$	Channel Interface	Counts the number of times all channels were busy when an attempt to seize a channel was made.	Overflow	All Active	H, C, O, S
122	$\begin{aligned} & 928+\text { RSS } \\ & \text { No. } \end{aligned}$	Channel Interface Maintenance	Count taken at 100-second intervals of each channel found to be out of service busy	Usage	All Active	H, C, Q, S
122	$\begin{aligned} & 992+\text { RSS } \\ & \text { No. } \end{aligned}$	Intra-ASS	This division of revenue count will be calculated internally by subtracting channel usage from total junctor usage. Count taken at 100-second intervals.	Usage	All Active	H, C, Q, S
112	$\begin{aligned} & 1120+\text { RSS } \\ & \text { No. } \end{aligned}$	Total Originating Calls	Counts the number of times an origination is processed by the remote terminal.	Peg	All Active	H, C, Q, S
112	$\begin{aligned} & 1152+\text { RSS } \\ & \text { No. } \end{aligned}$	Total Dial Tone Delay Time	This count is a cumulative total in hundreds of milliseconds of the dial tone time delay for all calls originating at an RSS.	Peg	All Active	H, C, Q, S
112	$1184 \text { + RSS }$ No.	Total Callis With Dial Tone Delay	Total calls with dial tone delays greater than 3 seconds.	Peg	All Active	H, C, Q, S
112	$1216+\text { PSS }$ No.	Total Interrupts of Duration	Total interrupts of duration greater than 5 seconds.	Peg	All Active	H, C, Q, S
112	$\begin{aligned} & 1248+\text { RSS } \\ & \text { No. } \end{aligned}$	Total C to C Cycles	Counts each time the remote terminal completes a C to C cycle.	Peg	All Active	H, C, Q, s
112	$\begin{aligned} & 1280+\text { RSS } \\ & \text { No. } \end{aligned}$	Total Base Level Slips	Counts each time the remote terminal slips a base level cycle.	Peg	All Active	H, C, Q, S
112	$\begin{array}{\|l} 1312+\text { RSS } \\ \text { No. } \end{array}$	Total Bytes Received by Remote Terminal	Counts the total bytes (a grouping of bytes) received by the remote terminal.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallable to Customer

Remote Switching System-Variable (Contd)
\(112\left|\begin{array}{l|l}1344+RSS

No.\end{array}\right|\)| Total Bytes |
| :--- |
| Transmitted by |
| Remote Terminal |

Counts the total bytes transmitted by the remote terminal.

| Peg \mid All Active $|$| $\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}$ |
| :--- |

Residential Data Facillity Pooling

153 \begin{tabular}{l|l|l|l|l|l|}

\hline 000 \& | RDFP Data-Only |
| :--- |
| Calls | \& | Counts the total number of times |
| :--- |
| RDFP data-only calls are |
| successtully completed. |
| Counts the total number of times |
| RDFP data calls are successfully |
| added onto voice calls. | \& Peg

\end{tabular}

Screen Llat Edtting

149	000	Screen List Edit Buffer Screen List Edit Buffer
149	002	Screen List Edit Buffer
149	003	Screen List Editor Call Register

Counts the number of requests to allocate a screen list edil buffer. Counts the number of requests to allocate a screen list edit buffer that failed.	Oeverflow	1AE9	H, C, Q, S
Measures usage on screen list edit buffers used by SLE. This count is provided on a 100-second scan basis.	Usage	H, C, Q, S	
Measures usage on the screen list editor call register used by SLE. This count is provided on a 100- second scan basis.	Usage	1AE9	H, C, Q, S

Selective Call Acceptance/Computer Access Restriction

174	000	[SCA Access	Counts the number of times the SCA activation and deactivation codes are dialed.	Peg	14E11.03	H,C,Q,S	Yes
174	001	SCA Match	Counts the number of successful matches to active SCA screening lists.	Peg	1AE11.03	H,C,Q,S	Yes
174	002	SCA Announcement NAT	Counts the number of calls which receive a rejection nonacceptance treatment from SCA.	Peg	1AE11.03	H,C,Q,S	Yes

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillty	Output Schedule	Avaltable to Customer
Selective Call Restriction/Computer Access Restriction (Contd)							
174	003	[SCA Forwarding NAT	Counts the number of calls which receive forwarding nonacceptance treatment from SCA.	Peg	1AE11.03	H,C,Q,S	Yes
174	004	CAR Access	Counts the number of times the CAR activation and deactivation codes are dialed.	Peg	1AE11.03	H,C,Q,S	Yes
174	005	CAR Match	Counts the number of successful matches to active CAR screening lists.	Peg	1AE11.03	H,C,Q,S	Yes
174	006	CAR Announcement NAT	Counts the number of calls which receive a rejection nonacceptance treatment from CAR.	Peg	TAE11.03	H, C, Q, S	Yes
174	007	CAR Forwarding NAT	Counts the number of calls which recelve forwarding nonacceptance treatment from CAR.	Peg	1AE11.03	H,C,Q,S	Yes

Separation of Automatic Recall Whth Two Line History Blocks

168	0	\|AC Request Block	Counts the number of times that an AC (automatic callback) customer failed to get a request block.	Overflow	1AE10.01	H, C, Q, S
168	1	AC Request Blocks	Counts the number of requests to allocate an $A C$ request block.	Peg	1AE10.01	H, C, Q, S
168	2	AC Deactivation	Counts the number of times a customer dials the AC deactivation code.	Peg	1AE10.01	H, C, Q, S
168	3	AR Deactivation	Counts the number of times a customer dials the AR (automatic recall) deactivation code.	Peg	1AE10.01	H, C, Q, S
168	4	AC Request Block	Measures the usage of $A C$ request blocks used by AC. Count provided on a 100 -second scan basis.	Usage	1AE10.01	H, C, Q, S

Service and Miscellaneous Circults-Varlable

0	TG \#	Customer Dial Pulse Receiver Group	Measures customer DP (dial pulse) received usage (see TMC1, customer DP receiver PEG count) Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC			Description			Output Schedule	Avaliable to Customer
TMaC	EGO	name	Descripuion	Tуре	Availability		

Service and Mascelianeous Clrcults-Varlable (Conkd)

0	\|TG \#	Customer TouchTone Service Peceiver (Overflow Group)	Measures customer touch-tone service receiver overflow group usage. Count taken at 100-second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG *	Customer TouchTone Service Receiver	Measures customer touch-tone service receiver group usage. Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Receivers	Measures receiver group usage. Count taken at 100-second intervals unless set to fast scan.	Usage	Al Aotive	H, C, Q, S
0	TG \#	Transmitters	Measures transmitter group usage. Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Power (Regular) Ping-3 Phases	Measures power ringing circuit group usage. Count taken at 100 -second intervals uniess set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Audible Ring-3 Phases	Measures audible ringing circuit group usage. Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Special Ping	Measures special ring group usage. Count taken at 100-second intervals unless set to fast scan.	Usage	All Active	H, C, O, S
0	TG *	Tone Circuits	Measures tone circuit group usage. Count taken at 100-second intervals unless set to fast scan.	Usage	Al Active	H, C, Q, S
0	TG \#	Coin Control	Measures coin control circuit group usage. Count taken at 100 -sacond intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Local Overtime Collect	Measures local overtime collect circuit group usage. Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Coin Zone (Initial and Overtime)	Measures coin zone circuit group usage. Count taken at 100-second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillty	Output Schedule	Avallable to Customer

Service and Miscellaneous Circults-Variable (Contd)

0	TG \#	Announcement	Measures announcement circult usage. Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG \#	Intercept	Measures intercept circuit group usage. Count taken at 100 -second intervals uniess set to fast scan.	Usage	All Active	H, C, O, S
0	TG *	Multiport Conference Circuit	Measures multiport conference circuit group usage. Count taken at 100 -second intervals unless set to fast scan.	Usage	All Active	H, C, Q, S
0	TG *	Attendant Loop	Measures attendant loop circult group usage. Count taken at 100 -second intervals uniess set to fast scan.	Usage	All Active	H, C, O, S
1	TG \#	Customer Dial Pulse Receiver	Scores whenever an attempt to seize a customer dial pulse receiver is successful, or route advances to the customer touch-tone service receiver (DP overflow) group, or finds an all circuit busy condition in the primary and DP ovarflow group resulting in a customer dial pulse receiver queue entry.	Peg	All Active	H, C, Q, S
1	TG \#	Customer TouchTone Service Receiver (Overfiow Group)	Measures all attempts to seize an idle circuit in this group whether the attempt is successful or results in a quaue entry.	Pag	All Active	H, C, Q, S
1	TG \#	Customer TouchTone Service Receiver	Measures all attempts to seize an idte circuit in this group whether the attempt is successful or results in customer touch-tone service recelver quaue entry.	Peg	Al Active	H, C, Q, S
1	TG \#	Receivers	Measures all attempts to seize a circult in a spacific receiver group whether the attempt is successtul or results in a receiver queue entry.	Peg	All Active	H, C, Q, s

Table C. Traffic Measurements (Contd)

Service and Miscellaneous Clrcuits - Varlable (Contd)

1	TG \#\|	Transmitters	Scores on successful seizures of a transmitter in a specific group or on a last trial tailure resulting in overtiow.	Peg	All Active	H, C, O, S
1	TG \#	Power (Regular) Ring-3 Phases	Both power ring and audible ring are assigned in three groups, each to achieve immediate ringing. Each group of power ring and audible ring is designed so that an attempt, unsuccessfur in seizing an idle circuit in the first group, will route advance to the next group of power ring or audible ring, respectively. This is repeated If all circuits in the second group are busy. If this last attempt fails, the request is loaded in a queue where it is held until an idle circuit (power or audible, respectively) becomes available in any group. Each seizure (requests loaded in a queue will eventually result in a seizure) of a circult in a specific group, say group one, and each route advance to another group, say group two, will score the peg count and overflow registers corresponding to the first group.	Peg	All Active	H, C, Q, S
1	TG \#	Audible Ring-3 Phases	See power (regular) ring-3 phases.	Peg	All Active	H, C, Q, S
1	TG \#	Special Ring	See power (regular) ring-3 phases.	Peg	All Active	H, C, Q, S
1	TG \#	Tone Circuits	There is no queuing for these circuits; thus, measurements are true peg counts	Peg	All Active	H, C, Q, S
1	TG \#	Coin Control	Scores whenever the system attempts to seize a coin control circuit.	Peg	All Active	H, C, Q, S
1	TG *	Local Overtime Collect	Counts each seizure or attempted seizure of an overtime collect clrcuit.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avaliability	Output Schedule	Avallable to Customer

Service and Miscellaneous Circuits-Variable (Contd)

1	TG \#	Coin Zone (Initial and Overtime)	Counts the attempts to seize a coin zone trunk.	Peg	All Active	H, C, O, S
1	TG \#	Announcement	There is no quauing for announcement circuits; thus, measurements are true peg counts.	Peg	All Active	H, C, Q, S
1	TG \#	Intercept	There is no queuing for intercept circuits; thus, measurements are true peg counts.	Peg	All Active	H, C, Q, S
1	TG \#	Multiport Conference Circuits	Counts the number of attempts to seize a multiport conference circuit.	Peg	All Active	H, C, Q, S
1	TG \#	Attendant Loop	Counts the number of times an attendant loop circult is seized.	Peg	All Active	H, C, O, S
2	TG \#	Customer Dial Pulse Receiver	Counts the number of failures to seize a customer dial pulse receiver.	Overflow	All Active	H, C, Q, S
2	TG \#	Customer TouchTone Service Fecelver (Overflow Group)	Counts the number of fallures to seize an idfe circuit in this group.	Overflow	All Active	H, C, Q, s
2	TG \#	Receivers	Counts the number of failures to seize an idte receiver.	Overtiow	All Active	H, C, Q, S
2	TG \#	Transmitters	Counts the number of failures to selze a transmitter.	Overflow	All Active	H, C, Q, S
2	TG \#	Power (Regular) Ring-3 Phases	Counts the number of failures to seize a circuit in this group	Overflow	All Active	H, C, Q, S
2	TG \#	Audible Ring-3 Phases	Counts the number of failures to seize a cirouit in this group.	Overilow	All Active	H, C, O, S
2	TG \#	Special Ring	Counts the number of failures to seize a circuit in this group.	Overflow	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{s}$
2	TG \#	Tone Circuits	Counts the number of fallures to selze a circult in this group.	Overifow	All Active	H, C, Q, S
2	TG \#	Coin Control	Counts the number of failures to seize a circuit in this group.	Overtlow	All Active	H, C, Q, S
2	TG \#	Local Overtime Collect	Counts the number of failures to seize a circuit in this group.	Overflow	All Active	H, C, O, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Description	Type	Avallabllity	Output Schedule	Avallable to Customer

Service and Miscellaneous Clicults-Varlable (Contd)

2	TG *	Coin Zone (Initial and Overtime)	Counts the number of fallures to seize a circult in this group.	Overflow	All Active	H, C, Q, S
2	TG \#	Announcerment	Counts the number of fallures to seize a circult in thls group.	Overtlow	All Active	H, C, Q, S
2	TG *	Intercept	Counts the number of failures to selze a circult in this group.	Overflow	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$
2	TG *	Multiport Conference Circuit	Counts the number of failures to seize a circuit in this group.	Overilow	All Active	H, C, Q, S
2	TG *	Attendant Loop	Counts the number of fallures to seize a circuit in this group.	Overilow	All Active	H, C, Q, S
6	TG \#	Customer Dial Pulse Receiver	This and the following 15 counts are usage measurements for maintenance usage only. See the corresponding TMC 0 usage measurements for descriptions. Count scanned only at 100 -second intervals.	Maintenance	All Active	H, C, Q, S
6	TG \#	Custamer Touch. Tone Service Receiver (Overtiow Group)	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Customer TouchTone Service Receiver	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Receivers	See above.	Maintenance	All Active	H, C, O, S
6	TG \#	Transmitters	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Power (Regular) Ring-3 Phases	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Audible Ring-3 Phases	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Special Ring	See above.	Maintenance	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deseniption	Type	Avallability	Output Schedule	Avalleble Customer

Service and Mlscellaneous Circults-Variable (Conta)

6	TG \#	Tone Circuits	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Coin Control	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Local Overtime Collect	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Coin Zone (Initial and Overtime)	See above.	Maintnance	All Active	H, C, Q, S
6	TG \#	Announcement	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Intercept	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Multiport Conference Circuit	See above.	Maintenance	All Active	H, C, Q, S
6	TG \#	Attendant loop	See above.	Maintenance	All Active	H, C, Q, S

Service Switehing Point

164	0	Total Originating NS Attempts	Counts the total number of attempts of NS (number service) calls reaching the SSP in the last 5 -minute interval. This is a summation of two base measurement counts (see TMC 164, EGO 16 and 17) and is calculated by a traffic program on a 5 -minute basis.	Peg	1AE10.01	H, C, Q, S
164	1	NS Blocked Calls	Counts the NS calls blocked by ACG (automatic call gapping) because of excessive calling to vacant codes or because of calling from nonpurchased NPAs (numbering plan areas).	Peg	1AE10.01	H, C, Q, S
164	2	NS Calls Blocked by SCP Overload Control	Counts the NS calls blocked by ACG because of SCP (service control point) overload controls.	Peg	1AE10.01	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Descriptlon	Type	Avallabillty	Output Schedule	Available to Customer

Service Switehing Point (Contd)

164	3	INS Calls Blocked for Mass Calling Controls	Counts the NS calls blocked by ACG due to the 10 -digit mass calling controls.	Peg	1AE10.01	H, C, Q, S
164	4	NS Calls Blocked Because of SMSInitiated Controls	Counts the NS calls blocked by ACG due to SMS (system management system)-initiated controls.	Peg	1AE10.01	H, C, Q, S
164	5	6-Digit Vacant Code	Counts the number of times an $A C G$ control camot be activated due to CLO (control list overflow) on the 6 -digit vacant code.	Overflow	1AE10.01	H, C, Q, S
164	6	10-Digit Vacant Code	Counts the number of times an ACG control cannot be activated due to CLO on the 10 -digit vacant code.	Overflow	1AE10.01	H, C, Q, S
164	7	Nonpurchased NPA	Counts the number of times an ACG control cannot be activated because of the CLO on the nonpurchased NPA.	Overflow	1AE10.01	H, C, O, S
164	8	SCP Overload	Counts the number of times an ACG control cannot be actwated because of the CLO on the SCP (service control point).	Overifow	1AE10.01	H, C, Q, S
164	9	Mass Calling	Counts the number of times an ACG control cannot be activated because of the CLO on the mass calling.	Overtlow	1AE10.01	H, C, Q, S
164	10	Manual Controls (SMS-Initiated)	Counts the number of times an ACG control could not be activated because of the CLO on the manual controls.	Overflow	1AE10.01	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallabillity	Output Schedule	Avallable to Customer

Service Switching Point (Contd)

164	11	Call Processing Failure Before Initial Query	Counts the number of times call processing routines fall after the query message is sent to SCP. This will happen when SSP is unable to get the NS data.	Peg	1AE10.01	H, C, O, S
164	12	Call Processing After Initial Query	Counts the number of times call processing routines fail after the query message is sent to SCP.	Peg	1AE10.01	H, C, O, S
164	13	Abandons Before Outpuising	Counts the total number of calling party abandons before SSP begins outpulsing. This count is pegged after all digits are in and when an on-hook state is received from the calling party.	Peg	IAE10.01	H, C, Q, S
164	14	Abandons After Outpulsing	Counts the total number of calling party abandons after SSP outpulses. This count is taken each time an on-hook state is received from the calling party, but before the calling party answers.	Peg	1AE10.01	H, C, Q, S
164	15	SSP NS Originating Calls	Counts the total number of NS calls originating at the SSP which reach the dialing complete stage.	Peg	1AE10.01	H, C, Q, S
164	16	SSP Incoming NS Calls	Counts the total number of NS incoming calls at the SSP which reach the "all digits in" stage.	Peg	1AE10.01	H, C, Q, S
164	17	28-Word AMA Registers	Counts the number of attempts to seize a 28 -word register for the purpose of recording a NS applications call on the APS (Attached Processor System) disk. This count is applicable with the AMASE (automatic message accounting standard entry) feature loaded.	Peg	1AE10.01	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Availability	Output Schedule	Avallable to Customer

Service Switching Point (Contd)

164	18	2e-Word AMA Registers	Counts the number of fallures to seize a. 28-word AMA NS register because of all registers being busy. This count is applicable with the AMASE feature loaded.	Overflow\|	1AE10.01	H, C, Q, S
164	19	28-Word AMA Registers	Measures the number of the 28 -word AMA NS registers in use taken on 100-second scan basis. This count is applicable with the AMASE feature loaded.	Usage	1AE10.01	H, C, Q, S

Service Switching Point-Number Servlce

165	0	Unassigned	For each NS (number service) 1-31- Counts the total number of NS calls which reach the dialing complete or "all digits in" stage.	Peg	1AE10.01	H, C, Q, S
165	$1-31$	NS Calls	For each NS (number service) 1-31- Counts the total number of NS calls which reach the dialing complete or	Peg	1AE10.01	H, C, Q, S
166	0	Unassigned	"all digits in" stage.			

Simplified Message Service Intarface

5	408	[SMSI Terminations	Counts the number of terminations to SMDI.	Peg	\| 1AE8A. 08	H, C, Q, S
176	000 -		See Per I/O Channel Traffic			
	575		Measurement Enhancement for MSS/SMSI.			

Simulated Facillties Groups-Varlable

| 27 | SFG \# | 1-Way SFG | Measures usage on 1-way SFG group.
 Count taken at 100-second intervals.
 Measures usage on 2-way SFG group.
 Count taken at 100-second intervals. | Usage | All Active | H, C, Q, S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Yes

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avellable to Customer

Simulated Facillties Groups-Varimble (Cond)

28	SFG \#	1-Way SFG	Counts the call attempts to a 1-way outgoing SFG.	Peg	All Active	H, C, Q, S
29	SFG *	2-Way SFG Outgoing	Counts the outgoing call attempts to a 2-way SFG.	Peg	All Active	H, C, Q, S
30	SFG \#	2-Way SFG incoming	Counts the incoming calls on a 2-way SFG.	Peg	All Active	H, C, Q, S
31	SFG \#	1-Way SFG	Counts the attempts that fail to seize an idle register in a given 1-way SFG.	Overflow	All Active	H, C, O, S
31	SFG \#	2-Way SFG	Counts the attempts that fail to seize an idele register in a given 2-way SFG.	Overflow	All Active	H, C, Q, S

Single Line Variety Package

161	0	\|SVP Intercom Code Dialing	Counts the number of times a customer successfully activates a home intercom call by dialing an access code.	Peg	$\begin{aligned} & \text { 1AE8.09 } \\ & \text { 1AE9.04 } \end{aligned}$	H, C, Q, S	Yes
161	1	SVP Selective Intercom Dialing	Counts the number of times a selective intercom call is successfully dialed.	Peg	$\begin{aligned} & \text { 1AE8. } 09 \\ & \text { 1AE9.04 } \end{aligned}$	H, C, Q, S	Yes
161	2	SVP Selective Call Transfer	Counts the number of times a selective call transfer access code is successfully dialed.	Peg	$\begin{aligned} & \text { TAE8.09 } \\ & \text { 1AE9.04 } \end{aligned}$	H, C, Q, S	Yes
161	3	SVP Dialable Call Hold	Counts the number of times a dialable call hold access code is successfully dialed.	Peg	$\begin{aligned} & \text { 1AE8.09 } \\ & \text { 1AE9.04 } \end{aligned}$	H, C, Q, S	Yes

Supervisory Control Registers - Standard

| 587 | Supervisory Control
 Register | This is a count of the number of attempts
 to seize a supervisory control register for
 100 and 300 millisecond timings when
 come-again request has been made. | Peg |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| All Active | H, C, Q, S |
| :--- | :--- |

Table C. Trafilic Measurements (Contd)

Supervisory Control Registers-Standard (Contd)

5	588	Supervisory Control Register	This counts the number of fallures to seize a supervisory control register for 100-and 300 -millisecond timings when come-again request has been made.	Overflow	All Active	H, C, Q, S	Yes
5	590	Supervisory Control Register	Count taken at 10 -second intervats of the number of supenvisory control registers being used for 100 -and 300 -millisecond timings when come-again request has been made.	Usage (AFS)	All Active	H, C, O, S	Yes

Tandem Tie Trunk Registers of IIXX - Standard

5	389	\|11XX Senior Register	Counts the number of 11 XX senior register seizures.	Peg	All Active	H, C, Q, S	Yes
5	390	11XX Senior Register	Counts the number of times an attempt to seize a IIXX senior register falled due to none being availabie.	Overflow	All Active	H, C, Q, S	Yes
5	392	I11XX Junior Register	Measures bylink dialing junior register usage. Count taken at 10 -second intervals.	Usage (AFS)	All Active	H, C, Q, S	Yes
5	460	11XX Junior Register	Counts the number of times an attempt to seize an IIXX junier register failed due to none being available.	Overflow	All Active	H, C, Q, S	Yes

Three-Port Conference-Standard

111	10	Centrex-Call Waiting	Counts the number of times a 3-port conference circuit is seized to give a centrex line call waithg treatment.	Peg	All Active	H, C, Q, S
111	11	Centrex-Call Waiting	Measures usage on conference registers in use for call walting. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S
111	20	Centrex-Call Transfer Attendiant and Satellite Transfer	Counts seizures of a 3 -port conference circuit for attendant call transfer and satellite transfer.	Peg	Al Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avellability	Output Schedule	Avellable to Customer

Three-Port Conferance-Standard (Contd)

111	21	Centrex - Call Transier and Satellite Transfer	Measures usage on conference registers in use on attendant call transfer and satellite transfor. Count taken at 100 second intervals.	Usage	All Active	H, C, Q, S
111	30	Centrex - Call Transfer Indlvidual	Counts the number of 3-port conference circuit seizures for use on a centrex line using the Call Transfer Individual feature.	Peg	All Active	H, C, O, S
111	31	Centrex-Call Transfer Indlvidual	Measures usage on conference registers in use on call transfer individual. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S
111	40	Centrex-50A/50B CPS and Release Link Call Transfer	Counts the number of 3-port conference circuit seizures for use on a 50A/50B console attendant or release link using call transter individual.	Pag	All Active	H, C, Q, S
111	41	Centrex -50A/50B and Release Link Call Transter	Measures usage on conference registers in use on 50A/50B CPS and release link call transter. Count taken at 100-second intervals.	Usage	All Active	H, C, O, S
111	50	Centrex-Call Hold	Counts the number of seizures of a 3 port conference circuit for use on a centrex line that dials the call hold access code.	Peg	All Active	H, C, Q, S
111	51	Centrex - Call Hold	Measures usage on conference registers in use on call hold. Count taken at 100second intervals.	Usage	All Active	H, C, Q, S
111	60	Centrex Conference Calling Assist	Counts the number of seizures of a 3port conference circult for use on conference calling assistance.	Peg	All Active	H, C, Q, S
111	61	Centrex- Conference Calling Assist	Measures usage on conference registers in use on conference calling assistance. Count taken at 100 - second intervals.	Usage	All Active	H, C, Q, S
111	70	Centrex-Directed Call Pickup Barge-In	Counts the number of 3 -port conference circuit seizures for use on directed call pickup barge-in.	Peg	All Active	H, C, Q, s

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Deacription	Type	Avallabllity	Output Schedule	Avallable to Customer

Three-Port Conference-Standard (Contal)

111	71	Centrex - Directed Call Pickup Barge-In
111	130	POTS-Coin Overtime Announcement
111	131	POTS-Coin Overtime Announcement
111	140	POTS 3-Way Calling
111	141	POTS 3-Way Caling
111	150	POTS-Call Waiting
111	151	POTS-Call Waiting
111	170	Selected CentrexCall Waiting

Measures usage on conference registers in use on directed call pickup barge-in. Count taken at 100 -second intervals.
Counts the number of times a 3 -port conterence circuit is used on a POTS call to coin overtime announcement. Measures usage on conference registers in use on POTS calis to coin overtime announcement. Count taken at $100-$ second intervals.
Counts the number of times a 3-port conference circuit is used to provide the 3-way calling feature to a noncentrex line.
Measures usage on conference registers in use for providing 3 -way calling to a noncentrex line provided on a 100 second scan basis. Count taken at 100second intervals.
Counts the number of times a 3 -port conterence circuit is used to provide call waiting treatment to a noncentrex line. Measures usage on conference registers in use for providing call watting treatment to noncentrex lines. Count taken at 100 -second intervals.
Counts the number of times a 3 -port conference circuit is seized to give a centrex line call waiting treatment on selected centrex groups only.

Usage	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S
Usage	All Active	$H_{1}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$
Peg	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Peg	All Active	H, C, O, S
Usage	All Active	$\mathrm{H}, \mathrm{C}, \mathrm{Q}, \mathrm{S}$
Peg	All Active	H, C, Q, S

Table C. Trafific Measurements (Contd)

TMC EGO	Name	Description	Type	Avaliabillty	Output Schedule	Avallable to Customer

Three-Port Conference-Standard (Contd)

111	171	Selected CentrexCall Waiting	Measures usage on conference reglaters in use for Call Waiting on selected centrex groups only. Count taken at 100-second intervals.	Usage	All Active	H, C, Q, S
111	180	Selected CentrexCall Transter Attendant and Satellite Transfer	Counts the number of times a 3-port conference circuit is seized for attendant call transfer and satellite transfer on selected centrex groups only.	Peg	All Active	H, C, Q, S
111	181	Selected CentrexCall Transfer Attendant and Satellite Transfer	Measures usage on conference registers in use on attendant call transfer and satellite transfer on selected centrex groups only. Count taken at 100 -second intervals.	Usage	Al Active	H, C, Q, S
111	190	Selected CentrexCall Transter Individual	Counts the number of times a 3 -port conference circuit is seized for use on a centrex line using the call transfer individual feature on setected centrex groups only.	Peg	All Active	H, C, Q, S
111	191	Selected CentrexCall Transfer Individual	Measures usage on conference registers in use on call transfer individual on selected centrex groups only. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S
111	200	Selected Centrex50A/50B CPS and Release Link Call Transfer	Counts the number of times a 3 -port conference circult is selzed for use on a 50A/50B console attendant or release link using call transfer individual on selected centrex groups only.	Peg	All Active	H, C, Q, S
111	201	Selected Centrex 50A/50B CPS and Release LInk Call Transfer	Measures usage on conference registers in use on 50A/50B and release link call transfer on selected centrex groups only. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC EGO	Name	Deacription	Type	Avallabillty	Output Schedule	Avaliable to Customer

Three-Port Conference-Standard (Contal)

111	210	Selected CentrexCall Hoid
111	211	Selected CentrexCall Hold
111	220	Selected Centrex Conference Calling Assist
111	221	Selected CentrexConference Calling Assist
111	230	Selected CentrexDirected Call Pickup Barge-In
111	231	Selected CentrexDirected Call Pickup Barge-In

Counts the number of times a 3-port conference clrcuit is seized for use on a centrex line that dials the call hold access code on selected centrex groups only.
Measures usage on conference registers in use on call hold on selected centrex groups only. Count taken at 100 -second intervals.
Counts the number of times a 3-port conference circuit is selzed for use on conference calling assistance (setting up a conterence call) on selected centrex groups only.
Measures usage on conference registers in use on conterence calling assistance on selected centrex groups only. Count taken at 100 second intervals.
Counts the number of times a 3-port conference circuit is seized for use on directed call pickup barge-in on selected centrex groups only.
Measures usage on conference registers in use on directed call pickup barge-in on selected centrex groups only. Count taken at 100 -second intervals.

Peg	All Active	H, C, O, S
Usage	All Active	H, C, O, S
Peg	All Active	H, C, O, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S

Tone and Announcement Timo-Out-Standard

5	427	Tone and Announcernent Timing Attempts
5	428	Tone/Announcement Timing

Counts the number of attempts to place a call that is connected to a tone or announcement circuit on TATO timing.
Counts the number of times an attempt to place a call connected to a tone or announcement on TATO timing is denied because the spacial TATO timing list is full.

Peg	All Active	H, C, Q, S
Overflow		

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Avallabie to Customer

Traftic Line Groups-Varisble

57	LNGRP \#	Traffic Line Group	Counts the terminating calls for all lines in a traffic line group. Counts the attempts that fail to complete to a traffic line group due to a line busy or make busy key.	Overflow	All Active	H, C, Q, S	Yes

Trunk Groups - Variable

0	TG \#	\|intraoffice	Measures usage on intraotfice trunks. Count taken at $100-$ second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	1-Way Outgoing	Measures usage on 1-way outgoing trunks. Count taken at 100-second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	1-Way Incoming	Measures usage on 1-way meoming trunks. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	2-Way (Incoming and Outgoing)	Measures usage on 2-way trunks. Count taken at 100-second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	1-Way Outgoing Tie	Measures usage on 1 -way outgoing tie trunks. Count taken at $100-$ second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	1-Way Incoming Tie	Measures usage on 1 -way incoming tie trunks Count taken at 100second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	2-Way (Incoming and Outgoing) Tie	Measures usage on 2-way tie trunks. Count taken at 100 -second Intervals	Usage	All Active	H, C, Q, S
0	TG \#	Outgoing FX	Measures usage on outgoing FX trunks. Count taken at 100-second intervals.	Usage	All Active	H, C, Q, S
0	TG \#	Incoming FX	Measures usage on incoming FX trunks. Count taken at 100 -second intervals.	Usage	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallability	Output Schedule	Aveliable to Customer

Trunk Groups-Variable (Contd)

0	TG \#	Outgoing Through Switched
0	TG \#	Incoming Through Switched
0	TG \#	2-Way (Incoming and Outgoing) $F X$
0	TG \#	Trunk Group - Other
1	TG \#	intraoffice
1	TG \#	1-Way Outgoing
1	TG \#	1-Way Incoming
1	TG \#	1-Way Outgoing Tie
1	TG *	1-Way Incoming Tie
1	TG \#	1-Way Outgoing FX
1	TG *	1-Way incoming FX
1	TG \#	Trunk Group- Other
2	TG \#	Intraoffice
2	TG \#	1-Way Outgoing

Measures usage on outgoing through
switched trunks. Count taken at 100-
second intervals.
Measures usage on incoming through
switched trunks. Count taken at 100-
second intervals.
Measures usage on 2-way FX trunks.
Count taken at 100-second intervals.
Measures usage on trunk groups other
than those specifically listed for usage
measurements under "runk groups"
heading. Count taken at 100-second
intervals.
Counts number of seizures of intraoffice
trunks.
Counts the number of selzures of 1-way
outgoing trunks.
Counts the number of selzures of 1-way
incoming trunks.
Counts the number of seizures of 1-way
outgoing tie trunks.
Counts the number of seizures of 1-way
incoming tie trunks.
Counts the number of seizures of 1-way
outgoing FX trunks.
Counts the number of selzures of 1-way
incoming FX trunks.
Counts the number of seizures of trunk
groups other than those specifically
listed for peg counts under 'trunk
groups' heading.
Counts the number of failures to seize an
intraoffice trunk.
Counts the number of failures to seize a
1 1-way outgoing trunk.

Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Usage	All Active	H, C, Q, S
Peg	All Active	H, C, O, S
Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, S
Peg	All Active	H, C, Q, s
Peg	All Active	H, C, Q, S
Overtiow	All Active	H, C, Q, S
Overflow	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Name	Description	Type	Avalicbillity	Output Schedule	Avellable to Customer

Trunk Groups-Variable (Contd)

2	TG *	Outgoing on 2-Way	Counts the number of failures to seize a 2-way trunk for an outgoing call.	Overilow	All Active	H, C, Q, S
2	TG *	1-Way Outgoing Tle	Counts the number of fallures to seize a 1-way outgoing tie trunk.	Overilow	All Active	H, C, Q, S
2	TG \%	Outgoing on 2-Way Tle	Counts the number of tallures to seize a 2-way tie trunk for an outgoing call.	Overfiow	Ah Active	H, C, O, S
2	TG \#	Outgoing FX	Counts the number of failures to seize an outgoing FX trunk	Overtlow	All Active	H, C, Q, S
2	TG \#	Outgoing on 2-Way FX	Counts the number of failures to selze a 2-way FX trunk for an outgoing call.	Overflow	All Active	H, C, Q, S
2	TG *	Trunk Group - Other	Counts the number of failures to seize a trunk other than those specifically listed for overflow counts under the "Trunk Groups" heading.	Overflow	All Active	H, C, Q, S
3	TG \#	Incoming on 2-Way	Counts the number of times a 2-way trunk was seized for an incoming call.	Peg	All Active	H, C, Q, S
3	TG \#	Incoming on 2-Way Tie	Counts the number of times a 2-way tie trunk was seized for an incoming call.	Peg	All Active	H, C, Q, S
3	TG \#	Incoming on 2-Way FX	Counts the number of times a 2-way FX trunk was seized for an incoming call.	Peg	All Active	H, C, Q, S
3	TG \#	Trunk Group - Other	Counts the number of times a 2-way trunk other than those specifically listed under TMC 3 was seized for an incoming call.	Peg	All Active	H, C, Q, S
4	TG *	Outgoing on 2-Way	Counts the number of times a 2-way trunk was seized for an outgoing call.	Peg	All Active	H, C, Q, S

Table C. Traffic Measurements (Contd)

TMC	EGO	Hame	Description	Type	Avallability	Output Schedule	Avallable to Customer

Trunk Groups - Variable (Contd)

4	TG \#	Outgoing on 2-Way Tis	Counts the number of times a 2 -way tie trunk was seized for an outgoing call.	Peg	All Active	S
4	TG \#	Outgoing on 2-Way FX	Counts the number of times a 2 -way FX trunk was seized for an outgoing call.	Peg	All Active	Q, s
4	TG \#	Trunk Group - Other	Counts the number of times a 2-way trunk other than those specifically listed under THC 4 was seized for an outgoing call.	Peg	All Active	Q, S
6	TG \#	Trunk Group- Other	Measures trunk maintenance usage.	Maintenance	All Active	Q, S
23	TG \#	Outgoing Through Switched	Counts the number of times an out-going through switched trunk was seized.	Peg	All Active	
23	TG *	Incoming Through Switched	Counts the number of times an incoming through switched trunk was seized.	Peg	All Active	H, C, O, S

Usage Sensitive Three-Way Calling

111	080	USTWC Peg Count	Counts the number of times 3 -port conference circuit is selzed for use on USTWC.	Peg	1AE8A	H, C, Q, S
111	081	USTWC Usage Count	Measures usage on 3-port conference circuit in use for USTWC. Provided on a 100 -second scan basis.	Usage	1AE8A	H, C, Q, S
140	000	USTWC Activation	Counts the number of times USTWC is activated by dialing access code 71; must also dial second party and get answer.	Peg	1AEBA	H, C, Q, S
140	001	USTWC 3-Way Calls Made	Counts the number of times a cus-tomer activates USTWC, flashes, adds a third party, and the third party answers.	Peg	1AEBA	H, C, Q, s

Table C. Trafific Measurements (Contd)

TMC	EGO	Name	Description	Type	Avallablility	Output Schedule	Avaliable to Customer

Voico/Data Protection

5	256	Total VDPSC Successful Actwations	Counts the total number of times the 1A ESS switch activates VDPSC in response to a line request to activate the VDP feature.	Peg	1AE9	H, C, Q, S
5	257	Total VDPSC Successful Deactivations	Counts the total number of times the 1A ESS switch deactivates VDPSC in response to a line request to deactivate the VDP feature.	Peg	1AES	H, C, Q, S
5	258	Total VDPSC	Counts the total number of times the 1A ESS switch fails to activate VDPSC in response to an activation request by a line, due to a lack of system resources.	Peg	1AE9	H, C, Q, S
144	CTX *	Centrex VDPSC Successful Activations	Counts the number of times the 1A ESS switch activates the VDPSC in response to a centrex line request to activate the VDP feature.	Peg	1AE9	H, C, Q, S
145	CTX \#	Centrex VDPSC Successful Deactivations	Counts the number of times the 1A ESS switch deactivates VDPSC in response to a centrex line request to deactivate the VDP teature.	Peg	1AE9	H, C, Q, S

FEEDBACK FORM

Document Title: $\quad 1 \mathrm{AESS}{ }^{\text {TM }}$ Switch Traffic Measurements
Feature Document

Document Number: 231-390-207
Issue Number: 12
Issue Date: January 1999
Lucent Technologies welcomes your feedback on this document. When commenting on specific thems within this document, please include the section/chapter, paragraph, and page numbers in question. If you choose to complete the "Submitted by" information at the bottom of this form, a Lucent Technologies representative will respond to your comments.

Comments: \qquad

Submitted by (optional):
Name: \qquad
Company/Organizations: \qquad
Address: \qquad
Telephone Number: \qquad
Date: \qquad
Return to:
Document Preparation Group
c/o M. W. Auter Lucent Technologies inc.
Network Software Center
2600 Warrenville Road
Lisle, IL 60532
or FAX 630-224-7180

