BELL SYSTEM PRACTICES
AT&TCo SPCS

SECTION 254-280-310

Issue 5, December

FAULT RECOVERY PROGRAMS
SOFTWARE DESCRIPTION
1A PROCESSOR

CONTENTS

1. GENERAL

2. GENERAL APPROACH TO 1A PROCESSOR
FAULT RECOVERY

3. CENTRAL

CONTROL FAULT RECOVERY

PROGRAM —CCFR

INTRODUCTION

CENTRAL CONTROL ORGANIZATION

CCFR—FUNCTIONS AND STRATEGY

A.

C.

D.

General

C-Level Interrupt

B-Level Interrupts
External Program Request

Deferred Fault Recovery

CCFR—PROGRAM STRUCTURE

A.

C.

General

Test Routines

Service Routines

CALL STORE FAULT RECOVERY PROGRAM —
CSFR

INTRODUCTION

CALL STORE ORGANIZATION AND FEATURES

PAGE

5

10

10

10

12

17

19

19

21

2]

21

26

29

29

30

NOTICE

CONTENTS

CSFR—FUNCTIONS AND STRATEGY

A. Generdl

B. Interrupt Recovery

C. Bootstrap Functions

D. Noninterrupt Level Functions

CSFR—PROGRAM STRUCTURE

A. General

B. Full Access Test

C. Call Store Remove—Replacement
Ready ‘

D. Find Duplicated Call Store to Serve An-
other Memory Block

E. Qualify Suspect Store for Update

F. Complete Recovery After an Update
Error

G. Update a Call Store by Copying lts As-
signed Block e e e e e e

H. Call Store Community Status Update

1. Call Store Restore

J. Call Store Removal Routine

K. Configuration Change Routine

PROGRAM STORE FAULT RECOVERY

PROGRAM—PSFR

Not for use or disclosure outside the
Bell System except under written agreement

Printed in U.S.A.

1982

PAGE

36

36

37

39

40

40

40

42

43

43

43

44

a4

44

44

45

45

Page 1

SECTION 254-280-310

CONTENTS
INTRODUCTION

PROGRAM STORE ORGANIZATION AND FEA-
TURES

PSFR—FUNCTIONS AND STRATEGY
A. General

8. Interrupt Recovery

C. Bootstrap Functions

D. Noninterrupt Level Functions
PSFR—PROGRAM STRUCTURE

A. General

B. Full Access Test

C. Program Store Status Update

D. Program Store Configuration Change
Routine .

E. Program Store Removal Routine
F. Program Store Restoral Routine

1A PROCESSOR AUXILIARY UNIT FAULT RE-
COVERY PROGRAM —AUFR

INTRODUCTION

AUB SYSTEM ORGANIZATION
AUFR—FUNCTIONS AND STRATEGY
A. General

B. Basic Program Strategy
AUFR—PROGRAM STRUCTURE

A. General

B. Fault Recovery

C. Service Routines

Page 2

PAGE

45

45

51

51

52

54

35

56

56

57

58

58

58

59

59

59

59

60

60

63

63

63

65

71

7.

CONTENTS

FILE STORE FAULT RECOVERY PROGRAM—
FSFR

INTRODUCTION

FILE STORE ORGANIZATION
FSFR—FUNCTIONS AND STRATEGY
A. General

8. Basic Program Strategy
FSFR—PROGRAM STRUCTURE

A. General

8. Favlt Recovery

C. Service Routines

D. Configuration Routines

ATTACHED PROCESSOR SYSTEM SINGLE
STRATEGY FAULT RECOVERY —SSFR

INTRODUCTION

APS ORGANIZATION
SSFR-—FUNCTIONS AND STRATEGY
A. Interrupt and Interject Control
B. Base Level Maintenance Control
C. Common Recovery Control

D. Timing Administration
SSFR—PROGRAM STRUCTURE

A. Interrupt and Interject Control
B. Base Level Maintenance Control
C. Common Recovery Control

D. Timing Admini;trution

E. Duplex File Store Failure

PAGE

73

73

74

75

75

75

75

75

76

78

79

80

80

81

81

81

82

82

83

83

83

85

86

92

93

%

e

CONTENTS

9. DATA UNIT FAULT RECOVERY PROGRAM—

10.

DUFR

INTRODUCTION

AUXILIARY DATA SYSTEM ORGANIZATION

DUFR—FUNCTIONS AND STRATEGY

A

General

Basic Program Strategy

DUFR—PROGRAM STRUCTURE

A

General

DUFR Pidents

1A PROCESSOR F-LEVEL FAULT RECOVERY
PROGRAM—PFLR

INTRODUCTION

MCC/I0 AND PERIPHERAL UNIT BUS CHAR-

ACTERISTICS

A. General

B. MCC Description

C. I0U/IOP Description
D.

Peripheral Unit Bus Configurations

FAULT TYPES/CLASSIFICATIONS

PFLR INTERFACES

A.

General

System Interrupt Recovery Program—

SIRE

Application Fault Recovery Programs

Central Control
Program—CCFR

Favlt

Recovery

PAGE

93

93

94

95

95

95

96

26

96

106

106

106

106

107

107

108

109

109

109

m

ISS 5, SECTION 254-280-310

CONTENTS

Maintenance Restart Program—MARP
input/Output Contral Program—IOCP
Maintenance Control Program—MACP

Diagnostic Control Program —DCON

Application 10 Administrative Programs

PFLR PIDENTS

PFLRPIIR DESCRIPTION

A

General

Peripheral Unit Filter Routine
MCC/10 F-Level Recovery Routines
Short-Term Error Analysis
Babbling Isolation Routine

Final Disposition Routine

Status Information and Recovery Re-
ports

Processor Peripheral Interface Loop-
Around Test Subroutine

F-Level Fault Recovery Summary

PFLRBLMH DESCRIPTION

A.

General

IOCP Entry

MACP Entry

Other PFLRBLMH Subroutines
Analyze and Report Routine

Base Level Recovery Summary

PAGE

111

111

m

1M1

m

112

112

112

112

113

114

114

114

115

115

115

116

116

116

7

117

117

117

SECTION 254-280-310

11

CONTENTS
PFLRDGNH DESCRIPTION
A. General
B. Prediagnostic Initialization Routines

C. Post-Diagnostic Final Handling Routines

D. Diagnostic Routine Exerciser

E. Diagnostic Request Routine
PFLRRRCR DESCRIPTION

A. General

B. MCC/10 Configuration Subroutines
C. Remove/Restore Subroutines

D. Routines Provided for Application Inter-
face

1A PROCESSOR POWER CONVERSION AND
DISTRIBUTION FRAME FAULT RECOVERY
PROGRAM—PDFR

INTRODUCTION

PDFR—FUNCTIONS AND STRATEGY

A. Routine Exercise

B. TTY Requests

C. Scan Point Changes

TROUBLE REPORTING

PDFR—PROGRAM STRUCTURE

A. General

B. PDFR Routines

PDFR INTERFACES

12. ABBREVIATIONS AND ACRONYMS

Page 4

PAGE

118

118

118
118
118
19
119
119

119

120

120
120
120
120
120
122
122
123
123
123
124

124

Figures

10.

11.

12.

13.

14.

15.

16.

17.

CONTENTS

General Program Flow for Fault Recovery
Central Control Fault Recovery Program
{(CCFR)

Program Organization—CCFR
CCFR—First-Look Control Word Generation
Functional Layout of Three Frame Types
Used for Call Store

Call Store Organization—Simplified

Call Store Fault Recovery—Program Flow
and Interfaces—Simplified

Call Store Fault Recovery Program (CSFR)
Interfaces« . .

Functional Layout of Three Types Used for
Program Store . e

Program Store Organization—Simplified
Program Store Fault Recovery—Program
Flow and Interfaces—Simplified

Program Store Fault Recovery Program
(PSFR) —Interfaces

Avuxiliary Unit Fault Recovery Program
(AUFR) —Interfaces

1A Processor Auxiliary Unit Bus System—
File Store Environment

IA Processor Auxiliary Unit Bus System—
APS Environment

Auxiliary Unit Fault Recovery (AUFR)—
Overview e e e e .o

File Store Fault Recovery Program (FSFR)—
Interfaces e e

PAGE

1

13

30

32

36

41

46

47

52

56

60

61

62

64

74

CONTENTS PAGE
18. Attached Processor Interface Layout . . 81

19. APFR—Single Strategy Fault Recovery
StructureChort 84

20. SSFR Common Fault Recovery Control State
Diagram 87

21. Data Unit Fault Recovery Program

(DUFR) —Program Interfaces 94
22. 1A Processor F-Level Fault Recovery Program

(PFLR}10
23. Primary PFLR—Pident Interfaces . . . 113

24. 1A Processor Power Conversion and Distri-
bution Frame Fault Recovery Program
(PDFR)--Program Interfaces 121

Tables

A. Call Store Bus Controls Located in Central
Control 33

B. Call Store Bus Controls Located in Call Store

34

C. Program Store Bus Controls Located in Cen-
tralContrel 48

D. Program Store Bus Controls Located in Pro-
gram Store S 34

E. Peripheral Unit Bus Controls Located In Cen-
tralControl 108

F. Peripheral Unit Bus Controls Located in Pe-
vipheral Unit Controllers 109

1. GENERAL

1.01 This section provides a description of the pro-

grams used to recover from faults in the 1A
Processor. Generally, the 1A Processor Fault Recov-
ery Programs are those that recover faults within the
1A Processor System. However, since the 1A Proces-
sor is a common system and is used to provide stored
program control for both local and toll switching sys-
tems, the 1A Processor Fault Recovery Programs

1SS 5, SECTION 254-280-310

must also direct program control to the appropriate
applications program if the fault indicators point to
the applications hardware. Since the 1A Processor
common systems fault recovery programs and the
application fault recovery programs work together
and interact to provide a fault recovery capability for
the total system, this section provides a description
applicable to the complete system.

Note: Since the fault recovery programs in-
teract closely with the hardware, an under-
standing of the hardware is important to
understanding the fault recovery programs. For
information on the 1A Processor System, refer
to Section 254-200-001.

1.02 This section is reissued to incorporate CPR7
program changes. This includes:

(a) A description of Single Strategy Fault Recov-
ery (SSFR) which is comprised of both Aux-

iliary Unit Fault Recovery (AUFR) and Attached

Processor Fault Recovery (APFR) programs

(b) Numerous changes to the 1A Processor F-
Level Fault Recovery Program (PFLR).

Revision arrows are used to emphasize the more sig-
nificant changes.

1.03 Part 12 provides a defined list of abbrevia-
tions and acronyms used in this section.

1.04 This section describes the following programs

and their associated program identifications
(pidents). The program listings (PRs) may be re-
ferred to for further information.

(a) Central Control Fault Recovery Program—
CCFR

(1) CCFRMAIN (PR-5A304)
(2) CCFRTEST (PR-5A305)
(b) Call Store Fault Recovery Program—CSFR
(1) CSFRNORM (PR-5A307)
(2) CSFRBASE (PR-5A306)

(¢) Program Store Fault Recovery Program—
PSFR

(1) PSFRCSPG (PR-5A325)

Page 5

SECTION 254-280-310

(2) PSFRPSPG (PR-5A326)

(d) Auxiliary Unit Fault Recovery Program-—
AUFR

(1) AUFRCNTL (PR-5A300)

(2) AUFRCPGM (PR-5A301)

(3) AUFRTEST (PR-5A302)

(4) AUFRDFOR (PR-5A3803)

(5) PAUFRILEV (PR-5A365)4

(e) File Store Fault Recovery Program—FSFR

(1) FSFRDGN (PR-5A318)

(2) FSFRDISK (PR-5A319)

(3) FSFRSTAT (PR-5A320)

(f) #Single Strategy Fault Recovery for the At-
tached Processor System

(1) AUFRILEV (PR-5A356)
(2) APFRILEV (PR-5A350)
(3) APMHCNTL (PR-5A520)
(4) APFRICON (PR-5A352)
(5) APFRBASE (PR-5A351)4
(g) Data Unit Fault Recovery Program—DUFR
(1) DUFRDFOR (PR-5A308)
(2) DUFRDGNI (PR-5A309)
(3) DUFROFLN (PR-5A310)
(4) DUFRPCAU (PR-5A311)
(5) DUFRPCDU (PR-5A312)
(6) DUFRPCSB (PR-5A313)
(7) DUFRSUBR (PR-5A314)
(8) DUFRTADM (PR-5A315)
(9) DUFRTSTS (PR-5A316)

Page 6

(10) DUFRTTYI (PR-5A317)

(h) 1A Processor F-Level Fault Recovery
Program —PFLR

(1) PFLRPIIR (PR-5A339)

(2) PFLRBLMH (PR-5A324)
(3) PFLRDGNH (PR-5A323)
(4) PFLRRRCR (PR-5A342)
(5) PFLRPUMP (PR-5A341)
(6) IOPUMPPC (PR-5A343)
(7) IOPUMPBX (PR-5A350)

(i) 1A Processor Power Conversion and Distribu-
tion Frame Fault Recovery Program—PDFR

(1) PDFR (PR-5A327)

2. GENERAL APPROACH TO 1A PROCESSOR FAULT
RECOVERY

2,01 The 1A Processor Fault Recovery Programs

(Fig. 1) are normally entered as a result of a
maintenance interrupt. However, they may also be
entered on interject or via the input/output (I0) han-
dler program, via routine exercise programs, via the
maintenance control program for deferred (base
level) fault recovery testing, or via manual requests
from the TTY. But, the primary purpose of these pro-
grams is to restore the system to call processing in
the face of system errors or faults.

2.02 Interrupts of levels A through K may occur at

any time during system operation, but main-
tenance and operational interjects will occur only at
times set by the software code. (Within the 1A Pro-
cessor, file stores, data unit selectors [DUS], and tape
unit controllers [TUCs] use the interject facility.)
The hardware interrupt sequencers in central control
may be triggered either manually (A level) or auto-
matically by hardware.

2.03 Asa part of the hardware sequencer action, a

wired transfer is made to the appropriate
entry point in the System Interrupt Recovery Pro-
gram (SIRE). The SIRE program then stores a basic
set of data that may be useful for determining the

1SS 5, SECTION 254-280-310

HAWRDNARE INTERRUPT SEQUENCERS

SYSTEM INTERRUPT RECOVERY PROGRAM (SIRE)

INTERRUPT LEVEL RECOVERY PROGRAMS
(INCLUDES FAULT RECOVERY PROGRAMS)

INTERRPT
CEFERRED, ROUTINE
EXERCISE, MND TTY
VAL REQUESTS®
MWL BASE LEVEL PROCESSING - 1/0 REQUESTS
INCLUCES CALL PROCESSING, INPUT/
QUTRUT PROGRAMS, MAINTENANCE
CONTROL, AUDITS, PLANT AND TRAFFIC
1/0 REQUESTS

REFERENCE POINT

MAINTENANCE RESTART PROGRAMS

UNWIND AND REEXECUTE THE
INTERRUPTED INGTRUCTION

* MOMINTERALPT INTERFACES TO
FAULT RECOVERY PROGRAM

AOLLBACK TO SAFE POINT IN INTERRUPTED PROGRAM

Fig. 1 —General Program Flow for Fault Recovery

cause of the interrupt and also may be useful for
restarting base level processing after an interrupt
recovery. This data is stored at memory locations (in-
terrupt bins) that are assigned to each interrupt
level.

2.04 After SIRE has stored the required data in the

appropriate interrupt bin, a program transfer
is made to an interrupt-associated filter program.
This program determines the primary source of the
interrupt and also determines which unit or units are
implicated. After the basic source of the interrupt is
resolved, per unit or per source fault recovery pro-
grams are entered.

2.05 The fault recovery programs are designed to

isolate faulty units or subsystems rather than
to identify replaceable components. These programs
recognize and isolate most call-affecting faults dur-
ing a single interrupt interval.

2.06 The basie techniques of fault recovery strat-
egy are centered around rapid resolution of
problems and quick return to normal system opera-
tion. The fault recovery programs report error data
to the error analysis programs. Error analysis main-
tains a history of interrupts and associated data.

2.07 After the fault recovery program has selected

a working configuration of hardware, the pro-
gram must do several “housekeeping” tasks. The pro-
gram must set appropriate flags that will cause
diagnostics and other testing to be scheduled on base
level after the system has returned to call processing.
Also, the program must record the actions it has
taken in the appropriate error analysis data history.

2.08 Finally, the fault recovery program begins

output messages to convey its actions to oper-
ating personnel. If several interrupts have failed to
resolve a persistent problem, the output messages
may be used to supplement the automatic error anal-

Page 7

SECTION 254-280-310

ysis. The operating personnel may analyze the output
messages and select a working configuration of hard-
ware manually.

2.09 After the fault recovery program has taken

the basic recovery action, the program trans-
fers to the Maintenance Restart Program (MARP).
The MARP program then does several additional
functions based on the highest level interrupt en-
countered during an interrupt interval. (Multiple in-
terrupts may occur during an interrupt interval.
Here, the lower level interrupts are recorded, but not
analyzed.) Program MARP (using SIRE-stored data)
restores or initializes system registers, including
central control prevent error source transmissions
(PESTS), as appropriate. It also sets flags for the
appropriate audits to be scheduled on base level after
the return to normal processing.

210 The MARP program also provides an inter-

face to application restart programs to accom-
modate restart procedures that are application
dependent. After program control is returned to
MARP from the applications restart program,
MARP starts the report messages and does the re-
turn to normal processing.

2.11 The return to normal processing is dependent

on flags set by the fault recovery programs
and the applications restart programs. However,
MARP may alter the decision. The basic options for
return to call processing are as follows:

(a) Unwind and reexecute the interrupted in-

struction. This option is used for interrupts
lower than C level. (This option is the most com-
mon return.) The MARP program may alter this
decision based on either the instruction type or on
errors detected in automatic interrupt data stor-
age (pre-SIRE).

(b) Roll back to a safe point in the interrupted

program. This option is used if more than one
interrupt has occurred during the interrupt inter-
val, if a nonunwindable instruction such as an exe-
cute was the interrupted instruction, or if the
interrupt was an out-of-range failure.

(c) Return to a reference point, either the begin-

ning of the base level cycle or to the beginning
of the interject task schedule. This option is used
after a system phase, A-, B-, C-, and K-level inter-
rupts, or after any interrupt lasting longer than 10
ms.

Page 8

2.12 Many program flows other than for interrupt

recovery exist for the fault recovery pro-
grams. A more complete description of fault recovery
follows.

3. CENTRAL CONTROL FAULT RECOVERY PROGRAM —
CCFR

INTRODUCTION

3.01 The primary purpose of the CCFR program is

to verify the integrity of the active central
control: (a) following a system reconfiguration, (b)
following a system malfunction, (¢) on a demand
basis from other maintenance programs, or (d) on a
demand basis from a TTY request.

3.02 In addition to doing the verification of the ac-

tive central control, CCFR does a validity
check of the standby central control on most requests
(provided the standby central control can be put in
step with the active). The CCFR program will not at-
tempt to verify the standby central control on a B-
level interrupt because of a processor configuration
or a pulse source failure. Also, the standby is not
tested on TTY requests for deferred testing of the
active central control.

3.03 To perform its functions, CCFR interacts with
many other system maintenance programs.
The major program interfaces are shown in Fig. 2.

3.04 The CCFR program provides the necessary

service routines to control the configuration of
the central controls. These routines are used by
CCFR and all other programs that change the central
control configuration during normal system opera-
tion. The CCFR program service routines

(a) Remove the standby central control

(b) Restore the standby central control to service
with routine matching

(c) Switch active and standby central controls

(d) Control the match mode and type of matching
(if any) that is to be established during normal
system operation.

3.05 Two additional routines are provided to set up
routine matching without interrupts and to
put the central controls in step without matching.

ISS 5, SECTION 254-280-310

SIRE
SYSTEM INTERRUPT
RECOVERY PROGRAM

"I R
MSTER CONTROL CALL STORE
CONSOLE. A-LEVEL FAULT RECOVERY
INTERRLPT PROGRAN PROGRAN

PORY o)
PROESOR PROGRAM STORE
CONF T FMAT RECOVERY
ool CENTRAL CONTROL FAULT RECOVERY PROGRAM

PIDENTS:
COFFMAIN - CENTRAL CONTROL FAULT RECOVERY

PFLR MAIN CONTROL AFR
PERIPHERAL LNIT COFRTEST - Gy VoL FALLT RECOVERY AXILIARY UNIT
BUS FAULT FAULT RECOVERY
RECOVERY PROGRAM

wP o
PMAINTENNCE OF-LINE
CONTROL PROGRAM PROGRAM

RESTART PROGRAM

Fig. 2—Central Control Fault Recovery Program (CCFR)

These two routines are used by CCFR and other
maintenance or recovery programs while testing the
central controls or while testing access to associated
subsystems using duplicate central controls.

3.06 The CCFR program maintains records of the

number of C-level interrupts that are pro-
cessed without detecting a machine malfunction.
These are treated as errors or undetectable transient
faults. Monitoring these errors is done by CCFR to
determine whether the error levels (number of errors
in a specified time period) are acceptable for system
operation. When these error levels are exceeded,
CCFR begins automatic diagnosing and/or switching
of central controls in an attempt to isolate the source
of the errors. Error messages and data are printed on
the TTY whenever possible to assist the office per-
sonnel in identifying and isolating a faulty or mar-

ginally operating unit. Error data collected by CCFR
is also made available to the 1A Processor Error
Analysis Program (ERAP).

3.07 The CCFR program also serves as a test tool

for the Processor Configuration Recovery Pro-
gram (PCRYV) to verify that the central control se-
lected by PCRV is capable of basic order execution.
Later in the recovery process, PCRV again uses
CCFR to gain access to a good peripheral unit bus.
However, CCFR does not configure any units on the
peripheral bus system.

3.08 The CCFR program may also be used by other

programs or by the office personnel to run a
comprehensive or selective set of test routines on the
central controls. In this mode, CCFR runs on base

Page 9

SECTION 254-280-310

level in the segmented mode so that normal call pro-
cessing is not affected.

CENTRAL CONTROL ORGANIZATION

3.09 Duplicated central controls are the primary

functional elements of the 1A Processor. The
central controls interface with all internal and exter-
nal signal and control buses and provide the process-
ing capability for the 1A Processor. For reliability
purposes, the two central controls are connected in
parallel. Either one can control system operation.
The normal system configuration provides for the
two central controls to operate in step, each doing
matching checks on the other.

3.10 One central control functions as the active

unit and the other funetions as the standby.
During this normal mode of operation, both central
controls are matched to ensure that they execute the
same instructions, receive the same data, and make
the same conditional decisions. If the active central
control malfunctions, the standby central control is
made active and assumes control of processor func-
tions (the switch of active and standby central con-
trols may be done automatically under program
control, by the processor configuration hardware, or
by manual activation from the control and display
panel).

3.11 System troubles are normally detected by

trouble detection circuits, and the call pro-
cessing capability of the system is restored by the
interrupt system with the associated fault recovery
programs. The interrupt structure is a hierarchy of
ten interrupt levels that are entered according to the
severity of the problems encountered by the system.
Central control malfunctions normally cause B- or C-
level interrupts but may cause interrupts of a lower
level that are intended to detect subsystem
malfunctions (ie, E-level: failure to access program
store). Processor configuration sequencer triggers,
program requests to switch active central controls,
and generate control pulse (GCP) failures cause B-
level interrupts, whereas C-level interrupts are
caused by a mismatch of cross-coupled data between
central controls.

3.12 To ease recovery problems when a “sane” cen-

tral processor is not available, the central con-
trol has a processor configuration sequencer that is
started (triggered) when one or more conditions indi-
cating loss of processing ability oecur. The processor

Page 10

configuration sequencer establishes various combi-
nations of central controls, base program stores, and
program store buses without reliance on program
instructions. The B-level interrupt programs are
later used to verify the sanity of the assembled pro-
cessor.

3.13 The central control has two timers that supply

backup timing for interrupt recovery pro-
grams. The analog timer (started by the interrupt
sequencer) supplies 100-ms timing for B-, C-, D-, and
E-level interrupt programs. If the analog timer
“times out,” the processor configuration ecircuit is
activated or reactivated. The processor configuration
sanity timer enables detection of a nonworking con-
figuration more quickly than 100 ms during B-level
processor configuration recovery. This sanity timer
times out after 496 central control cycles and will
reactivate the processor configuration sequencer if
not administered properly by the recovery programs.

Note: For more detailed information about
Central Control, refer to Section 254-201-031,
Central Control—Theory.

CCFR—FUNCTIONS AND STRATEGY
A. General

3.14 Normally, CCFR operates on B, C, and base

level. However, using the external entry, it can
run on any other interrupt level or on interject. As
stated earlier, its primary purpose is to verify the
integrity of the active central control; however, the
tests used to perform the verification vary and de-
pend on the conditions under which the program is
entered.

3.15 The CCFR program is organized around a

common control program (Fig. 3) which calls
one or more independent test routines. Control is
based on a dynamic control word initialized by CCFR
to specify which test routines to run on each entry.
The control word is normally set to all zeros which is
recognized by CCFR as an invalid entry condition.
The control word consists of three fields of bits.
Within the first field, each bit has a one-to-one rela-
tionship to a test routine that tests a portion of the
central control. The second field consists of a single
bit and signifies a special test procedure used only on
B-level interrupts caused by a pulse source failure.
The remaining bits make up the third field and show
the origin and the termination of the request to run
CCFR.

ISS 5, SECTION 254-280-310

COMPLETE CHECK REQUEST

o TASK DISPENSER -

> CLIENT
————————> (SR

> PSFR

— AFR

MCAI RETURM ——
ADMINISTERS ALL OTHER
TESTS
TEST ROUTINES
PULSE SOURCE FAILURE
.
.
3
PERIPHERAL UNIT ACCESS
POBT PROCESSOR

SERVICE ROUTINES

SWITCH CENTRAL CONTROLS
REMOVE STANDBY
RESTORE STANDBY
CHANGE MATCH MODE

FIRST LOOK

(COPRINT)

SUBSYSTEM ACCESS TESTS
BOOTSTRAP
CENTRAL CONTROL PRINT

v

v

(BASE LEVEL) (B-LEVEL) (C-LEVEL)

Fig. 3—Program Organization—CCFR

3.16 There are several different entry points in

CCFR, each with its own unique requirements.
A pre-processor program is provided for each input
to prepare the necessary information and perform
the required initialization before entering the com-
mon control program. At the conclusion of the com-
mon control program, a termination program is
provided for each entry. There is also a special termi-
nation program if CCFR is entered invalidly (com-
mon control program finds the control word to
contain all zeros). These terminating programs per-
form access tests on other subsystems, update status
words, request subsystem normalization, update
error counters, and in general do cleanup and house-
keeping tasks before returning the system to call pro-
cessing via MARP, PCRV, or the Maintenance
Control Program (MACP).

3.17 Entry into any of the CCFR control programs

requires that some hardware and/or software
actions be taken before the program is entered. These
requirements vary based on the level of the interrupt,

. the cause of the interrupt, or the response expected

by the user when the request is for a deferred CCFR.
Likewise, after the common control program has
completed, some means must be provided to return
the central controls to normal operation. These fune-
tions are done by several pre-processor and post-
processor control programs. However, in many in-
stances, the actions are so similar that parts of the
program are used for more than one entry condition.
Only the control word or a bit in the status word iden-
tifies the entry condition.

3.18 The CCFR program’s control structure can
best be characterized in terms of C-level inter-

Page 11

SECTION 254-280-310

rupts, B-level interrupts, external program requests,
and deferred fault recovery requests. l-ach of these
control structures will be discussed along with entry
requirements.

B. C-level Interrupt
General

3.19 The C-level program is entered because of a

mismatch between the two central controls.
The occurrence of the C-level interrupt stops all
matching and freezes the contents of all matchers.
This is ensured by the way the match control regis-
ters in central control are set up during normal oper-
ation. To ensure a proper setting of these registers,
only CCFR is allowed to set up or change a match
mode that is to exist during call processing.

3.20 The interrupt sequencer stops the standby

central control and sets the active central con-
trol to send on both program store buses and both call
store buses. It also starts the analog timer as a pre-
caution against a faulty central control becoming
hung up in a loop in the interrupt recovery program.
A software check of the direct transfer capability of
the central control is done in SIRE by attempting a
direct transfer to CCFR. If the transfer fails, central
control performs an “EXC” instruction whose ad-
dress is the address of the “EXC” instruction itself.
This halts the central control until the analog timer
times out and generates a B-level interrupt.

3.21 For C-level interrupts, there are two control

programs, each consisting of a pre-processor
program and a post-processor program. When these
are combined with the common control program,
they form a complete control structure for the pro-
cessing and disposition of all C-level interrupts. Each
of the programs was designed with a different philos-
ophy in mind. The first-look program uses as little
real time as possible and tests only a selected area of
the central control. The complete check program runs
all available test routines of CCFR in addition to in-
terface tests with other subsystems.

First-Look Program

3.22 The term “first look” as used by CCFR is to

define the degree of testing and the amount of
real time to be used before any decision is reached
about the sanity of either central control. In addition
to conserving real time, the first-look control pro-
gram performs four other functions.

Page 12

(1) The first-look pre-processor program stores

the data contained in the internal registers
and buffer bus registers of both central controls at
the time of the interrupt.

(2) The first-look pre-processor program does a

series of tests on the decision-making capabil-
ity of the active central control to determine if
there is any need to continue testing.

(8) The first-look pre-processor analyzes the

error indicators that were frozen at the time
of the interrupt. From this analysis, it selects a set
of test routines to run on the central controls that
are most likely to uncover the cause of the inter-
rupt.

(4) The first-look post-processor places the cen-
tral controls in a state that is suitable for the
resumption of call processing.

3.23 The CCFR first-look program is entered at

global location CCFRFLE from SIRE. Its first
task is to complete the storage of a selected set of reg-
isters [paragraph 3.22(1)] from the active and
standby central control into a data table. This table
is used to store data that the restart program,
MARP, prints as a part of the system interrupt mes-
sage. When the table is loaded, a flag is set for MARP
to show that the table data is valid.

3.24 Before any test routines are set up, a test of

the logic and decision-making ability of the
active central control is made. This test only goes far
enough to test the type of decision normally used to
end the test routine. The test program is arranged in
a maze requiring the central control to correctly exe-
cute a sequence of conditional transfers to reach the
successful termination. A failure anywhere in this
program causes control to be transferred to the com-
plete check program,

3.25 After the conditional transfer tests have been

successfully completed, CCFR loads two more
data tables. The first table will contain 64 registers,
shadow registers, and buffer bus registers, from the
active central control. The second table will contain
the same information from the standby central con-
trol. This data will also be printed by MARP at the
conclusion of the interrupt.

3.26 The CCFR program uses many subroutines,
most of which use the contents of the J regis-

ter as the return address. The first-look program
does a crude check of the operation of the J register
return option. If the J register fails the tests, the cen-
tral controls are switched. Before doing a test of the
transfer capability using the J register return, the
processor configuration sanity timer is started to
protect against severe program or data mutilation if
the transfer fails. If the transfer fails, the timer will
time out and cause a B-level interrupt in about 0.35
ms. If program control returns to either of the ex-
pected points, the sanity timer is turned off.

3.27 When all the previous tests have passed and

all the interrupt associated data has been
stored, the first-look program analyzes the error in-
dicators to determine which test routines to run. A
check is made to determine if routine matching was
in progress in the active central control. If it was not,
internal match error indicators are ignored. Like-
wise, if routine matching was not in progress in the
standby central control, the external match indica-
tors are ignored. If, after this filtering process is
done, there are no valid match error indicators set,
control is transferred to the complete check program.
Also, one and only one instruction class indicator will
have been set when the interrupt occurred. If not, the
complete check program is run.

3.28 The interrupt sequencer stops matching and

stops the standby central control for all main-
tenance interrupts except F-level interrupts. There-
fore, it is possible for a C-level interrupt to occur
while the F-Level Fault Recovery Program (PFLR) is
running. Here, the indicators that are frozen when
the C-level interrupt occurred may be misleading to
the first-look program. Consequently, a check is
made to see if the F-level activity flip-flop is set; and,
if it is, the complete check program is run to ensure
that the proper part of the central control is tested.

3.29 For the purposes of matching, the 1A Proces-

sor instructions are grouped into six classes.
The classes were derived from the internal gating
associated with the instruction and not necessarily
with the function the instruction performs. The first-
look program has six data tables that correspond to
the six instruction classes. Each of the data tables
contains four words that correspond to the four
match error indicators. These words contain flag bits
that show the test routines that are appropriate for
a particular mismatch on a particular instruction
class.

3.30 The first-look program determines the class of
instruction being executed at the time of the

ISS 5, SECTION 254-280-310

C-level interrupt and also determines which
matchers failed. The data table words that corre-
spond to the class instruction and the matcher error
indicators are then ORed to form a composite control
word (Fig. 4).

L 2R R

QLASS L MIE
QASS L M1I
CLASS S MXE
CLASS S MOI

T e - ER T

CLASS S MIE /
CLASS § NI

CLASS W ME
QLASS W MOI
. FAILING INSTRUCTION CLASS = S
. MISMATCH INDICATORS SET = MOI, MII
.
.
.
.

Fig. 4— CCFR—First-Look Control Word Generation

3.31 After setting up the control word, all units on

the auxiliary unit bus (AUB) are inhibited so
no interference occurs on the call store or program
store bus systems between the central controls and
some unit on the AUB. The first-look program also
repeats some of the functions done by the interrupt
sequencer. This includes setting the program and call
store routing control flip-flops (PBO, PBT, CBO, and
CBT) to make the active central control the control-
ling unit for all functions. The call store and program
store status words are also updated.

3.32 The pre-processor portion of the first-look

program completes its job by attempting to
put the central controls back in step. If it can, routine
matching without interrupts is initiated between the
central controls. Otherwise, all matching is stopped,
and a flag bit is reset to show the standby central
control is not being tested. The first-look program

Page 13

SECTION 254-280-310

then transfers to the common control program to
process the interrupt.

3.33 The first-look program can end in one of three

ways. First, all selected tests might run but
fail to find a fault. This could be due to a transient
error causing the interrupt or the first-look program
failing to select the proper set of tests to detect the
fault. For this condition, the first-look post-processor
program keeps a count of the number of times that
the first-look program passes all tests. When this
counter reaches a value of 2, a complete check is run
during the same interrupt interval as the first look.

3.34 Second, the standby central control might fail

one of the first-look tests. This is detected by
a mismatch between the central controls. However,
even though a mismatch occurred, it does not neces-
sarily mean the standby was at fault. The mismatch
could be caused by a fault in the active central control
matchers. So, an additional test is made on the active
central control matchers. If this test passes, the
standby central control is removed from service and
a diagnostic is requested.

3.35 Finally, the active central control may fail. An

active failure may be detected anywhere in
any of the test routines. Also, the active central con-
trol is faulty if a mismatch is detected and the active
matcher test fails. Any active failure results in a
transfer to the central control switch routine and
subsequently the generation of a B-level interrupt.
The only factor preventing the central controls from
being switched is if the TCC flip-flop (central control
in trouble—standby out of service) is set. This should
never be the case in the first-look program.

3.36 If either a standby fail or a pass termination

occurs, a special routine is provided to return
the system to a call processing configuration. This
routine is also used by the complete check program
and the B-level program. This routine, called
CCPRINT, first removes the standby central control
from service. This is done as a precautionary measure
to ensure that the standby central control is com-
pletely isolated from the active system and that all
status words and the matcher status table are up to
date.

3.37 During some of the peripheral tests, a nonerit-

ical test may have failed. In this case, a status
word flag is set. When CCPRINT finds this flag set,
it prints a TTY message identifying the failing test.

Page 14

If the standby central control failed a test, a failure
message is printed to identify the point at which the
failure was detected. A report action phrase is loaded
into the MARP output message. For the central con-
trol, this phrase always states that CCFR removed
the standby central control.

3.38 If the storage of the active and standby data

tables was successful, a report is made to iden-
tify to MARP the beginning address and number of
words in each table. This information is also used by
error analysis. If the central controls were switched
because of a failure during one of the tests, the
standby fail data table is not meaningful. Here the
active fail data is printed instead of the standby fail
table.

3.39 After all prints have been dispensed with, the

program clears all scratch memory used by
CCFR to prevent possible conflicts on later inter-
rupts. If the standby central control failed, it will be
diagnosed unless the excessive error rate flag is set.
The return to reference point flag is set so that
MARP will not attempt to unwind or roll back to the
interrupted program.

3.40 At this point in the program, the appropriate

call store and program store bus routing flip-
flops (CBO and PBO) are set so that the active central
control writes into call store and program store over
both buses. At the time of the interrupt, depending
on the type of order and the matching in progress at
that time, any matcher might contain the address of
some memory location that mismatched. Rather than
filter out the different possibilities, CCFR assumes
that all matchers contained addresses. The CCFR
program reads from the location shown by the con-
tents of a matcher and writes back into the same ad-
dress using a maintenance store instruction. This
guarantees that both copies of duplicated memory
locations, whether secure or nonsecure, are the same
but not necessarily correct. This read and restore
process is only done for addresses in the call store
and program store address ranges. This same proce-
dure is followed for the addresses contained in the
active and standby central control save data address
registers. After all memory has been updated, re-
quests are made via MACP routines to normalize the
call store and program store buses. This is done later
as a low priority MACP job on base level after the
maintenance restart.

3.41 The remainder of the CCPRINT routine is
devoted to cleaning up any error indicators in

the central controls. At the end of the CCPRINT rou-
tine, there is a decision made on the highest level ac-
tivity flip-flop that is set. If C level is the highest set,
CCPRINT transfers to restart at MARPCLEV. If B
level is set, a decision must be made on what to do
with the standby central control. If either the TCC
flip-flop or the CCHE (high error rate) flag is set, the
standby is left out of service. If both are reset, a de-
ferred request is made to restore the standby to ser-

vice. The program then ends by transferring to
MARPBLEV.

Complete Check Program

3.42 The complete check program operates on C

level and serves as a backup to the first-look
program. It can run all the test’s routines provided
by CCFR. It also does access tests on other subsys-
tems. If C-level interrupts, for which no fault can be
found, occur at a rate that is unacceptable for system
operation, the complete check program will initiate
a central control diagnosis and/or switching of the
central controls.

3.43 The complete check program can be entered

from the first-look program or from the exter-
nal program request. The complete check program is
entered from the pre-processor portion of the first-
look program when some exceptional condition is
encountered that the first look cannot handle. Here,
the control words have not been set up. The complete
check program loads these words to run all test rou-
tines and to indicate the complete check program.
Bus control flip-flops CBO, CBT, PBO, and PBT are
set to ensure that all duplicated memory remains
updated.

3.44 The complete check program may also be en-

tered from the first-look program when the
first-look passed counter exceeds its threshold value.
Here, the control words have already been set up by
the first-look program. The complete check program
will run only those routines that were not run by the
first-look program. Since both the first look and the
complete check are run on the same C-level interrupt,
repetition of the tests in the complete check that have
already passed the first look would only serve to con-
sume more system real time.

3.45 After the control words are set up, the com-

plete check program attempts to put the cen-
tral controls in step. If successful, routine matching
without interrupts is set up between the central con-

IS$ 5, SECTION 254-280-310

trols; otherwise, all matching is stopped. The com-
plete check program then stops all units on the AUB
and transfers to the common control program to pro-
cess the interrupt.

3.46 Like the first-look program, an active central

control failure could be detected at any place
in any of the test routines. If a failure occurs, the
same actions take place as in the first-look program.
Likewise, a standby central control failure is detected
by a mismatch between the two central controls.
And, as in the first-look program, an active matcher
test is run before condemning the standby central
control. The complete check could also pass. Here,
control is returned to the complete check post-
processor program. Routing flip-flops CBO, CBT,
PBO, and PBT are set and their status words are up-
dated.

3.47 If the complete check passed on the active or

both central controls, a subsystem access test
is run. If the standby central control failed, the sub-
system access test is run using only the active central
control. The subsystems involved in the access tests
are the call store, program store, and the auxiliary
unit (AU) subsystems. Peripheral system access tests
are not done because of time limitations.

3.48 The call store community is accessed first. The

Call Store Fault Recovery Program (CSFR)
contains an access test that is used by CCFR to verify
access to all call stores currently in use by the system.
If the access tests pass, CCFR goes on to the program
store access test. However, if the access test fails,
immediate actions are taken to restore a complete
copy of call store memory for system use. The CCFR
program first attempts to bootstrap the call store
community. A bootstrap routine is so named because
it figuratively “raises a subsystem by its bootstraps”
establishing a configuration based on limited access
tests. A routine in CSFR is called to do the bootstrap.
If the bootstrap passes, then CSFR has assembled a
complete copy of all call stores and CCFR proceeds to
the program store access test.

3.49 If the bootstrap fails, CCFR will try to switch

central controls. If the switch is successful, a
B-level interrupt is generated. If for some reason
CCFR cannot switch central controls or if the central
controls have already been switched, CCFR will
transfer to PCRYV to deliberately start the processor
configuration circuits to try to assemble a working
system.

3.50 The program store access test is identical tc
the call store test with one single exception

Page 1

SECTION 254-280-310

CCFR uses a Program Store Fault Recovery (PSFR)
routine to do the tests rather than a CSFR routine.
If the program store access test is successfully com-
pleted, the AU subsystem access test is run. Before
running the access test, CCFR calls an Auxiliary Unit
Fault Recovery Program (AUFR) subroutine to stop
each individual unit connected to the AUB system.
The CCFR program then uses another AUFR routine
to do the access test. If the access test is successful,
CCFR will end the subsystem access test routine. If
the access test fails, a TTY message is printed identi-
fying the AU failure.

3.51 If all the subsystem access tests pass and the
standby central control was running, a test is
made to see if there was a mismatch while running
the access tests. If any mismatches were detected, an
active matcher test is run to determine which central
control is to blame. If no mismatches were detected
and the B-level activity is set, control is transferred
to CCPRINT to end CCFR’s part of the interrupt.
However, if all tests pass and the B-level activity is
not set, an excessive error rate procedure is run.

3.52 Sometimes, due to either the test environment

or to the extent to which CCFR can exercise a
certain portion of the central control, faults unde-
tected by CCFR can be detected by the Central Con-
trol Diagnostic Program (CCDG). Also, errors or
marginal faults occur that neither CCFR nor CCDG
can detect. To prevent the system from bogging down
with C-level interrupts, CCFR maintains several
counters to limit the number of C-level interrupts al-
lowed.

3.53 When a C level occurs that does not result in
a fault detected by the first-look program, a
first-look all tests passed counter is incremented. The
value of the counter is then checked, and if the value
is equal to or greater than the threshold value for the
counter, a complete check is run on the same C-level
interrupt. If the complete check should also pass, a
complete check of all tests passed counter is incre-
mented. If the counter is less than its threshold value
after incrementing, the complete check transfers to
CCPRINT to complete the interrupt. However if the
counter is equal to or greater than the threshold,
then the frequency of C-level interrupts which yield
no failures in CCFR is excessive. The CCFR program
takes further actions to isolate the faulty unit.

3.54 The central control status word contains flags
that show the history of actions that CCFR

Page 16

has taken when the rate of C-level interrupts was
determined to be excessive. Based on prior actions,
CCFR may take any one of the following actions:

(a) If the standby central control has not been

diagnosed, CCFR removes the standby from
service, requests a diagnosis on the standby, resets
all error counters, and prints a message that the
standby is being diagnosed due to a high rate of C-
level interrupts.

(b) On the other hand, if the standby central con-

trol has already been diagnosed due to exces-
sive errors, then CCFR checks the flag for the
active central control. If the active central control
has not been diagnosed because of excessive er-
rors, CCFR resets all error counters, prints a mes-
sage that the central controls are being switched
because of a high rate of C-level interrupts so that
the new standby can be diagnosed. The status
words are updated to show the action.

(c) Finally, if both the active and the standby cen-

tral controls have already been diagnosed be-
cause of excessive errors, CCFR updates the status
words to show that the central controls will not
run in step without a high rate of C-level inter-
rupts. The CCFR program then resets all error
counters, removes the standby central control
from service, and prints a message that the central
controls will not run without excessive errors. No
diagnosis is requested on the standby. The com-
plete check then ends by transferring to the
CCPRINT routine.

3.55 The excessive error rate counters and flags are

all reset after a specified time has elapsed re-
gardless of the number of C-level interrupts that has
occurred. However, the flag that shows the central
controls cannot run in step without excessive C-level
interrupts can only be reset by an unconditional re-
store message from the TTY. Also, any system
reinitialization wipes out all error history to prevent
inaccurate data in the error counters and status that
may cause premature reactions by CCFR.

3.56 The above procedure handles excessive C-level

interrupts that occur in a short period of time.
However, two other conditions exist that affect sys-
tem operation. The first condition occurs when CCFR
fails to detect a fault that could be detected by CCDG
and interrupts are not occurring often enough to trig-
ger a high error rate procedure and thus a request for

CCDG. To overcome this problem, CCFR maintains
a long-term C-level count that is incremented on a C-
level interrupt whenever the first-look and complete
check test passed counters are less than their thresh-
old value. The first-look and complete check test
passed counters are reset by a regularly scheduled
external timing routine; however, the long-term C-
level count is reset only once daily or by either a cen-
tral control switch or a request to run CCDG. When-
ever the long-term C-level count exceeds its
threshold value, CCFR performs the same procedure
that is used whenever high error rates are detected
by the complete check test passed counter.

3.57 The second condition occurs when some other

program requests that CCFR do a complete
check. Although this is not a true C-level interrupt
condition, the same tests are run and the complete
check uses as much of the system’s real time as for
a C-level interrupt. The CCFR program maintains an
external request complete check counter that is in-
cremented each time a complete check is run as the
result of an external request if no faults are found.
Whenever the external request complete check
counter reaches its threshold value, CCFR performs
the same procedure as for the other excessive error
rate conditions.

3.58 This combination of counters and flags allows

CCFR systematically to limit the amount of
system time devoted to handling C-level interrupts
whether failures are detected.

C. B-level Interrupts
General
3.59 The B-level interrupts are of three types:

(a) B levels caused by a time-out of the analog

timer, long timer (program sanity timer), pro-
cessor configuration sanity timer, or a trigger
from the processor configuration circuits.

(b) Blevels caused by a failure in the operation of

the pulse source generation circuit or in the
pulse source failure detection circuit. This can also
be caused by a program that executes a generate
control puise (GCP) instruction with an invalid
data field.

(c) B levels caused by pulse source switch of cen-
tral control.

3.60 When a B-level interrupt occurs, the interrupt
sequencer stops matching, stops the standby

ISS 5, SECTION 254-280-310

central control, sets the active central control to send
on both program store buses and on both call store
buses, starts the analog timer, and forces a transfer
of program control to.the B-level entry to SIRE. Also,
if the B level was caused by a processor configuration
trigger, the processor configuration sanity timer is
started.

3.61 On any B-level interrupt, some part of CCFR

is run as a part of the recovery process. Pro-
gram PCRV receives program control from SIRE.
The storage of interrupt data is done by SIRE and
PCRV. The PCRV program then decides whether it
will control the processing of the interrupt or
whether CCFR will take control.

Processor Configuration

3.62 A processor configuration is caused by the

time-out of the program sanity (long) timer,
analog timer, or processor configuration sanity tim-
er. It may also be caused by the processor configura-
tion circuit if the circuit determines that both central
controls are either active or standby. The processor
configuration circuit then systematically configures
the system until all possible combinations of K-code
20 program store buses, file store controllers, and
central controls have been tried or until a2 usable con-
figuration has been found.

3.63 After PCRV has found a usable configuration

of hardware, PCRV tests the current system’s
sanity by calling other recovery programs to verify
the processor subsystems. The CCFR program is the
first subsystem program called by PCRV. For the
sanity test, CCFR provides a control structure simi-
lar to the complete check program that runs a selec-
tive set of CCFR’s test routines on the active central
control only. The PCRV program then calls subsys-
tem tests for program stores, call stores, and file
store controllers. After these subsystems have been
tested, PCRV returns to CCFR to select a good pe-
ripheral bus. A special entry directly into CCFR’s
test routine is provided for PCRYV.

3.64 Since CCFR is entered on all B-level inter-

rupts, CCFR must determine the cause of the
particular interrupt. If the interrupt was caused by
the processor configuration circuits, the processor
configuration sanity timer will be enabled. If the san-
ity timer is enabled, CCFR uses this as an indication
that it is to return to PCRYV and to test only the basic
order processing capability of the active central con-
trol.

Page 17

SECTION 254-280-310

3.65 Upon entry from PCRV, CCFR stops all units
on the AUB and checks to see if the sanity
timer is enabled. If it is enabled, CCFR loads the con-
trol words with the processor configuration control
bit and with a selective set of test routine request
bits. The standby central control is then removed
from service. The removal is more of an initialization
process than a configuration procedure since the
standby was stopped by the interrupt sequencer.

3.66 The sanity timer is recycled and control is

passed to the common control program to pro-
cess the interrupt. Throughout the test routines, the
sanity timer must be recycled about every 450 central
control cycles to prevent another B-level interrupt.
{The sanity timer actually times out after 496 cycles.)

3.67 If the active central control passes all tests,

control is returned to a predetermined point in
PCRV. However, if the active central control fails a
test, control is transferred to the central control
switch routine. For this entry into the switch routine,
a program delay loop is entered which causes the san-
ity timer to time out and generate another B-level
interrupt. This advances the processor configuration
state counter to the next state and produces a new
configuration to test. This procedure continues until
the active central control passes all tests.

3.68 When PCRV uses CCFR to select a good pe-

ripheral bus, PCRV transfers directly to the
peripheral bus loop-around test. The test routine is
performed using the peripheral bus loop-around cir-
cuits in the peripheral interface frame and thus are
independent of the peripheral units. The CCFR pro-
gram will switch buses until it has tried all combina-
tions before it will give up and return control to
PCRV. Program CCFR, on this entry, will make no
attempt to switch central controls. Two returns are
provided in PCRV: one if CCFR was able to find a
good configuration and another if it was not. On the
fail return, CCFR passes information to PCRV so
that the reason for the failure can be displayed at the
master control console (MCC). During the loop-
around test, the analog timer must be running and
the sanity timer must be turned off. It is the respon-
sibility of PCRV to meet these entry requirements.

Pulse Source Failure
3.69 The 1A Processor has 360 pulse sources which

control configuration and status flip-flops
within the 1A Processor System. These pulses are

provided by a circuit in central control. The pulse
source is activated when a generate control pulse
(GCP) instruction is executed by the central control.
An error detection circuit is connected to the outputs
of the pulse source generator circuit to ensure that
one and only one pulse source lead is pulsed on a GCP
instruction and that no pulse sources are generated
on a non-GCP instruction. When the detection circuit
detects either none or more than one pulse on a GCP
instruction or any number of pulses on a non-GCP
instruction, it causes a B-level interrupt, if the in-
hibit pulse source failure flip-flop is not set.

3.70 The CCFR program contains the control pro-

gram and test routines necessary to determine
if the pulse source failure was caused by a fault in the
active central control, by a programming error, or by
a nonreproducible transient condition. A special
pulse source failure routine is included in CCFR and
is used with the logic test and the subsystem access
test routines to make up the complete pulse source
failure test sequence.

3.71 For pulse source failures, PCRV transfers pro-
gram control to the B-level filter program in
CCFR. If CCFR determines that the interrupt was
not because of a processor configuration trigger, it
checks to see if the pulse source failure indicator is
set and also if its inhibit is reset. If they are, CCFR
assumes the interrupt is because of a pulse source
failure. The CCFR program then sets the pulse source
failure inhibit to prevent any further B-level inter-
rupts due to a GCP instruction used by CCFR. A con-
trol word is then built by setting the pulse source
failure control bit and the pulse source failure test
routine bit. The standby central control is removed
from service. Again, this is for the purpose of initial-
ization since the interrupt sequencer has already
stopped the standby. Control is then passed to the
common control program to process the interrupt.

3.72 The pulse source failure test routine is called

by the common control program to test the
central control for a failure. If central control was at
fault, the test routine attempts to switch active cen-
tral controls (an unsuccessful attempt would cause a
processor configuration). If central control was not
at fault, control is returned to the common control
program. The control program transfers to the sub-
system access tests. This is necessary since the GCP
instruction that caused the interrupt may have been
associated with a store routing flip-flop; consequent-
ly, there exists the possibility that the system does

not have access to a complete copy of memory. Also,
the status of the stores and the actual configuration
may not agree. This situation must be resolved by the
subsystem access tests before returning the system
to call processing. The access test transfers control to
CCPRINT. The CCPRINT routine in turn transfers
control to MARP.

Central Control Switch

3.73 When the central controls are switched using

the GCP instruction, a B-level interrupt is
generated; afterwards, CCFR is entered to verify the
new active central control. This is because even
though the new active central control may have been
tested thoroughly while operating as standby, there
is a chance that it will not run properly as the active
central control. The B-level interrupt starts the ana-
log timer if the central control clock does not operate
properly.

3.74 Upon entry, if the B-level filter of CCFR does
not find the processor configuration sanity
timer enabled or the pulse source failure indicator
set, it assumes that the interrupt was due to switch-
ing the central controls. The B-level test of the cen-
tral controls is equivalent to the C-level complete
check program when all tests are run. When the con-
trol program recognizes the interrupt as a central
control switch, it loads the control words with the B-
level control bit and all test routine request bits.

3.75 The standby central control is removed from

service for initialization purposes. If the
standby central control is available at this point, the
central controls are put in step and routine matching
without interrupts is started. The CCFR program
then sets a flag to indicate to MARP that the B level
was because of switching central controls. Control is
then transferred to the common control program to
process the interrupt.

3.76 If the active central control fails any of the

tests, CCFR actions are the same as described
for C-level interrupts. If the active central control
passes all tests, the subsystem access tests are run.
If a failure is detected anywhere in the access tests,
the actions are the same as for the C-level complete
check program. When the access tests are complete,
control is transferred to the CCPRINT routine to
complete CCFR’s part of the interrupt.

D. External Program Request

3.77 The external program request is another way
to enter the complete check program. The ex-

1SS 5, SECTION 254-280-310

ternal program request entry point provides a means
for any other interrupt program of a lower interrupt
level, or an interject program, to run a complete
check of the central control community. An external
program request does not cause a C-level interrupt;
however, CCFR treats it the same as it does a hard-
ware-generated C level.

3.78 On entry to the external program entry point

(CCFREXFR), the control program sets all
interrupt inhibits except pulse source failures. (A-
level interrupts and B-level processor configuration
sequencer and central control switch interrupt
sources cannot be inhibited by the program.) The
control program also stops the AU sequencer, sets a
flag in the status word indicating an external entry
request, and inhibits the analog timer before enter-
ing the normal complete check program.

3.79 Inthe complete check termination routine, the

normal complete check and the external re-
quest are differentiated by the status word flag. If a
failure is detected, the actions of CCFR are the same
as those described in the C-level complete check.
However, if no errors are detected, the external pro-
gram request test passed counter is incremented and
checked. If the counter has reached its threshold val-
ue, the high error rate procedure is done to determine
appropriate action.

3.80 Also, it should be stressed that once a pro-

gram transfers to the external entry it has
given up all program control. No return is made to
that program and no information about the result of
the central control tests is returned to it. The final
disposition by CCFR will eventually be a return to
the main program reference point.

E. Deferred Fault Recovery

3.81 The deferred fault recovery program can be

considered a “mini” diagnosis of the active
central control. It runs all the tests of the complete
check program in a segmented mode that is adminis-
tered through MACP on base level. Each of the pro-
gram segments is limited to 2.5 ms of time. A
termination bit in the control words and six control
bits in the status word direct the actions of deferred
fault recovery. The control word termination bit dif-
ferentiates deferred fault recovery from all other
entries, and the status word bits direct deferred fault
recovery to the functions it should do.

3.82 Deferred fault recovery may be requested
from the TTY or by a program request that

Page 19

SECTION 254-280-310

places an entry in the MACP job table request. The
CCFR program provides the necessary routines for
making the MACP job table request. Deferred fault
recovery is not started until it has the highest prior-
ity of any pending MACP job request and does not
interfere with an MACP job already in progress. The
MACP program assigns deferred fault recovery a
temporary block of memory (MACP scratch pad) and
passes two words of information to deferred fault
recovery at run time. The first word identifies the
channel over which a TTY request was received or
contains an unassigned channel identity when the
request did not come from a TTY. The second word
contains the option bits for the status word and test
bits for the control words. The CCFR program sup-
plies the deferred fault recovery termination bit for
the control words.

3.83 Deferred fault recovery may be requested for

one of two purposes. First, it can be requested
to run tests on the central control community. If
these tests pass, the central controls are restored to
the configuration that existed when MACP started
deferred fault recovery. This may not be the configu-
ration that existed at the time of the original request.
Secondly, deferred fault recovery may also be called
to restore the standby to service without running any
tests. This is the normal way of putting the central
controls in step with routine matching for normal
system operation. In either case, deferred fault re-
covery passes an abort address to MACP. If an inter-
rupt occurs while central control fault recovery is an
MACP client, MACP will transfer program control to
the abort routine during MACP’s first scheduled seg-
ment after the interrupt recovery. The abort routine
cleans up any memory currently being used by de-
ferred fault recovery, prints an appropriate output
message, and ends the deferred fault recovery re-
quest.

3.84 A special segment routine is provided to inter-

face between deferred fault recovery and
MACP. This routine is used for all but ocne segment
break. The exception is the segment break immedi-
ately before the AU access test. This access test re-
quires that each individual AU be stopped before the
access test is started. Generally, a test routine is run
as a single segment and the segment time break is
taken in the common control program. However, be-
cause of length, some test routines must take internal
segment breaks. In these cases, the mechanism for
determining when and if a segment break will be
taken is embedded in the test routine itself. The test

Page 20

routines contain enough defensive checks to ensure
that a segment break will not inadvertently be taken
as part of an interrupt recovery procedure. Never is
more than one test routine run during a single seg-
ment.

3.85 A program request automatically runs de-

ferred fault recovery on both central controls
if the standby is available. When finished, it prints
either an all tests pass (ATP), active failed, or
standby failed message on the TTY.

3.86 On the other hand, when deferred fault recov-

ery is requested by a (“TEST:CC”) TTY mes-
sage, several options exist that are not available on
a program request. A TTY request may specify that
either both central controls or only the active be test-
ed. Also, the request may specify the test routines
that are to be run. This can be a single test, several
isolated tests, a range of tests, or any combination of
these.

3.87 Another feature of the TTY request allows

deferred fault recovery to loop two or more
test routines. The logic test is always run and the
TTY message must specify at least one test routine
to be accepted as valid. When looping, deferred fault
recovery executes the entire set of specified test rou-
tines, except for the subsystem access tests before
starting over again unless a failure is detected in one
of the test routines. Here, deferred fault recovery
executes all specified test routines until the first fail-
ure is detected and then starts over again. The loop-
ing mode is ended by a maintenance interrupt or by
a TTY message that ends it as an MACP client.

3.88 It should be pointed out that the TTY request
can select the test routines to be run, but it
cannot specify the order in which they will be execut-
ed. Deferred fault recovery uses the same common
control program as any other CCFR control program,
and the task dispenser portion of the common control
has a fixed sequence in which it calls test routines.

3.89 In addition to normal program requests and

TTY requests, deferred fault recovery is run
after every central control diagnosis and as a part of
the daily routine exercise of the central control. For
these two entries of deferred fault recovery, the Di-
agnostic Control Program (DCON) initializes a diag-
nostic buffer table. The table contains all the
information about the origin of the request, the re-
sults of the diagnosis, and what action is to be taken.

These two entries are ended by the CCFR diagnostic
final handler routine.

3.90 For looping, output messages are suppressed

except for the abort message that occurs when
the request is stopped. Also, deferred fault recovery
passes data to the system error analysis program if
either the active or standby central control fails. If
the standby fails, it is left out of service and a diagno-
sis is requested. If the active central control fails, the
standby is left out of service but no diagnosis is re-
quested. Information about the failure is printed on
the TTY, and it is up to the operating personnel to
take the appropriate action.

CCFR—PROGRAM STRUCTURE
A. General

3.91 The CCFR program (Fig. 2) consists of two

pidents: CCFRMAIN and CCFRTEST. Pident
CCFRMALIN contains the CCFR control, service, and
test routines that are essential to system recovery
and is located in K-code 20. Pident CCFRTEST con-
tains the remaining test and service routines that are
not required for system recovery.

3.92 The common control routines have already

been described in terms of C-level interrupts,
B-level interrupts, external program requests, and
deferred fault recovery requests. The test routine and
service routine descriptions follow.

B. Test Routines

3.93 Special instruction sequences are required to

test specific central control circuits for all
input conditions. Each test routine tests as many of
these input conditions as possible for a specific parti-
tion of central control hardware. Sometimes, it is
impossible to test all the circuit input combinations.
This is because the CCFR must run in the active cen-
tral control and test it at the same time. Consequent-
ly, CCFR cannot test circuitry as completely as the
central control diagnostic program that runs in the
active central control and tests the standby.

3.94 Test routine failures in CCFR may in some

cases be misleading. For example, the execu-
tion of the first instruction of CCFR depends on
proper operation of the instruction fetch sequencer,
order word decoder, system clock, various gating
functions, ete. A fault in any one of these circuits

ISS 5, SECTION 254-280-310

could cause the improper execution of this first in-
struction. However, the objective of CCFR is to deter-
mine whether central control is operating properly,
and identification of the exact cause of a failure can
be determined by later tests performed by the diag-
nostic program (DCON). The CCFR program uses the
following test routines with access tests in other
fault recovery programs to test as much of the cen-
tral control hardware as possible.

Logic Test

395 The logic test routine is entered at entry

LOGIC_TEST to do a comprehensive test on
the logic circuitry. These tests include the L register
and combined mask homogeneity circuits, the com-
pare circuits, the AND, OR, and EXCLUSIVE OR
logic functions, the right-most one detector circuit,
the insertion mask, the 16- and 24-bit rotators, and
the size and displacement register and translator cir-
cuit. A large part of the central control is exercised
during these tests, and troubles in other parts are
expected to be manifested during these tests. If the
tests pass, control returns to the common control
program. If a failure is detected, the proper test is
marked and an attempt is made to switch the central
controls.

Register and Homogeneity Logic Test

3.96 This test is designed to test all the registers

located between the masked bus and the un-
masked bus of the central control. This routine is en-
tered at the REGTEST entry to test the central
control index registers, stack register, enable regis-
ter, reply register, and the peripheral unit data regis-
ter. These tests include the ability to set and reset
each individual bit of a register and shadow register
if so equipped. The ability to correctly set the sign
and homogeneity flip-flops on a register test instruc-
tion is tested. The ability to select one and only one
register is tested. Checks are made that detect leak-
age from the masked bus to a register, from a
nonselected register to the unmasked bus, and be-
tween registers and shadow registers. If the tests
pass, control returns to the common control program,
and if not, an attempt is made to switch the central
controls.

Buffer Register, Insertion Mask, and Program Store Access
Test

3.97 This routine is designed to test the access
from the buffer register to the program store,

Page 21

SECTION 254-280-310

and access to the buffer register. This routine is en-
tered at entry BR_TEST. Both right and left halves
of a program store word are used for this test and
each half is checked for the expected results. The in-
sertion masking is checked on a write into program
store. If the tests pass, control returns to the common
control program. If failures are detected, the central
controls are switched and diagnostics are requested
on the new standby central control.

Index Adder Test

3.98 This routine is designed to test registers and

functions associated with the index adder. The
registers tested include the index addend register,
the index augend register, the data address register,
and the save data address register. This routine is
entered at entry point IA_TEST and checks the addi-
tion ability of the index adder, and the access to the
save data address register. All addition instructions
do not contain a full 24 bits of data for the index ad-
dend register and the sign bit may be in one of several
positions. Therefore, on execution the data field is
right-adjusted and the sign placed in the next least
significant bit outside the data field and expanded to
fill the remaining bits of the index addend register.
The ability to load the index addend register with all
combinations of data fields and sign bit locations is
tested.

3.99 In the checks just done, the index augend reg-

ister is loaded with stable data from an index
register and is referred to as NO MIX operation.
When the data for the index augend is to be gated
from an index register that has not yet received the
data, the data must be gated from the masked bus to
the index augend at the same time it is being gated
to the index register. This is referred to as MIXED
operation. Checks are made to ensure that these gat-
ing paths are working properly. Attached to the
index adder is an all zero detector. When this detec-
tor finds all zeros at the output of the index adder,
and the instruction being executed is a store instruc-
tion, and no index register is specified, the gating
from the index adder to the data address register is
inhibited. This provides the “write at present ad-
dress” function because the data address register
contains the address of the last read operation. Tests
are done on the all zero detector to ensure its proper
operation. If the tests pass, control returns to the
common control program. If failures are detected,
the central control is removed from service and diag-
nosed if possible.

Page 22

Add One Register and Logic Test

3.100 This routine verifies that the add one option

is operating properly. This routine is entered
at entry point AOL_TEST and makes a series of tests
that check the add one option in the NO MIX environ-
ment. Additional checks are then done for the add
one option in the MIXED environment. If all tests
pass, control returns to the common control program;
otherwise, the failing registers are saved, the central
controls are switched, and failing data outputted via
the TTY.

Parity Test

3.101 The parity test routine tests several parity

generation and check circuits in the central
control. The routine is entered at entry point PTY_
TEST. The checks are made in a series of tests, the
first of which is the data address parity generator,
and LOKP flip-flop. Next is a series of checks that
test the data parity generator without writing into
memory, and the data parity check circuits. These
circuits check the parity on all data reads from mem-
ory regardless of from where the data is read. Final-
ly, the parity check circuits associated with fetching
instructions from program store are tested. Both
right-half and left-half parity check circuits are ex-
ercised. The program address parity generator is not
tested except to verify that it is not generating bad
parity that would cause the program store fetch par-
ity check circuits to fail. If the tests pass, control re-
turns to the common control program. If failures are
detected, the active central control is removed from
service for diagnostics if possible.

Protected Area Test

3.102 The protected area test routine is designed to

check the upper and lower protected area
registers and matchers. The routine is entered at
entry PATST and initially checks the ability to set
and inhibit the setting of the protected area D-level
interrupt source. The lower and upper protected area
address registers are then loaded with data, and reg-
ular store operations are done to locations within and
outside the protected area to check for proper opera-
tions. The TOLL flip-flop is either set or reset for
these tests depending on the office type and condi-
tions under which the tests are run. On completion,
the upper and lower protected area registers are re-
stored to parameter values and the TOLL flip-flop
restored to its original value. If the tests pass, control

returns to the common control program. If failures
are detected, a request to switch the central controls
is issued and failing tests are recorded.

Auxiliary Unit (AU) Test

3.103 The AU test routine is designed to test the

registers and some of the circuits associated
with central control AU communications. Only those
functions that are internal to the central control are
tested, and AUs are prohibited from running during
the tests. The routine is entered at entry point
AUTEST and does a read/write access test on all the
AU associated registers. The ability to correctly se-
lect the AU register is tested as well as leakage from
the buffer write bus into the registers as well as leak-
age from the registers into the buffer read bus. Tests
are done to ensure that the AU matcher is functional.
Also, tests are done to ensure that the AUs have the
ability to gate data to the AU interject sources to set
the correct indicator in the interject register. The
operation of the AU interject inhibit flip-flops is also
included in this test. If the tests pass, control returns
to the common control program. If any failures are
detected, an attempt is made to switch the central
controls.

Stack Test

3.104 The stack test routine is designed to test the

stack and its associated counter. The routine
is entered at entry STCKTST and checks the soft-
ware stack mechanism, the stack register, and the
stack counter. The ability to generate and inhibit the
D-level stack interrupt source due to a stack counter
overflow or underflow is also tested. Only one test
expects data to be stored into and retrieved from the
call store stack. A special check is made on this test
to ensure that call store 0 is really there and that
data can be written into and read from it. If it cannot,
then this test is skipped. If this test routine is run as
part of the deferred fault recognition, the contents of
the call store stack from the first address to the cur-
rent stack counter is saved and restored after the
test. If the test is not run as a part of the deferred
fault recognition, the contents are not saved since
CCFR returns to the reference point that resets the
stack counter to zero.

Peripheral Loop-Around Test

3.105 The peripheral loop-around test routine is
designed to check those peripheral circuits

ISS 5, SECTION 254-280-310

which can only be tested by sending data to the pe-
ripheral loop-around circuits in the processor periph-
eral interface frame. This routine uses the loop-
around circuits for most of its tests and therefore the
power must be on in the processor peripheral inter-
face frame. This routine has entries from two
sources. It may be entered from the common control
program as are the other test routines and returns
there if the tests pass or to the central control switch
routine if failures are detected. It may also be entered
from the Processor Configuration Recovery Program
(PCRV) to configure a good peripheral bus to the pro-
cessor pheripheral interface, with a pass or fail re-
turn directly to PCRV. The PU_LOOP entry is used
by the common control program and CCFRPLAT is
the PCRYV entry.

3.106 The peripheral loop-around tests are done in

three parts. The first part is a bus selection
test in the active central control. In this part the test
results are read from de outputs of the peripheral bus
selection circuits in the active central control. This
test requires that either the coded enable or central
pulse distributor (CPD) sequencer be active at the
time the outputs of the selection circuits are read.
The peripheral registers are initialized so that valid
data will not be sent to the peripheral bus; thus, no
peripheral unit is affected.

3.107 The second part of the test checks all the pe-

ripheral registers, gating paths, cable driv- -
ers, cable receivers, and buses associated with the
coded enable sequencer. Data is such that no coded
enable unit will respond to the peripheral operation.
The pulse source polling pulses that do not change
peripheral unit registers are also checked. The pe-
ripheral sequencer is started with a GCP rather than
an [0 order to allow full use of the maintenance mode
facilities.

3.108 The third part of the test checks the gating,
translation eircuits, cable drivers, cable re-
ceivers, registers, and bus associated with the CPD
sequencer. Also included in these tests is a check of
the short binary parity circuit. The CPD sequencers
are usually started with a GCP; but sometimes when
the CPD is inhibited, normal CPD orders are used.

Pulse Source Failure Test
3.109 The pulse source failure test routine is called

from the common control program on pulse
source B-leve! interrupts only. The test procedure is

Page 23

SECTION 254-280-310

different from those that are used for other test rou-
tines. This routine analyzes the error indicators and
data patterns and will possibly retry the failing in-
struction.

3.110 The test routine first reads the failing in-

struction (address was saved in the save cur-
rent address) and determines from the operation
code if it was a GCP instruction. If not, an incorrect
instruction counter will be incremented. If the opera-
tion code was correct, the data field (which was saved
in the save data address) is checked for the correct
format. If the format is incorrect, an out-of-range
flag is set for the Maintenance Restart Program
(MARP). If the operation code and the instruction
format are both correct, the instruction is retried
with pulse source B levels inhibited. If the retry does
not cause a pulse source failure, a retry passed
counter is incremented. If the retry caused a pulse
source failure, the central controls are switched.
When the pulse source retry passed counter or the
invalid instruction counter is found to be too high, an
attempt is made to switch the central controls. If the
central controls cannot be switched, a message is
printed on the TTY that the pulse source error rate
is too high but the central controls could not be
switched by the program. A plant measurement
counter is incremented whenever a retry is attempt-
ed, whether it is successful or not. Another plant
measurement counter is incremented whenever an
invalid format is detected.

3.111 The following test routines are contained in
the CCFR TEST pident, which is not resident,
in K-code 20.

Matcher Test

3.112 The matcher test routine is designed to test
all the functions of the matchers in the cen-
tral controls. This routine is entered at entry point
CCFRMCHK. Included is a test of the accessibility
and selection of all the match registers. A leakage
test from the buffer write bus into the match regis-
ters and from the match registers onto the buffer
read bus is included. The matcher function is checked
by loading data into the match registers and reading
the dc output of the matcher for the expected match
or mismatch condition. Checks are done to ensure
that the central control can do all types of utility
matching. If the standby is running in step with the
active, tests are also made on routine matching.

3.113 This routine departs from the normal way of
testing the standby central control. Nor-

mally the standby central control runs in step with
the active, and matching between the central con-
trols detects standby failures. Since the matchers
themselves are being tested, this approach cannot be
used. In this test routine, the active matchers are
always tested. If the standby is being tested, the same
tests that were run on the active are repeated on the
standby. This is done by subroutines that test either
the active or standby central control matchers, de-
pending on a base address passed to the subroutine
from the control portion of the test routine.

Decoder Test

3.114 The decoder test routine is designed to check

the generation of the decoding and gating
functions that control the instructions executed by
the central control. Since no instruction in the cen-
tral control will generate only one function, all or
parts of many functions are tested while doing a test
on a specific function. This routine is entered, from
the common control program, at entry CCFRDCDT,
and returns control to the common control program
if the tests pass. If failures are detected, the central
controls are switched if possible.

3.115 The decoder test routine uses two basic types

of test procedures. The first consists of doing
some initialization, executing a test instruction, and
checking the results. A failure in this test procedure
may suggest a failure in the initialization process, a
failure in the test instruction, or a failure in the in-
structions used to check the results. Where the fail-
ure exists is not important to CCFR as it is designed
to detect failures, not to resolve them. The second
approach is to start with some piece of data and exe-
cute a series of instructions, each of which changes
the data slightly. The data at the end of a successful
run has a unique value. A failure in any of the in-
structions will cause the data to differ from the ex-
pected value. Usually it will not be possible to tell
which instruction failed but again this is not impor-
tant to CCFR. However, in the analysis of failing
data in the decoder test, it should be remembered
that the point of the detection of the failure generally
will not be the point where the failure actually oc-
curred.

Buffer Bus Access Test
3.116 The buffer bus access test routine checks the

accessibility of most of the central control
buffer bus registers via the buffer write bus and the

buffer read bus. The routine is entered at entry point
CCFRBBAT. The test is done by dividing the address
spectrum into groups, each group into subgroups, and
each subgroup into its individual registers, and then
checking for proper selection between each group,
subgroup, and individual registers.

Interrupt Test

3.117 The interrupt test routine is designed to test

the interrupt circuits. The routine is entered
at entry point CCFRISQT and performs five major
functions in this order:

(1) The read/write access and register selection of

all the buffer bus registers in the interrupt
group are checked. Those registers that directly
affect interrupt generation are checked last to
avoid the generation of unexpected interrupts dur-
ing the test.

(2) The operation of the program-controlled in-

terval timer is checked to ensure that it is
decremented when the enable bit is set and not on
reset, and the G-level source is set on the final dec-
rement.

(3) The ability to set the H-, J-, and K-level inter-

rupt sources and to check the inhibits associ-
ated with each source. The H and J interrupts are
checked for both 5- and 10-ms operations. The ms
clock is restored to its original condition at the end
of the test to prevent program sanity timer time-
out and a possible processor configuration change.

(4) The interrupt test routine also checks the in-

terject mechanism that includes the proper
operation of the instructions designed to check for
interject work. This test checks the ability to gen-
erate all the interject sources except autonomous
peripheral interjects, checks the operation of in-
terject inhibits, and for proper program response
to the setting of one or more interject sources.

(5) Finally, the operation of the interrupt circuits

is checked, but only if all previous tests have
passed and the modified interrupt A-level feature
and K-code 20 are accessible. The test routine
checks the ability of all inhibit flip-flops to inhibit
interrupts, the ability to go back to normal from
all interrupts, and the ability of higher level inter-
rupts to override lower level interrupts. The final
portion of this routine checks the read/write ac-

1SS 5, SECTION 254-280-310

cess to the registers directly involved in the gener-
ation of an interrupt. The modified interrupt A-
level addresses for all unexpected interrupts are
set to return to CCFR which allows CCFR to main-
tain control even though it generates all interrupt
levels.

Fetch and Execution Sequencer Test

3.118 The fetch and execution sequencer test rou-

tine is designed to verify that the fetch and
execution sequencers can make all their valid transi-
tions. The routine is entered at entry point
CCFRFEQT and if the tests pass, control returns to
the common control program. If any failures are de-
tected, an attempt is made to switch the central con-
trols, if possible. The routine is composed of three
parts. The first part is designed to test the state tran-
sitions for slow fetching (1400 ns per fetch) from pro-
gram store. The second part checks the instruction
execution sequencer for slow and fast operation. The
last part checks the state transitions for fast fetching
(700 ns) from program store. The test routine is run
in the following way. First, all operations are forced
to be slow and the first two sections of the test are
run that check slow fetching and execution operation.
Then the force slow is removed to allow the central
control to run at the speed of memory, and all three
sections of the test are run.

Miscelluneous Peripheral Test

3.119 The miscellaneous peripheral test routine is

designed to check the remainder of the pe-
ripheral circuits that do not require data to be sent
or received over the peripheral buses as a part of this
test. Test results are obtained from de readout points
on the buffer bus, the contents of the buffer bus reg-
isters, or from the interrupt sources. Like the periph-
eral loop-around test some sections are devoted to
coded enable tests and some to CPD test. The coded
enable circuits tested in this routine are the coded
enable parity generation circuits, the peripheral an-
swer parity check circuits, the coded enable matchers
(PMO and PM1), the proper setting of the coded en-
able error sources, and the interaction between D-
and E-level interrupts and the coded enable sequenc-
er. The CPD circuits checked in this routine are the
interaction between the D- and E-level interrupts
and the CPD sequencer, the CPD echo detector ecir-
cuit, the CPD reply matcher, and the setting of the
CPD peripheral error sources. The routine is entered
at entry CCFRMPUT from the common control pro-

Page 25

SECTION 254-280-310

gram and returns there if the tests pass. If errors are
detected, the central controls are switched if possible.

C. Service Routines
General

3.120 Service routines are routines used by CCFR

and other programs to actually change or to
request a change in the configuration of the central
controls. These routines usually return program con-
trol to the calling (client) program when the re-
quested function is completed. However, because of
their nature, some functions will result in a transfer
of control to another program or will result in the
generation of an interrupt.

Stop (Remove) the Standby Central Control Routine

3.121 This routine does the two basic functions of

(1) removing the standby central control
from service and (2) initializing the central control
complex for simplex operation. This routine has
three different entry points. The first point is used
only by CCFR and is used to remove the standby cen-
tral control from service and to set a diagnostic re-
quest bit in the status word. The actual diagnostic
request is made later in the program by another
CCFR routine. The second entry (CCFRSTBL) is a
global entry and is used by other programs to remove
the standby central control and to request that it be
diagnosed. The actual diagnostic request is made
within this routine. The third entry (CCFRREM) is
also a global entry and is used by CCFR and other
programs to remove the standby central control
without requesting a diagnostic. All three entry
points, after doing some initially different tasks, join
to form a common program.

3.122 To stop the standby central control without

interfering with the rest of the system opera-
tion and without causing an interrupt, the remove
routine does the following sequence of events. Call
store D levels and program store E levels are inhib-
ited to prevent a transient generated by stopping the
standby central control. The AUB transmission may
be inhibited for about 20 central control cycles and
then restored without affecting AU jobs. This routine
sets all AU inhibits, clears all activity flip-flops in
the standby central control, stops matching, divorces
(inhibits cross-coupled error and control signals
from adversely affecting the operation of the simplex
central control) the central controls, stops the

Page 26

standby central control, sets the bus control flip-
flops CBO, CBT, PBO, and PBT, and restarts the AUs
by restoring the original inhibits.

3.123 This sequence of events stops the standby

central control, isolates it from the rest of
the system, and establishes a memory bus configura-
tion compatible with simplex central control opera- .
tion. The status words for the call store and program
store bus configuration are updated according to the
hardware status.

3.124 This routine also establishes a peripheral

configuration for both the CPD bus system
and the coded enable bus system. For the CPD bus
system, the only initialization required is to set the
appropriate control flip-flop; no status word update
is required. The coded enable bus system can commu-
nicate over a split bus system; ie, central control 0
over bus 0 and central control 1 over bus 1 or vice
versa. If neither bus is marked out of service in the
status words, then bus control flip-flops PUBO and
PUBR are set and PUBT is reset. If either bus is
marked out of service, PUBO and PUBT are set and
PUBR is reset. The status word is then updated to the
hardware status. This procedure provides a periph-
eral unit bus configuration that is compatible with a
simplex central control and either a simplex or du-
plex peripheral unit bus.

3.125 The matcher status table is updated to show

that no routine matching is in progress. Any
possible call store or program store errors are cleared
and inhibits are restored to their previous setting. A
lamp status update is also requested. The processor
configuration sanity timer is recycled if the routine
is called as a part of the processor configuration re-
covery.

3.126 A routine is then called to set up and verify
the current match mode. This ensures the
consistency of the match status table and sets up the
match control registers in the active central control.
The match control registers in the standby central
control are then set to a no matching condition.

3.127 The remove routine then ends by returning
control to the ealling program or routine.

Restore the Standby Central Control to Service Routine

3.128 The restore routine is composed of a subrou-
tine within a subroutine. The outer routine is

normally used to restore duplex central control oper-
ation for system use. The outer routine establishes
routine matching in at least one central control and
does some checks to ensure that the central controls
will remain in step. The inner routine (entry point
CCFRSTPQ) does the actual operations that put the
central controls in step. The inner routine is used by
CCFR and other maintenance programs to do tests
on the central controls or other subsystems with du-
plicate central controls. In addition, it is used by the
outer routine to restore duplex central controls oper-
ation for system use.

3.129 The inner routine uses pulse points to stop

and start the standby central control clock,
clear stop the standby central control, clear the
standby central control, and reset any auxiliary ac-
tivity flip-flops that might be set in the standby. This
should leave the standby central control in a state
that allows the active central control to have read/
write access to internal standby central control loca-
tions. The interrupt inhibit flip-flops of the active
central control are blindly copied into the standby if
adequate access exists.

3.130 Before going any further, it is necessary to

check the read/write access to the standby
central control. Two data patterns are written into
standby central control registers and read back for
verification. If either data pattern is read back incor-
rectly, the routine is ended and a fail return is made
to the calling routine.

3.131 Before attempting to start the standby, sev-

eral internal buffer bus locations must be
initialized. Some are initialized by copying the corre-
sponding active register into the standby register,
some are simply zeroed, and some are written with
a predetermined data pattern. This initialization
puts the standby in a listen-only mode on the call
store, program store, peripheral and AUB systems.
All addressing is done by the active central control.
Also, all AU activity is stopped by latching the AU
sequencer in both central controls. Since precise tim-
ing is required to get the central controls in step, no
AU interference can be tolerated.

3.132 The instruction fetch sequencer is then set to

the proper start-up state. The instruction
stack is loaded with a FILL instruction followed by
a long transfer instruction to a fixed address. The
active central control then executes a GCP instruc-
tion to start the standby central control. At the be-

ISS 5, SECTION 254-280-3,v

ginning of the second eycle of the GCP instruction,
the standby’s clock starts and the standby executes
the FILL instruction. At the end of the GCP instruc-
tion in the active central control and the FILL in-
struction in the standby, both central controls begin
the execution of the long transfer instruction. This
brings the central controls into step with the active
fetching instructions and data for both central con-
trols.

3.133 Verifying that the active and standby are in

step is done by having each central control
write a specified data pattern into a buffer bus loca-
tion. The active central control then reads the test
location from the standby central control and checks
it for correct data. If it is not correct, then the
standby central control did not stay in step with the
active and the restore routine returns control to the
calling routine with a failure indication.

3.134 If, however, the central controls are running

in step, it is necessary to initialize all regis-
ters and buffer bus locations that were not initialized
before starting the standby central control so that
they are the same in both central controls. During
this process, registers are initialized in groups ac-
cording to their relationship to each other. After all
registers have been initialized, control is returned to
the calling routine.

3.135 The outer routine is used to completely re-

store the standby central control for system
use. This routine is always run as a part of the de-
ferred CCFR and as an MACP job. This means that
the standby central control is always restored to ser-
vice on base level and never on interrupt level. On
entry into this routine, the status word is checked to
determine whether to abort the restore. If the
standby was removed because of excessive C-level
interrupts, then only an unconditional restore from
the TTY is accepted by this routine. Also, if the
standby was removed via the TTY, it must be re-
stored via the TTY.

3.136 If the status is all right, the standby is re-

moved from service. The removal is for ini-
tialization purposes and to provide a stable starting
point for the restore procedure. The inner routine is
then called to put the central controls actually in
step. If the central controls are put in step, control is
returned to the outer routine to set up routine match-
ing without interrupts. A maze test is then run to de-
termine if the central controls will stay in step. The

Page 27

SECTION 254-280-310

maze is composed of miscellaneous instructions with
different options and many conditiona: transfer in-
structions. Some of the conditional transfers are ex-
pected to be executed; others are not. There is only
one valid path through the maze test, and any depar-
ture from the path will result in a mismatch that will
freeze the matchers and stop the standby central con-
trol. If either the maze test fails or if the inner rou-
tine is unable to start the standby in step, the restore
routine prints a message that the central controls
will not run in step and returns to deferred CCFR to
end the job request.

3.137 If the central controls pass the maze test, the

central control status word is updated to
show that the central controls are running in step.
This includes a lamp update request to update both
the central control frame and the master control con-
sole (MCC) lamps. The matcher status table is up-
dated to show routine matching in the standby
central control; and, if no utility matching is in prog-
ress, routine matching is also indicated for the active
central control. The divorce and standby trouble flip-
flops are both reset. A routine is called to update the
matchers to the match status table and to enable C-
level interrupts. If the restore request was not part
of the routine exercise, a message indicating that the
standby has been returned to service is printed on the
TTY. The restore then returns to deferred CCFR to
do cleanup tasks and end the request.

Switch the Central Controls Routine

3.138 The switch routine does either a conditional

or an unconditional switch of the active and
standby central controls by using the pulse point
switch mechanism. This routine has five entry
points, three of which are used exclusively by CCFR.
The remaining two entry points are used by CCFR as
well as other maintenance programs.

3.139 The only difference between the three exclu-

sive entry points is whether the B, L, and K
registers have been stored in the active fail bin and
whether the failing test bit has been set. Program
control is transferred to one of these three entries
only if a CCFR test routine detects a failure in the
active central control.

3.140 All three entries merge into a common rou-

tine after the initial differences have been
resolved. The common routine stores all the remain-
ing active central control registers (in addition to B,

Page 28

L, and K) that are required for the active central con-
trol fail TTY message. Indicators are then set for
error analysis to show the starting address and the
number of words that have been saved. A code word
is then initialized to indicate to CCFR that an active
central control failure has been detected.

3.141 If the switch routine was entered because of

a processor configuration test failure, it is
possible that the active central control does not have
enough sanity to do a pulse point switch of central
controls. A 512-cycle delay is built into the switch
routine. If the switch routine is entered because of a
processor configuration test failure, the processor
configuration sanity timer (a 496-cycle timer) will
time out before the delay is completed and cause a B-
level interrupt. The switch is then done by the proces-
sor configuration sequencer circuits rather than
CCFR. If program control passes beyond the delay,
then additional checks are made to determine
whether to do the switch.

3.142 The program checks to see if the failure oc-
curred during a deferred CCFR test segment.
If it did, no attempt is made to switch the central con-
trols and program control is returned to the deferred
CCFR. Also, the program checks the central control
trouble flip-flop. If the trouble flip-flop is set, no at-
tempt is made to do the switch and control is re-
turned to the calling routine. On the other hand if the
flip-flop is not set, the switch procedure continues.

3.143 The fourth entry (CCFRRACC) is a condi-

tional switch entry that is used by CCFR and
other programs to switch central controls if the trou-
ble flip-flop is reset. If the flip-flop is set, control is
returned to the calling routine. Otherwise, this entry
merges with the other three entries into one common
switch procedure.

3.144 The final entry point (CCFRSWCC) is an

unconditional switch entry that is used by
CCFR as well as other maintenance programs. This
entry, after resetting the trouble flip-flop, merges
with the other entries into the common switch proce-
dure.

3.145 Once the final decision has been made to

switch, the common switch procedure
configures the system to run with only one central
control and clear stops the standby central control
since the central controls cannot be switched while
running in step. An attempt to switch in step would

result in a hardware race condition which would
make each central control partially active and would
trigger a processor configuration.

3.146 The J-, K-, and interrupt-level activity regis-

ters of the active are copied into the standby,
and the analog timer in the standby is recycled to
prevent a processor configuration on the switch. The
central controls are switched by a GCP instruction
that should cause a B-level interrupt during the sec-
ond cycle of the GCP. A 3-cycle delay is provided in
the program after the GCP to allow time for the
switch and the B-level interrupt to occur. If the
switch fails and the B-level interrupt does not occur,
the program will continue after the 3-cycle delay and
transfer to a routine in PCRV to cause a deliberate
activation of the processor configuration circuit since
the active central control is faulty and a system re-
configuration is necessary.

Match Mode Administration

3.147 The match mode administration routine is

responsible for checking the validity of the
matcher status table, making changes to the matcher
status table, and initializing the match control regis-
ters in the central controls according to the matcher
status table. There are two entry points to this rou-
tine, CCFRSVMM and CCFRMREQ. The first veri-
fies the matcher status table and initializes the
match control registers according to the status table.
The second entry is used to change a portion or all the
matcher status table and establish a new match
mode. The new match data is contained in a buffer
table in exactly the same format as the matcher sta-
tus table. This data is checked while in the buffer and
replaces the matcher status table data only if it
passes all tests.

3.148 Match mode administration contains two

routines in addition to the administration
routine. The first routine is used to check the validity
of a utility match request and may be called to check
the current contents of the matcher status table or
the buffer table. A return address is supplied by the
using program. The second routine is called when
both routines and utility matching are specified at
the same time, and it ensures that no conflicts occur
between the two modes.

Request Execution of Deferred CCFR

3.149 This routine is used by other interrupt pro-
grams to enter a request for deferred CCFR

ISS 5, SECTION 254-280-310

in MACP’s job request tables. It is usually called
after an interrupt that stopped the standby central
control to restore the standby central control to its
previous configuration. The routine is entered at
entry point CCFRRQDPF. If the request is granted, all
tests are run on both central controls and the standby
is restored to service. The request is not granted un-
less the central controls were previously running in
step. In addition, a request is always made to normal-
ize the call store, program store, and peripheral sys-
tem.

Set Up Routine Matching Without Interrupts

3.150 This routine is used by other maintenance

programs while performing tests with dupli-
cate central controls. The routine is entered at entry
point CCFRRTMA and requires a return address to
the user. This routine completely initializes the
match registers in both central controls for matching
with options, halt match and freeze stop standby cen-
tral control on mismatch. The C-level enable bit is
reset to prevent interrupts while running in this
mode. This routine is not used for normal system op-
eration.

Record Standby Error Data

3.151 This routine is used to store data for the
standby fail print message whenever the
standby central control fails a test. This routine
saves the contents of all match registers, the standby
central control operational registers, the standby
current address register and data address register,
and a failing test word. The failing test word shows
which test was being run when the failure occurred.
This routine is entered only from CCFR and a return
address is required; its entry point is CCFRRSYD.

4. CALL STORE FAULT RECOVERY PROGRAM —CSFR
INTRODUCTION

4.01 The CSFR program has four basic functions in
the 1A Processor. First, CSFR is normally
entered from the System Interrupt Recovery Pro-
gram (SIRE) after a D-level interrupt; later, the pro-
gram acts as a filter for the several sources of D-level
interrupts. The CSFR program steers noncall store
related problems to the appropriate recovery pro-
gram. Second, CSFR resolves call store related prob-
lems. Third, CSFR provides a “bootstrap” capability
for the call store community. Finally, CSFR provides
several service routines for use by other programs.

Page 29

SECTION 254-280-310

CALL STORE ORGANIZATION AND FEATURES

4,02 The 1A Processor call store community is

made up of several individual call stores. The
number of call stores varies according to the type and
size of the switching office installation.

4.03 The store community may consist of 64K (1K=

1024 words) core-type stores (two per frame),
64K semiconductor-type stores (up to six per frame),
or 256K semiconductor-type stores (up to eight call
stores and six program stores per frame) or a combi-
nation of these frames. All three frame types can
operate at 1400 ns (slow); in addition, the 256K store

can operate at 700 ns (fast) when not mixed with
other types of stores in the same community. The
maximum number of call stores is 46 members (0-45)
of the 64K size or its equivalent in 256K size.

4.04 The central controls access the call stores via

duplicated call store buses that interconnect
every call store frame with both central controls (Fig.
5). (The buses may have as many as four branches.)

4.05 Each call store word location is identified by

a unique address (Fig. 6). This address con-
sists of a K-code and a data location address. The K-
code portion of the address identifies the specific 64K

BUS 0

{
J5A003A I MEMBER 0 MEMBER 1 '
cORE STORE || g4k gak ||
FRAME |
|
|
JSAODBA | | UP 70 6 1 __|
64K SEMI- ['MEMBER 0 |STORES __ _ [MEMBER 5
CONDUCTOR || 84K [PER FRAME gak |l
STORE T |
FRAME
|
—————— BUS 1
BUS 0
T T T 7
I BUS ACCESS D I
JSAO10A | [UP 70 8 CALL n| |
(CALL STORE) 'WEWBER 0 | STORES MEMBER 71 |
PART ONLY) 'l o5gk_gquaL| pPER FRAME 256K
256K SEMI- ||t FouR [~ — — — |
CONDUCTOR ‘ 64K STORES |
STORE
FRAME | |
| |
L —

fig. 5—Functional Layout of Three Frame Types Used for Call Store

Page 30

call store memory block to be addressed. The K-code
also identifies the specific call store to be addressed
(ie, one K-code identifies a 64K call store, but any one
of four consecutive K-codes identifies a single 256K
store). The data location identifies the specific data
location to be accessed within the 64K call store
memory block. Call stores that contain duplicate cop-
ies of information located in other call stores are as-
signed the same K-codes. The K-code of any call store
may be changed under program control by CSFR. The
changeable K-codes allow CSFR to substitute one of
the duplicated call stores for another in the event of
a failure (four 64K stores may be used to replace a
single 256K store). The CSFR program can uniquely
identify any member of the call store community re-
gardless of its K-code by pulse point access using
GCP instructions.

Note: When 64K and 256K stores (1400 ns
only) are mixed within a call store community,
several combinations are possible for duplicate
store arrangements. Duplicate stores may be a
pair of 64K stores, a pair of 256K stores, or a
256K store and four 64K stores. The fault recov-
ery programs support all possible combinations
of stores except only 256K stores are supported
when the 1A Processor has the Attached Pro-
cessor System (APS) feature.

4.06 Bus routing of communications between cen-

tral control and the call stores is controlled by
bus selection flip-flops located in central control and
in the call stores. The duplicated buses are referred
to as 0 and 1. Always, one pair is called the active bus
and the other is called the standby bus. Central con-
trol bus selection flip-flop functions (Table A) are as
follows:

(a) CBA—When CBA is reset, bus 0 is the active
bus and bus 1 is the standby. This results in
the active central control transmitting and receiv-
ing over bus 0 and the standby central control
using bus 1. When CBA is set, the active central
control uses bus 1 and the standby uses bus 0.

(b) CBO—When CBO is set, the active central

control transmits on both the active and the
standby buses, but receives on only the active bus.
The standby central control does not transmit
data, but does receive on the standby bus.

(¢) CBT—When CBT is set, the active central con-
trol sends and receives on the active bus and

ISS 5, SECTION 254-280-310

the standby central control receives on the active
bus, but does not send on either bus.

Table A summarizes the configuration capabilities of
the bus from the central control end of the bus.

4.07 The controls located in the call stores are as
follows:

(a) RO—Selects the bus over which the store re-

ceives information from central control. When
reset, the store receives data on bus 0. When set,
the store receives on bus 1.

(b) ANSO—When set, the store sends data to cen-
tral control over bus 0. When reset, the store
does not send on bus 0.

{¢) ANS1—When set, the store sends data to cen-
tral control over bus 1. When reset, the store
does not send on bus 1.

When the store is in a maintenance or control mode,
the store returns data to central control on the bus
designated by RO regardless of the state of ANSO and
ANS1. Table B summarizes the controls located in
call store.

4.08 The various combinations of settings of these
controls allow the program to isolate most bus
faults with a minimal effect on the system operation.

4.09 The 256K store has two additional access con-

trols that are used by the maintenance and
recovery programs. The first control is the SLOW
flip-flop. When set, the store operates at a 1400-ns
rate. The store must operate at this rate when mixed
with 64K stores in the same community. When the
slow flip-flop is not set, the store operates at the
700-ns rate. The second control is a set of four flip-
flops: OKBR, 1KBR, 2KBR, and 3KBR. Each of these
flip-flops controls the read access to the correspond-
ing 64K block of memory. When any of these are set,
the corresponding 64K block of memory will not re-
spond to a read access and will not return error sig-
nals for either reads or writes. These four flip-flops
are used during copy operations to update a store in
64K increments.

4.10 Bus access to the call stores may be done in

any one of three modes of operation: normal,
maintenance, or control mode. The mode of operation
depends on the setting of the maintenance flip-flop

Page 31

SECTION 254-280-310

EXAMPLE USING 64K STORES ONLY

TYPICAL DUPLICATED CALL STORE ARRANGEMENT

TYPICAL NON-DUPLICATED
CALL STORE ARRANGEMENT

CALL STORE BUS 0 > _ —'\W
MEMBER O || MEMBER 1 MEMBER 2 MEMBER 3 MEMBER 16 || MEMBER 17 0
wEMORY BLOCK| [MEMORY BLOCK| [MEMORY BLOCK) MEMORY BLOCK MEMORY BLOCK|[MEMORY BLOCK| |DUPLICATED
0 1 0 1 [~ 8 9 "~~| CENTRAL
K-CODE K-CODE K-CODE K-CODE K-CODE K-CODE CONTROLS
g 00 9 01 9 00 p of 9 10 9 11
CALL STORE BUS 1 -/
EXAMPLE USING 256K STORES ONLY
TYPICAL DUPLICATED CALL TYPICAL NON-DUPLICATED
STORE ARRANGEMENT CALL STORE ARRANGEMENT
/7 N/ \
CALL STORE BUS 0)
NEMBER 0 MEMBER 1 MEMBER 4 0
MEMORY BLOCK || MEMORY BLOCK memory BLOCK | | oupLIcATED
0,1,2,3 0,1,2,3 8,9,10,11 ™" [CENTRAL
K-CODE K-CODE K-CODE CONTROLS
§ 00-03 9 00-03 P 10-13

CALL STORE BUS 1

LEGEND: = 1024 WORDS

K
@ = OCTAL NUMBER

NOTE: 64K AND 256K STORES MAY BE
MIXED, BUT ONLY IF THE 256K
STORES ARE OPERATED "SLOW."
THE CALL STORE COMMUNITY MAY
NOT EXCEED THE EQUIVALENT
OF 46 64K STORES.

7

Fig. 6—Call Store Organization—Simplified

in the call store and mode bits which accompany the
address information for each access of the store.

4.11 Normal mode operation allows central control

to access those call stores whose K-code
matches the one sent via the bus, provided the main-
tenance flip-flop is not set in the store. Maintenance
mode operation allows central control to access a

Page 32

store whose K-code matches the one sent, provided
the maintenance flip-flop is set. Control mode opera-
tion enables central control to alter the status of con-
trol and maintenance flip-flops within a store
without affecting the data stored in the memory
module. Control mode operation depends on the mode
bits matching the setting of the maintenance flip-
flop (set or reset).

ISS 5, SECTION 254-280-310

TABLE A

CALL STORE BUS CONTROLS LOCATED IN CENTRAL CONTROL

CONTROL
FUP-FLOPS (NOTE 1) CENTRAL CONTROL
SENDS ON
CALL STORE BUS RECEIVES ON

CBT | CBO | CBA (NOTE 2) CALL STORE BUS

0 0 0 0 0

0 0 1 1 1

0 1 0 0&1 0 Active
0 1 1 0&1 1 Central
1 0 0 0 0 Control
1 0 1 1 1

1 1 0 0&1 0

1 1 1 0&1 1

0 0 0 1 1

0 0 1 0 0

0 1 0 X 1 Standby
0 1 1 X 0 Central
1 0 0 X 0 Control
1 0 1 X 1

1 1 0 X 0

1 1 1 X 1

Note I: 0 = Reset, 1 = Set
Note 2: X = No Bus Transmission

4.12 In the control mode of operation, the store rec-

ognizes maintenance load and maintenance
store orders. These orders provide access to mainte-
nance, status, and control flip-flops located within
the call store.

4.13 Memory within the call store community pro-

vides storage for data required by central con-
trol during program execution. (In addition to data,
call store also stores the program store fault recovery
program.) Some of the data, such as main program
constants, data tables, and translation information,
is also stored on disk. On the other hand, data of a
transient or temporary nature relating to call prog-

ress or equipment status and subject to change by the
program resides only in the call store community
(call store status is kept in program store).

4.14 The call store community consists of both du-

plicated and nonduplicated memory. Informa-
tion that is not backed up by a file store copy, or
information that must be immediately accessible if
a call store fails, is duplicated within the call store
community. Full duplication is used for this type of
data so that in normal operation each call store in
duplicated memory contains a complete copy of data
stored in a mate or duplicate call store. The duplicate

Page 33

SECTION 254-280-310

TABLE B

CALL STORE BUS CONTROLS LOCATED IN CALL STORE

CONTROL

FLIP-FLOPS (NOTE 1) CALL STORE

SENDS ON

RO CALL STORE BUS RECEIVES ON
(NOTE 2) | ANSO | ANS] (NOTE 3) CALL STORE BUS

0 0 0 X 0

0 0 1 0

0 1 0 0 0

0 1 1 0&1 0

1 0 0 X 1

1 0 1 1 1

1 1 0 0 1

1 1 1 0&1 1

Note 1: 0 = Reset, 1 = Set

Note 2: On maintenance and control orders, the call store
answers the bus designated by the RO flip-flops re-
gardless of the state of the ANSO and ANS1 flip-

flops.

Note 3: X = No Bus Transmission

stores are assigned the same K-code (or K-codes if
the store is 256K). A 256K call store may have four
64K stores as a mate.

4.15 Information in the call store community that
is also contained in file store is ordinarily not
duplicated in call store. Duplicated memory covers
the lower part of the call store address range and
nonduplicated memory the upper call store address
range. Stores within duplicated memory are used as
functional replacements in case another member of
the call store community {(duplicated or
nonduplicated) becomes disabled. If a duplicate call
store is disabled, another call store would not be used
to substitute for it unless its mate store is also dis-
abled.

4.16 In a normal 1A Processor configuration with
both central control and call store buses in

Page 34

service, duplicate stores are configured to opposite
buses; ie, one store of the pair receives from and
sends to the active call store bus while the other store
of the pair receives from and sends to the standby
call store bus. The nonduplicated stores are
configured to receive from the active bus and send to
both buses.

4.17 When one call store bus is out of service, one

store of each pair of duplicated stores is
configured to receive from and send to the active call
store bus. The other stores of the duplicated pairs are
configured to receive from the active bus but are not
configured to send on either bus. When one central
control is out of service, one store receives and sends
on the active bus and the other store receives and
sends on the standby bus.

4.18 The primary mechanisms for trouble detec-

tion in the call store and related equipment

are as follows:

(a) The call store returns an all-seems-well

(ASW) signal to central control for every read
or write operation that appears valid at the store.
Failure to return ASW indicates a trouble condi-
tion.

Note: The 256K stores operating fast (700 ns)
cannot detect error conditions in time to return
an all-seems-well failure (ASWF) during the
700-ns cycle. For those error conditions that
normally return ASWF during slow (1400-ns)
operation, the store returns the data parity or
write enable failure signal (DPWEF') during the
next 700-ns cycle instead.

(b) The DPWEF signal is used only by 256K stores
operating fast. This signal is returned during
the next 700-ns cycle after the error is detected.

(¢) The call store returns an (ASWF) signal on
every read or write operation that appears in-
valid at the store.

(d) Each address received by a call store is accom-

panied by a parity bit covering the address
(data word location) and the K-code. The call store
checks the parity. Incorrect parity causes the store
to read at the indicated address (no writing is
done), and to suppress the ASW signal while gen-
erating the ASWF signal.

(e} All data written into call store is accompanied

by two parity bits for each 24 bits of data.
These parity bits that cover the address (including
K-code) and data are checked by the store itself,
and are stored with the data. If the parity is incor-
rect, the data is still written in the store, but ASW
is suppressed and ASWF is sent to central control.
The parity bits are transmitted back to central
control whenever the data is read out. The central
control then checks the received parity against the
computed parity over data received and the ad-
dress.

(f) Semiconductor stores autonomously perform a

periodic data parity check of every address. If
this autonomous data parity check fails, the store
sets a flag flip-flop and will return ASWF and no
ASW the next time it is addressed.

(g) All data to be written into call store must be
preceded by a write enable pulse timed to pre-

1SS 5, SECTION 254-280-310

cede the readout strobe. The write enable prepares
the store to receive information from the data bus.
If the pulse is not received on a write order, the
cycle is completed as a read operation and an
ASWF signal is generated while ASW is inhibited.

(h) Each store contains an error summary regis-

ter. Setting an internal error indicator in the
error summary register sets the maintenance flip-
flop, enables the ASWF signal, and inhibits ASW.
Errors which occur after time for transmission of
ASWF and ASW are detected by central control on
the next operation to the store. Internal errors are
recorded in the error summary register when con-
ditions such as access circuit trouble are detected.
Also, certain access circuit points are monitored
and checked for validity. These error indicators
can be used by CSFR to localize the fault or error.

(i) Several types of program errors can be de-
tected by central control. These errors include
protected address range write violation,
underflow/overflow of the program stack counter,
write protect error (256K store only), and trans-
fers to an address outside the program store range
without the call store program flip-flop set.

Detection of any of the above error conditions will
cause a D-level interrupt by the central control.

4.19 For a more detailed deseription of call store,
refer to the following sections:

SECTION TITLE

254-201-010 Call Store/Program Store—De-
seription

254-201-011 Call Store/Program Store—The-
ory

254-201-012 Call Store/Program Store, 1400-ns
Semiconductor Store—J5A008A —
Description

254-201-013 Call Store/Program Store, 1400-ns
Semiconductor Store—J5A008A —
Theory

264-201-014 Call Store/Program Store, 256K
Semiconductor Store—J5A010A —
Description

254-201-015 Call Store/Program Store, 256K
Semiconductor Store—J5A010A —
Theory.

Page 35

SECTION 254-280-310

CSFR—FUNCTIONS AND STRATEGY
A. General

4.20 The primary purpose of CSFR is to return the

system to normal call processing (Fig. 7) as
quickly as possible after a fault or error has been de-
tected in the call store community. Therefore, when-
ever possible, CSFR will remove the faulty store from
service on a ‘first-look” basis. The first-look ap-
proach uses error indicators in the central control,
the bus configuration, and the store status to identify
the faulty store.

4.21 The first-look approach replaces the faulty

unit with a duplicate if one is available. If a
duplicate is not available, the recovery selects a store
(from the duplicated call stores) and initiates a copy
of the suspected unit into the selected unit. If tests
are unable to detect trouble within the faulty store,
it is restored to service. When the update is complet-

D-LEVEL ENTRY

ed, the updated store is placed into service and the
suspect store is removed and diagnosed. If the faulty
unit fails again before the update is completed, the
faulty unit is removed from service and the system
must wait for the successful completion of the substi-
tute store’s update from a backup copy stored on file
store.

422 However, when the failing store is not dupli-

cated and a store is not available for selection
as a substitute, the first-look approach is not used.
Call store fault recovery uses the error history of the
failing store to determine the action to be attempted.
If the store’s error history is acceptable, call store
fault recovery corrects the failing word, does a com-
plete access test of the store, and restores it to ser-
vice.

4.23 An unacceptable error history or a failure of
the complete access test can cause call store
fault recovery to do a bootstrap of the call store com-

INTERRUPT BINS

SIRE - SYSTEM INTERRUPT
RECOVERY - LOAD D-LEVEL

LOOK™)

CSFR - CALL STORE FAULT
RECOVERY - D-LEVEL PRIMARY
CSFRAU SOURCE FILTER AND TASK
DISPENSER (INCLUDES "FIRST f———————— C(CFREXFR

Tf 111t

AUFR - AUXILIARY UNIT CSFR - ERROR ANALYSIS CSFR - BOOTSTRAP SELECT CSFR - TEST AND SERVICE
FAULT RECOVERY PROGRAM FUNCTIONS - VERIFY CSFR MND INITIALIZE A CALL ROUTINES PERFORM LOGICAL
ACTIONS, KEEP HISTORICAL STORE SUBSYSTEM AMD FUNCTIONAL TESTS;
DATA ADMINISTER CALL STORE
B
MWRP - MAINTENANCE
RESTART PROGRAM

‘i RETURN TO BASE-LEVEL PROCESSING

Fig. 7—Call Store Fault Recovery—Program Flow and Interfaces— Simplified

Page 36

munity. The bootstrap routine attempts to assemble
a complete copy of the call store information by using
only stores that pass the bootstrap tests. If neces-
sary, call stores will be used regardless of their status
before the failure. Should the bootstrap fail to estab-
lish a valid copy of call store, a program transfer is
made to the Processor Configuration Recovery Pro-
gram (PCRV) to switch central controls (B-level in-
terrupt). After a successful fault recovery, control is
returned to normal processing by transferring to the
Maintenance Restart Program (MARP).

4.24 The call store service routines and bootstrap
routines may also be entered from the CCFR,
AUFR, and the PCRV programs. These programs
may use the service routines to verify access of call
stores. In addition, CCFR or PCRV may enter the call
store bootstrap routine if either determines that one
or more call store memory blocks were not error-free
or not provided in the configuration that has been
established. Therefore, call store bootstrap is entered
to recover a valid call store configuration. Control is
then returned to the calling program, either PCRV or
CCFR, which judges the success of the bootstrap.

B. Interrupt Recovery

425 Following a D-level interrupt, the interrupt

sequencers transfer program control to the
System Interrupt Recovery Program (SIRE) which
stores the appropriate data in the D-level interrupt
bins. The SIRE program then transfers control to
CSFR which then performs a D-level source filtering
function.

4.26 The filter takes one of the following actions:

(a) For software type sources (out-of-range ad-

dress error, protected address violation,
underflow/overflow of stack counter, and program
transfers to call store without setting call store
program flip-flop , the filter sets the appropriate
flags and transfers program control to MARP
Write protect failures only apply to the 256K store.
Write protect failures are treated as access fail-
ures, [paragraph 4.26(c)], but are transferred to
the Write Protect Administration Program
(WPAD) before exiting fault recovery via MARP.
For software type restarts, MARP either rolls
back to a safe point in the interrupted program or
returns control to the base-level reference point
(stack counter errors).

(b) For AU access failures, the filter transfers
program control to the Auxiliary Unit Fault
Recovery Program (AUFR).

1SS 5, SECTION 254-280-310

(c) For call store access failures, the filter trans-

fers program control to the recovery routines
within CSFR.

(d) Finally, if no sources are found by the filter,

program control is transferred to the Central
Control Fault Recovery Program (CCFR) to verify
the central control.

4.27 If the D-level interrupt was caused by a call

store access failure, further action is required
by CSFR.

Note: The AUFR program may encounter
access problems with the call store community.
These problems are referred to CSFR at entry
point CSFRAU. These problems may include a
write protect failure. Recovery from this type
failure is essentially the same as for a D-level
call store access failure. However, for a success-
ful recovery, control is returned to AUFR
rather than exiting to MARP.

4.28 First, CSFR gets the failing call store address

and verifies its validity. The CSFR program
determines whether the addressed module is actually
equipped. If the address is invalid, the problem is
treated as an out-of-range program error. Appropri-
ate flags are set and the program exits to MARP.
Also, if the failing address is not available, CSFR
performs an access test on the entire call store com-
munity to verify its integrity.

429 However, if the failing address is a valid call

store address, CSFR continues the recovery
process by testing the call store bus. The program
tests the bus by sending several patterns of test data

"to the call stores to be returned to central control and

verified. (The test data is not written into memory,
but is simply looped back to central control via the
reply portion of the bus.) If the bus test fails, an at-
tempt is made to remove the failing bus from service.

4.30 If the failing bus is the only bus in service,

CSFR will not remove the bus but will trans-
fer to the call store bootstrap routine. The bootstrap
routine will then attempt to assemble a valid call
store community.

431 On the other hand, if the calling bus can be

removed from service, CSFR reconfigures the
bus control flip-flops in central control (Table A) as
well as those in all call stores (Table B) to the new

Page 37

SECTION 254-280-310

configuration. A full access test of the call store com-
munity is then done to assure that central control can
access a complete copy of all call stores.

432 If the bus test passes, CSFR determines

whether the failure occurred in a duplicated
call store. If the failing store is duplicated, it is re-
moved from service (unless the mate is out of service
or if its error count is greater than zero but less than
five) and its mate is set to operate as a nonduplicated
store. The store error count is incremented by one on
each interrupt that is caused by the store. The error
count is decremented by one every half-hour. After
removal of the suspect call store, the access test is
performed on the call store community. If the store
error count is greater than zero but less than five,
CSFR will attempt to keep the suspect store in ser-
vice as the standby unit. The CSFR program per-
forms a gross access test on the suspect store to
qualify it for service. Successful completion of the
access leads to restart.

4.33 If both copies of a duplicated block of call store

are not available or if the suspect store con-
tains one of the nonduplicated blocks of memory,
CSFR searches for a duplicate call store which can be
used as a replacement for the suspect store. Before
searching for a substitute, CSFR checks to determine
if, during a previous interrupt, a substitute was
found for this block of memory and is in the process
of being updated. If an update is in progress, CSFR
goes to a routine (FINFILL) to finish updating the
substitute store on interrupt. Here, the system must
wait until the update is complete before call process-
ing can be resumed via MARP.

4.34 If no duplicate store is available for use as a

replacement, the error history of the suspect
store is checked. An acceptable error rate causes
CSFR to attempt to use the suspect store. Successful
completion of the access test for the suspect store,
including a retest of the failing location, is followed
by an access test of the entire call store community.
Unless a failure is encountered, CSFR exits to
MARP. An unacceptable error rate would cause
CSFR to attempt to bootstrap the call store commu-
nity.

4.35 If the search for a call store available for use
as a substitute is successful, then CSFR will
attempt to use the suspect call store while the substi-
tute store is being updated. The CSFR program per-
forms a gross access test on the suspect store to
qualify it for use, then takes the following actions:

Page 38

(1} The maintenance flip-flop in the suspect store
is reset (if it was set by an internal error) and
the RO flip-flop is set to the active bus.

(2) The selected substitute store is set to receive

from the active bus, but not to transmit. Its K-
code flip-flops are set to the same K-code as the
suspect store. The maintenance flip-flop of the
substitute store is reset, but its out-of-service
lamp is lighted until its update is complete and it
is brought into service.

(3) The update of the substitute store is at-

tempted by copying from the suspect store
(not from file store). The copy is done as an MACP
job on base level after call processing has resumed.

(4) If the substitute store is the last available for
the community, the major alarm is sounded.

(5) The error history for the store and the commu-
nity is updated.

(6) The call store status table is altered to reflect
the present situation and the “error analysis
in progress” flag is set.

4.36 If the substitute’s data is copied from the sus-

pect store and no errors are detected during
the update, the suspect store is removed from service
and diagnosed. If it passes diagnosis, it is put back
into service and the substitute is returned to its nor-
mal status within the call store community.

4.37 Before program control is returned to call pro-

cessing, the access test is done to verify that
a complete copy of call store is available. Detection
of an error during the access test leads to further
evaluation of the problem. Various actions can be
taken to correct failures:

(a) The standby store is removed if the failing K-
code is duplicated and the failure was detected
on the standby bus.

(b) The standby bus is removed if the failing K-
code is unduplicated and the failure was de-
tected on the standby bus.

(¢) A parity correction is done if a Trap Refresh
Data Parity Failure is detected. (Maximum
three times).

(d) A switch of the buses and a removal of the
standby. bus is done if the maximum parity
corrections were done (see step 3 above).

(e) Bootstrap is entered if the access test failed
too often (six times) or if a standby bus prob-
lem is detected but no standby bus or store exists.

After any one action the community access test is
again entered.

4.38 If the second failure is determined to be from
the same store as caused the original failure,

a check for a store in update is made and the update

completed. Otherwise bootstrap is entered.

C. Bootstrap Functions

439 A Dbootstrap of the call store can be

undertaken for any of the reasons that have
been described to this point. In addition, PCRV or
CCFR may enter the bootstrap routines. The occur-
rence of a call store bootstrap and its reason is re-
ported via the master control console (MCC) and, if
possible, also via the TTY.

4.40 On entry into the bootstrap routines, a check

is made to determine whether bootstrap has
been passed an excessive number of times. If boot-
strap has passed excessively, then the fundamental

strategy is varied. The fundamental strategy is de-

scribed first.

4.41 The call store bootstrap routines attempt to

assemble a complete copy of the call store
memory blocks. Entry into bootstrap implies that
there is a major problem in the call store community
since the first-look routines were unable to come up
with a valid configuration of stores. The bootstrap
routine starts by selecting one call store bus (the ac-
tive) over which the bootstrap is to be tried.

4.42 All maintenance flip-flops in the call store

community are set and the RO flip-flops are
set to the standby bus. The bootstrap routines then
attempt to bring the individual call stores into the
system one at a time.

4.43 The maintenance flip-flop for the store under

test is pulsed to toggle the RO flip-flop to the
active bus. The bootstrap tests are then done using
the active bus. Maintenance and control tests are
done with the maintenance flip-flop set. The mainte-
nance flip-flop is reset, and the bootstrap tests are
completed with the store in the control and normal
modes. At the conclusion of the tests, the mainte-
nance flip-flop is set. The status in program store is

ISS 5, SECTION 254-280-310

then updated to reflect the bootstrap results, and
tests are started on the next call store.

4.44 When all stores have been tested, the boot-

strap results are evaluated by analyzing the
status table. If a complete copy of call store is avail-
able, the hootstrap was successful. When a complete
copy is not available, the ability of the normally du-
plicated call stores to complete the copy is checked.
Substitutes are flagged by the program to be updated
before the return to call processing.

4.45 When a complete copy cannot be assembled

even with the normally duplicated stores act-
ing as substitutes, the bootstrap has failed via the
active bus. The active and standby buses are switched
and the bootstrap is attempted again on the new ac-
tive bus.

4.46 If the bootstrap fails on both buses, a check is

made to determine whether the bootstrap was
requested on D-level by CSFR or by another pro-
gram. Control is returned to the requesting program
with a failure indication if the entry is not a D-level
request. D-level bootstrap requests that fail cause a
program transfer to the CCFR central control switch
routine CCFRRACC. Later, a switch of the active and
standby central controls occurs followed by a B-level
interrupt.

4.47 If the bootstrap is successful, the status of the

individual stores is updated in program store.
The stores then are configured into or out of the ac-
tive system according to the updated status.

4.48 If the bootstrap was entered from PCRYV, pro-

gram control is returned at this point. All sub-
stitute stores are flagged, but the data has not been
updated. The PCRV program controls the update of
these stores.

4.49 If the bootstrap was entered from CCFR or on

D level, the substitute stores are updated by
pumping a copy of the data block from file store. If
a copy is not available, the substitute is zeroed. On
conclusion of the update, program control is trans-
ferred to the full access test for D-level entries or to
CCFR.

450 Successful completion of this access test re-
sults in a return to call processing via MARP.

4.51 If the bootstrap is reentered after having
passed bootstrap previously, a check is made

Page 39

SECTION 254-280-310

to determine whether bootstrap has passed an exces-
sive number of times. Excessive passing of bootstrap
tests causes CSFR to change the fundamental strat-
egy in a prescribed way for this entry and each later
reentry into bootstrap.

4.52 The first change of the bootstrap actions

switches the active and standby call store
buses before the bootstrap tests. A later reentry to
bootstrap causes the suspect call store to be forced
out of the bootstrap screening tests, regardless of
whether it has passed bootstrap tests. Each subse-
quent reentry causes another store to be forced out.
If this process of isolating each store in the commu-
nity one at a time fails to isolate the cause of the
problem, another reentry causes the program to go
directly to the bootstrap failure leg of the program.
This would cause a B-level interrupt and the recovery
would be controlled by PCRV.

D. Noninterrupt Level Functions

453 The CSFR program performs several

noninterrupt level functions. The CSFR pro-
gram administers all changes in the configuration or
status of the call stores and the call store buses. Some
of these functions are also done on interrupt level by
the same routines or subroutines. However, all base
level functions must conform to the base level seg-
menting requirements. Consequently, these func-
tions are normally done as clients of MACP or are
done as a subroutine of other maintenance programs.

4.54 These base level functions are primarily re-
lated to hardware audits, diagnostic requests,
and routine exercise tests.

4.55 The CSFR program administers audits of all

call store/call store bus-related lamps and
indicators located on call store frames and the MCC.
The CSFR program uses subroutines located within
the Master Control Console Common Control and
Monitor Program (MCCM) to check or change the
state of the lamps. The CSFR program assures that
the lamps show the correct state as indicated by
CSFR status tables. Stores whose state is found to be
indefinite are removed for a diagnosis to determine
their correct status before updating the lamps and
status tables.

4.56 The CSFR program performs both pre-

diagnostic and post-diagnostic functions for
all diagnostic requests for the call stores/call store

Page 40

buses. For prediagnostic functions, CSFR assures
that the store to be diagnosed is available and re-
places the store with a substitute copy of the memory
block if necessary. The store to be diagnosed is then
configured out of the system and made available to
the diagnostic program. For bus diagnosis, CSFR
must assure that the system has access to a complete
copy of call store over the remaining bus. This in-
volves changing the bus routing controls in central
control as well as controls in all call stores.

4.57 Post-diagnostic functions include verification

of the success of the diagnostic before return-
ing the unit to service. The CSFR program adminis-
ters the return of the unit to service.

458 The CSFR program also does configuration
functions for diagnostics of the central con-
trol.

4.59 Removal or restoration to service of a store

usually involves more than a simple alteration
of the configuration of the hardware. In many in-
stances, an update of a substitute store must be com-
pleted before a substitute store may be removed from
service. Always, an out-of-service store must be up-
dated to the present contents of its assigned memory
block before it can be placed in service. If a substitute
store had been serving in its place, the substitute
must also be updated to its normal block thus restor-
ing duplication as soon as possible.

4.60 Routine exercise requests for store diagnosis
(midnight routine) are also administered by
routines located within CSFR.

4.61 Finally, CSFR also contains a set of routines

that are used by the Systems Update Program
(SYUP). Included are routines to remove, configure,
and restore call stores and call store buses for system
updating.

CSFR—PROGRAM STRUCTURE
A. General

4.62 The CSFR program (Fig. 8) is divided into two

pidents, CSFRNORM and CSFRBASE. It con-
tains the CSFR code that is essential to the system
recovery programs. Pident CSFRBASE is located in
program store memory block 0 along with other sys-
tem recovery programs. Pident CSFRNORM con-
tains all other CSFR code including the control

routines for D-level recovery as well as the
noninterrupt recovery routines. Pident CSFRNORM
uses routines
CSFRNORM to accomplish the call store fault recov-
ery functions.

located within CSFRBASE and

4.63 The CSFR program also uses numerous sub-
routines located within other programs. The

following programs contain important subroutines
that are used by CSFR:

(a) MACP—Maintenance Control Program sub-
routines are used to set up base level tasks.

(b) MCCM—Master Control Console Common
' Contro! and Monitor Program subroutines are

1SS 5, SECTION 254-280-310

used to verify and update the states of various
lamps and control indicators on the call store
frame and the MCC.

(¢) IOCP—Input/Output Control Program sub-
routines are used to initiate output messages.

(d) DKAD—File Store Administration Program

subroutines are used to perform “pumps” (file
store to call store copy) of store memory blocks.
(File store system only)

(e) $DKADI—Subroutines are used to perform
“pumps” of store memory blocks. (Attached
Processor System [APS] only)e

T T T T
MPFR ~ ATTACHED

FROCESSOR FAILT
RECOVERY PROGRAM
______ID-LEUE.IIIEI!I’I (APS OMLY)
SIRE - SYSTEM KADI - OISX
INTERRUPT AOMINISTRATION
N RECOVERY PROGRAM INTERFACE PROGRAM
PCRV - PROCESSOR (APS OMLY)
CONFIGURATION
RECOVERY PROGRAM
MM - MCC
COMMON CONTROL
MD MONITOR
CCFR - CENTRAL PROGRAM
CONTROL FAULY
RECOVERY PROGRAM
P -~ INUT/
QUTPUT CONTROL
R FROGRAN
AR - AUXILIARY
UNIT FALT CALL STORE FAULT RECOVERY PROGRAM
RECINERY PROGRAM PIDENTS:
pr IKAD - FILE STORE
CSFRBASE JOMINISTRATION
FROGRAM
MACP - MATMTENANCE (FILE STORE ONLY)
CONTROL PROGRAM
FSFR ~ FILE STORE
FAULT RECOVERY
PROGRAM
SYUP - SYSTEM {FILE STORE ONLY)
UPDATE
DCON ~ DIABNOSTIC
OONTROL PROGRAM
WPAD - WRITE
PROTECT L
ADMINISTRATION
PROGRAM

WRP - MAINTENANCE
< RESTART PROGRAM

®Fig. 8—Call Store Fault Recovery Program (CSFR) Interfacesd

Page 41

SECTION 254-280-310

(f) AUFR—Auxiliary Unit Fault Recovery Pro-
gram subroutines are used to stop AUs during
CSFR recovery functions.

(g) CCFR—Central Control Faulty Recovery Pro-
gram subroutines are used for all central con-
trol configuration changes during testing.

(h) FSFR—File Store Fault Recovery Program
subroutines are used to restore the file store

controllers to their previous state after a pumping

operation if possible. (File store system only)

(i) PAPFR—Attached Processor Fault Recovery

Program subroutines are used to restore the
APIs to their previous states after a pumping op-
eration. (APS only)4

(j) WPAD—Write Protect Administration Pro-
gram subroutines are used to verify a write
protect error before restart.

4.64 There are several other important program
interfaces in addition to the subroutine inter-
faces.

(a) SIRE—The CSFR program is always entered
from the System Interrupt Recovery Program
after a D-level interrupt.

(b) PCRV—The CSFR program has several inter-

faces with the Processor Configuration Recov-.

ery Program during system recoveries, call store
bootstraps, and PCRV initiated pumps of call
store.

(¢) DCON—The CSFR program has several exits
to diagnostic control to start or stop a diagnos-
tic of call store.

(d) SYUP—The CSFR program interfaces with

the System Update Program to remove,
configure, and restore call stores and call store
buses for system updating.

(¢) MARP—The CSFR program interfaces with

the Maintenance Restart Program to set up
the restart and the output data and then normally
exits to restart.

4.65 The CSFR program control structure and

bootstrap operations were described as a part
of Interrupt Recovery. A description of the remain-
ing major routines follows.

Page 42

B. Full Access Test

4.66 Before returning to call processing, CSFR
must verify that a complete copy of call store
is available. The full access test routine may be en-
tered to verify a single call store block of memory or
to verify the entire call store community. The single
block verify function is used as a part of the recovery
function, whereas the successful completion of the
complete copy verify on D level leads to restart.

4.67 This test routine is also used by such non D-

level programs as PCRV and CCFR to assure
that a complete copy of call store is available. These
programs use entry point CSFRACC and, on comple-
tion of the tests, control is returned to the calling
program with a pass/fail indication.

4.68 For D-level recovery, the initial entry to the

access tests determines whether the central
controls were operating in step at the time of the in-
terrupt. If they were, an attempt is made to start the
standby in step with the active before performing the
access tests. If the standby is placed in step with the
active, then routine matching is established without
interrupts. Also, the active central control is set to
halt matching and stop the standby if a mismatch is
detected. The CSFR program always uses CCFR ser-
vice routines to make any required changes in the
configuration of central control. The access tests are
then done sequentially on each K-code assigned to
the call store community or the single specified K-
code for a one block verify.

4.69 If the tests pass, the following actions are tak-

en. If the central controls were in step during
the access tests, the standby is stopped and a check
is made for mismatch errors. If the central controls
mismatched, an ASWF is detected, or an DPWEF is
detected in the standby central control during the
tests; a request is made for a diagnosis of the standby
central control. This diagnosis is done on base level
after interrupt recovery is completed. The standby
call store bus is then removed from service and the
full access test is reentered. However, if no errors
occurred, CSFR requests a restore of the standby
central control on base level.

4.70 If the tests were performed successfully with

no mismatches or with only the active central
control, report data is prepared for output. The CSFR
program then requests diagnosis for all units re-
moved by CSFR or, in the event a bootstrap was en-

tered, a diagnostic is requested for all out-of-service
call stores and call store buses.

4.71 At this point, control is returned to AUFR for

D levels caused by AU access failures, and call
store D-level failures are transferred to MARP for
restart. Write protect errors are transferred to
WPAD before restart.

4.72 If the access tests fail, checks are made of the

number of previous failures. The results of the
checks depend on whether bootstrap was entered be-
fore and whether the buses were switched. If either
of these actions occurred, bootstrap is entered. If not,
further analysis of the failure is done. If the failure
was detected in the standby central control, the
standby store is removed. If no standby store existed,
the standby bus is removed. If neither standby bus
nor standby store exist, bootstrap is entered. If the
failure was detected in the active central control, a
check is made for a Trap Refresh Data Parity Failure
which if detected is corrected. After the first failure,
the first fail flag is set as an indicator for possible
later failures.

4.73 After the fourth detected failure of the active

central control or active bus, a switch of the
active and standby bus is done followed by a removal
of the standby bus.

4.74 If the first fail flag is set and if error analysis

is set, a check is made to determine whether
an update of a substitute call store is in progress. If
an update is in progress, a transfer is made to the
FINFILL subroutine to allow the update to complete
on interrupt level. Later, the access tests are reen-
tered to assure that a complete copy of call store is
.available after the substitute store is placed in ser-
vice.

4.75 If an update is not in progress, CSFR trans-
fers to the call store bootstrap.

C. Call Store Remove—Replacement Ready

4.76 Upon entry, this routine removes the specified

call store member from service and replaces it
with another call store whose member number is also
supplied to the routine. The replacement call store

may or may not have been in service before entry;

however, it is assumed to contain the correct memory
block.

1SS 5, SECTION 254-280-310

D. Find Duplicated Call Store to Serve Another Memory
Block :

4.77 Before a nonduplicated call store can be re-

moved from service (except during bootstrap),
a substitute store must be selected for it from the set
of duplicated stores. If a substitute is found, it is re-
moved from service and set for updating to its new
memory block. A control write is used to write the
unit to its new status: K-code changed to replace unit
being removed, RO set to equal the active bus, main-
tenance flip-flop reset, the ANSO and ANS1 flip-flops
are reset, and the communications reply inhibit is
set.

Note: Four 64K stores may be used to replace
a single 256K store. :

4.78 A Maintenance Control Program (MACP) rou-

tine job request is then made to copy (update)
the store to its new memory block. The update is done
on base level by reading from the store being re-
moved from service and writing back into it and the
new substitute.

4.79 After completion, the routine returns control
to the client routine with a success or fail indi-
cation.

E. Qualify Suspect Store for Update

4.80 Upon entry, an attempt is being made to use

a suspect call store and therefore avoid delays
because of pumping from file store or bootstrapping
the call store community. This routine qualifies the
store before the attempt is made to use it.

4.81 This routine does a test of the suspect store.

The test includes an access test as well as fail-
ing address tests. If the test passes, the store is con-
sidered to have encountered an error (as opposed to
a fault). The error analysis flag is set in the unit’s
status table, and the full access test for the call store
community is entered in preparation for the resump-
tion of call processing.

4.82 If the test fails, the store is immediately re-

moved from service. If a store had previously
been selected as a substitute, its update is completed
on the interrupt level; or, if the store was duplicated,
its mate is set up as the active unit. Otherwise, the
bootstrap routines are entered.

Page 43

SECTION 254-280-310

F. Complete Recovery After an Update Error

4.83 This routine (entry point FINFILL) is entered

when an error is encountered in a memory
block that is being updated; ie, the contents of one
store is being copied into another. The source of the
error must be isolated to either the store being copied
or the store being updated.

4.84 If the error originated in the store being up-

dated, it is removed from service as if it were
a faulty store in a duplicated pair and the update in
progress flag is reset. On the other hand if the error
originated in the store being copied, the update is
completed in one of two ways, depending on the cate-
gory of information in the memory block. Informa-
tion backed up on file store is updated from file store,
whereas information not backed up on file store is
copied unconditionally; ie, it may be no good. This
would be an abnormal case (a duplicated store failing
when its mate is unavailable).

4.85 The update is completed on interrupt (only a

64K block of memory is updated as described
in paragraph 4.77, Note). Failure to complete the up-
date results in a bootstrap and/or entry into AUFR
if the file store controller shows a trouble condition.
Also, the store status is marked to show that it may
have been zeroed. The MARP program may later ini-
tiate an office phase.

G. Update a Call Store by Copying lts Assigned Block

4.86 Routine CSFRCOPY is used to update a store

to the present contents of its assigned memory
block by reading from the in-service store and writ-
ing the results into both stores. This routine is nor-
mally done on base level. The initial entry is through
the routine request table of MACP.

4.87 The request for a copy update is made via the
control write new status (CWNEWST) routine
when:

(a) A store is to be updated to replace one already
in service for which there is a removal or diag-
nostic request.

(b) A store is to be updated to serve as an alter-
nate to a nonduplicated store that has encoun-
tered an error.

(c) A store is to be updated before restoring it to
service as a nonduplicated store or as one of a
duplicated set of stores.

Page 44

H. Call Store Community Status Update

4.88 A copy of the call store community status is

maintained in a program store table. The sta-
tus table is assumed to be correct when the store
community’s configuration is altered by a routine
other than bootstrap. The routine is entered to up-
date the status table to agree with the actual store
community configuration when there is reason to
believe that it may not be accurate; ie, after a pump
of program store block 0. The routine may be entered
under program control; ie, from PCRV.

4.89 The correct status is determined by pulsing

the maintenance flip-flop for each call store
and updating the status according to the answer. If
no answer is received, the call store is assumed to be
out of service.

I. Call Store Restore

4.90 On entry, this routine verifies that the speci-

fied call store can be returned to service. If the
store can be returned to service, the store is
configured to be updated to its assigned memory
block. The store is updated to its assigned memory
block by the CSFRCOPY routine as a base level task.
On completion of the update, program control is re-
turned to this routine. The store is then placed into
service, and a message is printed to show that the
restore is complete.

4.91 The restore routine may be entered as a result

of a TTY request to restore or as a result of a
program request to restore after a successful diagno-
sis of the store.

J. Call Store Removal Routine

4.92 On entry into this routine, the specified call

store is removed from service if its duplicate
member is available. Also, in the case of manual TTY'
or MCC requests for removal, the specified store is
removed if a call store is available to substitute for
the requested unit. This routine is also used when a
diagnostic has been requested for a store that is in
service. A portion of this routine is used as a subrou-
tine to remove a store from service for which a copy
has just been updated.

4.93 This routine has several entry points, each of
which removes the specified store under dif-
ferent conditions as follows:

(a) A global entry (CSFRSRMYV) is used by TTY,
call store control panel, or power alarm re-
quests to remove a call store.

(b) Another entry is used for diagnostic requests

for an in-service store. The store is removed
from service, and the diagnosis is started. If the
diagnosis is being run as a restoral request, the
call store restore routine is entered if the diagnosis
is completed with an all tests pass (ATP).

(c) Another entry is used to “swap units,” ie, a

store has been updated to replace the store
being removed. The replacing store is made the
active store and the requested removal is per-
formed. The out-of-service lamps are updated as
for all removals and restores.

K. Configuration Change Routine

4.94 As call store buses are restored to or removed

from service or are switched from serving the
active central control, etc, the call stores listening to
and responding to those buses must have their rout-

ing flip-flops altered to conform to the new condi- °

tions. The configuration change wuses two
subroutines. One subroutine alters the call store sta-
tus table to agree with the new bus status, whereas
the other subroutine sets the call store routing flip-
flops to conform with the configuration found in the
status table. When all stores conform to the status
table, control is returned to the routine or program
that requested the configuration change.

495 This routine removes the standby bus from
service, switches the active and standby buses,

returns the standby bus to service, or establishes a

configuration based on the status table.

5. PROGRAM STORE FAULT RECOVERY PROGRAM—
PSFR

INTRODUCTION

5.01 The PSFR program has three basic functions

in the 1A Processor. First, PSFR is entered
from the System Interrupt Recovery Program
(SIRE) for program store access failures that result
in E-level interrupts. Later, PSFR resolves program
store related problems and steers any nonprogram
store problems to the appropriate recovery program
such as the Central Control Fault Recovery Program
(CCFR) or the Auxiliary Unit Fault Recovery Pro-
gram (AUFR). (Some central control and AU prob-
lems may initially appear to be program store
problems.) Second, PSFR provides a “bootstrap” ca-
pability for the program store community. Finally,

ISS 5, SECTION 254.280-310

PSFR provides several service routines for use by
other programs.

PROGRAM STORE ORGANIZATION AND FEATURES

5.02 The 1A Processor program store community

contains several individual program stores.
The number of program stores varies according to
the type and size of the switching office installation.

5.03 The store community may consist of 64K (1K=

1024 words) core-type stores (two per frame),
64K semiconductor-type stores (up to six per frame),
or 256K semiconductor-type stores (up to eight call
stores and six program stores per frame) or a combi-
nation of these frames. All three frame types can
operate at 1400 ns (slow); in addition, the 256K store
can operate at 700 ns (fast) when not mixed with
other types of stores in the same community. The
maximum number of program stores is 24 members
(0 through 23) of the 64K size or its equivalent in
256K size.

5.04 The central controls access the program stores

via duplicated program store buses that inter-
connect every program store frame with both central
controls (Fig. 9) (the buses may have as many as two
branches). A unique address identifies each program
store word location. This address consists of a K-code
and a data location address (F'ig. 10). The K-code por-
tion of the address identifies the specific 64K pro-
gram store memory block to be addressed. The K-
code also identifies the specific program store to be
addressed (ie, one K-code identifies the specific 64K
program store, but any one of four consecutive K-
codes identifies a single 256K store). The data loca-
tion identifies the specific data location to be ac-
cessed within the 64K program store memory block.

5.05 Two program stores are normally designated

as spares (called rovers) and can be assigned
to replace any program store that malfunctions. Dur-
ing normal operation, the spare 64K program stores
contain duplicate copies of information stored in pro-
gram store memory block 0 and memory block 1. Con-
sequently, these spare stores are normally assigned
the same K-codes as those containing memory block
0 (K-code 20) and memory block 1 (K-code 21). Pro-
gram store memory block 0 contains the system re-
covery programs. However, if the spare stores are
256K, the first eight blocks of program store memory
are duplicated. Here, the spare stores are assigned K-
codes 20 through 23 and 24 through 27.

5.06 The K-code of any program store may be
changed under program control by PSFR. The

Page 45

SECTION 254-280-310

BUS 0
| |
JSADD3A ' MEMBER 0| [MEMBER 1 |
CORE STORE || gax gak ||
FRAME | |
| |
BUS 1
BUS 0
l BUS ACCESS 0 —:
J5AC08A | [UP 10 6 1 |
64K SEMI- MEMBER O |STORES __ _, [MEMBER 5
CONOUCTOR || 64k [PER FRAME gak |l
STORE | T |
FRAME
| |
L T
BUS 1
BUS 0
[t e |
I BUS ACCESS 0 |
JSAQ10A | [UP 10 6 PROBRAM 1 |
é‘;gﬂﬂg";:m | [MEMBER 0 sTORES MEMBER 51 |
NY) ook || ZSPKCEQUALIPER FRane | 258K l
SENICONDUCTOR | | 10, FOUR
SENICONDUCTOR | | 4 STORES |
FRAME |
|

Fig. 9—Functional Layout of Three Types Used for Program Store

changeable K-codes allow PSFR to substitute a spare
duplicate program store for another store if a failure
occurs (four 64K stores may be used to replace a sin-
gle 256K store). The PSFR program can uniquely
identify any member of the program store commu-
nity regardless of its K-code by pulse point access
using generate control pulse (GCP) instructions.

Note: When 64K and 256K stores (1400 ns
only) are mixed within a program store commu-
nity, several combinations are possible for du-
plicate store arrangements. Duplicate stores
may be a pair of 64K stores, a pair of 256K
stores, or a 256K store and four 64K stores.

Page 46

5.07 Three program stores are designated as pro-

cessor configuration controlled stores. These
are the stores containing program store memory
block 0 (K-code 20) and the two spare (rover) pro-
gram stores normally assigned as backup for pro-
gram store memory block 0 and 1 (for 64K stores) or
memory blocks 0 through 3 and 4 through 7 (for 256K
stores). For a gross system malfunction, these pro-
cessor configuration stores can be accessed by central
control via the processor configuration data inter-
face. This interface can be used to force the selected
program store to change its K-code to K-code 20 (20
through 23 for a 256K store). This interface also pro-
vides direct access to the RO flip-flops and mainte-

EXAMPLE USING 64K STORES ONLY

ISS 5, SECTION 254-280-310

TYPICAL DUPLICATED

ARRANGEMENT
FOR ROVERS
PROGRAM STORE BUS 0 —
MEMBER 0* |[MEMBER 1 || MEMBER 2* || MEMBER 3 || MEMBER 4* |[MEMBER 5
. 10
[memorY BLack | memory BLack | {MEMORY BLOGK! gy piock | (MEMORY BLOCK! newory ‘sLock| | oupL1caten
0 1 2 3 [~|ceNTRAL
K-CODE K-CODE il K-CODE (ROyea) K-CODE CONTROLS
9 20 9 21 9 22 - 9 23
| [5 | T |
PROGRAM STORE BUS 1 T
TYPICAL DUPLICATED
'EXAMPLE USING 256K STORES ONLY ARANGEMERT
FOR ROVERS
PROGRAM STORE_BUS 0)
MEMBER 0* || MEMBER 1 MEMBER 2+ |[MEMBER 3 MEMBER 4*
10
IemoRY BLOCKS | mEmoRY BLocks| |MEMORY BLOCKS! iemory puocks|MEMORY BLOGKS| 55 1arep
0,1,2,8 4,5,6,7 (ROVER) 8,9,10, 11 ROVER) | | CENTRAL
K-CODE K-CODE ROVER] K-CODE i CONTROLS
9 20-23 9 24-27 P 30-33 y
| | 20-23 : B 24-27 J

LEGEND: *

PROGRAM STORE BUS 1

K
’

NOTE: 64K AND 256K STORES MAY BE
MIXED, BUT ONLY IF THE 256K
STORES ARE OPERATED "SLOW."

PROCESSOR CONFIGURATION SEQUENCER CONTROLLED STORES (0,2,4)
1024 WORDS
OCTAL NUMBER

THE PROGRAM STORE COMMUNITY MAY

NOT EXCEED THE EQUIVALENT
OF 24 64K STORES.

Fig. 10—Program Store Organization—Simplified

nance flip-flops of the processor configuration
program store.

5.08 The bus selection flip-flops located in central

control and in the program stores control the
bus routing of communications between central con-
trol and the program stores. The duplicated buses are
referred to as 0 and 1. Always, one pair is called the
active bus and the other is called the standby bus.

Central control bus selection flip-flop functions (Ta-
ble C) are as follows:

(a) PBA—When PBA is reset, bus 0 is the active
bus and bus 1 is the standby. This results in
the active central control transmitting and receiv-
ing over bus 0 and the standby central control
using bus 1. When PBA is set, the active central
control uses bus 1 and the standby uses bus 0.

Page 47

SECTION 254-280-310

(b) PBO—When PBO is set, the active central 5.09 The controls located in the program stores are

control transmits on both the active and the as follows:
standby buses but receives on only the active bus.
The standby central control does not transmit (a) RO—Selects the bus over which the store re-
data, but does receive on the standby bus. ceives information from central control. When

reset, the store receives data on bus 0. When set,

(¢) PBT—When PBT is set, the active central con- the store receives on bus 1.

trol sends and receives on the active bus and
the standby central control receives on the active (b) ANSO—When set, the store sends data to cen-
bus but does not send on either bus. tral control over bus 0. When reset, the store

does not send on bus 0.
Table C summarizes the configuration capabilities of
the bus from the central control end of the bus. (c) ANS1--When set, the store sends data to cen-
TABLE C

CALL STORE BUS CONTROLS LOCATED IN CENTRAL CONTROL

CONTROL
FLP-FLOPS (NOTE 1) CENTRAL CONTROL
SENDS ON RECEIVES ON
PROGRAM STORE BUS PROGRAM
PBT | PBO | PBA (NOTE 2) ' STORE BUS
0 0 0 0 0
0] 0 |1 1 1
0 1 0 0&1 0 Active
0 1 1 0&1 1 Central
1 0 0 0 0 Control
1 0 1 1 1
1 1 0 0&1 0
1 1 1 0&1 1
0 0 0 1 1
0 0 1 0 0
0 1 0 X 1 Standby
0 1 1 X 0 Central
1 0 Q X 0 Control
1 0 1 X 1
1 1 0 X 0
1 1 1 X 1

Note I: 0 = Reset, 1 = Set
Note 2: X = No Bus Transmission

Page 48

tral control over bus 1. When reset, the store
does not send on bus 1.

When the store is in a maintenance or control mode,
the store returns data to central control on the bus
designated by RO regardless of the state of ANSO and
ANSI. Table D summarizes the controls located in
program store.

5.10 The various combinations of settings of these
controls allow the program to isolate most bus
faults with a minimal effect on the system operation.

5.11 The 256K store has two additional access con-

trols that are used by the maintenance and
recovery programs. The first control is the SLOW
flip-flop. When set, the store operates at a 1400-ns
rate. The store must operate at this rate when mixed
with 64K stores in the same community. When the
SLOW flip-flop is not set, the store operates at the

1SS 5, SECTION 254-280-310

700-ns rate. The second control is a set of four flip-
flops: 0KBR, 1KBR, 2KBR, 3KBR. Each of these flip-
flops controls the read access of the corresponding
64K block of memory. When any of these are set, the
corresponding 64K block of memory will not respond
to a read access and will not return error signals for
either reads or writes. These four flip-flops are used
during copy operations to update a store in 64K incre-
ments.

5.12 Bus access to the program stores may be ac-

complished in any one of three modes of oper-
ation: normal, maintenance, or control mode. The
mode of operation depends on the setting of the
maintenance flip-flop in the program store and mode
bits which accompany the address information for
each access of the store.

5.13 Normal mode operation allows central control
to access those program stores whose K-code

TABLE D

PROGRAM STORE BUS CONTROLS LOCATED IN PROGRAM STORE

CONTROL
FLIP-FLOPS (NOTE 1) PROGRAM STORE
SENDS ON
RO PROGRAM STORE BUS RECEIVES ON
(NOTE 2) | ANSO | ANSI (NOTE 3) PROGRAM STORE BUS

0 0 0 X 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0&1 0

1 0 0 X 1

1 0 1 1 1

i 1 0 0 1

1 1 1 0&1 1

Note 1: 0 = Reset, 1 = Set

Note 2: On maintenance and control orders, the program
store answers the bus designated by the RO flip-
flops regardless of the state of the ANSO and ANS1
flip-flops.

Note 3: X = No Bus Transmission

Page 49

SECTION 254-280-310

matches the one sent via the bus, provided the main-
tenance flip-flop is not set in the store. Maintenance
mode operation allows central control to access a
store whose K-code matches the one sent, provided
the maintenance flip-flop is set. Control mode opera-
tion enables central control to alter the status of con-
trol and maintenance flip-flops within a store
without affecting the data stored in the memory
module. Control mode operation depends on the mode
bits matching the setting of the maintenance flip-
flop (set or reset).

5.14 Maintenance load and store instructions (or-

ders) provide the flexibility to send mainte-
nance, control, or normal mode orders to the stores.
These orders provide access to maintenance, status,
and control flip-flops located within the program
store. In addition, these orders control the sending of
valid/invalid parity, clock pulses, etc.

5.15 Memory within the program store community
primarily provides storage for central control
program instructions. However, office dependent
data, which must be readily available to the central
control but which is infrequently changed, is also
stored in program store. Except for memory blocks
0 and 1, or 0 through 7 for 256K stores, program store
data is not duplicated because a backup copy of the
data is available on file store. If a software or hard-
ware fault causes mutilation of the data stored in
program store, the backup data can be “pumped” into
the faulty store or its replacement from file store.

5.16 Since the program store community is suspect

when an E-level interrupt occurs, the basic
sanity of the program store community is established
by a program executed from call store. Therefore, an
E-level interrupt causes control to be passed to a pro-
gram located in the protected range of call store
memory. The status of the program store community
is also checked by a program executed partially from
call store. Before transferring to a call store pro-
gram, the CSPGM flip-flop must be set in the central
control. The CSPGM flip-flop is set by the hardware
interrupt sequencer on E-level interrupts.

5.17 All tables and scratch pad words associated

with the call store program for program store
recovery reside in the duplicated area of call store.
The program store recovery itself and associated
translations may be located in the nonduplicated
area of call store since it is backed up on file store.

5.18 In a normal 1A Processor configuration with
both central controls and both program store

Page 50

buses in service, duplicate stores are configured to
opposite buses; ie, one store of the pair receives from
and sends to the active program store bus while the
other store of the pair receives from and sends to the
standby program store bus. The nonduplicated stores
are configured to receive from the active bus and
send to both buses.

5.19 When one program store bus is out of service,

one store of each pair of duplicated stores is
configured to receive from and send to the active pro-
gram store bus. The other stores of the duplicated
pairs are configured to receive from the active bus
but are not configured to send on either bus.

5.20 The primary mechanisms for trouble detec-
tion in the program store and related equip-
ment are as follows:

(a) The program store returns an all-seems-well

(ASW) signal to central control for every read
or write operation that appears valid at the store.
Failure to return ASW shows a trouble condition.

Note: The 256K stores operating fast (700-
ns) cannot detect error conditions in time to re-
turn an all-seems-well failure (ASWF') during
the 700-ns cycle. For those error conditions that
normally return ASWF during slow (1400-ns)
operation, the store returns the data parity or
write enable failure signal (DPWEF) during the
next 700-ns cycle instead.

(b) The DPWEF signal is used only by 256K stores
operating fast. This signal is returned during
the next 700-ns cycle after the error is detected.

(c) The program store returns an ASWF signal on
every read or write operation that appears in-
valid at the store.

(d) Each address received by a program store is

accompanied by a parity bit covering the ad-
dress (data word location) and the K-code. The
program store checks this parity. Incorrect parity
causes the store to read at the indicated address
(no writing is done) and to suppress the ASW sig-
nal while generating the ASWF gignal.

(e) All data written into program store is accom-

panied by two parity bits for each 24 bits of
data. These parity bits that cover the address (in-
cluding K-code) and data are checked by the store

itself and are transmitted back to central control
whenever the data is read out. If the data parity
check at the store fails, the write is completed
(parity check results are not completed in time to
suppress the write) but ASW is suppressed and
ASWF is generated. The central control then
checks the received parity against the computed
parity over data received and the address.

(f) Semiconductor stores autonomously perform a

periodic (about every 184 ms) data parity
check of every address. If this autonomous data
parity check fails, the store sets a flag flip-flop and
will return ASWF and no ASW the next time it is
addressed.

(g) All data to be written into program store must

be preceded by a write enable pulse timed to
precede the readout strobe. The write enable pre-
pares the store to receive information from the
data bus. If the pulse is not received on a write or-
der, the cycle is completed as a read operation and
an ASWF signal is generated while ASW is inhib-
ited.

(h) Each store contains an error summary regis-

ter. Setting an internal error indicator in the
error summary register sets the maintenance flip-
flop, enables the ASWF signal, and inhibits ASW.
Errors which occur after time for transmission of
ASWF and ASW are detected by central control on
the next operation to the store. Internal errors are
recorded in the error summary register when con-
ditions such as access circuit trouble are detected.
Also, certain access circuit points are monitored
and checked for validity. These error indicators
can be used by PSFR to localize the fault or error.

Central control causes an E-level interrupt when any
of the above error conditions are detected.

5.21 For a more detailed description of program
store refer to the following sections:

SECTION TITLE

254-201-010 Call Store/Program Store—De-
scription

254-201-011 Call Store/Program store—The-
ory

254-201-012 Call Store/Program Store, 1400-ns

Semiconductor Store—J5A008A —
Description

ISS 5, SECTION 254-280-310

254-201-013 Call Store/Program store, 1400-ns
Semiconductor Store—J5A008A —
Theory

254-201-014 Call store/Program Store, 256K
Semiconductor Store—J5A010A —
Description

254-201-015 Call Store/Program Store, 256K

Semiconductor store—J5A010A —
Theory.

PSFR—FUNCTIONS AND STRATEGY
A. General

5.22 The primary purpose of PSFR is to return the

system to normal call processing (Fig. 11) as
quickly as possible after a fault or error condition has
been detected in the program store community.
Therefore, whenever possible, PSFR will remove the
faulty store on a first-look basis. The first-look ap-
proach works in the same way as call store fault re-
covery first look. The first-look approach uses error
indicators in the central control, the bus configura-
tion, and the store status to identify the faulty store.

5.23 When the trouble is located in duplicated pro-

gram store, the suspect unit is removed from
service, and the remaining unit is set to operate as if
it were not duplicated. An unduplicated block of
memory requires further analysis. Program store
fault recovery attempts to find a rover store that can
be loaded with a copy of the suspect memory block.
If it is able to select a rover store and start the copy
of the suspect store, it then checks the error history
(kept by PSFR) of the suspect store. If the history is
acceptable, the store is left in service until the rover
update is completed.

5.24 If the error history is unacceptable, the

suspected unit is removed from service and
the system must wait until the rover is filled from
file store. Also, the program checks to see if a previ-
ous error has resulted in a rover store being prepared
as a duplicate for the suspected block of memory. If
a rover has been updated, the rover is placed in ser-
vice and the suspect unit is removed. If a rover is in
the process of being updated, the system waits for the
update to be completed and replaces the suspect unit
with the rover store.

5.25 After a configuration of program stores has
been selected, an access test is done on each

Page 51

SECTION 254-280-310

E - LEVEL ENTRY

INTERRUPT BINS

SIRE - SYSTEM INTERRUPT
RECOVERY - LOAD E-LEVEL

» TFEFR

AMFR - ARDILIARY UNIT
FAULT RECOVERY

PSFR - ERROR ANALYSIS
FUNCTIONS - VERIFY PSFR
ACTIONS, KEEP HISTORICAL
DATA

11

PSFR - BOOTSTRAP - SELECT
AND INITIALIZE A PROGRAM
STORE SUBSYSTEM

RESTART PROGRAM

lo———p RETURN TO BASE LEVEL PROCESSING

Fig. 11—Program Store Fault Recovery—Program Flow and Interfaces—Simplified

memory block to verify the integrity of the program
store community. Failure of the access test after the
suspect store has been removed from service can
cause the program to transfer to the program store
bootstrap routine.

5.26 Bootstrap attempts to assemble a complete

copy of program store using only stores which
pass the bootstrap qualifying tests. The bootstrap is
considered successful if a full copy of program store
(with or without the use of rover stores) has been as-
sembled. Failure of bootstrap results in a transfer to
the Processor Configuration Recovery Program
(PCRV) to switch central controls (B-level interrupt).
After a successful fault recovery, control is returned
to normal processing by transferring to the Mainte-
nance Restart Program (MARP).

5.27 In addition to the normal interrupt recovery,
program store fault recovery may be entered

Page 52

for access tests from the CCFR or AUFR programs.
Also, the program may be entered by PCRV to select
a configuration of program stores or by PCRV or
CCFR to bootstrap the stores. For these entries, pro-
gram control is returned to the requesting program
at a successful or unsuccessful return point after
completion of the function.

5.28 Finally, PSFR contains many service routines

that are used on base level to perform
noninterrupt level maintenance functions on the pro-
gram stores. These service routines are normally run
as clients of MACP in conjunction with routine exer-
cise, diagnosis, or off-line requests.

B. Interrupt Recovery
5.29 An access failure of a program store will cause

an E-level interrupt. After the interrupt, con-
trol is passed to the System Interrupt Recovery Pro-

gram (SIRE) which stores the appropriate data in
the E-level interrupt bins. The SIRE program then
transfers control to PSFR where PSFR does a filter
funetion before attempting the recovery.

5.30 There is only one E-level interrupt source
(program store access failure).

Note: The Auxiliary Unit Fault Recovery
Program (AUFR) may encounter access prob-
lems with the program store community. These
problems are referred to PSFR by AUFR at
entry point PSFRAU. These problems may in-
clude a write protect failure. Recovery from this
type failure is essentially the same as for an E-
level program store access failure. However, for
a successful recovery, control is returned to
AUFR rather than exiting to MARP.

5.31 First, PSFR examines the failing address and

verifies its validity. If the failing address is an
unequipped program store memory block, then a flag
is set to show an out-of-range addressing error has
been made by the program. The PSFR program then
exits to MARP to restart normal processing.

5.32 However, if the failing address is a valid pro-

gram store address, PSFR continues the re-
covery process by testing the program store bus. The
program tests the bus by sending several patterns of
test data to the program stores to be returned to cen-
tral control and verified. The test data is not written
into memory but is simply looped back to central con-
trol via the reply portion of the bus. If the bus test
fails, control is transferred to the bus switch routine.

5.33 The bus switch routine attempts to switch the

active and standby program store buses. How-
ever, if the standby bus is already out of service or if
the active bus has been forced (manually selected)
from the master control console (MCC), the buses
cannot be switched and program control is trans-
ferred to the bootstrap routines. If the bus switch is
successful, the new standby bus is removed from ser-
viee and the routing flip-flops in the stores are up-
dated to reflect the change. Program control is then
transferred to the PSFR access tests to verify that a
complete copy of program store is available before
exiting to MARP.

5.34 If the program store bus passes the tests, a
check is made to determine whether the fail-
ing store is duplicated. If the store is duplicated, it is

1SS 5, SECTION 254-280-310

removed from service (unless its error count is

. greater than zero but less than five) and its mate is

configured to operate alone. The store error count is
incremented by one on each interrupt that is caused
by that store. The error count is decremented by one
every half hour. If the store error count is greater
than zero but less than five, PSFR will attempt to
keep the suspect store in service as the standby unit.
The PSFR program does a gross access test on the
suspect store to qualify it for service. The access tests
are entered to verify that a complete copy of program
store is availlable before exiting to MARP.

5.35 If the failing store is not a duplicated store,

any one of several recovery actions is possible.
First, if a previous error had resulted in selection of
a rover store for updating to the contents of the fail-
ing memory block, then the recovery is transferred to
the FINFILL routine. The FINFILL routine deter-
mines whether the failure is in the original failing
store or if the rover is being updated to act as a sub-
stitute. If the rover has failed, it is removed from ser-
vice and access tests are used to verify that a
complete copy of program store is available before
exiting to MARP.

5.36 However, if the original failing store has

failed again, it is removed from service and
the rover is configured to take its place. Routine
FINFILL then checks the progress of the update.
When the update has been completed, program con-
trol is transferred to the program store access tests
to verify that a complete copy of program store is
available before exiting to MARP.

5.37 If the update has not been completed,

FINFILL determines whether the failing
memory block is block 0 or another. If block 0 has
failed, the rover is “pumped” with a copy of the mem-
ory block from file store. If any other memory block
has failed, the program must determine whether a
complete copy of the failing memory block is avail-
able in file store. Any part of the memory block that
is backed up in file store is pumped and any part that
is not backed up is zeroed. If either pumping or
zeroing of the failing memory block is unsuccessful,
the processor configuration circuit is activated (B-
level interrupt occurs). Successful completion of the
pumping or zeroing is followed by a transfer to the
program store access tests before exiting to MARP.

5.38 If the calling nonduplicated store was not in
the process of having a rover updated to take

Page 53

SECTION 254-280-310

its place, its error history is checked. If the error his-
tory is unacceptable, an attempt is made to find a
rover store for update. If no rover is available, pro-
gram control is transferred to bootstrap. If a rover is
available, it is set up to receive update. An access test
is then done on the failing store in an attempt to
qualify it for use during the update procedure. If the
store fails the qualifying test, it is removed from ser-
vice and the program transfers to FINFILL to com-
plete the update of the rover on interrupt level.

5.39 If the store passes the qualifying test, the

store is marked for error analysis and an up-
date request is made for base level. (On base level, the
update is done by reading from the suspect store and
writing the data back into the suspect and the rover
store.) Before exiting to MARP, the program store
access tests are entered to verify that a complete copy
of program store is available.

5.40 If a failing nonduplicated program store is

found to have an acceptable error history, an
attempt is also made to find a rover store for update.
However, failure to find a rover does not immediately
result in a bootstrap. Instead, PSFR attempts to
qualify the suspect store for system use by perform-
ing an access test on the single suspect K-code. Fail-
ure to pass the qualifying test would then result in a
transfer to bootstrap since a complete copy of pro-
gram store is not available.

5.41 If the store passes the qualifying test, the

store is marked as an error analysis store. The
program then transfers to the program store access
test to verify that a complete copy of program store
is available prior to exiting to MARP.

C. Bootstrap Functions

5.42 A bootstrap of the program store community

can be undertaken for any of the reasons that
have been deseribed to this point. In addition, global
entry points are supplied for both PCRV and the Cen-
tral Control Fault Recovery Program (CCFR). The
occurrence of a program store bootstrap and the rea-
son for it are reported via the master control console
(MCC) and, if possible, also via the TTY.

5.43 On entry into the bootstrap routines, a check

is made to determine whether bootstrap has
been passed an excessive number of times on previous
interrupts. If bootstrap has been passed excessively,
the fundamental strategy is varied. The fundamental
strategy is described first.

Page 54

5.44 The program store bootstrap routines attempt

to assemble a complete copy of the program
store memory blocks. Entry into bootstrap implies
that there is a major problem in the program store
community since the first-look routines were unable
to come up with a valid configuration of stores. The
bootstrap routine starts by selecting one program
store bus (the active) over which the bootstrap is to
be tried.

5.45 All maintenance flip-flops in the program

store community are set, and the RO flip-flops
are set to the standby bus. The bootstrap routines
then attempt to bring the program stores into the
system one at a time.

5.46 The maintenance flip-flop for the store under

test is pulsed to toggle the RO flip-flop to the
active bus. The bootstrap tests are then performed
using the active bus. Maintenance and control tests
are done with the maintenance flip-flop set. The
maintenance flip-flop is then reset, and the bootstrap
tests are completed with the store in the control and
normal modes. The maintenance flip-flop is then set
at the conclusion of the tests. The results of the boot-
strap qualifying tests are then placed in a scratch
status table, and tests are started on the next pro-
gram store.

5.47 When all stores have been tested, the boot-

strap results are evaluated by examining the
seratch status table. If a complete copy of program
store is available, the bootstrap was successful. When
a complete copy is not available, the ability of the
rovers to complete the copy is checked. Rovers that
are selected to complete the copy are flagged by the
program to be updated to the appropriate memory
block before returning to call processing.

5.48 When a complete copy cannot be assembled

even by using the rovers as substitutes, the
bootstrap has failed via the active bus. If bootstrap
was entered from PCRYV, then program control is re-
turned to PCRV with a failure indication. Otherwise,
the active and standby buses are switched, and a new
bootstrap is attempted on the new active bus. If boot-
strap fails on both buses, the processor configuration
sequencer is activated and a B-level interrupt occurs.
The recovery is then controlled by PCRV.

5.49 If the bootstrap is successful, the software
status and store hardware are updated to pre-
pare for a return to call processing. If bootstrap was

entered from PCRYV, program control is returned to
PCRV at this point. The PCRV program must then
assure that all flagged substitute program stores are
updated. If the entry was not from PCRV, then PSFR
updates the substitute stores to the appropriate
memory blocks. If any update fails, the processor
configuration sequencer is activated and a B-level
interrupt occurs.

5.50 Upon conclusion of the updates, program con-

trol is transferred to the access tests for E-
level entries or is returned to CCFR for CCFR en-
tries.

5.51 Successful completion of the access tests re-
sults in a return to call processing via MARP.

5.52 If bootstrap is reentered after having passed

bootstrap previously, a check is made to deter-
mine whether bootstrap has been passed an excessive
number of times. Excessive passing of bootstrap
causes PSFR to change the fundamental strategy in
a prescribed way for this entry and each later reentry
into bootstrap.

5.53 The first change of the bootstrap actions

switches the active and standby program
store buses before the bootstrap tests. A later reentry
to bootstrap causes the suspect program store to be
forced out of the bootstrap screening tests, regard-
less of whether it has passed PSFR access tests or
not. Each later reentry causes another store to be
forced out of the testing. If this process of isolating
each store in the community one at a time fails to iso-
late the cause of the problem, another reentry causes
the program to go directly to the bootstrap failure leg
of the program after ensuring that the processor con-
figuration state counter is greater than zero so that
a central control switch will occur. This would cause
a B-level interrupt and the recovery would be con-
trolled by PCRYV.

D. Noninterrupt Level Functions

554 The PSFR program performs several

noninterrupt level functions. The PSFR pro-
gram administers all changes in the configuration or
status of the program stores and program store bus-
es. Some of these functions are also performed on in-
terrupt level by the same routines or subroutines.
However, all base level functions must conform to the
base level segmenting requirements. Consequently,
these functions are normally done as clients of MACP

ISS 5, SECTION 254-280-310

or are done as a subroutine called by other mainte-
nance programs.

5.55 These base level functions are virtually identi-

cal to those done on the call store community
by the Call Store Fault Recovery Program (CSFR).
These base level functions are primarily related to
hardware audits, diagnostic requests, and routine
exercise tests.

556 The PSFR program administers audits of all

program store/program store bus-related
lamps and indicators located on program store
frames and the MCC. The PSFR program uses sub-
routines located within the Master Control Console
Common Control and Monitor Program (MCCM) to
check or change the state of the lamps. The PSFR
program assures that the lamps show the correct
state as shown by PSFR status tables.

5.57 The PSFR program performs both pre-

diagnostic and post-diagnostic functions for
all diagnostic requests for the program store/
program store buses. For prediagnostic functions,
PSFR assures that the store to be diagnosed is avail-
able and also replaces the store with a substitute
copy of the memory block. The store to be diagnosed
is then configured out of the system and made avail-
able to the diagnostic program. For bus diagnosis,
PSFR must assure that the system has access to a
complete copy of program store over the remaining
bus. This involves changing the bus routing controls
in central control as well as controls in all program
stores.

5.58 Post-diagnostic functions include verification

of the success of the diagnostic before return-
ing the unit to service. The PSFR program adminis-
ters the return of the unit to service.

5.59 Removal or restoration to service of a store

usually involves more than a simple alteration
of the configuration of the hardware. In many in-
stances, an update of a substitute store must be com-
pleted before a substitute store can be removed from
service. Always, an out-of-service store must be up-
dated to the present contents of its assigned memory
block before it can be placed in service. If a substitute
store had been serving in its place, the substitute
must also be updated to its normal memory block,
thus restoring duplication as soon as possible.

5.60 Routine exercise requests for store diagnosis
(midnight routine) are also administered by
routines located within PSFR.

Page 55

SECTION 254-280-310

PSFR—PROGRAM STRUCTURE
A. General

5.61 The PSFR program (Fig. 12) is divided into -

two pidents, PSFRCSPG and PSFRPSPG.
Pident PSFRCSPG contains all PSFR program code
that may be used during E-level interrupt recovery
until program store memory block 0 is proven to be
valid. It also contains all PSFR code that may be used
when PSFR is called by PCRV. This pident
PSFRCSPG is located in call store since the program
store community is suspect under the above condi-
tions. Pident PSFRPSPG contains all the remaining
PSFR code and is stored in program store. It shares
functional responsibility with PSFRCSPG and con-
tains many subroutines that are used by E-level re-
covery. However, PSFRPSPG is not entered until
program store block 0 is verified by access tests exe-
cuted from the call store program.

5.62 The PSFR program also uses numerous sub-

routines located within other programs. The
following programs contain important subroutines
that are used by PSFR:

(a) MACP—Subroutines are used to set up base
level tasks.

(b) MCCM —Subroutines are used to verify and
update the states of various lamps and control

indicators on the program store frame and the
MCC.

(¢) IOCP—Subroutines are used to initiate output
messages.

(d) DKAD—Subroutines are used to perform
“pumps” (file store to program store copy) of
store memory blocks. (File store system only)

e e— E-LEVEL INTERRUPT
COFTORATION 1
RECOVERY PROGRAN
SIRE - SYSTEM
INTERRUPT RECOVERY
PROGRAM
COFR - CENTRAL
CONTROL FAULT
RECOVERY PROGRAN
AFR - ADILIARY PeFR
UNIT FAULT RECOVERY
PROGRAN

PROGRAM. STORE FAULT RECOVERY

{FILE STORE ONLY)

FSFR ~ FILE STORE
FALT RECOVERY PROGRAM
(FILE STORE OMLY)

WACP - MAINTENANCE %
CONTROL PROGRAN divei
[CON - DIAGNOSTIC
CONTROL PROGRAM
WAD - WRITE
PROTECT
AFINISTRATION PROSRA JPFR - ATTAGHED
I FROCESSOR FAULT
FECOVERY PROGRAM
(APS ONLY)
SYUP - SYSTEM UPDATE
PROGRAN
J {KADI - DISK
AOMINISTRATION
WP - MAINTENANCE INTERFACE PROGRAM
RESTART (APS ONLY)
.

#Fig. 12—Program Store Fault Recovery Program (PSFR) —Interfacesq

Page 56

(e) ®DKADI—Subroutines are used to perform
“pumps”of store memory blocks. (APS only)4

(f) AUFR—Subroutines are used to stop AUs dur-
ing PSFR recovery functions.

(g) CCFR—Subroutines are used for all central
control configuration changes during testing.

(h) FSFR—Subroutines are used to restore the

file store controllers to their previous state
after a pumping operation, if possible. (File store
system only)

(i) PAPFR—Subroutines are used to restore the
APIs to their privious states after a pumping
operation. (APS only)4

(j) WPAD—Subroutines are used to verify a write
protect error before restart.

5.63 There are several other important program
interfaces in addition to the subroutine inter-
faces.

(a) SIRE—Program PSFR is always entered from
SIRE after an E-level interrupt.

(b) PCRV—Program PSFR has several interfaces

with PCRV during system recoveries, pro-
gram store bootstraps, and PCRV initiated pumps
of program store.

(¢) DCON—Program PSFR has several exits to
diagnostic control to start or stop a diagnostic
of program store.

(d) SYUP—The PSFR program interfaces with

the System Update Program to remove,
configure, and restore program stores and pro-
gram store buses for system updating.

(e) MARP—Program PSFR interfaces with
MARP to set up the restart and the output
data and then normally exits to restart.

5.64 The PSFR control structure and bootstrap

operations were described as a part of Inter-
rupt Recovery. A description of the remaining major
routines follows.

B. Full Access Test

5.65 The full access test routine may be entered to
verify a single program store block of memory

ISS 5, SECTION 254-280-310

or to verify the entire program store community.
This routine is used by PSFR E-level recovery to ver-
ify that a complete copy of program store is available
before returning to call processing via MARP. The
PCRYV and CCFR programs also use this routine for
the same purpose.

5.66 Entry point PSFRACC is used by CCFR to call

for an access test of the program store com-
munity using the existing program store configura-
tion. For this entry, no changes are made in the
configuration. Program control is returned to CCFR
with a pass/fail indication on completion of the tests.

5.67 Entry point PSFRACPC is used by PCRV. The

first 16 states of the processor configuration
sequencer circuitry in central control try to build a
valid program store configuration (without the use of
file store pumps) by selecting an active program
store bus and a program store containing memory
block 0. This action is undertaken only under major
system malfunction conditions. Later, PCRV enters
the program store access tests at PSFRACPC to ver-
ify the configuration selected by the processor con-
figuration sequencer.

5.68 First, the access tests identify the selected

program store. (The store is a processor con-
figuration store described in paragraph 5.07.) The
store selected is the processor configuration store
that has its maintenance flip-flop reset. The remain-
ing program stores are then configured according to
the selected active bus and memory block 0 store.
Next, the access test is done and a success/failure
return is made to PCRV.

5.69 For E-level recovery, the initial entry to the

access tests determines whether the central
controls were operating in step at the time of the in-
terrupt. If they were, an attempt is made to start the
standby in step with the active before doing the ac-
cess tests. If the standby is placed in step with the
active, then routine matching is established without
interrupts. Also, the active central control is set to
halt matching and stop the standby if a mismatch is
detected. The PSFR program always uses CCFR ser-
vice routines to make any required changes in the
configuration of central control. The access tests are
then done sequentially on each K-code assigned to
the program store community or the single specified
K-code for a one block verify.

5.70 If the tests pass, the following actions are tak-
en. If the central controls were in step during

Page 57

SECTION 254-280-310

the access tests, the standby is stopped and a check
is made for mismatch errors. If the central controls
mismatched or the standby central control detected
either an ASWF or an DPWEF during the tests, a
request is made for a diagnosis of the standby central
control. This disgnosis is done on base level after in-
terrupt recovery is completed. The standby program
store bus is then removed from service and the full
access test is reentered. However, if no errors oc-
curred, PSFR requests a restore of the standby cen-
tral control on base level.

5.71 If the tests were performed successfully with

no mismatches or with only the active central
control, report data is prepared for output. The PSFR
program then requests diagnostics for all units re-
moved by PSFR, or if a bootstrap was done during
this interrupt interval, a diagnostic is requested for
all out-of-service program stores.

5.72 At this point, program control is returned to

AUFR for program store AU access failures
detected by AUFR, whereas E-level program store
access failures are transferred to MARP for restart.
Write protect errors are transferred to WPAD before
restart.

5.73 If the access tests fail, checks are made of the

number of previous failures. The results of the
checks depend on whether bootstrap was entered be-
fore and whether the buses were switched. If either
of these actions occurred, bootstrap is entered. If not,
further analysis of the failure is done. If the failure

was detected in the standby central control, the.

standby store is removed. If no standby store existed,
the standby bus is removed. If neither standby bus
nor standby store exist, bootstrap is entered. If the
failure was detected in the active central control, a
check is made for a Trap Refresh Data Parity Failure
which if detected is corrected. After the first failure,
the first fail flag is set as an indicator for possible
later failures.

5.74 After the first detected failure of the active

central control or bus, a switch of the active
and standby bus is done followed by a removal of the
standby bus.

5.75 If the first fail flag is set and if error analysis

is set, a check is made to determine whether
an update of a substitute rover store is in progress.
If an update is in progress, a transfer is made to the
FINFILL routine to complete the update on interrupt

Page 58

level. Later, the access tests are reentered to assure
that a complete copy of program store is available
after the updated rover store is placed in service.

5.76 If an update is not in progress, PSFR trans-
fers to the program store bootstrap routines.

C. Progrom Store Status Update

5.77 On entry at PSFRUSTA, the program store

status table located in the duplicated pro-
tected range of call store is updated. The status table
is normally assumed to be correct when the program
store community’s configuration is altered by a rou-
tine other than bootstrap. However, the status up-
date routine is entered to make the status table agree
with the actual store community configuration when
there is reason to believe that it may not be accurate,
ie, after a bootstrap or if both copies of the call store
memory block it resides in are lost. The routine may
be requested manually or may be entered under pro-
gram control, ie, from PCRV.

5.78 The correct status is determined by pulsing

the maintenance flip-flop for each program
store and updating the status according to the an-
swer.

D. Program Store Configuration Change Routine

5.79 As program store buses are restored to or

removed from service or are switched from
serving the active central control, etc, the program
stores listening to and responding to those buses
must have their routing flip-flops (Tables C and D)
altered to conform to the new conditions. There are
several entries to the routine to accommodate the dif-
ferent types of changes. The configuration change
routine uses two subroutines. One subroutine alters
the program store status table to agree with the new
bus status, whereas the other subroutine sets the
program store routing flip-flops to conform to the
configuration found in the status table. When all the
stores conform to the status table, program control
is returned to the routine or program that requested
the configuration change.

5.80 This routine may be used to remove the

standby bus from service, switch the active
and standby buses, return the standby to service, or
to establish a configuration based on the status table.

E. Program Store Removal Routine

5.81 This routine is entered to remove a selected
store from service. If the store is already out

of service, the routine reports a successful removal,
turns on the out-of-service lamp at the store, checks
for a primary trouble condition (if necessary, the pri-
mary trouble lamp at the MCC is lighted) and returns
program control to the calling program. If the store
is active and no rover is available, then the removal
request is denied.

5.82 If the store is duplicated, the duplicate copy is

set up to operate as a nonduplicated store. The
selected store is then removed from service and the
request is completed as for a store that is already out
of service when the request is made. If a rover store
is needed and is available, it is first updated from the
file store or by copying from the unit to be removed.
The removal is then completed as for a duplicated
store.

5.83 The routine may be entered at global entry

PSFRSRMYV in response to a remove (RMV)
TTY request, a control panel request, or a power
alarm request. Other entry points are also supplied
to swap units or to remove and diagnose a store.

F. Program Store Restoral Routine

5.84 This routine is entered to restore a program

store to service. It may be entered because of
a restore (RST) TTY request or a call from another
program. On entry, this routine must determine if
the specified store is already actively supplying a
memory block. If so, the store is removed and a diag-
nosis of the store is requested to be followed by a
restoral. Secondly, if the store is not actively supply-
ing a memory block, a diagnosis is requested asking
for a restoral of the store to service after a successful
diagnosis.

5.85 If an all tests pass (ATP) diagnosis has been

done, the store is updated by copying from the
now active store. When the update is completed, the
store is configured back into service. The primary
trouble lamp at the MCC is extinguished if it was
lighted. A successful restoral is reported to the TTY,
and program control is returned to the calling rou-
tine or program.

6. 1A PROCESSOR AUXILIARY UNIT FAULT RECOVERY
PROGRAM —AUFR

INTRODUCTION

6.01 The AUFR program performs all fault recov-
ery tasks which are common to all auxiliary

IS5 5, SECTION 254-280-310

units (AUs) in the AU bus (AUB) system. The AUFR
fault recovery approach consists of finding a set of
AU and central control hardware that is capable of
carrying out the normal AU communication func-
tions. This determination is made by a detailed set of
tests which are run either on interject or interrupt
level priority.

6.02 To perform its functions, AUFR interfaces
with several other programs. The major
AUFR program interfaces are illustrated in Fig. 13.

AUB SYSTEM ORGANIZATION

6.03 The 1A Processor System has a busy system

which enables autonomous processing units to
access the call store and program store bus system of
the central control. The autonomous processing units
are referred to as AUs and there may be as many as
16 AUs on the AUB. The AUB is linked to the call
store and program store buses by special hardware
in the central control that is called the AUB sequence
(AUBSQ). The AUBSQ resolves bus occupancy con-
flicts among AUs on the AUB and resolves bus, store,
or AU occupancy conflicts between the central con-
trol or any AU on either the AU, call store, or pro-
gram store bus. This document will refer to the AUs
and the AUBSQ as the AUB system. (See Fig. 14 and
15)

6.04 The AUB system, in the file store environ-

ment, will have at least two and a maximum
of four file store controllers. A file store controller
may control from one to four disk files on which a
large amount of data can be stored. A file store con-
troller is a wired logic processor that will process
central control request(s) to transfer a data block
between the slow serial access memory of a disk file
and the fast random access memory (RAM) of a call
store or program store. For reliability, the memory
content of one set of disk files associated with a file
store controller will be duplicated on an identical set
of disk files associated with another file store con-
troller. Collectively, all file store controllers with
associated disk files are referred to as the file store
system. The file store system serves as a primary
data backup and bulk data storage facility for pro-
gram, translation, and other information for the 1A
Processor System.

6.05 W#The AUB system, in the Attached Processor

System (APS) environment, will have at least
2 and a maximum of 16 Attached Processor Inter-

Page 59

SECTION 254-280-310

FoFR MIRA
FILE STORE FALT WANIAL TNPUT
RECOVERY PROGRAN REQUEST
(FILE STORE OMLY) AMINISTRATION
PROGRAN
e
PRINTENANCE
cFR FESTART PROGRAN
CALL STORE FALT
RECOVERY PROGR
PORV
AFR PROCESSIR
CONFIGURATION
pu 1A PROCESSOR AUXILIARY UNIT FAULT RECOVERY PROGRAM RECOVERY PROGRAM
PROGRAN STORE PIDENTS:
FAAT RECOVERY AUFRCNTL
PROGRAN AUFRCPGN -~
AUFRTEST
AFFOFR SYSTEM UPDATE
AUFRILEV PROGRAM
o
CONRAL CONTROL
FALT RECOVERY S8R
PROGRAM SYSTEM
FEINTTIALIZATION
FROGRAN
0UFR PR
MKILDARY DATA ATTAGED
SYSTEN FALT FROCESSOR FAULT
RECOVERY PROGRAN FECOVERY PROGRAM
(APS ONLY)

#Fig. 13— Auxiliary Unit Fault Recovery Program (AUFR) —Interfacesd

faces (APIs). The APS is a high capacity disk system
for the 1A Processor. The API allows the sending and
receiving of messages and blocks of data between the
1A Processor and up to eight 3B Processors.4

6.06 The AUB system will also have at least two
and a maximum of four data unit selectors
(DUSs). A pair of DUSs may control from 2to 16 data
units. A DUS is similar to a file store controller ex-
cept that instead of disk files, the DUS is designed to
handle slower data devices such as tape units. The
data unit system serves as a backup to the file store
system for system reinitialization and as a primary
facility for program updating, automatic message
accounting data recording, and other functions.

Page 60

AUFR—FUNCTIONS AND STRATEGY

A. General

6.07 The AUFR program is designed to function

under several diverse conditions: interject, D-
level interrupt, and other processor interrupt levels.
Basically, AUFR uses the first-look approach to fault
recovery. The first-look approach, as used by AUFR,
involves the retrying of the failing operation using
simple and fast testing techniques. If this approach
fails to identify the source of the trouble, AUFR will
then resort to more detailed testing to isolate the
problem.

1SS 5, SECTION 254-280-310

CALL PROGRAM CALL
stRe [*|gie | 7| STORE b <> STORE
PS
cs BUS O cs
BUS 1
Pu— STANDBY BUs 0
CENTRAL
a—»| CONTROL
AUBSQ
AUB 1 | AUB O
ACTIVE
CENTRAL jg————>>
CONTROL
AUBSQ
- 1 r—— - - - 1
| OF OF
| : || : : ‘
D FSC 1 \ FSC >
| o] | | oF | | |
| 3 | | | |8 |
| FRLESTORE | | _ _ _FILESTORE |
U
0
DUB 1 DUB 0
la—b pus 1 DUS ——>
DU
15
LEGEND:

FSC - FILE STORE CONTROLLER
DF - DISK FILE

DU - DATA UNIT (TAPE UNIT CONTROLLER)

DUS - DATA UNIT SELECTOR

DUB - DATA UNIT BUS

AUBSQ - AUXILIARY UNIT BUS SEQUENCER

AUB - AUXILIARY UNIT BUS

Fig. 14— 1A Processor Avuxiliary Unit Bus System —File Store Environment

6.08 The AUFR program can be entered under

three conditions. The first condition involves
maintenance action for the AUB system. This main-
tenance action will ordinarily be started through the
interject request mechanism instead of the normal
maintenance interrupt control hardware sequencer.
This method is used because AU processing is inde-

pendent of central control processing and can be
momentarily deferred without degrading system
performance.

6.09 Inthe second condition, the AUFR can also be

entered on D level from the Call Store Fault
Recovery Program (CSFR) when the central control

Page 61

SECTION 254-280-310

Page 62

PUB 1 PROCESSOR PUB O
PERIPHERAL
INTERFACE
PSB 1 PROGRAM PSB O
STORE
CSB 1 CALL CSB O
STORE
C |
CENTRAL CENTRAL
CONTROL 1 CONTROL 0
AUB O
AUB 1 ' A
TAPE
DATA FRAME 0 DATA
| | uwIT : UNIT | |
SELECTOR 1 SELECTOR
1 TAPE 0
FRAME 1
ATTACHED
ATTACHED PROCESSOR
PROCESSOR INTERFACE
INTERFACE 0
1
CONTROL CONTROL
UNIT 1 UNIT O
l 1
DISK FILE INPUT/OUTPUT INPUT/OUTPUT DISK FILE
CONTROLLER PROCESSOR PROCESSOR CONTROLLER
1 1 0 0

|

MOVING HEAD
DISK 1

l

MOVING HEAD
DISK 0

#Fig. 15—IA Processor Auxiliary Unit Bus System—APS Environment4

encounters an AU read/write failure. An AU read/
write failure may occur when the central control ad-
dresses an AU and an accessing error is detected by
either the central control or AU. The central control
may also address an AU that is in a troubled state
and has requested maintenance action through the
interject mechanism. An AU which makes an inter-
ject request will not respond to central control ad-
dressing until it has been restored to service by the
specific type of AUFR program. The AUFR program
processes D-level entries basically as it processes in-
terject entries.

6.10 Finally, AUFR may also be called by TTY re-

quest or by the processor configuration or
another processor fault recovery program to test or
reconstruct the AUB system interface with the cen-
tral control system.

6.11 When an error indicator can be identified

immediately as a faulty AU, the error source
is classified as “unique.” Every AU contains error
detection circuits that check internal gating and
other processing functions. When these circuits de-
tect an error that involves an internal processing
function, the source of the error has been isolated to
the AU level. Always for unique AU faults, AUFR
transfers to the specific AUFR program which then
determines the proper course to follow for that par-
ticular AU.

6.12 The bulk of the AUFR programs involves the

processing of central control AU “common”
errors. Central control AU common errors involve
situations where the error indicators in the AU do
not necessarily indicate a malfunctioning AU. In
some of these cases, a software error can cause an AU
to appear faulty. In other cases, the AU will be com-
municating with other units (central control, call
store, or program store) which can malfunction and
cause an error to be detected by the AU error detec-
tion hardware. In all cases of central control AU com-
mon error, AUFR will analyze the error to determine
the source of the trouble (AU, store, or central con-
trol). The analysis of interface errors will often re-
quire testing of the associated hardware.

B. Basic Program Strategy

6.13 When AUFR is entered on interject or on a

processor interrupt level, all call processing
and most maintenance interrupts are inhibited and
no time breaks are taken. The AUB system is placed

ISS 5, SECTION 254-280-310

in a maintenance mode, and the error state of the
AUBSQ and AU hardware is interpreted. As a result
of the first-look approach used by AUFR, the fault
recovery time for the AUB system will normally be
minimal.

6.14 Most faults handled by AUFR are expected to

have generated unique errors that will be han-
dled in a straightforward way so that the AU can be
immediately processed by the specific AUFR pro-
gram. On the other hand, central control-AU com-
mon errors may require further testing before the
faulty unit can be isolated. Since common errors usu-
ally involve the busing of data from one unit to an-
other, the associated circuits are subject to transient
errors, and the failing operation therefore will be
retried. If the retry also fails, a fault will be assumed.
If the retry passes, an error will be assumed, and the
AUB system will be restored to service. This process
quickly screens transient errors from hardware
faults.

6.15 When it is determined that a unit is faulty, the

unit will be removed from service. If the unit
is a central control, call store, or program store, the
unit will be removed (Fig. 16) by a routine in the Cen-
tral Control Fault Recovery Program (CCFR), Call
Store Fault Recovery Program (CSFR), or Program
Store Fault Recovery Program (PSFR).

6.16 For a common AU fault indication (either file

store, data unit, or API faulty), AUFR deter-
mines the faulty unit and uses the File Store Fault
Recovery Program (FSFR), the Attached Processor
Fault Recovery Program (APFR), or the Data Unit
Fault Recovery Program (DUFR) remove routines to
remove the unit from service and request a diagnosis.
If there is a unique AU fault indication, AUFR goes
directly to FSFR, APFR, or DUFR for testing and
fault isolation (Fig. 16). If the AU cannot be removed
from service because of the unavailability of the
standby or mate AU (duplex failure), AUFR will per-
form error analysis. If too many duplex failure condi-
tions occur, AUFR will call its bootstrap routine that
will completely rebuild the AUB system.

AUFR—PROGRAM STRUCTURE
A. General

6.17 The AUFR program is divided into the follow-
ing five pidents:

(a2) PAUFRILEV—AUFR Interrupt Level (resi-
dent in program store)4

Page 63

po oBog

01€-08T-¥ST NOILD3IS

AUFR
CALL STORE PROGRAM CENTRAL
COMON AU FALT UNIQUE AU FAULT FALT STORE FAAT CONTROL FAULT
| CETECTED DETECTED | ErecTen
Yy ¥ 4 ¥
APFR (R MFR OR
FSFR DURR FSFR PR
TASK REMOVE UNIQUE FIRST LOOK CSFR PSFR CCFR
ROUTTNE ROUTINE RECOVERY RUTDE
—{Pass 0
SIITCH CCS
FAIL
AFR
[T}
EDOTSTRAP
AUTIE
o3 e &
AR
TERMINATION
CONTROL
ROUTINE
RV
(]

#Fig. 16—Auxiliary Unit Fault Recovery (AUFR) —Overview 4

N

(b) AUFRCNTL—AUFR Control (resident in pro-
gram store)

(¢) AUFRCPGM—AUFR Call Store Program
(resident in call store)

(d) AUFRTEST—AUFR Test (resident in pro-
gram store)

(e) AUFRDFOR—AUFR Deferred Fault Recov-
ery (resident in program store).

6.18 ®»The AUFRILEV pident performs needed

fault detection tests on initial entry from in-
terject or D-level (first look). Also AUFRILEV at-
tempts to reproduce the fault (if in the central
control or main memory access type circuitry) or
passes control to an appropriate unique error han-
dling program (FSFR, APFR, or DUFR) if the error
is that type.4

6.19 The AUFRCNTL pident contains subroutines
that do tasks such as bootstrap, AU stop and
start, error analysis, and translation retrieval.

6.20 The AUFRCPGM pident is made up of subrou-

tines that do program store bus communica-
tion tests or alter the program store bus
configuration.

6.21 The AUFRTEST pident contains test routines

which test the AUBSQ, central control access
to AUs, and AU access to call store and program
store.

6.22 The AUFRDFOR pident contains all the diag-

nostic interfaces that concern the AUB. This
pident also handles all Manual Input Request Ad-
ministration Program (MIRA) interfaces and pro-
vides some service routines for manipulating the
different diagnoses and MIRA inputs and forming
them into a standard format.

6.23 The functional organization of AUFR consists

of two main parts, fault recovery and service
routines. The basic fault recovery steps and the
AUFR pidents involved in their execution are as fol-
lows:

(1) #Establish the failing AU for testing and error
analysis (AUFRILEV/AUFRCNTL).

(2) Retry the failing job using failing data
(AUFRILEV/AUFRCPGM).

ISS 5, SECTION 254-280-310

(8) Isolate the failing unit (if any) and remove it
from service (AUFRCNTL/AUFRCPGM/
AUFRTEST/AUFRILEV).

(4) Perform AU bootstrap recovery if paragraph
6.23(3) is not possible because of duplex failure
(AUFRCNTL).

(5) Perform short-term error analysis if no fault
found (AUFRCNTL).

(6) Return to call processing (AUFRILEV).4

6.24 The major AUFR service routines and associ-
ated pidents include the following:

(a) Pre- and post-AUB diagnostic handlers
(AUFRDFOR)

(b) TTY interfaces for RMV/RST/TEST mes-
sages (AUFRDFOR)

(c) Off-line AUB removal and restoration
(AUFRDFOR)

(d) Administration of the AUB deferred fault rec-
ognition tests (AUFRDFOR)

(e) Stopping and starting of in-service AUs
(AUFRCNTL)

(f) Unconditional
(AUFRCNTL)

restoral of all AUs

(g) Office data
(AUFRCNTL).

assembler translation

B. Fault Recovery

6.25 #»Two pidents, AUFRILEV and AUFRCNTL,

provide necessary routines for AU fault recov-
ery. The pident AUFRCNTL which contains routines
necessary for both PCRV and AUFR is resident in
program store block 0 (K-code 20).4

Interject Control

6.26 Pident PAUFRILEV4 is entered on interject

at AUFRINJ (Maintenance Interject Entry
Program Unit) as the highest priority interject re-
quest. It is expected that this will be the mechanism
by which most AU hardware problems will be re-
solved. The maintenance actions done by AUFR here

Page 65

SECTION 254-280-310

may be no different from those done by the D-level
interrupt entry (paragraph 6.28). The main reason
for using interject control instead of a D-level inter-
rupt is to keep the central control program, which is
probably doing work having nothing to do with AU
functions, from being unnecessarily interrupted.

6.27 When any central control program uses the

stack transfer with the interject option and an
AU interject request is pending, the central control
will take a hardware transfer to AUFRINJ. The basic
reasons for an AU interject request include the fol-
lowing:

(a) The AUBSQ in central control detects a verify

mismatch. This causes the verify mismatch
source to be set which in turn sets the AU interject
request flip-flop and freezes the AUBSQ hard-
ware. The AU interject request flip-flop is cross-
coupled between central controls to keep the cen-
tral controls in step.

(b) An AU has detected trouble and has stopped.

An interject request flip-flop will be set in the
AU which in turn will pulse the central control
maintenance interject lead on every 700 ns clock
cycle. This will set the maintenance bus request
flip-flop in both central controls which will in turn
set the AU interject request flip-flop.

D-Level Control

6.28 The pident ®AUFRILEV4 is entered at

AUFRDLVL (D-Level Interrupt Entry Pro-
gram Unit) by CSFR when it is found that the D-level
source is an AU read/write failure. There are four
ways that this type of interrupt may occur:

(a) The central control program encountered ac-
cess trouble with an AU and could not have
continued data processing.

(b) An AU will not respond to a system program

request when it has detected trouble and
stopped. Therefore, any system program address-
ing the stopped AU with a specific K-code will be
interrupted.

(¢) An AU will not respond to a system program

request even when the common K-code feature
is used to address the AUs if both members of an
AU community have detected trouble and stopped.
The unsuccessful access attempt will result in an
interrupt.

Page 66

(d) Invalid use of maintenance access by a main-

tenance program could lead to an AU read/
write failure. However, this is an unusual class of
software programming errors that is difficult to
handle and, therefore, is not processed directly by
D-level control.

Software Checks

6.29 An AU read/write failure may be caused by

several important software errors that must
be screened out before hardware trouble can be as-
sumed. To do this, the failing address (and sometimes
data) must be known. Consequently, the interrupt
sequencer saves the failing address and data on all
AU read/write failures. There are no important soft-
ware errors that would lead to an interject request
and not also cause an AU read/write failure. There-
fore, the following software checks are made only in
D-level control:

(a) The AU selected for central control aceess is
determined by the K-code (bits 11 through 14)
of the failing address. If the K-code is unassigned
or the associated AU is out of service, an AU read/
write failure will occur. Therefore, the K-code is
checked for both conditions and an invalid K-code
is interpreted as a software error. Since no hard-
ware trouble exists and the interrupted program
must be audited, control is passed to MARP.

(b) The K-code may be valid, but the address (bits

0 through 10) for the AU may be invalid. The
valid address for an AU depends on both the type
of AU and how it is equipped. Consequently, a sep-
arate address range check routine has been writ-
ten for each type of AU.

(c) Whenever a common K-code read is per-
formed, a data parity failure may occur. For
override prevention of the all-seems-well (ASW)
checks, the user of a common K-code read must
execute the maintenance load instructions with
the read (R) and inhibit parity check (IPCK) op-
tions only. Therefore, a check for an ASW failure
on a common K-code read will indicate hardware
trouble. Otherwise, a software error is assumed.

Central Control Matching

6.30 When all software checks pass, a possible

hardware problem is assumed. Also, when
both central controls are in service, certain fault re-
covery problems exist.

6.31 Some forms of central control trouble with

AU accesses may either generate a central
control mismatch or an AU read/write failure. If
both sources are generated, then either a C- or D-
level interrupt will occur. The C-level interrupt has
higher priority unless the D-level source precedes the
C-level source by at least one 700-ns cycle. If the D-
level source precedes the C-level source, a D-level in-
terrupt will result because the interrupt sequence
will stop the standby central control and will inhibit
the effects of any subsequent C-level interrupt
sources. Therefore, the standby central control will
be stopped on all entries into the D-level control rou-
tine. However, a CCFR service routine will be called
by the COMCON routine (paragraph 6.33) to initiate
a special central control match mode where C levels
are inhibited but the standby central control will stop
on mismatch.

Common Control

6.32 The bulk of the PAUFRILEV4 pident is con-

cerned with the control function (common to
both interject and D-level control). There is a pri-
mary entry and several secondary entries to common
control. The primary entry (COMCON) is by interject
control and D-level control to process most hardware
troubles in the AUB system. Other entries have been
provided for performing tasks such as terminating
common control, causing a faulty unit to be removed
from service, initiating more drastic recovery proce-
dures. Some of these entries are used not only by
AUFR, but are also called by CSFR, PSFR, and the
Processor Configuration Recovery Program (PCRV).
The following discussion of the common control func-
tion (of the AUFRILEYV pident) includes the primary
entry and some of the more important secondary en-
tries.

COMCON Entry (Common Control Routine)

6.33 The common control for both interject and D-

level entry program units (COMCON entry
into the AUFRILEYV pident) initiates an error analy-
sis and filter routine for processing interject and D-
level AUFR tasks. The routine interrogates three
sources of information as follows:

(a) The AU miscellaneous group B register in cen-
tral control is checked for a verify mismatch
source.

(b) The maintenance interject source and all cen-
tral control access dependent error sources are
interrogated with the control pulse read facility.

ISS 5, SECTION 254-280-310

(¢) The AU error summary registers are mainte-
nance read to determine all remaining sources
of trouble.

6.34 The error analysis and filler processing begins

with a check to determine if the AUB configu-
ration flip-flops are in a valid state, since it is possi-
ble that an invalid bus configuration in central
control will cause an AU interject request or AU D-
level interrupt. If any check fails, a software error is
assumed. If attempts to correct the error appear un-
successful, the AUB system may be bootstrapped.
(See paragraph 6.54.)

6.35 Next, all AUs are control pulse read. Exam-
ples of the functions performed by the control
pulse read of an AU include the following:

(a) The AU is taken off-line by placing it in a
maintenance mode.

(b) Except for the central control interface se-
quencer, all sequencers in the AU are either
stopped or cleared.

(¢) All inhibits on central control access are re-

moved by clearing the bus trouble flip-flop in
the AU. (For a DUS, the central control interface
sequencer is enabled).

(d) All clock error sources are automatically
cleared and their former state is returned on
the read.

(e) All central control access error sources, the

state of the maintenance flip-flop, and the
contents of the writable K-code register (if any)
are read.

(f) The interject pest flip-flop in the AU is set.

(g) The state of the interject request flip-flop is
read.

6.36 All sources of trouble are determined accord-

ing to a priority structure that is intended to
minimize the chance of processing misleading error
information. Clock errors, since they may directly
cause almost all other sources of error, are processed
first. Every AU contains clock error sources that
monitor the working state of the central control syn-
chronized clock circuits. If clock error sources are
indicated in an AU, the sources will be control pulse

Page 67

SECTION 254-280-310

read again. If the control pulse read indicates that a
clock error source is still set, then a fault is assumed.
At this time, the necessary checks are made to deter-
mine if the fault is in the AU clock circuit or in the
central control that is supplying the clock synchroni-
zation pulses for each AU.

6.37 The verify mismatch source is processed next.

If the verify mismatch source is set in the AU
miscellaneous group B register, a check is made to
determine if the verify mismatch source is valid. If
it is, control is then transferred to the Verify Mis-
match Error Program Unit (VMMERR), which will
resolve faults in the AUBSQ and the AU store access
interface.

6.38 Since no other error sources may be deter-

mined if central control access trouble is pres-
ent, the central control access error sources are next
checked. If any central control access source is set, a
transfer is made to the Central Control Access Fune-
tional Tests Program Unit (ACSERR), which re-
solves faults in the central control AU access
interface circuitry.

6.39 The AUFR program next verifies that the AU

can be accessed via the central control so that
the remaining error sources can be checked. All er-
rors up to this point were checked in the generate
control pulse (GCP) response. If the AU fails the cen-
tral control access, control is then transferred to
ACSERR.

6.40 The AU error summary register 0 is next

checked for store errors. If a store access error
is found, a transfer is made to the Store Access Func-
tional Tests Program Unit (STRERR), which re-
solves faults in the AU to call store and program
store interface circuitry.

6.41 At this point, the remaining error sources are

all unique. Consequently, control is now
passed to a specific AU fault recovery program
(FSFR, APFR, or DUFR).

AUFRERR Entry (No Fault Found Routine)

6.42 Pident PAUFRILEV4is entered at AUFRERR

(No Fault Found by AUFR Program Unit)
whenever the AUFR program fails to find the exis-
tence of a fault condition. Usually, this indicates a
transient error condition. However, a repeated error
condition would indicate that the wrong hardware

Page 68

tests were being applied to the failing AU. There-
fore, the number of times that a no-fault condition
occurs is counted at the Perform AU Error Analysis
Program Unit (AUFRERX) in AUFRCNTL. If the
count becomes excessive, all AUFR tests will be ap-
plied to the failing AU by transferring to
AUFRCPLT (Complete Test Using all the AUFR
Logical Tests Program Unit). Otherwise, if the count
is acceptable, the AUB system will be restored to ser-
vice by transferring to ALLDONE (Termination
Control Program Unit). (See paragraph 6.59.)

FAULT Entry (Fault Control Routine)

6.43 Pident PAUFRILEVY is entered at FAULT

(Fault Control Program Unit) when a hard-
ware fault is detected by the interject request or D-
level interrupt mechanism. When any AUFR test
routine fails, a flag is set in the G register to show the
failing unit and that control is transferred to
FAULT. The flags are AUIRCCAF for active central
control failed, AUIRCCSF for standby central con-
trol failed, AUIRSTRF for store failed, AUIRAUBF
for AUB failed, and AUIRAUTF for AU failed.

6.44 When the AUIRCCAF flag is set, a CCFR sub-

routine will be called to switch central con-
trols. If the switch is successful, the resultant B-level
interrupt will cause AUFR to lose control. However,
data on the B-level printout will show that AUFR
caused the switch. If the central control switch is
denied for some reason, AUFRILEV will call its boot-
strap routine (AUFRBTP) in AUFRCNTL. (See para-
graph 6.53.) If the bootstrap operation fails, control
may be passed to PCRV to initiate a processor config-
uration recovery. If the bootstrap is successful, con-
trol is then passed to AUFR ALLDONE.

6.45 When the AUIRCCSF flag is set, a CCFR sub-
routine will be called to remove the standby

central control from service, and control is then
transferred to ALLDONE.

6.46 When the AUIRSTRF flag is set, the store

type will be determined by the contents of the
F register. The F register will contain the failing ad-
dress that is required by the store fault recovery pro-
grams. Also, the resultant store error sources in the
central control error summary register are saved in
memory for later interrogation by the store fault re-
covery programs.

6.47 For a faulty call store, CSFR will be called to
remove the call store from service. If the call

~

store is successfully removed, control will be re-
turned to AUFR at AUFRCSR, which in turn goes to
ALLDONE. If the removal of the call store is unsuec-
cessful because of complex trouble, CSFR may ini-

tiate its own recovery procedures before returning to
AUFR.

6.48 The processing for a faulty program store is

similar to that for the faulty call store. Here,
PSFR returns control to AUFR at AUFRPSR that
then transfers to ALLDONE.

6.49 When the AUIRAUBEF flag is set, a request is

made to remove all AUs on the specified AUB.
However, before any AU is removed from service, the
configuration is first tested for availability of all es-
sential units on the other AUB by calling a routine
in FSFR, APFR, or DUFR. If the test passes, all AUs
on the indicated AUB will be removed from service
by a subroutine in FSFR, APFR, or DUFR. Control
is then transferred to ALLDONE.

6.50 When the AUIRAUF flag is set, the specified

AU is to be removed from service. However,
before the AU is removed from service, the availabil-
ity of the mate AU and all essential subunits will be
determined by calling a unique AUFR program
(FSFR, APFR, or DUFR) AU availability subroutine
via the AUFR type table. (The AUFR program inter-
faces with the other fault recovery programs via the
type table in the AUFRTYPE Program Unit.) If the
mate AU is available, the AU will be removed from
service by an AU removal subroutine in FSFR,
APFR, or DUFR.

AUFRCPLT Entry (Complete Test Routine)

6.51 Pident WBAUFRILEV4 is entered at

AUFRCPLT (Complete Test Using all the
AUFR Logical Test Program Unit)from the No Fault
Found Routine (AUFRERR) when the number of re-
corded transient errors for an AU becomes excessive.
The three available AUFR test routines in the
AUFRTEST pident (paragraph 6.60) are applied to
the failing AU indicated in the X register. The first
part of the AUBSQ logical test is executed to test the
AUBSQ independent of the AU. The central control
access logical test is next executed to test the ability
of the central control to access the AU. The AU ac-
cess logical test is then executed to test the ability of
the AU to access the call store and program store.
Finally, the second part of the AUBSQ logical test is
executed to verify the operation of the various
AUBSQ blockage algorithms.

1SS 5, SECTION 254-280-310

6.52 If the AU fails one of these tests, control will

_ be transferred to FAULT to remove the faulty
unit from service. If all the tests pass, control will be
transferred to ALLDONE. The running of
AUFRCPLT on any AU is recorded at the Perform
AU Error Analysis Program Unit (AUFRERX). Con-
sequently, if AUFRCPLT is called repeatedly for any
AU, it will be assumed that the AU is at fault and the
AU will be removed from service.

AUFRTEST Entry (AU Test Routine)

6.53 Pident W®AUFRILEV4 is entered at

AUFRTEST (Perform All AUFR Logical
Tests on All In-Service AUs Program Unit) from
COMCON when the trouble could not be identified
and from the PCRV program to test all AU central
control/call store/program store interface circuits in
the current AUB system configuration. The AU Test
Routine calls the same tests and in the same sequence
as does the Complete Test Routine except that the
tests are repeated for all AUs marked in-service. This
routine ends either on pass when all AUs have been
tested or on fail when the first AU fails. When the
first AU fails, the following data is placed in the ap-
propriate central control registers:

¢ Reason for failure
e Identity of failing AU
o Failing test address
o Expected data
e Actual data.
AUFRBTP Entry (AU Bootstrap Routine)

6.54 Pident AUFRILEV is entered at AUFRBTP

(Bootstrap All Equipped AUs Program Unit)
to bring the AUB system up from ground zero. This
routine performs the same test functions as the AU
Test Routine but differs in the initialization and ter-
mination controls. The AU Bootstrap Routine is
called by #AUFRILEV4 and the PCRV program
when there appears to be double trouble in the AUB
system. Here, the existing AUB system configuration
cannot be salvaged, so the configuration must be re-
covered from scratch.

6.55 Aliequipped AUs are brought into service and
tested. This is necessary because AUFR tests

Page 69

SECTION 254-280-310

on the AU are not complete in that AUFR checks only
" the central control call store program store AU com-
munication circuitry. When these tests pass, the AU
will be brought into service and its internal checking
circuits will be expected to detect any other malfunec-
tion in the AU.

6.56 When an AU fails a test, it is marked in trou-

ble in status only. If the bootstrap routine suc-
ceeds in finding a satisfactory configuration, the
units that are marked in-trouble and are equipped
are removed from service and will have diagnoses
requested. If the bootstrap routine fails to find a
workable configuration, the last significant AU fail-
ure information will be returned to the client.

6.57 The bootstrap will first attempt to bring up

both AUBEs. If that fails, it will try to bring up
AUB 0 first and then AUB 1 if AUB 0 fails. The rou-
tine will give up and return to the client only after all
three configurations have been tried.

6.58 If AUFR was the client of the bootstrap rou-

tine, a pass return will increment an emer-
. gency action state counter that is a “last resort”
measure for faults that may be undetectable by test-
ing. If too many bootstrap pass conditions occur in an
hour’s time, various actions may take place. The pos-
sible actions include switching central controls, re-
moval of AUBOor 1, removal of all nonessential AUs,
duplex failing of units, and a transfer to PCRV. Bar-
ring any of these actions, control is returned to
ALLDONE. A fail return may result in the duplex
failing of AUs or a first-level processor configuration
recovery.

ALLDONE Entry (Termination Control Rou-
tine)

6.59 The PAUFRILEV4 common control function

terminates at the Terminate the Interrupt or
Interject or Base Level Actions Program Unit
(ALLDONE) where a decision is made based on the
entry mechanism of AUFR. If the D-level interrupt
mode flag is set, control is transferred to MARP at
MARPDLVL. If the interject request mode flag is set,
control is transferred to MARPIJAU. If the base
level maintenance flag is set, control is transferred
to MARPBASE. All three of these MARP entries
from AUFR will call AUFRSTRT (Start All In-
Service AUs Program Unit) to restore the AUB sys-
tem.

Page 70

Test Routines (AUFRTEST Pident)
General

6.60 The AUFRTEST pident consists of three test

routines that are called as required by the
AUFRCNTL and AUFRDFOR pidents. The test rou-
tines are:

(a) AUBSQ Logical Test
(b) Central Control to AU Access Logical Test

(¢) AU to Call Store and Program Store Access
Logical Test.

6.61 These tests differ from comparable tests in

AUFRCNTL in that they are “logical” tests
while those in AUFRCNTL are considered “function-
al” tests. A functional test is generally a very simple
and fast one that exercises a basic function of a cir-
cuit (first look). In contrast, logical tests are time-
consuming ones that test the operation of a circuit in
a detailed and systematic way for the presence of a
hardware fault. The AUFRTEST logical tests, there-
fore, serve to correct the shortcomings of the simple
AUFRCNTL functional tests. To keep the recovery
time to a minimum, the lengthy logical tests are gen-
erally called only as a last resort to solve a particular
fault situation that cannot be solved by functional
testing.

AUBSQ Logical Test

6.62 The AUBSQ logical test (AUFRTBSQ entry)

is a self-contained test routine that tests all
parts of the AUBSQ that may lead to a verify mis-
match (central control) failure or central control
maintenance interrupt. The logic functions tested
include the AU priority selection, AU program store
blockage, AU call store blockage, AU-AU blockage,
AU enable verify match, and AU blockage verify
match algorithms. The central control AU control
functions tested include the AUB request, AU enable,
AU blockage, AU enable verify, and AU blockage ver-
ify communications.

]

6.63 The AUBSQ logical test routine is divided into

two parts. In the first part, all logic functions
are tested without an AU by using the step-by-step
maintenance control feature of the AUBSQ. The sec-
ond part uses either a selected AU or all available
AUs to check the control functions. Fewer tests are

needed for the second part since only simple bus com-
munication is left to be tested.

Central Control to AU Access Logical Test

6.64 The central control access logical test

(AUFRTCC, CCDPE entries) is a central con-
trol interface sequencer test routine that is designed
to test all AU circuits that may lead to a central con-
trol access error either in the form of an interject
request or an AU D-level interrupt. Consequently,
nearly all tests are done with the AU in a normal
mode except for a few supplementary tests that re-
quire that the AU be in a maintenance mode. Also,
it is not necessary to test maintenance access, most
of the address decoder, and most of the internal reg-
ister gating circuits.

6.65 The circuits tested by this routine include the

central control interface sequencer and K-
code match circuit, the input address and data parity
checker, the output data parity generator, and the
AU address, reply, and write buses. Also, in the cen-
tral control, the AU address portion of the address
parity generator and AUB selection circuits are test-
ed.

AU to Call Store and Program Store Access
Logical Test

6.66 The AU to call store and program store access

logical test routine (AUFRTSTR entry) is a
store sequencer access test that is designed to test all
AU circuits that may lead to a store sequencer access
error. The circuits tested by this routine include the
AUBSQ steering circuit, the AU input data parity
checker, the AU output data parity generator, the
AU output address parity generator, the AU store
sequencer, and the AU send address, reply, and write
bus communications. Basically, there are three broad
conditions under which these tests are done: store
independent, call store bus dependent, and program
store bus dependent.

6.67 Store Independent: The first test done

after initializing the AUB system for store
sequencer operation is of necessity independent of all
store communications. The purpose of these tests is
to efficiently check the output address parity genera-
tor, output data parity generator, and input data par-
ity checker.

6.68 Call Store Bus Dependent: These tests
are simple call store bus communication tests.

1SS 5, SECTION 254-280-310

They do not attempt to test the address and data par-
ity circuits except for those parts that are as yet un-
tested because of the abnormal mode of previous
tests. All AU store writes are deferred until it is es-
tablished that there are no problems with AU store
addressing circuits.

6.69 Program Store Bus Dependent: These

tests are simple program store bus communi-
cation tests, that are similar to the call store bus de-
pendent tests. The tests check for AU faults
associated with the program store address, program
store reply, and program store write buses.

C. Service Routines
Pre- and Post-AUB Diagnostic Handlers

6.70 Two service routines, AUFRDGN and

AUBDGNRTN, are provided in the
AUFRDFOR pident to perform tasks required before
and after the AUB diagnoses are run.

AUFRDGN—AUB Prediagnostic Handler

6.71 The AUFRDGN routine does all the necessary

checks before allowing the AUB diagnoses to
run. Also, any bus removal routines that may be
needed will be called from this routine. (However, the
AUB diagnoses can run on either in-service or out-of-
service buses.)

AUBDGNRTN—AUB Post-Diagnostic Han-
dler

6.72 The AUBDGNRTN routine determines the

final status of the AUB before returning it to
the system. This routine may or may not restore the
AUB to service, depending on the diagnostic results
and other status indications.

TTY Interfaces for RMV/RST/TEST Messages

6.73 The AUFRDFOR pident service routines,
AUFRMRQB and AUBDFOR, perform inter-
face functions for remove, restore, and test messages.

AUFRMRQB—MIRA Interface Routines
6.74 The AUFRMRQB routine performs manual
fault recovery functions that are requested

either by TTY or alarm scan (MIRA program). The
functions performed by this routine include the re-

Page 71

SECTION 254-280-310

moval and restoration of an AUB. The AU deferred
fault recovery test routine (AUFRDEFR, see para-
graph 6.82) also uses a segment of this routine to set
up its abort address. In addition, other AUFRDFOR
pident routines use segments of this routine to do ser-
vices such as the printing of the restore message.

AUBDFOR—Deferred Fault Recovery Con-
trol Routine

6.75 The function of the AUBDFOR routine is to

administer the pass, fail, and no tests run re-
turns from the AU deferred fault recovery test rou-
tine (AUFRDEFR). The specific tasks to be done by
this routine depend on several variables such as the
type of input request and the test result. The
AUBDFOR routine uses vector tables to determine
the proper action to be taken. This routine also deter-
mines if the AUB is in service since the deferred tests
are only run on an in-service AUB.

Off-Line AUB Removal and Restoration

6.76 The AUFRDFOR pident contains five service
routines that perform tasks associated with
off-line AUB removal and restoration. They are:

e AUFROSTP
e AUFRBAVL
e AUFRORMV
e AUFROPAB
; AUFRORST.

All these routines use specific fault recovery pro-
grams (FSFR, APFR, and DUFR) for unique opera-
tions. Interface with the specific fault recovery
programs is via the AUFRTYPE Program Unit men-
tioned earlier. These routines are also used by
AUFRMRQB (paragraph 6.74) to remove or restore
a bus.

AUFROSTP—Terminate Off-Line Configura-
tion (AUB)

6.77 The AUFROSTP routine terminates the off-
line configuration and requests diagnoses on

all units that were in service before the off-line con-

figuration. (See AUFRORST, paragraph 6.81.)

Page 72

AUFRBAVL—AUB Mate Availability Check

6.78 The AUFRBAVL routine checks for the avail-

ability of a mate bus for in-service operation.
This operation ensures that the AUs on the mate bus
are available for service before removing an AUB and
placing it off-line.

AUFRORMV—Deferred Removal of AUB

6.79 The AUFRORMYV routine removes the AUB

and places it off-line if requested. The routine
proceeds by first checking to ensure that all units are
in service on the other AUB. Next, each unit on the
designated bus is removed, and then the bus is re-
moved. Finally, the AUB is marked off-line if the off-
line flag is set. (A flag is set for any in-service AU
that is taken out for off-line so that a diagnostic will

be requested when the off-line restoration routine is
called.)

AUFROPAB—Permit Access to Off-Line AUB

6.80 The AUFROPAB routine establishes bus rout-

ing from the central control to an off-line bus
and disables the active bus. Basically, the use of this
routine allows a client access to an off-line bus. The
routine first resets any trouble flip-flops on the off-
line AUB and then sets the trouble flip-flops on the
active bus.

AUFRORST—Deferred Restoration of Off-
Line AUB

6.81 The AUFRORST function is to restore the off-

line AUB to service and to request diagnostics
for all AUs that were in service prior to the off-line
configuration.

Admiinistration of the AUB Deferred Fault Recovery Tests

6.82 The administration of the AUB deferred fault
recovery tests is performed by the
AUFRDEFR routine in the AUFRDFOR pident.

AUFRDEFR-—Administer AU Deferred Test-
ing

6.83 The function of the AUFRDEFR routine is to

serve as the interface between the AUFR pro-
gram fault recovery tests (that are normally run on
interrupt or interject levels) and the base level pro-
grams. An example of this interface function is the

segmentation (as required) of the fault recovery tests
(AUFRTEST pident).

Stopping and Starting of In-Service AUs

6.84 The AUFRCNTL pident provides two comple-

mentary stop/start service routines that stop
and start all AUs in the AUB system. The routines
are AUFRSTOP and AUFRSTRT.

AUFRSTOP—Stop All In-Service AUs

6.85 The AUFRSTOP routine stops all in-service

AUs immediately and unconditionally. This
routine and the complementary AUFRSTRT are for
use by interrupt/interject or by other maintenance
programs where AU stoppage is mandatory. In addi-
tion to stopping the AUs, the AUBSQ is stopped and
latched by this routine.

AUFRSTRT—Start All In-Service AUs

6.86 The AUFRSTRT routine starts up the AUBSQ

and all currently in-service AUs. The registers
in the AUBSQ are restored according to their former
states or from last-look words. A special exception to
the starting of all in-service AUs exists when the

AUs have not been maintenance stopped. Here, only
the AUBSQ is restarted.

6.87 In the case where an AU bootstrap has oc-

curred, the Writable Store Audit Program
(SAWS) will be requested to correct any out-of-date
file store information that may exist as a result of the
bootstrap bringing an out-of-service file store into
service.

Unconditional Restoration of All AUs

6.88 The unconditional restoration of all essential
AUs is performed by the AUFRREST routine
in the AUFRCNTL pident.

AUFRREST-—Unconditional Restoration of
All Equipped AUs

6.89 The AUFRREST routine is a special purpose

routine used primarily by PCRV. When en-
tered, this routine immediately and unconditionally
restores all essential AUs to service. Any AU that is
powered down or for some reason fails to respond to
a GCP, will be removed and a diagnosis requested.
The routine provides various services such as stop-

ISS 5, SECTION 254-280-310

ping and clearing the AUBSQ, the removal from ser-
vice of all nonessential AUs, and MCC lamp
administration.

Office Data Assembler Translation

6.90 The AUFR program contains its own transla-

tion routines. The translation routines that
are resident in the AUFRCNTL pident use transia-
tion table XL1AUKTRANS to perform their func-
tions. The routines are:

e AUFRCKUM
e AUFRCUMK
¢ AUFRCPK
e AUFRCKP.

AUFRCKUM—K-Code to Unit Type Conver-
sion

6.91 The AUFRCKUM routine converts an AU K-
code to its unit type and member number.

AUFRCUMK—Unit Type to K-Code Conver-
sion

6.92 The AUFRCUMK routine converts a unit type
and member number to the AU K-code.

AUFRCPK—AUB Position to K-Code Conver-
sion

6.93 The AUFRCPK routine converts the AU bus
position to a K-code.

AUFRCKP—K-Code to AUB Position Conver-
sion

6.94 The AUFRCKP routine converts a K-code to
an AUB position.

7. FILE STORE FAULT RECOVERY PROGRAM —FSFR

INTRODUCTION

7.01 The FSFR program performs fault recovery
tasks for faults occurring in a file store con-

troller or a disk file. Program FSFR interfaces with

the Auxiliary Unit Fault Recovery Program (AUFR)
for processing of file store related errors that cause

Page 73

SECTION 254-280-310 »

a D-level interrupt or an interject. In addition, FSFR
interfaces with the File Store Administration Pro-
gram (DKAD) for processing status failure reports.
The status failure reports are processed on base level
because the error conditions are not believed to be
severe enough to cause a D-level interrupt or an in-
terject.

7.02 To perform its functions, FSFR interfaces
with several other programs. The major FSFR
interfaces are illustrated in Fig. 17.

FILE STORE ORGANIZATION

7.03 The 1A Processor uses a file store memory to

provide backup storage for program and
translation data. The file store is also used to store
programs and data that are infrequently used and
consequently are not normally kept in program or
call store. The disk memory used by the file store pos-
sesses serial rather than random access characteris-
tics. Because of its serial character, the time required
to retrieve or store data from the file store is variable

(a function of the position of the disk when the re-
quest is made). Because time required to retrieve or
store data is on the order of milliseconds, it is not
practical for the central control to directly access
disk memory. Instead, a file store controller is pro-
vided to perform this function. The file store control-
ler is a special purpose wired logic processor that
buffers requests from the central control to read
from or write into disk memory and transfers infor-
mation from disk to main memory or from main
memory to disk.

1 7.04 Each disk file has a storage capacity of 640,000

24-bit words. Each file store contains one to
four disk files. File stores are arranged in pairs, and
each pair is referred to as a community. The 1A Pro-
cessor software is designed to accommodate a maxi-
mum of two communities. File store 0 (on bus 0) and
file store 1 (on bus 1) make up one community; file
store 2 (on bus 0) and file store 3 (on bus 1) make up
the other community.

7.05 For more detailed information about the files
store, refer to the following sections.

Page 74

NFR DXAD
ADGLIARY UNIT FAULT FILE STORE
RECOVERY PROSRAM APINISTRATION PROGRAM

MAINTENANCE CONTROL

FBFR
FILE STORE FAULT RECOVERY PROGRAM
PIDENTS:
FSFRSTAT
FSFROISK
FSFROGN

L

[+]
MASTER CONTROL CONSOLE
COMMON CONTROL AND
MONITOR PROGRAM

MAINTENANCE RESTART
PROGRAM

Fig. 17 —File Store Fault Recovery Program (FSFR) —Interfaces

SECTION TITLE
254-201-020 File Store Frame—Description
254-201-021 File Store Frame—Theory

FSFR—FUNCTIONS AND STRATEGY
A. General

7.06 Program FSFR resolves error conditions that

occur in the file store that cause maintenance
interject or D-level interrupt. Program AUFR deter-
mines that the fault belongs to a file store and trans-
fers via a transfer table to FSFR. Now, FSFR must
determine the error source (file store controller or
disk file that caused the error) and the appropriate
action to take. In addition, FSFR processes the disk
status failure reports requested by the DKAD pro-
gram. The status reports are job related and are pro-
cessed on base level maintenance time.

7.07 The configuration routines of FSFR handle
requests for removal and unconditional
restoral of file stores and disk files. In addition,
FSFR contains several service routines used in pro-
cessing file store controller and disk file faults.

B. Basic Program Strategy

7.08 When FSFR is entered from AUFR or DKAD,

FSFR determines the error type, increments
the counter, and checks to see if the counter limit has
been reached. If the counter had not reached its limit,
the error is recorded, and a return to the calling pro-
gram is executed. If the counter has reached its limit,
the file controller or disk file is removed from service.

7.09 Whenever a file store controller or disk file is

removed from service, a diagnosis is request-
ed. Because the removal of a file store controller from
service could mean that as many as four disk files
would be inaccessible, every effort will be made to
leave in service as many disk files as possible. There-
fore, when the source of the trouble may be either the
file store controller or disk file, only the disk file will
be removed from service. If it is determined that the
disk file only contains an error-prone record, the re-
cord will be rewritten and verified instead of immedi-
ately requesting a diagnosis.

7.10 Because the read or write of a disk file record
is a relatively time-consuming process, all

ISS 5, SECTION 254-280-310

FSFR maintenance actions that require a disk file
access operation are deferred. All disk file access op-
erations are processed as a standard job request
through the normal DKAD routines. Furthermore,
those disk file related error sources that are expected
to have a relatively high rate of occurrence are pro-
cessed through the status failure report mechanism.
Consequently, they will not require the more time-
consuming and service-affecting actions of normal
maintenance procedures.

FSFR—PROGRAM STRUCTURE
A. Generdl

7.1 The FSFR program contains the following
three pidents: FSFRSTAT, FSFRDISK, and
FSFRDGN.

7.12 The FSFRSTAT pident processes file store

controller internal error sources as requested
by AUFR during an auxiliary unit (AU) maintenance
interject or a D-level interrupt. The FSFRSTAT
pident also processes the status failure reports that
are received from DKAD. In addition, FSFRSTAT
containg subroutines that do tasks such as short-
term error analysis and an interface to the AU boot-
strap routine.

7.13 The FSFRDISK pident contains subroutines

that perform the file store stop and start func-
tions, maintenance pump initializing and restoring,
file store controller and disk file removal and uncon-
ditional restoral, and status updates.

7.14 The FSFRDGN pident contains the diagnostic

interfaces associated with the file stores. The
FSFRDGN pident also contains the 10 interface and
file store copy routine. In addition, it administers the
file store deferred fault recovery test.

7.15 The functional organization of FSFR consists

of three main parts: fault recovery, service
routines, and configuration routines. The basic fault
recovery steps and the FSFR pidents involved in
their execution are as follows:

(a) Establish the type of error, using a priority
structure analysis, based on certain errors
causing other errors (FSFRSTAT).

(b) Remove the faulty unit or correct the error
(whichever is appropriate) and/or perform

Page 75

SECTION 254-280-310

short-term error
FSFRDISK).

analysis (FSFRSTAT/

{¢) Call AU bootstrap if paragraph 7.15(b) is not
possible because of a duplex failure
(FSFRSTAT).

7.16 The FSFR service routines and associated
pidents include the following:

(a) Pre-diagnostic and post-diagnostic handlers
for file stores (FSFRDGN)

(b) File store copy function (FSFRDGN)

(¢) TTY interface for RMV/RST/TEST messages
(FSFRSTAT)

(d) Off-line file store removal and restoral
(FSFRDGN)

(e) Administration of the file store deferred fault
recovery test (FSFRDGN)

(f) File store stop and start routines (FSFRDISK)

(g) Initializing and restoring the file store for and
from a maintenance pump (FSFRDISK)

(h) Status update routines (FSFRDISK).

7.17 The FSFR configuration routines and associ-
ated pident include the following:

(a) Removal of file stores and disk files
(FSFRDISK)

(b) Unconditional restoral of file stores and disk
files (FSFRDISK).

B. Fault Recovery
Disk Fault Recovery Control

7.18 The FSFRDISK pident is entered at

FSFRJOB (job transfer table) to process a
fault recovery request from AUFR. The FSFRJOB
entry point uses an index to determine the task re-
quested by AUFR and to pass control to the specified
routine.

FSFRCCON Entry (Unique Fault Routine)

7.19 The FSFRSTAT pident is entered at
FSFRCCON for processing a unique file store

Page 76

fault. The FSFRSTAT pident is used to determine the
error type based on a priority scheme (eg, controller
errors have a higher priority than disk file errors,
and exerciser errors have a higher priority than time
out errors). After determining the error type and the
disk file or file store controller causing the error,
FSFRSTAT increments the appropriate counter. The
counter is checked to determine if an excessive num-
ber of errors have occurred. If the error count is not
excessive, the fault is reported and control is re-
turned to AUFR.

Note: 1If the fault occurs for a disk file oper-
ating in the update mode or if a heads-out indi-
cation exists, then the disk file is removed and
diagnosed.

7.20 If the error count has exceeded an acceptable
level, then the file store controller or disk file

is removed from service and a diagnostic is request-
ed.

FSFRSTAT Entry (Status Failure Routine)

7.21 The FSFRSTAT pident is entered at the

FSFRSTAT entry for processing status fail-
ure reports from DKAD. The DKAD program will
rely on FSFR to determine the nature of the trouble
and to do whatever maintenance actions are re-
quired. The DKAD program calls FSFR when disk
jobs are being dispensed and either of the file store
controller job aborted bits is set in word 3 of the job’s
disk request buffer. The DKAD program provides the
following information for FSFR:

(a) Address of word 0 of the disk request buffer
(b) File store community
{¢) Associated disk request register number.

7.22 The FSFRSTAT pident uses status informa-

tion in word 3 of the disk request buffer to de-
termine the type of trouble. The base K-code of the
failing file store controller is available. The failing
file store controller is determined from a flag passed
by DKAD that shows the disk community and status
information in the disk request buffer that indicates
that member of the community failed. There are ba-
sically five sources of trouble reported as status fail-
ures.

723 TRAMM Error Source: The translated
address mismatch source (TRAMM) is set be-

cause the number of words or the disk starting ad-
dress for a write request was not a multiple of 32 or
the disk information in the disk request register and
word 1 of the disk reguest buffer are inconsistent.
Therefore, the following checks are made and, de-
pending on the outcome, the job may be either retried
at DKADRTRY or aborted at DKADSFWR.

(a) When a write is specified, the number of
words and the disk starting address must be
a multiple of 82 in the disk request buffer.

(b) The read/write bit in the disk request register
must match that specified in the disk request
buffer.

(¢) The disk, face, and sector information in the
disk request register must match that speci-
fied in the disk request buffer.

If all the above checks pass, then a file store control-
ler hardware malfunction is assumed and the file
store controller is removed from service if an exces-
sive number of errors has occurred.

7.24 Disk Access Error: The identification tag
mismatch (IDMM) or untranslated record

address mismatch (UTRAMM) source is set. The two

conditions are recognized by the following:

(a) If IDMM=1 and UTRAMM=0, then an invalid

disk data situation has occurred. The store
identification that is returned in word 3 of the disk
request buffer is verified using subroutine
DKADVFID. A verification failure shows that the
data stored at that location is invalid. Therefore,
the record will be rewritten and the job may be
retried on the other disk file by making a return
at DKADRTRY. Otherwise, a verification success
indicates an improper identification submitted by
the client, and the job wiill be aborted at
DKADSFWR.

(b) If UTRAMM=1, then an access error is as-

sumed to have occurred. An access error may
be the result of a data, addressing, or translator
error. Therefore, the error producing record is
rewritten. The FSFR program will use the copy
routine to rewrite and verify the record. This ac-
tion will cause any other lower priority copy oper-
ations such as a disk update to be preempted
because the detection of this error is service-
affecting. A rewrite is not attempted if a rewrite

1SS 5, SECTION 254-280-310

is already in progress. If errors on a disk file be-
come excessive, or the rewritten record fails to
verify, the disk file will be removed from service
for a diagnosis. The job is retried on the other disk
file at DKADRTRY.

7.25 BUFOFL Source: The buffer overflow
source (BUFOFL) is set to indicate that the
file store controller encountered bus or store block-
age that causes the job in progress to be aborted. The
file store controller will return the approximate file
record that was the last completed record before end-
ing the job. On long jobs, it is reasonable to pick up
the job from the last completed record. Excessive
blockage or an improper return of the aborted file
record would indicate hardware trouble and result in
the removal of the file store controller. Therefore,
blockage due to a buffer register 1 overflow on a read,
buffer register 1 underflow on a write, or a late job
indicator is counted. The job will be retried from the
beginning or where is left off at DKADBOFL. If the
job was aborted for none of the above reasons, the
error is counted and the job is retried at
DKADRTRY. The unit will be removed from service
and diagnosed if the error rate becomes excessive.

7.26 DFOFL Source: The disk file overflow
source (DFOFL) is set indicating that a client
attempted to read or write past the last record on
face 1 of the disk file. Several checks are made to de-
termine if the indication is legitimate. The partial
record address returned in the disk request buffer is
used to confirm that a disk boundary had been strad-
dled. An attempt to access beyond the last record of
the last available file will be treated as a failure, and
the job will be aborted at DKADSFWR. Finally, a
check is made on the contents of the disk request
buffer to confirm that the request would straddle a
disk boundary. The file store controller will be re-
moved from service if trouble is detected. The job will
be continued onto the next disk file at DKADBOFL.
If the job was aborted for none of the above reasons,
the error is counted and the job is retried at
DKADRTRY. The unit will be removed from service
and diagnosed if the error rate becomes excessive.

7.27 If the job was aborted for none of the above

reasons, the error is counted and the job is
retried at DKADRTRY. The unit will be removed
from service and diagnosed if the error rate becomes
excessive.

7.28 Time OQOut/No Status Entries: The
FSFRSTAT pident is entered at FSFRTONS

Page 77

SECTION 254-280-310

to perform error analysis of time out conditions re-
quested by the System Audit for File Store Adminis-
tration Program (SADK) or no status conditions
requested by the File Store Administration Program
(DKAD). If error analysis determines that hardware
is at fault, and if excessive errors have occurred, the
file store controller will be removed from service and
diagnosed. If it is determined that excessive software
errors have occurred, FSFR requests AUFR to do a
status update of the AU system.

7.29 AU Bootstrap Call: If a disk file or file

store controller has an excessive number of
errors and removal of the unit is not possible because
of a duplex failure, FSFR will call the AU bootstrap
routine at AUFRDTBL.

C. Service Routines
Pre- and Post-File Store Diagnostic Handlers

7.30 The FSFRDGN pident service routines

FSFRDGN and FSDGNRTN perform tasks
that are required before and after file store diagnos-
tics are run.

7.31 FSFRDGN—File Store Prediagnostic

Handler: The FSFRDGN routine performs
checks to assure that the file store is available for a
diagnostic and calls the file store removal routines to
remove the unit from service.

7.32 FSDGNRTN-—File Store Post-

Diagnostic Handler: The FSDGNRTN
routine performs an analysis of the diagnostic results
and determines the disposition of the unit. If the file
store is to be restored to service, it is updated to agree
with its mate.

File Store Copy Routine

7.33 The FSFR program has three applications
that require one or more continuous records
on a destination file be rewritten with that stored on
the source file. These applications arise when the
disk exerciser finds a bad record causing an interject
request, a job request encounters a bad record caus-
ing a status failure, or one or more disk files on a file
store controller are to be updated and restored to ser-
vice. The FSFRCOPY routine is a common service
routine that is used for these specific applications.

7.34 The FSFRCOPY routine uses an interlocking
mechanism between copy requests and all sys-

Page 78

tem write requests. Basically, all job requests are
permitted, but if any write requests interfere with a
copy segment already in progress, the job will be
locked out as if no disk request registers were avail-
able. Alternatively, if a copy segment is to be initiat-
ed, but it is found that one or more write requests
could invalidate the copy operation, FSFRCOPY will
wait until these requests are completed. To ensure a
reasonable wait period, FSFRCOPY will lock out any
new write request that may interfere until the copy
segment can be initiated and completed.

TTY Interface for RMV/RST/TEST Messages

7.35 The FSFRDGN pident service routines

FSFRMRQS and FSFRDFOR perform inter-
face functions for remove, restore, and test messages.
These routines perform manual fault recovery func-
tions that are requested by TTY or alarm scan. The
FSFRMRQS routine provides an interface for re-
moval and restoration of a file store controller or disk
file. The FSFRDFOR routine provides an interface
for deferred testing of file stores.

Off-line File Store Removal and Restoration

7.36 The FSFRSTAT pident provides service rou-

tines that perform tasks associated with off-
line file store removal and restoration. The routines
are FSFRORMYV and FSFRORST. In addition, the
FSFRDISK pident provides the FSFRDAVL routine
for use with this service.

7.37 FSFRDAVL—File Store Mate Avail-
ability Check: The FSFRDAVL routine
checks for the availability of a mate file store and its
associated disk files. This operation ensures that the
mate file store is available for normal service before
removing a file store and placing it off-line.

7.38 FSFRORMV—Deferred Removal of File

Store: The FSFRORMYV routine removes a
file store from service for AUFR when an off-line
configuration is being set up.

7.39 FSFRORST—Deferred Restoration of

Off-Line File Store: The FSFRORST rou-
tine restores the file store to the state that it was
prior to the off-line configuration.

Administration of the File Store Deferred Fault Recovery
Test

7.40 The FSDFOR routine of the FSFRDGN pident
administers the deferred fault recovery test
for file stores.

741 FSDFOR—Administer File Store De-

ferred Testing: The FSDFOR routine is a
control routine for the file store deferred fault recov-
ery test. It will call AUFR at AUFRDEFR to perform
the same tests as the AUB deferred test, except the
tests are done on the file store only.

Stopping and Starting of In-Service File Stores

7.42 The FSFRDISK pident provides the stop/

start service routines that stop and start the
specified file store. The routines are FSFRDSTP and
FSFRDSRT.

7.43 FSFRDSTP--Stop In-Service File

Store: The FSFRDSTP routine immediately
stops the file store specified by the K-code. This ac-
tion stops all sequencers in file store and sets the
maintenance flip-flop.

7.44 FSFRDSRT—Start In-Service File
Store: The FSFRDSRT routine starts the

file store and initializes it for normal operation. The

K-code of the file store to be started is specified.

Initializing and Restoring the File Store For and From a
Maintenance Pump

7.45 The FSFRDISK pident provides two service

routines for initializing and restoring the file
store for a maintenance pump of main memory. The
two routines are FSFRIMP and FSFRRMP.

7.46 FSFRIMP—Initialize File Store For

Maintenance Pump: The FSFRIMP rou-
tine initializes the file store system for a mainte-
nance pump of main memory according to the
equipage and status of the file store system. Each file
store controller is set up to report failing status for
all disk file related failures and maintenance inter-
ject for all file store controller related failures.

7.47 FSFRRMP—Restore File Store After

Maintenance Pump: The FSFRRMP rou-
tine restores the file store system to normal service
after a maintenance pump of main memory.

Status Update of File Store

7.48 The FSFRDISK pident provides the

FSCSUPD routine that is used by the Proces-
sor Configuration Recovery Program (PCRV). After
processor configuration has pumped program store 0,

ISS 5, SECTION 254-280-310

it calls FSCSUPD to determine the status of the file
store system. The file store controller status is up-
dated according to equipage information and the
state of the file store hardware on a community ba-
sis.

D. Configuration Routines
General

7.49 The FSFRDISK pident contains six configura-

tion routines that perform the task of removal
and unconditional restoration of file stores and disk
files. The routines are:

(a) FSFRDRMV—File store controller removal
routine

(b) FSFRFRMW —Disk file removal routine

(c) FSFRDRST—File store controller restoration
routine

(d) FSFRFRST—Disk file restoration routine

(e) FSFRPERX —Initiate duplex file store fail
error analysis

(f) FSFRPLEX—Duplex fail file store or disk file.
Removal of File Store Controller

7.50 The file store controller removal routine,

FSFRDRMYV, removes from service the file
store controller indicated. The following actions are
done:

(1) The file store controller is control pulse read.

This action stops the file store controller,
places it in a maintenance mode, and sets the in-
terject prevent error source transmission (PEST)
flip-flop.

(2) All disk files associated with the file store con-
troller are taken out of service by setting their
out-of-service flip-flops.

(3) Status for the file store controller and associ-
ated disk files is updated.

(4) The file store controller hardware is normal-
ized by clearing all error sources and resetting
the sequencers.

(5) The disk request buffer is audited to reflect
the removal of the file store controller.

Page 79

SECTION 254-280-310

(6) The out-of-service lamp at the frame and mas-
ter control console (MCC) is lighted and the
file store diagnostic program is called.

Removal of Disk File

7.51 The disk file removal routine, FSFRFRMYV,
removes from service the indicated disk file.
The following actions are done:

(1) The disk file is taken out of service and disk
file status is updated.

(2) The disk request buffer is updated to reflect
the removal of the disk file.

(3) The out-of-service lamp at the frame and MCC
is lighted and the file store diagnostic pro-
gram is called.
Unconditional Restoration of File Store Controller
7.52 The file store controller restoration routine,
FSFRDRST, reinitializes the indicated file
store controller. The following actions are done:

(1) All disk files are returned to service unless the
heads fail to fly.

(2) Status for the file store controller and associ-
ated disk files is updated.

(3) The out-of-service lamp at the frame and MCC
is extinguished.

(4) The file store controller is initialized.
Unconditional Restoration of Disk File
7.53 The disk file restoration routine, FSFRFRST,
restores to service the indicated disk file. The

following actions are done:

(1) The disk file is restored to service unless the
heads fail to fly.

(2) Status for the disk file is updated.

(3) The out-of-service lamp at the frame and MCC
is extinguished.

Initiate Duplex File Store Fail Error Analysis

7.54 The duplex file store fail error analysis rou-
tine, FSFRPERY, is entered by AUFR when

Page 80

an AU bootstrap has been requested because of fail-
ing file stores. Duplex file store fail analysis begins
unless duplex disk file error analysis is already in
progress. ‘

Duplex Fail File Store or Disk File Routine

7.55 The duplex fail file store or disk file routine,

FSFRPLEY, is entered by AUFR when a file
store or disk file has caused an AU bootstrap and the
bootstrap either failed or too many pass conditions
have occurred. The file store or disk file and its mate
will be removed from service and the duplex fail flag
marked for DKAD.

8. PATTACHED PROCESSOR SYSTEM SINGLE STRAT-
EGY FAULT RECOVERY —SSFR

INTRODUCTION

8.01 Fault recovery of 1A Processor subsystems

has traditionally been handled by a single pro-
gram for each subsystem. However, with the addition
of the Attached Processor System (APS), fault recov-
ery is handled by two programs with a common re-
covery control. Fault recovery in the APS is divided
into two major categories. The first category is fault
recovery on interrupt or interject level and is handled
by either the Auxiliary Unit Fault Recovery Program
(AUFR) or the Attached Processor Fault Recovery
Program (APFR). The second is fault recovery on
base level that is handled by the APFR. The size and
complexity of a fault recovery package for each
major category resulted in a single recovery package
serving both functions. The single recovery package
is called the Single Strategy Fault Recovery (SSFR).
It provides common recovery control for both inter-
rupt or interject level faults and base level mainte-
nance faults.

8.02 The SSFR does fault recovery tasks for faults

occurring in either the active or the standby
Attached Processor Interfaces (APIs). These faults
or failures may be initiated by either the 1A or the
3B processor. The SSFR is divided into four major
areas:

e Interrupt and interject control
e Base level maintenance control
e Common recovery control

o Timing administration.

The interrupt and interject control takes place in the
AUFR, and the base level maintenance control is
handled within the APFR.

APS ORGANIZATION

8.03 The APS replaces the disk file system on ei-

ther the No. 1A or No. 4 ESS. The APS con-
sists of one to eight 3B processors connected to the 1A
Processor through an API system. The APS provides
the 1A Processor disk access to a high-capacity 3B
disk system. The API allows the sending and receiv-
ing of messages and blocks of data between the 1A
and 3B Processor Systems. The API supports the at-
tached processor communications link (APCL) proto-
col between the 1A and 3B processors. The APCL
protocol has both efficient block transfer and mes-
sage-handling capabilities. The APCL protocol also
includes a high-priority maintenance message com-
munication capability that is supported by the API.
These messages are communicated in a closely cou-
pled, synchronous, high-priority way by using the 3B
IO interrupt and the 1A auxiliary unit bus (AUB)
maintenance interject mechanisms.

ISS 5, SECTION 254-28G-310

8.04 The APS includes attached processor message

handlers on both the 1A and 3B sides of the
API (Fig. 18). Also included are the file manager in-
terface, the file manager, the disk driver, and the disk
file controller, all on the 3B side.

SSFR—FUNCTIONS AND STRATEGY
A. Interrupt and Interject Control

8.05 The AUFR program is the interrupt and inter-

ject control program for the SSFR. All AU
interjects and D-levels are first handled by AUFR;
consequently, AUFR processes the interject or inter-
rupt and tries to isolate the problem. The problem
may be in the central control, the main memory, the
AUB or in an individual AU. In the APS version of
the 1A Processor, the AUs are the API and the data
unit selector (DUS).

8.06 If the AUFR determines the fault was caused

by an AU, AUFR communicates with the fault
recovery programs for the faulty AU. The AUFR pro-
gram communicates with the unique fault recovery

1A SIDE

1A DISK
CLIENT

PROCESSOR > ADHIINNTIESRTISAACTEION g——p PROCESSOR

ATTACHED

MESSAGE

ATTACHED
PROCESSOR
INTERFACE

HANDLER

¥
38 SIDE
ATTACHED FILE FILE DISK DISK
PROCESSOR h@-p MANAGER |@-p MANAGER @1 ORIVER [FILE
MESSAGE INTERFACE CONTROLLER
HANDLER

®Fig. 18— Attached Processor Interface Layoutd

Page 81

SECTION 254-280-310

programs through a transfer vector table. For inter-
rupt and interject processing, AUFR requests the
unique fault recovery programs to do these tasks:

e Load unique bins

e Process the unique trouble

e Report data

e Update plant measurements.

If the API was the faulty AU, APFR is the unique
fault recovery program and is called to do the above
tasks.

B. Base Level Maintenance Control

8.07 The APFR program is the base level mainte-

nance control program for the SSFR. During
normal operations of the APS, there is continual
checking for errors in these major areas:

e Link integrity monitor
e APS message handler
o System audit of disk.

8.08 The link integrity monitor does a check every

second on the active and standby links to the
3B. Base level maintenance is called when there is no
access to the 3B or the API through either the active
or standby link.

8.09 The APS message handler calls a service rou-

tine within APFR to get the K-code of the ac-
tive API. If an active API cannot be found, a failure
is returned to the message handler. The message
handler will then call base level maintenance control.

8.10 Thereis an audit done by the System Audit for

File Store Administration Program (SADK)
that monitors disk activity to ensure that jobs are
being completed. If jobs are being accepted but not
completed within a certain time, base level mainte-
nance is called.

8.11 The base level maintenance control routine,
APFRBLM, does three primary functions:

(a) Gets a base level maintenance report printed
on the TTY

(b) Stops all AUs

Page 82

(c) Sets all interrupt inhibits.
C. Common Recovery Control

8.12 The common recovery control routine,

APFRTBL, may be called from either Inter-
rupt and Interject Control or Base Level Mainte-
nance Control. The purpose of this routine is to
determine the error and to recover from the error
condition. The error and recovery information is for-
matted into proper form for printing on the TTY. The
recovery interaction between APFRTBL and AUFR
is important since the AUFR routine, known as dou-
ble trouble (AUFRDTBL), is the backup recovery
used by APFR.

8.13 Common recovery control functions are:
e Error detection
e Error analysis
e Error recovery
e Error termination.

8.14 The error information word is built during

error detection. This word is used to record as
much information about the fault condition as possi-
ble. This information is used by the recovery module
to determine which course of action to take for recov-
ery.

8.15 One of the basic strategies of error recovery is

to initialize the buffers only when absolutely
necessary. If recovery can be made without
initializing the buffers, jobs to and from the 3B will
not be affected; but, if the buffers require initializing,
all the jobs in the buffers are lost.

8.16 Another strategy of error recovery is to have

a configuration of the API regardless of the
state of the finite state machine (routine APFRTBL).
The current active API may be reconfigured or its
mate can be configured. The API that is configured
will be the active API upon return to the system.
There is one exception. When a fault occurs in the
standby API and it is removed from service, there
will not be any configuration performed on the active
APL If an API is configured, the following actions
take place:

(1) The peripheral interface controller (PIC) is
reset.

(2) The API is informed about the location of the
common buffer resources.

(3) The appropriate state for the API and update
status is determined.

(4) The 3Bis informed of the configuration of this
APIL

(5) The maintenance control console (MCC) lamps
and power switch lamps are updated.

8.17 Following the recovery actions in any state,

the active link to the 3B is tested to ensure
communication between the 3B and 1A exists before
the fault recovery ends.

8.18 Another strategy of error recovery is for all
recovery routines to have a pass-fail indica-
tion. Error recovery does not assume that recovery
actions are done successfully. The pass-fail indica-
tions from recovery modules allow for intelligent
decisions to be made within error recovery.

8.19 The final strategy of error recovery is the re-

cording of all recovery actions. These recovery
actions are recorded in the recovery information
word in memory. The recovery information word is
included in the printout and is used for determining
the exact recovery actions taken. If any recovery
module fails, the reason for failure is saved in mem-
ory and is also included in the printout.

8.20 The error termination function used by all
three states (paragraph 8.71) to end process-
ing is the same for all states. It does three functions:

(1) Saves all information gathered during pro-
cessing

(2) Formats information for printing
(3) Updates lamps.
D. Timing Administration

8.21 The common recovery control routine,

APFRTBL, has three states: 0, 1, and 2. The
processing of a fault may begin in any state and will
end in the same state. To return the routine to state
0, a sequence timer allows the state counter to be
reset to 0 after a certain time has elapsed.

1SS 5, SECTION 254-280-310

SSFR—PROGRAM STRUCTURE
A. Interrupt and Interject Control

8.22 The AUFR program determines for the SSFR
that the API is faulty and calls the APFR to
do the following tasks (Fig. 19):

e Load unique bins

e Process the unique trouble

e Report data

e Update plant measurements.
Load Unique Bins Task Routine

8.23 The unique bins is a 100 decimal word area of
program store 0 used to save information
about the interrupt or interject. The load unique bins
task routine in APFR is APILDBI. This routine has
two functions. First, it initializes the unique bins
area with an empty code; and then, it loads some data
about the interrupt or interject into the bins. The
APFR program loads three words in the unique bins
area. These three words, read from the PIC are:

e PIC status word
e PIC error word
o PIC state word.

The PIC status word contains important information
about the status of the API. The error word may con-
tain information about an error if one has occurred
in the API The state word contains the state (active
or standby) of the API at the time of the interrupt or
interject.

Process the Unique Trouble Task Routine

8.24 Routine APFRTBL is the common recovery

control routine for the SSFR. Detecting the
type of error, recovering from the error, formating
data to be printed—are all functions of APFRTBL.
All AUFR task routines, except the unique trouble
task routine, return a success to the address in the J
register. The unique trouble task routine has three
different ways to return to AUFR.

(a) Returnto AUFRALDN in pident AUFRILEV.
This return is used if the unique trouble task
routine found the problem and recovered the APIs.

Page 83

SECTION 254-280-310

INTERJECT LEVEL BASE LEVEL
' LINK NESSAGE SADK
| INTEGRITY| | LanpLER DISK
INTERRUPT INTERJECT | MONITOR AUDIT
| LIM APMH
INTERRUPT I ' & —
LEVEL
MAINTENANCE
| CONTROL
AUFRILEV | APFRBLM
t |
" ! | i !
LOAD REPORT PLANT | LIN APNH AUDIT
BINS DATA | | MEASUREMENT ERROR ERROR ERROR
: | HANDLING | | HANDLING | | HANDLING
APILDBI APFRRPTD APFRPLTM LIM_ERR APMH_ERR SADK_ERR
COMMON
RECOVERY
CONTROL
APFRTBL
1
STATE 0 STATE 1 STATE 2
TBL_STATE 0 TBL_STATE 1 TBL_STATE 2
| /”':l"'\
ERROR ERROR ERROR ERROR SAME ERROR ERROR ERROR
DETECTION || ANALYSIS || RECOVERY TERMINATION ST:$E 0 DETECTION || RECOVERY ||TERMINATION
ERR_REC_ ERR_REC_
ERR_DETECT || ERR_ANAL STATE 0 ERR_TERM ERR_DETECT | | “o1aTE 2 ERR_TERM
UPDATE ‘SAME AS' UPDATE
LAMPS STATE O LAMPS
ERROR
APFRLAMP DETECTION APFRLAMP
DETERMINE |! DETERMINE || DETERMINE ||GATHER INFO
3B HARDWARE IF PIC FROM PIC
INTERRUPT FAULT FAULT DETECT
DETECT_ -
DETECT_38 ARD DETECT_PIC INFO
I 3 }
INITIATE RESTORE
GET INFO HARDWARE ISSUE HARDMARE
FROM 3B FOR DMA DUMP RAM FROM DMA
APFR_CMDR SETUP_DMA_ APFRCM RST_DMA_
HARD HARD

Page 84

#Fig. 19— APFR—Single Strategy Fault Recovery Structure Chartd

(b) Return to AUFRSERR in pident AUFRILEV.

This return is used if the unique trouble task
routine could not find any problems. The AUFR
maintains a count of the number of times the
unique trouble task routine could not find a prob-
lem. If the count exceeds a threshold, AUFR boot-
straps the AU community.

(¢) Return to AUFRDTBL in pident AUFRILEV.

This return is used if the unique trouble task
routine determines the problem is so severe that
a bootstrap of the AU community is required. This
return, known as double trouble, will guarantee
the AU bootstrap.

Report Data Task Routine

8.25 After processing the interrupt or interject,

control is passed back to AUFR. The AUFR
program does some cleanup and then calls the unique
fault recovery task routine, APFRRPTD, to report
data. This routine can report two different kinds of
data: unique bins and dump random access memory
(RAM) data.

8.26 The unique bins contain data collected in the
load bins routine and data from the unique
trouble routine. The unique bins always get printed.
If during the unique trouble routine the dump RAM
data was collected, it will also be printed. The dump
RAM data contains information about the communi-
cation buffers and the message that was being pro-
cessed at the time of the interrupt or interject.

Plant Measurements Task Routine
8.27 Following the reporting of data, APFRPLTM,
the task routine that administers the plant

measurements, is called. Plant measurements are
counts of the number of errors having occurred in the
system. This routine increments counters for the fol-
lowing errors:

(a) Maintenance interject

(b) Software error

(¢) Invalid address

(d) Out-of-range access (API to call store)

(e) Out-of-range access (API to program store)

(f) D-level interrupt

ISS 5, SECTION 254-280-310

(g) In-range access (API tc central control)
(h) In-range access (API to call store)

(i) In-range access (API to program store)
(3) Unique API error.

8.28 Plant measurment counts are used by the ap-

plications programs. They do not affect AUFR
or APFR, both of which maintain separate counts of
errors for error threshold checks.

B. Base Level Maintenance Control
Error Handling Task Routine

8.29 The APFRBLM routine calls a separate rou-

tine for each client calling base level mainte-
nance control (Fig. 18). For the link integrity
monitor, it calls LIM_ERR, for the message handler,
it calls APMH_ERR; and for the SADK disk audit, it
calls SADK_ERR. Each of these routines is responsi-
ble for setting up the error information word. The
error information word is important to common re-
covery control because it contains information about
the error, which unit caused the error, and actions
required for recovery.

8.30 The base level maintenance control routine
APFRBLM is passed four inputs:

e The client

e The APS number

e The problem type

o The initialization request.
Printing a Base Level Maintenance Report
8.31 The four actions needed to get a base level

maintenance report printed on the TTY are as

follows:

e Issue the RPTLEVL macro

e Call the RPTACTN routine

e Call the RPTDATA routine

o Transfer to MARPBASE.

8.32 The RPTLEVL macro, issued in APFRBLM,
sets a flag in a word used by the Maintenance

Page 85

SECTION 254-280-310

Restart Program (MARP). This flag will suggest to
MARP that a base level maintenance report is to be
printed.

8.33 The call to RPTACTN is made when a text

phrase (indicating some action) is to be print-
ed. The text phrase is passed in the call to RPTACTN.
During the processing of the base level maintenance,
the call to RPTACTN can be made several times. A
call to RPTACTN is made in each of the separate cli-
ent routines called by APFRBLM.

8.34 The call to RPTDATA is made when data

about the error and the recovery is to be print-
ed. The RPTDATA routine is called with the starting
location of the data and the number of words to be
printed. This routine may be called with up to six dif-
ferent areas to be printed. The call to RPTDATA for
base level maintenance is made in common recovery
control, because this call must be made before the
transfer to MARPBASE if common recovery control

had to call for a bootstrap.

8.35 The transfer to MARPBASE is the final ac-

tion in getting the base level maintenance re-
port printed. In addition to printing all text phrases
and data, MARPBASE also does any necessary clean-
up. When MARPBASE is finished, it will transfer to
common recovery control that returns to APFRBLM.
The APFRBLM routine then returns to the client
that called for a base level maintenance.

Stopping AUs

8.36 The stopping of the AUs processing is done to

prevent possible interference problems since
these units may be doing some actions when recovery
actions are needed. The action of stopping the AUs is
done by calling AUFRSTOP. The AUFRSTOP rou-
tine calls every in-service AU and requests suspen-
sion of any direct memory access.

Setting All Interrupt Inhibits

8.37 The setting of interrupt inhibits is required

since recovery actions may cause an interrupt
as part of normal recovery. The recovery actions will
also take longer than is allowed for a normal segment
(10 ms); therefore, the excessive time interrupt (K-
level) is also inhibited. Even though base level main-
tenance was called on base level, the recovery actions
will not be done on this level. No segment breaks will
be taken until the 1A Processor recovery is complet-
ed.

Page 86

C. Common Recovery Control
Common Recovery Control Task Routine

8.38 The routine that does the common control is

called APFRTBL and is located in pident
APFRILEV. The APFRTBL routine can be called
from two places, Interrupt and Interject Control in
AUFRILEV or Base Level Maintenance Control in
APFRILEV.

8.39 The routine APFRTBL may be considered as

a finite state machine (Fig. 20). (A finite state
machine may be either a hardware or software struc-
ture consisting of a finite number of states.) The rou-
tine APFRTBL is a software structure consisting of
three finite states: 0, 1, or 2. The states are considered
accept states because APFRTBL may accept faults in
any state to begin processing. By definition, all pro-
cessing of a fault must begin in one accept state and
end in the same or a higher accept state. The process-
ing cannot go from a higher to a lower accept state.
Once state 2 is reached, all processing of a fault must
begin in state 2 and end in state 2. The only way to
recycle back to state 0 is for the sequence timer to
time out.

8.40 Although each state calls the same routine to

determine the source of the error, only state
0 calls a routine that does any error analysis. Each
state also calls a recovery module that does the actual
recovery from an error. The recovery module is dif-
ferent for each state. Each state again calls the same
routine to end the processing of the error.

Error Detection Task Routine

8.41 The error detection routine, ERR_DETECT,
may be called from any of the three states of
the finite state machine when APFRTBL is called
{from interrupt and interject control. But ERR_DE-
TECT will not be called if APFRTBL is called from
base level maintenance control. This is because ERR_
DETECT looks for errors in the hardware, and firm-
ware and base level maintenance control does not
respond to errors in hardware and firmware. For
base level maintenance, the error information word
is built within the base level maintenance control.

Status Checks

8.42 The first action done within error detection is
a status check. Every recovery state checks

FAULT

REMOVE
STANDBY STATUS PROBLEMS

ISS 5, SECTION 254-280-310

BUFFER
PROBLEMS

HARDWARE
PROBLEMS

CONFIGURATION

TEST

STATUS PROBLEMS

y

BUFFER
PROBLEMS

y
REMOVE SWITCH
STANDBY INITIAL

TEST

STATUS PROBLEMS

HARDWARE
PROBLEMS

DOUBLE
TROUBLE

[

BUFFER OR
HARDWARE
PROBLEMS

REMOVE
STANDBY

INITIAL
TEST

#Fig. 20—SSFR Common Favult Recovery Control State Diagram¢

Page 87

SECTION 254-280-310

the status of the API pair in the APS that is involved
in the recovery. One and only one API must be active
for an APS. If there is no active API or both are
shown as active, a flag indicating no active APl is set
in the error word. Upon seeing this flag, the error
recovery module calls “double trouble” This causes a
bootstrap of the AU community, and the status of the
APIs is corrected. If no errors were detected in the
status, error detection must determine if the inter-

rupt or interject was from the active or the standby
APL

Interrupt From the Standby API

8.43 Aninterrupt from the standby API may mean

the 3B is trying to interrupt and inform the 1A
of an error condition in the 3B. The 3B will only inter-
rupt the 1A over the standby API because errors oc-
curring in the 1A- 3B link will involve the active APL
If the 3B tries to report errors to the 1A over the ac-
tive API and the active is faulty, the attempt will
probably fail. If the standby API is nonoperational,
the 3B will be unable to inform the 1A of any 3B error
conditions. The 1A will eventually discover the prob-
lem anyway because the initialization of the 3B buff-
ers will be detected by the PIC, which in turn will
interrupt the 1A.

8.44 The interrupting of the 1A by the 3B allows

faster detection and resolution of error condi-
tions. More information about the error condition is
collected; and, with more information collected, the
easier it is to determine exactly what happened.
There are three types of failures the 3B will report to
the 1A:

(a) The 3Bbuffers have been initialized by the at-
tached processor driver.

(b) The APIs have been marked out of service by
the attached processor driver.

(c¢) The attached processor driver has been initial-
ized by the 3B Duplex Multienvironment Real
Time Operating System (DMERT).

If the status word shows the 3B is interrupting the
1A, the command system response mode routine
(APFR_CMDR) is called. This routine handles the
communication protocol with the 3B and passes back
the data sent from the 3B. Upon successful comple-
tion of APFR_CMDR, the data from the 3B is placed
in the error information word. A code indicating re-

Page 88

sponse mode failure is placed in the error informa-
tion word if this routine fails.

Interrupt From the Active API

8.45 If the 3B interrupt of the 1A is from the active

API a dump of the API memory is obtained.
This dump is an aid to the craft in determining the
problem. Before the dump, a routine (SETUP_DMA _
HARD) will initialize the hardware for direct mem-
ory access (DMA). After the dump, a routine (RST_
DMA_HARD) will restore the hardware. Although
the interrupt and interject control called an APFR
task routine (APILDBI) to load bins with interrupt
data, the dump of API memory cannot be done at that
time. This is because the load bins task routine is
called too early in AUFR to allow DMA. Therefore,
the dump of the API memory is done in the common
recovery control.

Active and Standby API Error Detection

8.46 If the interrupt was from either the active or

standby API (but not as a result of a 3B inter-
rupt), two routines are called to determine the exact
cause of the interrupt. The first, DETECT_HARD,
tries to determine if there was a hardware error. The
second, DETECT_PIC, tries to determine if there was
a problem in the peripheral interface controller
(PIC).

8.47 The hardware interrupt sources are located in

the general control pulse response and the
error summary register. Both the error summary
register and the general control pulse response are in
the AUB common interface hardware within the
API The AUFR program has access to the common
interface hardware for all AUs and handles most of
the hardware error sources. But, for the API, there
are two hardware error sources that AUFR does not
handle. One error source is for bad parity on a read;
the other is for bad parity on a write. Both of these
error sources appear in the error summary register
so, if either source is detected, the source will be
shown in the error information word.

8.48 After checking for hardware errors, ERR_
DETECT looks for error sources from the PIC.
This is done by reading the error summary register.
If the PIC interject source is set, the PIC error word
must be read. The errors the PIC can detect are:

(a) Circular buffer error

(b) Pointer check failure

(c) Ilegal circular buffer command

(d) Command register inhibited

(e) AUBSQ inhibited

(f) AU address range error

(g) Parity failure on attached processor bus

(h) Parity failure on peripheral unit controller
bus

(i) Command check error
(j) Maintenance buffer address not loaded

(k) Illegal peripheral unit controller RAM speci-
fied

(1) Peripheral unit controller error
(m) Illegal instruction.

8.49 After looking at all error sources to determine

what caused the error, the error detection rou-
tine determines whether the communication buffers
require initialization. This depends on the error
sources. These error sources require initialization of
the buffers:

(a) Initialization of the 3B attached processor
driver’s buffers

(b) Attached processor driver initialized by
DMERT

(¢) Circular buffer error

(d) Buffer pointer problem

(e) Command check error

(f) Illegal circular buffer command.

8.50 After the 3B error sources, the hardware error

sources, and the PIC error sources have been
checked, the error detection routine does one last
check. The error information word is checked to de-
termine if any error sources have been found. If none,
the error detection routine issues a report action call
with a text phrase stating that no error could be
found. This action phrase appears on the interrupt or
interject printout.

ISS 5, SECTION 254-280-310

Error Analysis Task Routine

8.51 The error analysis routine, ERR_ANAL, is

only called from state 0 of APFRTBL. The
purpose of this routine is to allow for threshold levels
to be evaluated for certain errors. There may be a
time when recovery actions are not desirable for
every occurrence of a certain fault. The error analysis
routine allows a threshold count for those kinds of
faults. The error analysis routine also enables the
sequence timer. The sequence timer determines when
the finite state machine (APFRTBL) can be recycled
back to state 0.

Error Recovery Task Routine
General

8.52 The routine used to recover from faults in the

SSFR program is ERR_REC. The ERR_REC
routine is made up of three error recovery modules,
one for each state: ERR_REC_STATEO, ERR_REC_
STATE1, and ERR_REC_STATE2. The purpose of
the error recovery modules is, of course, to recover
from an error condition. It is not always known what
recovery action must be done to recover from the er-
ror. Recovery from some errors only requires the API
to be reconfigured. Some errors require the active
API to be removed from service and the mate to be
put in service. Some errors require the communica-
tion buffers to be initialized.

Actions Common to Every Recovery State
8.53 The finite state machine used for recovery of
the APS has three states: 0, 1, and 2. Each
state does some unique recovery; however, there are
some recovery actions common to all states. These
common recovery actions are:
e Recovery from status problems
e Recovery if interrupt from the standby API
e Reporting of recovery actions
o Collection of recovery information.
8.54 If the error detection routine determined
there was bad status for the APS, the no-
active-API flag is set in the error information word.

Error recovery checks this flag before attempting
any recovery. If this flag is set, error recovery calls

Page 89

SECTION 254-280-310

double trouble. There is no use in trying to perform
recovery if the API to be recovered is unknown.

8.55 If the error information word shows the inter-
rupt was from the standby API (but not initi-
ated by the 3B), the standby API is removed. This
provides the fastest recovery action since the standby
API is not involved in the normal operation of the
APS. The routine that removes the API also initiates
diagnostics to be run on base level. If the diagnostics
find no errors in the API, it is restored to standby.

8.56 Every successful recovery action done in any

state results in a report action text phrase
being issued. These text phrases aid in determining
the kinds of recovery actions done. The text phrases
are issued at the time of recovery action, resulting in
them being printed in chronological order. This also
aids in determining the sequence of recovery actions.

8.57 The collection of recovery information is im-

portant for two reasons. First, it is important
to know if certain recovery routines have failed so
that intelligent decisions can be made in fault recov-
ery. Secondly, the recovery information is important
to the craft and maintenance personnel trying to
understand the fault.

Major Actions of Each Recovery State

8.58 Common recovery control may be entered
from either base level maintenance or inter-
rupt and interject control. The recovery actions done
by error recovery depend on the state of the finite
state machine. Processing will begin in state 0, 1, or
2 and end in one of these states. For a single entry
into common recovery control, the maximum recov-
ery is from one accept state to another accept state
(ie 0 to 1 or 1 to 2). Processing through two accept
states (0 to 2) cannot be done on a single entry.

8.59 The recovery actions done in each state are
different from recovery actions of other
states. The severity of the recovery increases with
the number of the state. The primary recovery action
for state 0 is to reconfigure the current active API,
for state 1 to switch the APIs, and for state 2 to ini-
tialize the communication buffers. The most severe
recovery actions are done when double trouble is
called.
8.60 State 0 first checks the error information
word to determine if the communication buff-

Page 90

ers must be initialized. If a buffer problem exists, it
must first be cleared before configuring the active
API or switching the APIs will not help solve the
problem. If the buffers require initialization, it is
done after reconfiguration of the current active APIL.
If the buffers do not require initialization, only the
current active API is reconfigured.

8.61 Following the reconfiguration of the active

API, the APCL is tested. If the reconfigura-
tion and link tests are successful, the finite state
machine ends up in state 1. If either of the tests fail,
the APIs are switched. The link is tested again fol-
lowing the switch. Now, if either the switch fails or
the link test fails, double trouble is called. Successful
completion of the switch and link test causes the fi-
nite state machine to end in state 2. State 1 is skipped
because the switch that is the primary action of state
1 has already been done.

8.62 If the problem is in the standby API, it is re-

moved from service and the finite state ma-
chine stays in state 0. It is not necessary to escalate
to the next state since the standby is not involved in
normal operation of the APS.

8.63 When the finite state machine begins process-

ing in state 1, it will first check the error infor-
mation word to see if the communication buffers
need to be initialized. Should the buffers require ini-
tialization, the APIs are switched and the active link
is tested before the buffer initialization. If the buff-
ers do not require initialization, the APIs are
switched and the active link is tested. If either the
buffer initialization, the API switching, or the link
testing should fail, double trouble is called. The finite
state machine ends in state 2 when all the recovery
actions succeed. If the problem is in the standby API,
it is removed from service and the finite state ma-
chine advances to state 2. This is because the switch
will fail if the finite state machine is left in state 1
with the standby API removed, and a fault should
occur.

8.64 When the finite state machine begins process-

ing in state 2, it first reconfigures the current
active API and then tests the active APCL. Next, the
communication buffers are initialized. If any of these
three actions fail," double trouble”is called. When all
three actions succeed, the finite state machine again
ends in state 2. Any later entries into common recov-
ery control causes the above actions of state 2 to be
done. To prevent state 2 from being repeated continu-

ally, there is a threshold count on the number of
times the communication buffers can be initialized.
When the threshold count is exceeded,*double trou-
ble” is called.

Exceptions in Common Recovery Control

8.65 Although common recovery control does re-

covery actions for both interrupt level and
base level, there are certain exceptions to it being
completely common. The AUFR program has a word
of memory that contains three flags. These flags
show either an AU D-level, an interject level, or a
base level fault. Common recovery control looks at
the base flag to determine which control area called
for recovery. The following is a list of the exceptions
to the commonality of common recovery control:

(a) The RPTDATA routine is called from

APFRTBL if the base flag is set. For interrupt
and interject control, RPTDATA is called from
AUFR.

(b) If invalid status is detected in base level main-

tenance control, the APFRTBL routine issues
a report action to print a text phrase indicating
invalid status.

(¢) In the routines TBL_STATEO, TBL_STATE],

and TBL_STATE2, the error detection routine
is not called if the base flag is set. The base level
maintenance control does the actions of the error
detection routine and sets up the error informa-
tion word.

(d) A printout for a base level maintenance will

not include a dump of RAM. The dump of RAM
is not necessary for base level maintenance since
the type of faults detected are normally not con-
cerned with the job in progress at the time base
level maintenance is called.

Double Trouble Task Routine

8.66 The AUFR double trouble recovery routine,

AUFRDTBL, is the backup recovery for all
AUs including the attached processor. This routine is
called from common recovery control only when re-
covery cannot be done within the error recovery rou-
tine. The AUFRDTBL routine is called if any of the
following conditions exist within the error recovery
routine:

e Bad status has been detected.

1SS 5, SECTION 254-280-310

e No working configuration can be found.

e The buffer initialization threshold count has
been exceeded.

As shown in Fig. 19, AUFRDTBL can be called from
almost anywhere in the finite state machine and the
machine always ends up in state 2. The recovery ac-
tions in AUFRDTBL are more severe then in state 0
and 1; therefore, having the finite state machine end
in state 0 or 1 is inappropriate. The recovery action
of state 2 is to initialize the communication buffers
and, since AUFRDTBL does not initialize the buffers,
state 2 is the appropriate state to end.

8.67 The primary recovery action of AUFRDTBL is
to bootstrap the entire AU community. The
bootstrapping of the AU community involves:

(1) Initializing the status on all AUs.

(2) Performing an unconditional restoral of all
AUs,

(8) Testing all AUs. (This is an exhaustive test of
the AU hardware that interfaces with the
AUB. The hardware used to do direct memory ac-

cess into call store and program store is also test-
ed.)

(4) Removing any AU that fails to pass all the
above tests.

8.68 If the bootstrap of the AU community is suc-
cessful, AUFRDTBL does additional recovery
actions dependent on the value of the emergency ac-
tion state count. The emergency action state count is
used by AUFRDTBL to escalate recovery if
AUFRDTBL is called repeatedly. If the emergency
action state count has a value of 0 or 1, the count is
incremented and no additional recovery actions are
taken. Some recovery actions are done for values
greater than 1 and, also, the count is incremented.

8.69 The relationship between the emergency ac-
tion state count and the recovery actions is as
follows:

(a) 0—Increments the emergency action state
count (bootstrap with no additional recovery)

(b) 1—Increments the emergency action state
count (bootstrap with no additional recovery)

(c) 2—Tries to switch the central controls

Page 91

SECTION 254-280-310

(d) 3—Tries to switch the central controls again
(e) 4—Removes AUB 0

(f) 5—Removes AUB 1

(g) 6—Removes all nonessential AUs

(h) 7—Duplex fails the essential AUs

(i) 10—Duplex fails the essential AUs

(j) 11—Generates a processor recovery.

8.70 When AUFRDTBL is called from common
recovery control, there may or may not be a
return. If common recovery control was entered by
interrupt and interject control, AUFRDTBL will not
return to common recovery control. Instead calls
MARP which will return to a reference point or to the
point of interrupt. If common recovery control was
entered by base level maintenance control,
AUFRDTBL will return to common recovery control.
Next, AUFRDTBL will call MARP, and MARP will
return to whoever is in the T register. The
AUFRDTBL routine is called on the T register so
MARP will return to common recovery control.
Whenever AUFRDTBL is called, the finite state ma-
chine state counter is always set up to state 2.

Error Termination Task Rovtine

8.71 The error termination routine, ERR_TERM,

is used by all three states to end processing.
The purpose of the error termination routine is to
save and format the information gathered during
. processing. It will also update the lamps on the MCC
and the power switch.

8.72 Information gathered during processing is

saved for printout in later fault entries. Infor-
mation gathered during processing of a fault in state
0 is saved and included in the printout for state 1 and

state 2, if these states are entered. There are three
different tables used to save information.

e Error information table
o Recovery information table
o Test link results table.

8.73 Each word in the table represents a state in
the finite state machine. When fault process-

Page 92

ing is ended, the error information word is put in the
error information table. It is placed in the word cor-
responding to the value of the state counter on entry
into the finite state machine. The recovery informa-
tion word is put into the recovery information table
similarly. The results of the last test of the active link
are put in the test link results table.

8.74 There are two reasons for saving and printing
the information for all states that were en-
tered. First, if for any reason the printout for a state
gets lost, the information is always available on the
last printout. Second, looking at multiple printouts is
unnecessary because the last printout contains the
information from previous fault entries.

8.75 The formatting of the saved information is

also done in the error termination routine. All
of the information to be printed is placed in a
Compool defined area known as the unigue bins
(AU1RIQBINS). This area is available to any unique
AU. For the APFR, this area is only used as a buffer
for data to be printed.

Update Lamps Task Routine

8.76 The error termination routine calls a routine
that updates the lamps. The lamps in the

power switch as well as the lamps on the MCC are

updated to reflect the current status of the APIs.

D. Timing Administration
General

8.77 The finite state machine can only increment

from one state to another for each fault entry
but cannot decrement the state counter. Therefore,
whenever state 2 is reached, the finite state machine
stays there unless the counter gets reset. The impor-
tance of timing administered in AUFR is to reset the
state counter to 0 after a certain time. If there is no
timer, the finite state machine stays in state 1 or 2
indefinitely. This results in excessive recovery ac-
tions being done whenever a fault is detected. The
sequence timer begins timing only after being en-
abled. It is enabled within common recovery control
in the error analysis routine, which is called in state
0.

Timer Administration Task Routine

8.78 The administration of the timer is done in the
routine APFREX. This routine is entered

every second from the Maintenance Control Program
(MACP) that runs on base level. If the sequence timer
has been enabled, a count will be incremented. If this
count exceeds 60 seconds, the sequence timer is dis-
abled, the state counter is reset to 0, and the follow-
ing data structures are initialized:

e Error information word

o Recovery information word
o Error information table

e Recovery information table
o Test link results table

e Fault recovery miscellaneous information
word.

The fault recovery miscellaneous information word
contains the sequence timing count and the sequence
timing enable flag.

E. Duplex File Store Failure

8.79 Although the APS does not use file stores in

the same way file stores were used prior to the
CPRY7 generic, the same terminology is used here for
consistency. In the original file store system, there
were two levels of duplex file store failure but in the
APS there is only one level. Duplex AUB outage, du-
plex API outage, duplex disk status check outage,
duplex 3B disk file controller outage—all these fac-
tors could cause duplex failure.

Detection

8.80 Duplex failure can be detected in two ways by

two different programs. The first program
APFRLM, will detect such conditions as duplex AUB
outage, duplex API outage, duplex disk status check
bus problems on the 3B, and 3B attached processor
driver problems. The second program SADKTI, lo-
cated in the disk audit pident SADK, is able to detect
problems in 3B software as well as problems in the
3B file system.

Operation
8.81 When the system is driven to duplex file store

failure, the APIs are removed from service,
MACP jobs are idled, and the system’s duplex file

ISS 5, SECTION 254-280-310

store failure flags are set. A message is printed on
the TTY at regular intervals until the duplex file
store failure is cleared. During duplex file store fail-
ure, operation in the APS is identical to that in the
file store system when both file store controllers are
out of service.

Recovery

8.82 After the faulty hardware or software is cor-

rected, recovery from duplex failure is accom-
plished depending on whether file mutilation has
occurred. If mutilation occurred then the System
Audit of Stores from Tape pident must be used to re-
load the disks. When no file mutilation has occurred,
recovering from duplex failure is simply the restor-
ing of an API unconditionally and then entering the
new message to clear duplex failure.4

9. DATA UNIT FAULT RECOVERY PROGRAM—DUFR
INTRODUCTION

9.01 The DUFR program performs the fault recov-

ery tasks for the auxiliary data system con-
sisting of data units connected to the AUB system.
The data unit fault recovery approach consists of
finding a set of data units that is capable of carrying
out the normal tasks associated with data stored on
tape. This determination is made by a detailed set of
tests that are run on interject or interrupt level pri-
ority or on demand via a TTY message. To perform
its functions, DUFR interfaces with a number of
other programs. The major DUFR program inter-
faces are illustrated in Fig. 21.

9.02 The DUFR program is entered from the Aux-

iliary Unit Fault Recovery Program (AUFR)
of D-level interrupts and maintenance interjects. The
AUFR program is responsible for all AU fault recov-
ery tasks relating to the AUB system. The AUFR
program selects the proper subsystem, FSFR/APFR
or DUFR, based on indicators saved at the time of the
interrupt. The AUFR program makes additional
checks, resolves certain problems associated with the
AUB system between central control or the stores
(program or call store) and the data units, and routes
data unit problems to the DUFR program.

9.03 The DUAD program administers the work to

the data unit community and monitors its
progress. When DUAD detects a problem during its
base level maintenance cycle, control is passed to

Page 93

SECTION 254-280-310

AUFR DUAD MACP
AUXILIARY UNIT DATA UNIT MAINTENANCE
FAULT RECOVERY ADMINISTRATION CONTROL
PROGRAN PROGRAM PROGRAM
DUFR
DATA UNIT FAULT RECOVERY PROGRAM
PIDENTS:

DUFRDFOR DUFRPCSB

DUFRDGNI DUFRSUBR

DUFROLIN DUFRTADM

DUFRPCAU DUFRTSTS

DUFRPCOU DUFRTTYI

ADDG MIRA Dbon

AUXILIARY MANUAL INPUT DIAGNOSTIC
DATA SYSTEM REQUEST CONTROL
DIAGNOSTIC ADMINISTRATION " PROGRAM
CONTROL PROGRAM PROGRAM

#Fig. 21 —Data Unit Fault Recovery Program (DUFR) —Program Interfaces ¢

DUFRTADM that administers tests to isolate the
faulty unit and remove it from service.

9.04 The MACP program schedules the DUFR pro-

gram periodically for routine diagnostic on all
auxiliary data system units. The MACP program also
schedules DUFR on a regular basis to normalize the
auxiliary data system community.

9.05 The Auxiliary Data System Diagnostic Con-

trol Program (ADDG) performs diagnostics
on the auxiliary data system data units as required
by the DUFR programs. The ADDG diagnostics are
requested through the Diagnostic Control Program
(DCON) that schedules the required diagnostics
through the MACP job tables. Diagnostic results are
usually returned to DUFR for final analysis and dis-
position,

9.06 The MIRA program interfaces with DUFR to
remove or to unconditionally restore a data

Page 94

unit selector (DUS) or a tape unit controller (TUC)
to service. The TTY request for this service is de-
tected in MIRA and control passes to MACP. The
MACP program then schedules a job for DUFR.

AUXILIARY DATA SYSTEM ORGANIZATION

9.07 The auxiliary data system is comprised of a

community of data units. The system is capa-
ble of being expanded to a maximum of two commu-
nities. Each community consists of two DUSs each
connected to a single AUB (DUS 0, AUB 0; DUS 1,
AUB1), a minimum of 2 tape units and up to a maxi-
mum of 16 per community, and 2 data unit buses that
interface the DUSs and tape units. Each tape unit
has associated with it TUC that allows the tape unit
to be configured to either of the two data unit buses
and in turn to either of the DUSs. The auxiliary data
system serves as a backup to the file store system for
system reinitialization and as the prime facility for

program updating, automatic message accounting,
data recording, and other functions (Fig. 14 and 15).

DUFR—FUNCTIONS AND STRATEGY
A. General

9.08 The DUFR program is designed to operate

under D-level interrupts, maintenance inter-
ject, base level maintenance, and on demand via TTY
request. The DUFR program performs the following
functions:

(a) Removes and restores data units

(b) Tests the bus circuitry, internal DUS register,
and DUS flip-flops.

(¢) Performs configuration of the data unit com-
munity

(d) Administers diagnostic requests

(e) Administers TTY message input and output
requests

(f) Provides a common interface for other system
programs.

All these functions are performed to maintain a via-
ble auxiliary data system.

9.09 Sometimes DUFR uses the first-look ap-

proach to fault recovery that consists of
retrying the failing operation with simple and fast
testing techniques. If this approach fails to identify
the source of trouble, DUFR resorts to more detailed
testing to isolate the problem.

B. Basic Program Strategy

9.10 The DUFR program attempts to keep the tape

units normalized as much as possible. This
means configuring an equal number of TUCs to each
DUS. System conditions may require that the data
units be configured differently to maintain a viable
auxiliary data system. The normalization scheme is
exercised once a day at some nonbusy hour to equally
divide the TUCs between the data unit buses. At this
time, all TUCs are switched from the DUSs they have
been configured with to the other DUS. This is done
to ensure that all communication paths are exercised.
The TUCs and DUSs are also exercised (diagnosed)

ISS 5, SECTION 254-280-310

once a day to ensure that they are capable of being
used as the need arises. This exercise is also done at
a nonbusy hour.

9.11 Onesource of entry into DUFR is from D-level

interrupts representing central control com-
munication and call store/program store communi-
cation problems, read/write out-of-range, etc. The D
levels are detected and enter AUFR (the main auxil-
iary unit fault recovery program). The AUFR pro-
gram can resolve some problems relating to the data
unit community. If AUFR can define the specific unit
at fault, DUFR will be entered to remove that unit.
The DUFR program is responsible for configuring all
the auxiliary data system units but will accept re-
quests to remove or restore specific units. If AUFR
is unable to define the specific unit at fault, DUFR
is entered to resolve the problem and then to remove
the faulty unit. The select registers keep records of

"which TUC is being accessed, and since only one TUC

may be accessed at the time, the recovery is enhanced
by having to test only over that particular path.

9.12 The Data Unit Administration (DUAD) pro-

gram is the interface program that allocates
work to the auxiliary data system. During normal
processing, tape reads and writes are issued, and
DUAD monitors the progress of these functions.
When a fault occurs in the TUC, DUAD detects this
as an operational interject (TUC maintenance inter-
jects appear as operational interjects to the system),
and determines that it is a maintenance type of indi-
cator rather than the normal operational type indica-
tor. Capstan motion abnormal is one such fault. The
DUFR program then administers such tests as are
necessary to isolate the problem and remove the
faulty unit from service.

9.13 When it is necessary to change the configura-
tion of the auxiliary data system units for
nonemergency removals and restorals, the request
will be honored when MACP allots a time segment.
These jobs usually consume more time than is avail-
able in one segment, and segmenting is used. The re-
quest to switch TUCs is detected by the DUAD
program. The DUAD program then enters DUFR
with the switch request at a convenient time that wiil
prevent interruption of normal tape operations.

9.14 Diagnostic requests can be initiated by

MACP, MIRA, and DUFR. The MACP pro-
gram initiates routinely scheduled diagnostics. The
MIRA program handles MANUAL requests while

Page 95

SECTION 254-280-310

DUFR initiates all fault-related requests. All re-
quests are scheduled through MACP. The MACP pro-
gram then comes to DUFR to initiate the diagnosties.
The DUFR program determines the unit to be diag-
nosed, removes one of the DUSs and its bus from ser-
vice, and assigns the unit to be diagnosed to this
DUS. The remaining DUS, its bus, and TUCs remain
in service for normal operation. The DUFR program
then issues the diagnostic request through DCON to
ADDG. Programs ADDG and DUFR then communi-
cate with each other to perform the diagnostic, ana-
lyze the results, and remove the unit as dictated by
the diagnostic results. The DUFR program issues
reports via TTY about the progress of all of its jobs
to keep operating personnel informed as necessary.
These reports are made via the Maintenance Restart
Program (MARP) in interrupt cases or through the
Input/Output Control Program (IOCP) normally.

DUFR—PROGRAM STRUCTURE
A. General

9.15 The DUFR program consists of ten pidents to

accomplish the task of fault recovery for the
auxiliary data system. These pidents communicate
frequently with one another and with other systems.
The pidents that constitute the DUFR program are
as follows:

(a) DUFRDFOR —Deferred fault recovery test
routines (PR-5A308)

(b) DUFRDGNI—Diagnostic interface routines
(PR-5A309)

(¢) DUFROFLN—Off-line configuration routines
(PR-5A310)

(d) DUFRPCAU—AUFR interface routines (PR-
5A311)

(e) DUFRPCDU—~DUFR interface routines (PR-
5A312)

(f) DUFRPCSB—DUFR subroutines (PR-5A313)

(g) DUFRSUBR— Auxiliary data system miscel-
laneous service routines (PR-5A314)

(h) DUFRTADM —Test administration routines
(PR-5A315)

(i) DUFRTSTS— Auxiliary data system test rou-
tines (PR-5A316)

Page 96

() DUFRTTYI—-TTY interface routines (PR-
5A317).

B. DUFR Pidents
DUFRDFOR Description

9.16 The DUFRDFOR pident contains the program

necessary to administer the work needed to
execute the deferred data unit selector (DUS) and
tape unit controller (TUC) tests. This includes
initializing the indicated selector, running the speci-
fied tests, and reconfiguring the community upon
completion of the tests. Also included are routines
that determine for the DUAD program whether a
TUC function should be reassigned. The MACP pro-
gram comes to DUFRDFOR to determine if the auxil-
iary unit bus (AUB) activity can be stopped over a
segment.

9.17 The DUFRDFOR pident is entered at the

DFORDFER entry to perform the deferred
DUS tests. These tests are done for one of two condi-
tions: (1) after the DUS has been diagnosed, for any
reason, and its results are all tests pass (ATP) indi-
cating that no probiem has been found, (2) on receipt
of a “TEST:DUS” TTY message. The tests initiated
by this pident are:

e Common AU tests

e DUS register tests

o Select verify register tests

o All-seems-well tests

e Reply bus parity tests

e Control bus parity tests

e Post-poll tests.
The DUFR program transfers to the AUFR deferred
fault recognition routine AUFRDEFR to perform the
common AU tests. The DUS register tests are per-
formed by the DUFR test administration pident
DUFRTADM. All other tests are done in the
DUFRTSTS pident.
9.18 [Initializing the auxiliary data system for de-

ferred fault recovery tests includes
configuring the DUS and a TUC to be used as a helper

unit. The DUFRCNTL routine is then called to ini-
tiate the requested DUS test. Each test may have a
number of phases. The tests are table-driven and
these tables contain start and stop addresses of
transfer tables for each of these tests. Each transfer
table is made up of a series of transfers to the se-
quence of phases within the test. Each phase is en-
tered in turn until all phases have been run or until
a failure occurs. No additional phases are run after
a failure has occurred.

9.19 These tests are long and only one test may be

done in any segment. Thus upon the comple-
tion of a test, the auxiliary data system is
reconfigured to the pretest conditions. This allows
DUFR to take a segment break before the next test.
The reconfiguration restores the DUS and TUC to
their pre-diagnostic state that requires the start rou-
tine DUFRSTRT be run. After the segment break,
DUFR is again entered to continue executing the var-
ious tests and continues this procedure until all tests
have been run.

9.20 The DUAD program monitors the status of
the auxiliary data system and when it finds an
assigned TUC marked out of service, DUFR is en-
tered. The DUFR program is entered at the
DUFRWAIT entry to determine if the function as-
signed to the out-of-service TUC should be
reassigned to another TUC. If the DCIRWAIT bit is
set, the TUC is temporarily out of service for a diag-
nostic. If it is not set, the TUC is permanently out of
service and its function is reassigned. If it is in a wait
state, and checks on the type of job it performs pass,
the diagnostic is aborted and DUAD is instructed to
not reassign but to wait for its return to service.

9.21 When an MACP client gets a segment break,

that client can request certain conditions be
established for the next segment. One of these condi-
tions is that AUB activity be stopped. When this is
the case, MACP enters the DUFR entry DUFRHOLD
and checks for any jobs that cannot be held up for one
segment. If autonomous jobs are in progress, the re-
quest is denied. If fast data rate jobs are in progress,
G-level timing is set up that allows the jobs to be
completed. The DUAD program is instructed not to
start any new jobs and the request is granted at the
end of G-level timing. If no jobs are in progress, the
request to stop AUB activity is allowed.

DUFRDGNI Description

9.22 The DUFRDGNI pident is the interface be-
tween DUFR and the diagnostic routines. Di-

1SS 5, SECTION 254-280-310

agnostics are run any time a unit is restored to
service. The diagnostics are also run routinely on
each auxiliary data system unit once a day as sched-
uled by MACP. Units removed by the fault recovery
programs and units returning from an off-line con-
figuration are diagnosed before returning to service.
Diagnostics are run on demand when requested via
TTY as part of a maintenance service.

9.23 The DUFRDGNI pident is a collection of sub-

routines necessary to accomplish the required
diagnostics. Included are initial and final handlers,
routines that perform the routine exercise of all
TUCs and DUSs daily, routines that normalize TUC
configuration once per day, as well as several smaller
routines that assist in these functions. The initial
handler is entered at DUFRPRDG. This routine
configures the auxiliary data system for diagnostics
by placing the units to be diagnosed on one bus while
keeping other units in service on the other AUB. The
diagnostic tests consume more time than is allowed
in one segment and the system is returned to normal
at the end of each segment and reconfigured for diag-
nostics when entered again. Routine DUFRPRDG
transfers control to DCON that schedules the diag-
nostic ADDG. The diagnostic buffer table contains
the data for diagnostic phases requested, unit and
member number, as well as any helper unit if speci-
fied.

9.24 The final handler routine is entered after the

diagnostic is complete to analyze the results.
Units that fail the diagnostics are removed from ser-
vice. If no failures are recorded, the final handler en-
ters routines that return the units to service and
restart the system.

9.25 The DUFRDGNAEX routine is entered from

MACP on a scheduled basis once a day to diag-
nose all equipped and in-service auxiliary data sys-
tem units in both communities. The tests start with
both the DUSs for the community and then pick up
the TUCs in sequential order. Segment breaks are
taken as needed. The MACP program control is re-
tained via the post-diagnostic final handler until all
equipped and in-service units have been diagnosed or
until the allotted time has been exceeded. The unit
number where this occurs is stored. Testing contin-
ues with this unit at the next scheduled time seg-
ment.

9.26 The DUFRCFRAEX routine is entered from
MACP on a scheduled basis once a day to nor-

Page 97

SECTION 254-280-310

malize the auxiliary data system. This is done 12
hours after the ADS units have been diagnosed by
the routine exerciser. The system is normalized by
distributing the in-service TUCs evenly between the
DUSs. After the normalization is complete, a request
is made to switch all TUCs from the DUS to which
it is presently assigned to the other DUS. This is done
for both DUSs to ensure that all units are capable of
being switched, to keep them evenly distributed for
normal processing, and to ensure that all communi-
cation paths are exercised.

DUFROFLN Description

9.27 The DUFROFLN pident is used to configure

an off-line auxiliary data system to perform
off-line functions or testing and diagnostics. The
DUFROFLN pident is entered from AUFR at the
DUFROAVAL entry to determine if a specified DUS
and sometimes a TUC can be removed from the on-
line system. If the entry is to set up an off-line auxil-
iary data system consisting of an AUB, DUS, and
TUC, DUFR checks to see if the nonrequested DUS
is in service and that all the in-service TUCs can be
assigned to the nonrequested DUS. If a TUC is re-
quested, that TUC must be out of service and have no
functions assigned to it. If the request from AUFR is
for a removal and the requested DUS is out of service,
an immediate pass return is given. If the requested
DUS is in service, the auxiliary data system is
reconfigured to show that DUS out-of-service and all
in-service TUCs are configured to the other DUS. The
status of affected units is updated to reflect those
units in the off-line mode.

9.28 The off-line functions are automatically ter-

minated upon completion of the job. The off-
line configuration may be terminated and those units
returned to service if they are needed for system op-
eration. The termination procedure first removes the
off-line units again to guarantee correct hardware
and software agreement. Such units are then diag-
nosed and restored to service if they pass.

DUFRPCAU Description
9.29 The AUFR program enters the DUFRPCAU
pident during the execution of fault recovery
measures. Some entries perform no operations other
than to return control to AUFR but exist for com-
monality. When entered because of a fault,
DUFRPCAU fills the load bins with print data about
the units at the time of the fault. The AUFR program

Page 98

enters the DUFRDSRM entry to remove a DUS that
AUFR has defined as faulty during the AUFR fault
recovery processing. The suspect unit is removed
from service via the DUFRNEUT routine in
DUFRPCDU and a diagnostic is requested. On com-
pletion of the diagnostic, the unit is restored to ser-
vice by DUFRPCAU routines if all tests pass.

9.30 After the auxiliary data system has been
stopped for either fault recovery or nonfault
recovery functions, the auxiliary data system restart
is done by entering DUFRPCAU at DUFRSTRT. The
start routine then performs exhaustive checks before
starting the auxiliary data system. There are two
entry conditions. One is the result of a processor con-
figuration change in that no units are known to be
functional and a complete initialization is performed.
The software status is developed from the hardware
configuration. The second entry is for all other condi-
tions and assumes that some units are functional and
that the software status is correct. This entry per-
forms an initialization on the DUS hardware only.

DUFRPCDU Description

9.31 The DUFRPCDU pident is entered after test-

ing has been performed by fault recovery or
diagnostics, to update the status words of the DUS or
TUC. The remove and restore bits have been set ac-
cording to test results. The failure may have been
pinpointed to a DUS, to a TUC, or all tests may have
passed. If all tests have passed, no units are removed
but a record is kept of the number of times an all tests
pass (ATP) occurs. The DUFRRATP entry is used
when all tests pass on a fault recognition entry. The
DUFRRMDC entry is used when fault recognition
has determined that the failure is in a TUC. The
DUFRRMDS entry is used when fault recognition
has determined that the failure is in a DUS. The
DUFRNEUT entry point is the main entry and is
used by other DUFR routines that have isolated the
problem to a specific unit. Entry point DUFRNEUT
is from diagnostic final handler and from manual
actions (remove and restore messages). Exit from
this pident is to the calling program.

DUFRPCSB Description

9.32 The DUFRPCSB pident is a collection of 13

auxiliary data system subroutines. Each sub-
routine performs a single unique function and is used
by one or more other DUFR pidents. The subroutines
and their functions are listed below:

(a) DUFRCNFG —Calculates a normalized DUS/
TUC configuration based on present status

(b) DUFRGNST—Updates the TUC software sta-
tus to agree with the hardware

(¢) DUFRHINT —Initializes DUS hardware to
the in-service state

(d) DUFRIRUD—Initializes the DUS inihibit
register to present TUC status

(e) DUFRDSLP—Updates DUS
secondary trouble lamp on the MCC

primary/

(f) DUFRTCLP—Updates TUC
secondary trouble lamp on the MCC

primary/

(g) DUFRDSEQ—Determines if the specified
DUS/TUC is equipped

(h) DUFRCLDS—Clears AU D-level interject
source flip-flops

(i) DUFRGCPC—Determines if the specified
DUS can be generate control pulse (GCP)

(j) DUFRBST1—Chooses a TUC to be used as a
DUS diagnostic helper unit

(k) DUFRCLRA —Clears specified bits in TUC
status for all TUCs

(1) DUFRSETA —Sets specified bits in TUC sta-
tus for all TUCs

(m) DUFRGTID—Converts TUC identity to bi-
nary format.

9.33 The configuration routine DUFRCNFG is en-
tered from the start routine DUFRSTRT to
normalize the TUC load between the available DUSs
whenever a unit is removed or restored to service.
This is done by distributing the configuration evenly
between the DUSs, taking in consideration such fac-
tors as present assignments, requests for new config-
uration, and bus troubles associated with a TUC.

9.34 The generate status routine DUFRGNST is
. entered from the start routine DUFRSTRT to
determine the hardware state of the DUS and TUCs
in the in-service DUS community. This entry also ini-
tiates the TUC status words to reflect the hardware
status so that a valid DUS-to-TUC configuration will
be established. If no errors are encountered, control
returns to the start routine. If errors are detected in

ISS 5, SECTION 254-280-310

the even DUS (DUS 0), control returns to the caller
of the start routine without checking the TUCs. If
errors are detected in the odd DUS (DUS 1), control
returns to the caller of the start routine but only
after the TUCs have been configured to the good
DUS.

9.35 The inhibit register update routine

DUFRIRUD is entered to translate the TUC
assignment in status to the inhibit register format.
The inhibit register denotes the TUCs connected to
the DUS. There is one inhibit register for each DUS.,

9.36 The equipage check routine DUFRDSEQ de-

termines the equipage of any type unit in the
auxiliary data system community. This routine is
structured to accept either K-code data or unit type
and member number.

9.37 The locate suitable TUC helper unit routine is

entered to find a TUC that is now assigned to
diagnostics or as a spare to be used to diagnose a
DUS. It has two entries: DUFRBST1, the initial entry
to find a helper unit, and DUFRBSTC, the second
entry to continue the search. On initial entry the pro-
gram attempts to find a helper that is assigned to
diagnostics or is a spare and that has no trouble bits
set. If no helper is found after checking twice, the
retry bit restriction is lifted and two additional
passes are made. If a helper is still not found, the sus-
pect bit restriction is lifted and a final attempt is
made. If during any pass a helper is found, its K-code
is passed to the user. If this helper is unsuitable to
the user, the program is reentered at DUFRBSTC to
continue the search for another helper and begins at
the K-code of the last helper found.

DUFRSUBR Description

9.38 The DUFRSUBR pident is a collection of mis-

cellaneous service routines for the auxiliary
data system. Pident DUFRSUBR consists of six pro-
gram units, each of which performs a single unique
function for a non-DUFR program client. These rou-
tines are entered from MACP for the user program,
an MACP client. The functions performed by
DUFRSUBR program units include:

(a) DUFRDSST— Assembles DUS status for the
output message “output DU status”

(b) DUFRDCST—Assembles TUC status for the
output message “output DU status”

(¢) DUFROSDS—Updates the DUS out-of-service
frame lamp for all DUSs

Pager 99

SECTION 254-280-310

(d) DUFROSTC—Updates the TUC out-of-service
frame lamp for all TUCs

{e) DUFRSOS1—Determines the out-of-service
DUSs for the output message “OP:00S units ”

(f) DUFRTOS]—Determines the out-of-service
TUCs for the output message “OP:00S units.”

9.39 The DUFRDSST routine is entered to deter-
mine if a specified DUS is in service or out of
service for the auxiliary data system output message
“output DU status.” In addition other pertinent sta-
tus information for the specified DUS is assembled
_to be printed in the output message as raw status
data. This routine is entered only if the specified DUS
is operationally equipped. The routine is reentered
for each operationally equipped DUS until all such
DUSs have been processed.

9.40 The DUFRDCST routine is entered to deter-

mine if a specified TUC is in service or out of
service for the auxiliary data system status output
message “output DU status.” It also determines the
DUS to which it is configured and includes this data
in the message. In addition, other pertinent data
about the TUC is collected and assembled to be
printed in the output message as raw data. The rou-
tine is entered only if the TUC is operationally
equipped, and subsequent reentries are made for
each operationally equipped TUC until all such TUCs
have been processed.

9.41 The DUFROSDS and DUFROSTC routines

are entered to update, respectively, the DUS
or TUC out-of-service frame lamp for all DUSs and
TUQCs in the office. If the DUS/TUC is operationally
equipped, but with an active in-progress frame re-
quest; or, if it is not operationally equipped, the out-
of-service frame lamp is not updated.

9.42 The DUFRSOS1 and DUFRTOSI routines are

entered respectively to determine which of the
operationally equipped DUSs and TUCs are out of
service for the output message “OP:0SS units.”
These routines check all DUSs and TUCs and, if an
equipped unit is found out of service, an exit is made
to the user to include that unit in the output message.
The user then reenters the program and processing
continues until all DUSs/TUCs have been checked for
out-of-service conditions. This data is used for the
output message “OP:00S units” that is issued rou-
tinely every half-hour, in response to the input mes-

Page 100

sage “OP:00S units,” and the MCC request of
depressing either the DATA UNIT SELECTORS or
the TAPE UNIT CONTROLLERS processor equip-
ment status key.

DUFRTADM Description

9.43 The DUFRTADM pident contains the test

administration routines for the various tests
performed by DUFR. For some D-level interrupts
and maintenance interjects, AUFR and DUFR are
unable to determine which units are at fault. For
these situations, AUFR or DUFR enter DUFRTADM
to make the determination. The DUAD program en-
ters DUFRTADM when it detects errors during its
normal course of monitoring the auxiliary data sys-
tem.

9.44 The DUFRTBL routine is entered by AUFR

and other DUFR routines to determine what
type of DUS-to-TUC communications failure has oc-
curred. Failure indicators are obtained from the
error summary register and the generate control
pulse (GCP) register save bins. Routine DUFRTBL
verifies that these registers are operating properly
and that the error indication signifies a valid error.
If no failure is detected, an error count is incre-
mented that keeps a record of the number of times
DUFRTBL is entered for transient errors. After the
failure type has been defined, program control is
transferred to the appropriate test routine shown
below:

(a) DUFRSVRF —Select verify register failure
(b) DUFRASWF —All-seems-well failure

(¢) DUFRPKRF—Reply bus parity failure

(d) DUFRPKCF—Control bus parity failure.

9.45 The DUFRDUC routine is entered from the

test analysis routines in the DUFRTBL rou-
tine. The test routine determines the suspect TUC.
The DUFRDUC routine determines if the TUC needs
testing, in which case there is a transfer to the select
verify register tests in DUFRTSTS, or DUFRDUC
assumes that the TUC is at fault and transfers to the
DUFRRMDC routine in DUFRPDCU to remove the
TUC from service.

9.46 An entry to the DUFRDSI entry signifies that
a DUS diagnostic phase 1 (no specific helper

unit needed) is requested. The DUFRDSI1 routine
updates the status to indicate DUS removal and the
diagnostic requested by DUFR, then transfers to the
DUS remove routine DBUFRRMDS in DUFRPCDU.
An entry to the DUFRDS2 routine indicates a re-
quest for a DUS diagnostic phase 1 and 2 (a helper
unit other than the TUC presently configured to the
DUS is needed). The status is updated and control
transferred to the DUS remove routine.

9.47 The DUFRRTRY routine is entered when a

test has failed but the faulty unit (DUS or
TUC) cannot be identified. This routine repeats the
failing test using another DUS or obtains another
available TUC and tests with the same DUS. Depend-
ing on the results of these tests, control exits from
this routine to remove either a DUS or a TUC. If all
the tests pass, control goes to the Retry All Tests
Passed routine (DUFRRATP in the DUFRPCDU
pident).

9.48 The DUFRTATP routine is entered when a

DUS-t0-TUC communications fault has been
detected and the test run in DUFRTBL was an ATP.
If a previous retry failed with this TUC and the other
DUS, then this TUC is removed. If a previous retry
failed with this DUS and another TUC, then this
DUS is removed. If tests performed in this routine
are also an ATP, then a transient error is recorded.

9.49 The DUFRSVTP routine is entered when the

DUS-TUC select/select verify test has been
run and passed. These tests consist of sending spe-
cific TUC K-code data over the bus and ascertaining
that only the correct TUC responds. The first time
this test passes, a transient fault is assumed and no
action other than to record the error is taken. The
second time it passes, a fault in the DUS is assumed
and that DUS is removed from service.

9.50 The DUFRIVOI routine is entered from the

DUAD program when an operational interject
is observed but no DUS is found reporting on an oper-
ational interject. On completion of an operation dis-
pensed by DUAD, operational interjects are set in
the TUC and reported to the DUS that in turn reports
the operational interjects to central control. In this
case DUAD observed the operational interject but, in
verifying the work completion, no DUS had its opera-
tional interject bit set. The DUFRIVOI routine then
attempts to isolate the faulty unit by calling the AU
bootstrap program. If the AU bootstrap fails to rec-
tify the problems, an immediate transfer is made to

ISS 5, SECTION 254-280-310

the Processor Configuration Recovery Program
(PCRV) and the processor configuration circuit is
activated which initiates a change in the processor
configuration. This is the most severe action that is
taken by the DUFR program and normal call pro-
cessing may be affected.

9.51 The DUFROBRF routine is entered from
DUAD when a write into a TUC fails the out-
put buffer register verification check twice without
causing an interrupt. This routine checks the original
DUS-TUC combination with a 0 through 1’s test, a 1
through 0’s test, an alternating 0’s test, and an alter-
nating 1’s test. If an interrupt is caused by the test,
interrupt processing is allowed to process the fault.
If the test fails and still no interrupt is generated, the
DUS is removed for a diagnostic using a different
TUC helper unit. If all tests pass, the DUS is assumed
to be good and the original TUC is removed from ser-
vice with a diagnostic request. In any case, the test
results are stored for a later report data printout.

9.52 The DUFROIDS routine is entered from

DUAD to remove a DUS from service follow-
ing a maintenance type of operational interject.
Some operational interjects within the DUS suggest
a maintenance-type problem within the DUS. The
DIFROIDS routine does some setups, checks that the
DUS can be removed, saves additional report data,
and transfers to the DUFRNEUT routine to have the
DUS removed from service and the status registers
updated.

9.53 The DUFRBLDC routine is entered from
DUAD to remove a TUC from service follow-
ing base level checks made by DUAD. After some set-

ups are made and report data is saved, control passes
to the DUFROIDC routine.

9.54 The DUFROIDC routine is entered from

DUAD when DUAD recognizes a TUC mainte-
nance-type interject in the TUC or from an entry
from DUFRBLOC. The TUCs are not permitted to set
system maintenance interjects, so a TUC mainte-
nance interject bit is set in the TUC but the opera-
tional interject bit is set in the system. The DUAD
program recognizes the TUC maintenance interject
and transfers to DUFROIDC. Some setups are per-
formed and report data is saved. Control is then
passed to the DUFRNEUT routine in PCDU to re-
move the TUC from service and update the software
status.

9.55 The DUFRTADM pident also contains several
short routines, such as

Page 101

SECTION 254-280-310

(a) The reporting of TUCs not equipped—no ac-
tion taken

(b) The printing of data about TUCs and DUSs—
data is saved in print bin

(¢) The returning of a DUS to the normal mode—
after testing.

DUFRTSTS Description
General

9.56 The DUFRTSTS pident contains all the auxil-

iary data system tests that are needed by and
used by the Data Unit Fault Recovery Program
(DUFR). This includes the internal logic of the DUS,
the DUS-TUC communications eircuitry in the DUS
and TUCs and the data unit bus between them, and
the internal logic of the TUC. Extensive tests are pro-
vided for testing and verifying communication paths
with little being provided for checking internal unit
logic. This is done because the communication paths
or buses are more susceptible to noise than internal
logic, and therefore more likely to exhibit transient
type errors. It is desirable to filter these errors as
quickly as possible, thereby reducing the recovery
time. Errors in internal logic are more likely to be of
the hard variety and are detectable by error detection
circuitry, usually with enough resolution to pinpoint
the faulty unit.

9.57 There are no explicit tests provided to test the
TUCs. To determine if a TUC is faulty, the fol-
lowing methods are used:

(a) Evaluation of the TUC internal error registers

(b) Error-free unsuccessful job completions de-
tected by DUAD

(e) Error analysis techniques

(d) Alternate route testing using the DUS-TUC
communication tests and different DUS-TUC
configurations.

9.58 The tests in DUFRTSTS may be called by any

one of three pidents (DUFRTADM,
DUFRDGNI, or DUFRTTYI) that contain the control
program for executing the tests.

9.59 The DUFRTADM pident calls the tests in
DUFRTSTS after an auxiliary data system D-

Page 102

level interrupt or maintenance interject. However,
not all tests are called. If the error is determined to
be in the DUS, only the DUS internal register test
is called. If the error is in DUS-TUC bus communica-
tions, then both the DUS internal register test and
one of the four DUS-TUC bus communications tests
are called. The DUS internal register is called only
once but the DUS-TUC bus communication test may
be called as many as three times.

9.60 The DUFRDGNI pident calls all the tests in
DUFRTSTS after a DUS diagnostic that is
completed with an ATP. The DUS diagnostic is
scheduled to be executed on a routine basis; there-
fore, the DUFRTSTS routines are executed routinely.
9.61 The DUFRTTYI pident calls the tests in
DUFRTSTS on a demand basis initiated by
the TTY input message “TEST:DUS A:RPT B:TUC C,
TSTNO D!’ where:
A = DUS member number to be tested
B = Number of times to repeat the test
C = Member number of TUC helper unit
D = Tests to be executed.
This TTY input message allows any combination of
tests to be executed on any DUS-TUC combination
any number of times. For more information, refer to
Input Message Manual IM-4A001.
Test Routines
9.62 The DUS internal register test routine is en-
tered at entry DUFRDUSS to test the DUS
internal register complex. The following registers are
tested.
e Error source register
e Input buffer register
o Inhibit register
o Output buffer register
o Select verify register

o Maintenance and control register

e Output address register

e Operational interject register.

The following set of tests is performed on each of the
above registers and the data is saved at the time of
the D-level interrupt or maintenance interject.

(1) Write original data

(2) Write the complement of the original data
(3) Read and compare

(4) Write original data

(5) Read and compare.

9.63 The DUFRDUSS entry is called after an AU

D-level interrupt or when an AU maintenance
interject has occurred because of a failure in the aux-
iliary data system community. It is also called as part
of the DUFR deferred tests that are executed after
a nonpartial ATP DUS diagnostic and on request by
the “TEST:DUS” input message. Control returns to
the calling program upon completion.

9.64 The data unit select/select verify register

(SVR) test routine is entered at entry
DUFRSVRF because of a DUS-TUC select/select
verify failure within the auxiliary data system com-
munity. Only the DUS-TUC communications route
that existed at the time of failure is tested. The fol-
lowing circuitry and/or functions are included in the
tests.

(a) DUS select verify register
(b) Select verify register 1/N checker

(c) Select verify register inhibit input gating
function

(d) Inhibit TUC select pulses function

(e) Select verify register inhibit reset function
(f) TUC for multiple enabling (selecting) TUC
(g) DUS for null enabling (selecting) TUCs

(h) DUS for transporting TUC enables (select
pulses).

9.65 A second entry to the data unit select/select
verify register test routine is DUFRSVRS.

ISS 5, SECTION 254-280-310

This entry is used to repeat a particular data unit se-
lect/select verify test using a different DUS-TUC
configuration in an attempt to isolate the faulty unit.
This entry is also used for the deferred DUFR tests
and on request by the “TEST:DUS” input message.

9.66 The data unit address and write bus all-

seems-well (ASW) test routine is entered at
entry DUFRASWF. Pident DUFRTADM enters this
routine because of a DUS-TUC ASW failure within
the auxiliary data system community, and returns to

DUFRTADM upon completion. This routine tests the
following circuitry and/or functions:

(a) Maintenance and control register ASW flip-
flop and the maintenance and control register
to error source register ASW function

(b) Maintenance and control register ASW flip-
flop inhibit reset function

(c) Maintenance and control register ASW flip-
flop inhibit input gating function

(d) Normal/maintenance read/write mode of the
data unit address bus

(e) Address bits part of the data unit address bus
(f) Address parity generator in the DUS

(g) Address parity checker in the TUC

(h) Address decoder in the TUC

(i) Data unit data write bus

(j) Data parity generator in the DUS

(k) Data parity checker in the DUS

(1) Ability of the DUS to poll the TUC

(m) ASW generator in the TUC

(n) ASW reply from TUC to data units (part of
DU reply bus).

9.67 The data unit address and write bus ASW test

routine has a second entry DUFRASWS. This
entry is used by DUFRTADM to repeat a particular
data unit address and write bus test using a different
DUS-TUC configuration in an attempt to isolate the

Page 103

SECTION 254-280-310

faulty unit. This entry is also used for the DUFR de-
ferred test and on request by the “TEST:DUS” input
message.

9.68 The data unit reply bus test routine is entered
at DUFRPKRF. The DUFRTADM pident en-
ters this routine because of a DUS-TUC reply bus
parity failure within the auxiliary data system com-
munity and returns there upon completion. This rou-
tine tests the following circuitry and/or functions:

(a) Output address register and its parity checker
(b} Output buffer register and its parity checker

{c) Output address register and oﬁtput buffer reg-
ister inhibit reset functions

(d) Output address register and output buffer
register inhibit input gating function

(e) Output address register and output buffer reg-
ister selection circuitry

(f) Data unit reply bus

(g) TUC output (+gating) from the TUC data reg-
ister and the address register

(h) DUS input (+gating) to the output buffer reg-
ister and the output address register

(i) Parity reply to the output buffer register and
the output address register

(j) Not gating into the output address register
when gating into the output buffer register

(k) Not gating into the output buffer register
when gating into the output address register.

9.69 The data unit reply bus test routine has a sec-

ond entry DUFRPRPS. This entry is used by
data unit FRTADM to repeat a particular DU reply
bus test, using a different DUS-TUC configuration in
an attempt to isolate the faulty unit. This entry is
also used by the DUFR deferred test and on request
by the “TEST:DUS” input message.

9.70 The data unit control bus test routine is en-

tered at entry DUFRPKCF. The DUFRTADM
pident enters this routine because of a DUS-TUC con-
trol bus parity failure within the auxiliary data sys-

Page 104

tem community, and returns to DUFRTADM upon
completion. This routine tests the following circuitry
and/or functions:

(a) TUC maintenance interject bit
(b) TUC operational interject bit
(c) Read/write bits

(d) Data unit control bus parity bit

(e} Data unit control bus parity checker in the
DUS

(f) Data unit control bus and parity reply

(g) TUC output (+gating) from the TUC control
bus register

(h) TUC output (+gating) to the bit positions in
paragraph 9.70(a) through (d)

(i) Data unit control bus parity generator in the
DUS

(3) Operational function to the bit position in
paragraph 9.70(a) through (d)

(k) Inhibit reset function to the bit positions in
paragraph 9.70(a) through (d)

(1) Inhibit gating functions to the bit positions in
paragraph 9.70(a) through (d)

{(m) Control bus register in the DUS.

9.71 The data unit control bus test routine has a

second entry, DUFRPCTS. This entry is used
by DUFRTADM to repeat a particular data unit con-
trol bus test using a different DUS-TUC configura-
tion in an attempt to isolate the faulty unit. This
entry is also used by the DUFR deferred test on re-
quest by the “TEST:DUS” input message.

9.72 The post-test initialization service routine is

entered at entry DUFRPSTT. This routine is
entered after a test routine has been run to initialize
the DUS to pretest conditions. This properly initial-
izes the DUS for execution of the next test subrou-
tine, and leaves it in a stable and safe state if no more
tests are to be executed.

9.73 The DUFRTSTS pident also contains a sub-
routine to be used by the test routine when a

test within a test subroutine has failed. This routine,
which is entered to do post-test initialization and
cleanup, does the following:

(a) Saves the failing test data
(b) Initializes the DUS hardware to equal the

DUS initialization before test subroutine exe-
cution

(¢) Returns back to the failing test subroutines or
returns directly to the user.

DUFRTTYI Description

9.74 The DUFRTTYI pident is designed to process

all DUS/TUC configuration changes that do
not require a diagnostic. Situations that lead to en-
tering this pident are:

(a) Removing a TUC before TTY-requested diag-
nostics

(b) Removing a TUC before restoral

(¢) Removing a TUC for routine exercise diagnos-
tic

(d

-

Switching a TUC to the other DUS during rou-
tine system normalization

(e) Switching TUCs to the other DUS before re-
moving a DUS

(f) Switching TUC to other DUS prior to diagnos-
ing an in-service DUS

(g) Switching TUC after restoral of a DUS

(h

-

Switching TUC to other DUS prior to setting
up an off-line configuration

(i) Switching TUC to the other DUS prior to
nonemergency removal of an AUB

() Removal or unconditional restoral of a DUS
(k) Removal or unconditional restoral of a TUC.
9.75 The nonemergency switch/remove routine
DUFRNESR is entered to effect a soft recon-

figuration (“soft” meaning that no jobs are affected)
of the auxiliary data system community. It is initi-

ISS 5, SECTION 254-280-310

ated by DUAD after DUAD has recognized a recon-
figuration request flag set for the affected TUC. The
request may be to either remove a TUC from service
or to switch a TUC to the other DUS. If the AU com-
munity is frozen because of some long job in progress,
the request to reconfigure is denied until that job is
complete.

9.76 The reconstruct auxiliary data system routine

is entered to reconstruct and restart the auxil-
iary data system community after a reconfiguration.
This routine is entered at entry RMV_RST_DS_DC.
The auxiliary data system hardware and software
are reconstructed, and the status indicators are up-
dated.

9.77 The request to remove or unconditionally re-

store a DUS routine is entered from the Man-
ual Input Request Administration (MIRA) program.
Its entry is DUFRMRQS. For any restore request the
AUB must be in service. For any remove request the
other DUS must be in service, and no in-service TUC
can have bus trouble marked toward that DUS. The
remove is done by first reconfiguring all in-service
TUCs to the other DUS and then removing the re-
quested DUS in hardware and software. A restoral is
done by first restoring the DUS in hardware and
software. Then the reconstruct auxiliary data system
routine is used to normalize the entire auxiliary data
system community.

9.78 The request to remove or unconditionally re-

store a TUC routine is also entered from
MIRA. Its entry point is DUFRMRQT and at least
one DUS must be in service to honor the request. For
a remove request the TUC must be unassigned, and
the TUC is removed in both hardware and software.
The reconstruction routine is then entered to normal-
ize the remaining units. A TUC restoral request is
honored by first connecting the TUC to an available
DUS in hardware and software. The reconstruct rou-
tine is then called to normalize the new auxiliary
data system community.

9.79 The Run Deferred DUS Tests After Test Mes-

sage routine is designed to process the de-
ferred DUS tests. The “TEST:DUS” message first
enters MIRA where a general buffer table is acquired
and filled with relative data for use by this routine.
The DUFRTTYI entry DUFRDFOR is then entered.
It checks the validity of test numbers specified and,
if they pass, transfers control to the prediagnostic
initializer in the DUFRDGNI. Pident DUFRDGNI

Page 105

SECTION 254-280-310

sets up the proper configuration, makes additional
validity checks, and initiates the individual tests. The
DUFRDGNI pident then reenters DUFRTTYI at
DUFRSUCC which marks the DUS status before
testing so that the DUS can be returned to its origi-
nal tests, and takes a segment break before going off
to run the tests. If the DUFRDGNI validity checks
fail, DUFRTTYI is reentered at DUFRDENY and the
requested tests are denied. The DUFRDFST entry is
also used by DUFRDGNI if any of the tests fail. The
test data is saved in case the tests are to be repeated,
and test results are not printed until later tests are
complete. The DUFRDGNI pident reenters
DUFRTTYI at DUFRDFAT for the case where all
tests passed. Routine DUFRDFAT also has the op-
tion of repeating the test, even though they are ATP,
when so requested in the test message.

9.80 The deferred test may be stopped by the office

personnel or it may be aborted by the MACP
program. In either case the DUFRABT routine is en-
tered. The results are reformatted and a transfer is
made to the DUFRDGNI print routine that outputs
a TTY message indicating the results.

10. 1A PROCESSOR F-LEVEL FAULT RECOVERY
PROGRAM—PFLR

INTRODUCTION

10.01 The PFLR program performs a filter func-

tion for all peripheral unit bus-related faults
as well as the fault recovery tasks associated with the
master control console (MCC), input/output units
(I0Us), and #input/output processor (IOP) frames.4

10.02 Functions performed by PFLR are:

(a) Filters all F-level interrupts for switching

systems using the 1A Processor. The filtering
process routes program control to the appropriate
fault recovery program according to the type of F-
level interrupt.

(b) Recovers from F-level interrupts and faults

detected on base level if they are associated
with the MCC, 10U, or IOP. The recovery process
finds a working peripheral configuration and iso-
lates the faulty equipment.

(c) Performs short-term error analysis of high-

frequency transient faults. (The Error Analy-
sis Program [ERAP] provides an additional facil-

Page 106

ity for manual analysis of system trouble data that
may be used to aid in resolving transient faults.)

(d) Provides test, diagnostic, and service routines

which may be used by PFLR and also by other
maintenance programs to interface with input/
output (I0) and MCC.

(e) Administers the use of a diagnostic when
PFLR removes an MCC, IOU, or IOP from ser-
vice.

(f) Does IOU and IOP fault recognition exercises
periodically and diagnostic exercises on a
noninterrupt basis, ie, base level processing.

PMCC/104 AND PERIPHERAL UNIT BUS CHARACTERIS-
TICS

A. General

10.03 The MCC and I0s are common system pe-

ripheral units. The MCC and IOs have sim-
plex controllers (ie, nonduplicated controllers). The
MCC and IO channels are addressed by the coded
enable method (K-code enabled) and communicate
with the central controls over the duplicated periph-
eral unit bus. ’

Note: Equipment characteristies of the MCC,
10U, IOP, and peripheral unit bus are presented
briefly in this section to aid in the understand-
ing of the PFLR description.

10.04 For more detailed information on the MCC,
10, IOP, and peripheral unit bus, refer to the
following sections:

SECTION TITLE

234-110-000 Processor Peripheral Interface
Frame and Master Control
Console—Description

234-110-001 Processor Peripheral Interface
Frame and Master Control
Console—Theory

254-201-040 Input/Output Frame—Descrip-
tion

254-201-041 Input/Output Frame—Theory

254-201-042 Input/Output Processor Frame—

Deseription

254-201-043 Input/Output Processor Frame—

Theory.
B. MCC Description

10.05 The MCC is a dual matrix system containing

a power control switch matrix (alarm ma-
trix) and a control and display matrix (lamp and key
matrix). The individual rows of each matrix may be
accessed via program control over the peripheral unit
bus.

10.06 The MCC contains maintenance check cir-

cuitry. Failures detected by this circuitry
will cause the all-seems-well (ASW) signal to be in-
hibited and later causes an F-level interrupt. This
fault detection circuitry consists of:

(a) K-code match checks—A check failure occurs
when the MCC does not detect a K-code match.

(b) Received data checks—A check failure occurs
when the MCC detects a parity error on data
and address.

(c) Access of one row of a matrix (not both

matrices)—A check failure occurs when MCC
detects matrix access error; ie, operation (OP) code
and row selection code failed to select one row of
one matrix.

10.07 In addition, F-level failures occur when the

central control detects an answer parity fail-
ure from the MCC or invalid reply data, ie, reply mis-
match.

10.08 The MCC peripheral busing unit, all logic cir-

cuitry, and the central control interface cir-
cuitry to the MCC are housed in the processor
peripheral interface frame.

C. IOU/IOP Description

10.09 The old type #1O (IOU)4 is comprised of an
input/output unit selector (IOUS) and eight
input/output unit controllers (IOUCs). That is, the
IOU is a multileve! access unit. Each IOUC works
with the IOUS to form an input/output channel
(IOC) which can accommodate up to three ports, ie,
10 terminals such as a TTY, cathode ray tube, data
set, etc. (The ports of a channel are slaved to each
other—each port receives the same information.)

10.10 The new type #10 (IOP)4 is comprised of an
IOUS and either one or two input/output

NN

ISS 5, SECTION 254-280-310

microprocessors (IOMP). Each IOMP may support up
to 8 line units (or IOUCs)—a total of 16 line units for
a fully equipped PIOP.4 Each line unit (or IOUC)
works with an IOMP and an IOUS to form an I0C
that can accommodate up to three ports, ie, IO termi-
nals such as a TTY, cathode ray tube, data set, ete.
(The ports of a channel are slaved to each other—
each port receives the same information.) Only asyn-
chronous communications is supported by the line
unit.

10.11 A variation of the IOP replaces the second

IOMP with a fan-out board driving up to
eight peripheral controllers. The peripheral control-
ler supports only port and synchronous protocol com-
munication.

10.12 The busing unit (circuitry containing periph-

eral unit bus drivers and receivers) are
shared by two IQUSs; ie, there are two IOUSs in an
IOU/IOP frame.

10.13 For the IOU, the IOUS status register of 4

bits records the access mode bus configura-
tion flip-flops. An IOUC status register (one per I0C)
records the channel state, data about maintenance
requests, and other data. Any status read yields the
4 bits of the IOUS status register plus the 17 bits of
the IOUC selected. In addition, there is a readable
error summary register.

10.14 For the IOP, there are three types of status

registers: a 24-bit status and error source
register combined for the IOUS, a 16-bit status and
error source register combined for each IOMP, and a
24-bit status and error source register combined for
each IOUC. There is also a 24-bit channel mainte-
nance register for each IOUC. Each of these registers
may be accessed by a status read.

10.15 The IOUSs (both types) contain most of the
I0 system’s fault detection circuitry. The

failure of any one of the following checks inhibits an

ASW signal and results in an F-level interrupt:

(a) K-code match checks—IO detects K-code
match.

(b) Bus parity checks—IO detects a parity error
on data and address.

(c) Validity checks of instructions and mode—IO

detects incorrect character usage or incorrect
setting of mode flip-flops.

Page 107

s ¢

SECTION 254-280-310

(d) Correct performance of reply bus parity gen-
erating circuits—JIO parity gene: ating circuits
send invalid parity data.

10.16 In addition, F-level interrupts may be caused
by central control detecting answer parity

and reply mismatch errors.
D. Peripheral Unit Bus Configurations

10.17 The central control (Table E) routing control

_flip-flops (PUBO, PUBA, PUBT and PUBR)
with the peripheral unit controller (Table F) routing
control flip-flops (RO, S0, S1) may be changed to con-
trol the peripheral unit bus configuration. The main-
tenance flip-flops in the controllers are set to change

the access mode from the normal mode to the mainte-
nance mode.

10.18 Normally, the active central control is send-

ing and receiving on one bus while the
standby central control is sending and receiving on
the other bus. The peripheral unit (those having sim-
plex controllers) normally is receiving on one bus and
sending back on both buses. Thus, both central con-
trols receive the same peripheral unit reply, and the
parity over that reply is matched at the central con-
trols to see if both central controls obtain the same
information.

10.19 The processor peripheral interface frame, a
common interface point between the 1A Pro-
cessor and the peripheral community, contains a bus

TABLE E

PERIPHERAL UNIT BUS CONTROLS LOCATED IN CENTRAL CONTROL

PERIPHERAL PERIPHERAL

CONTROL UNIT ENABLE UNIT PERIPHERAL

FUP FLOPS ADDRESS WRITE UNIT

(NOTE 1 (NOTE 2) (NOTE 2) REPLY

SENDS ON SEND ON RECEIVE ON
BUS BUS BUS

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 0 0 0 Active
0 0 1 1 1 1 1
0 1 0 0 0&1 0&1 0 Central
0 1 0 1 0&1 0&1 1
0 1 1 0 0&1 0&1 0 Control
0 1 1 1 0&1 0&1 1
1 D D D 0&1 0&1 0&1
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 X X 0 Standby
0 0 1 1 X X 1
0 1 0 0 X X 1 Central
0 1 0 1 X X 0
0 1 1 0 X X 0 Control
0 1 1 1 X X 1
1 D D D X X 0&1

Note I: 0 = Reset, 1 = Set, D = Don’t Care

Note 2: X = No Bus Transmission

Page 108

ISS 5, SECTION 254-280-310

TABLE F

PERIPHERAL UNIT BUS CONTROLS LOCATED IN
PERIPHERAL UNIT CONTROLLERS

PERIPHERAL
CONTROL UNIY PERIPHERAL PERIPHERAL
FLIP-FLOPS WRITE UNIT UNIT
(NOTE) ADDRESS WRITE REPLY
RECEIVE RECEIVE SEND
RO S0 s1 ON BUS ON BUS ON BUS
0 0 0 0 0 Don’t send
0 0 1 0 0 1
0 1 0 0 0 0
0 1 1 0 0 0&1
1 0 0 1 1 Don’t send
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 0&1

Note: 0 = Reset, 1 = Set

loop-around circuitry that is used in recovery from
bus-sensitive faults.

FAULT TYPES/CLASSIFICATIONS

10.20 The PFLR program is capable of distinguish-
ing three fault types. According to the retrial
of a failed order, fault types are as follows:

(a) Hard Faults: Repeatable, consistent, per-

manent-type faults. If a failed order is retried
several times alternately using the original bus,
controller, and central control configuration and a
new configuration but the order fails repeatedly,
the fault is a hard fault.

(b) Marginal Faults: Initially reproducible

faults, but they disappear during recovery
procedures. If a failed order is retried on a new
configuration and passes, then tried again on the
original configuration and passes, the fault is a
marginal fault.

(¢) Transient Faults: Nonreproducible faults,

intermittent-type faults. If a failed order is
repeated using the original configuration and the
order passes, the fault is a transient fault.

10.21 When PFLR can recover from a fault by suc-

cessfully repeating a failed order over a new

configuration, the fault is classified as a recoverable
fault. However, if PFLR recovery action fails and
determines that the MCC or IOUS is to be removed
from service, the fault is classified as an
unrecoverable fault. Any hard fault that PFLR can-
not localize to a failed subsystem is classified as an
unresolved fault. Sometimes a fault may be recover-
able but also be unresolved.

10.22 The major portion of PFLR’s fault recovery

and isolation routines are concerned with »
MCC/104 recovery from hard faults. However, for
transient or marginal faults, PFLR attempts to re-
solve MCC or 10 faults by using short-term error
analysis. PFLR’s short-term error analysis proce-
dures are used when the transient or marginal fault
has a high frequency of occurrence; this analysis re-
sults in an action recommendation. Data about tran-
sient/marginal faults having a low frequency of
occurrence is stored in a common system ERAP and
may be retrieved in resolving actions to be fulfilled
by other maintenance programs.

PFLR INTERFACES
A. General

10.23 The PFLR program interfaces with other
programs are shown in Fig. 22. A brief de-
scription of each program interface follows.

Page 109

0Ll oBng

BAGE-LEVEL PROCESSING
(NON-INTERRUPT)

INTERRUPT PROCESSING
SIRE ' (CPR 7 GENERIC)
SYSTEM INTERRUPT mmnl?umm"
RECOVERY PROGRAM
AMINISTRATIVE
PROGRAMS

3 :

FFLR
1A PROCESSOR F-LEVEL FAULT RECOVERY PROGRAM

FFLRPTIR - COMMON SYSTEM'S PERIPHERAL UNIT (PU) F-LEVEL FILTER,
F—LEVELFMI.TWHWHRMSTB!MME(@)
ND DPUT/QUTPUT UNIT (I0U), INPUT/QUTPUT PROCESSOR (I0P}),
AD SHIRT-TERM ERROR ANALYSIS

FFLRBUM - BASE-LEVEL FAULT RECOVERY. FOR IOU

PFLROGNH - BASE-LEVEL DIABNOSTIC REQUEST HANDLERS

PFLRARCR - COLLECTION

FFLRPUMP - PUNP RAM PROGRAM TO IO
I0PUPFC - DOOW RAM PROGRAM FOR PC
I0PUMPBX - BX.25 RAM PROGRAM FOR PC

CONTROL FAULT

L _ |

Fig. 22—IA Processor F-Level Fault Recovery Program (PFLR)

01€-082-¥ST NOILD3S

B. System Interrupt Recovery Program —SIRE

10.24 The initial entry into PFLR is made by SIRE.

The SIRE program, on detection of any F-
level interrupt, stores data pertinent to the periph-
eral unit interrupt source in an F-level interrupt bit
(memory) and then transfers to PFLR. It is PFLR’s
responsibility to filter all F-level interrupts and to
determine the fault recovery program that is to re-
cover from the fault.

C. Application Fault Recovery Programs

10.25 When PFLR determines through the com-

mon system’s F-level filter routine that the
interrupt source is an autonomous unit or a centrol
pulse distribution (CPD) enabled unit, but not MCC/
10, the PFLR transfers to the appropriate applica-
tion peripheral unit fault recovery program. The
PFLR program also transfers to an application fault
recovery program for peripheral error analysis after
classifying the MCC/I0 problem and determining a
recovery action. If the action is to remove a periph-
eral unit bus and the application fault recovery pro-
gram concurs, the control is not returned to PFLR.
Otherwise, PFLR regains control to achieve the re-
covery action.

D. Central Control Fault Recovery Program—CCFR
10.26 When PFLR determines that mismatching of
information is occurring in the central con-
trols, PFLR (by the final disposition routine) trans-
fers the recovery function to CCFR.

E. Maintenance Restart Program—MARP

10.27 After PFLR executes final actions, PFLR

transfers to MARP. With the transfer, PFLR
indicates the return option to be used by MARP to
return to normal base level processing. (Return op-
tions may unwind and reexecute the interrupted in-
struction, roll back to a safe point in the interrupted
program, or return to a reference point in the inter-
rupted program.)

Note: The above PFLR interfaces occur dur-
ing F-level (interrupt) processing. The remain-
ing interfaces below occur during normal base
level (noninterrupt) processing.

ISS 5, SECTION 254-280-310

F. Input/Output Control Program—IOCP

10.28 When scheduled by the executive control pro-

gram, IOCP, upon detection of maintenance
requests and invalid polling responses, enters the 10
fault recovery pident in PFLR to resolve the fault
source.

10.29 The PFLR program interfaces with IOCP to

report I0C removed and restored from ser-
vice. Thus, IOCP can reroute messages to backup
channels for these out-of-service channels. The PFLR
program also uses an IQOCP routine to verify that a
backup channel is in service before removal of a
channel.

G. Maintenance Control Program—MACP

10.30 The executive control program several times

daily passes control to MACP to enter PFLR
for the execution of an 10 exercise routine for #both
the IOU and IOP.4 The PFLR program checks the
error source register. If any errors have occurred
since the last exercise, PFLR removes the applicable
IOUS from service and calls the PFLR diagnostic
request handler (routine in diagnostic pident) to set
up an MACP job for a demand diagnostic.

10.31 Once a day, MACP enters the diagnostic
pident of PFLR to do routine diagnostic exer-
cises on both the MCC and the 10.

10.32 Also, PFLR interfaces with MACP for re-

porting units removed from service, ie, out-
of-service reports. Finally, MACP interfaces with
PFLR to remove MCC/10s from service and to uncon-
ditionally restore (MCC/I0s) to service.

H. Diagnostic Control Pragram—DCON

10.33 The DCON program enters the diagnostic

pident of PFLR for the execution of the diag-
nostic handling routines before the execution of the
Master Control Console Diagnostic Program
(MCDG), the Input/Output Unit Diagnostic Program
(IODG), or the Input/Output Processor Diagnostic
Program (I12DG) diagnosis.

I. PApplication 10 Administrative Programs
10.34 For the CPR7 generic, the addition of this

interface to the PFLR program allows fault
recovery on application-administered 10 channels.

Page 111

SECTION 254-280-310

This interface also allows PFLR to perform fault re-
covery on as many as 32 IOP frames (as compared to
4 frames allowed for generics before CPR7).

10.35 The application interface allows the applica-

tion programs to administer 10 channels in-
stead of having the common IOCPs administering the
10 channels. The application programs are notified
when application-administered I0s are removed
from and restored to service, when diagnostics are
requested on the I0s, and when faults are detected on
the 10s.4

PFLR PIDENTS

10.36 The PFLR pidents (Fig. 23) and their associ-
ated functions are:

(a) PFLRPIIR—Filters F-level interrupts for en-

tire switching systems using 1A Processor and
recovers a working peripheral configuration from
faults related to the MCC or an IO. Pident
PFLRPIIR uses a short-term error analysis rou-
tine to resolve transient-type faults exceeding an
error threshold. Permanent-type faults are gener-
ally resolved by the MCDG, the IODG, or the
12DG.

(b) PFLRBLMH —Contains routines used in re-

solving faults detected during base level
(noninterrupt) processing. The IOCP program
may enter PFLRBLMH either to take remedial
action on a maintenance request or to resolve the
cause of a false polling service request. The MACP
program enters PFLRBLMH periodically to do an
10 routine exercise. Also, PFLRBLMH contains
- other maintenance subroutines.

(¢) PFLRDGNH —Performs hardware/software

initialization and final handling requirements
for running the I0 and MCC diagnostics. The
MACP program enters PFLRDGNH periodically
to do routine diagnostic exercises.

(d) PFLRRRCR—Contains a collection of subrou-
tines used by the diagnostics and any manual

request (via TTY) to remove/restore a unit, a

subunit, or bus from/to service, respectively.

(e) PFLRPUMP—Contains a routine for pumping

the random access memory (RAM) of the
IOMP. This pident also contains the data used to
pump the RAM.

Page 112

(f) IOPUMPPC—Contains data for pumping

RAM of peripheral controller with code to
handle digital data communication message proto-
col link level protocol.

(g) IOPUMPBX —Contains data for pumping
RAM of peripheral controller with code to
handle BX.25 link level protocol.

A more detailed description of each pident follows,
except for PFLRPUMP, IOPUMPBX, and
IOPUMPPC.

PFLRPIIR DESCRIPTION
A. General

10.37 The PFLRPIIR pident is responsible for fil-

tering all F-level interrupts for the entire
system and recovering from those faults related to
the MCC or an I0. Specifically, PFLRPIIR performs
the following functions:

(a) Filters F-level interrupts in all switching sys-
tems using the 1A Processor and passes con-
trol to the appropriate fault recovery program

(b) Retains responsibility for fault recovery only
for interrupt causes related to the MCC or an
10

(c) Attempts isolation of the faulty equipment
(bus, unit, or subunit) for hard faults

(d) Performs short-term error analysis for tran-
sient or marginal faults

(e) Attempts isolation of babbling on peripheral
unit bus in the processor area.

B. Peripheral Unit Filter Routine

10.38 After loading the F-level interrupt bin

(memory) with pertinent fault data, the Sys-
tem Interrupt Fault Recovery Program (SIRE) en-
ters the PFLRPIIR filter routine at entry point
PFLRFLEV. The filter routine determines which
fault recovery program is to recover from the F-level
interrupt for the following decisions:

(a) The interrupt was generated from an autono-
mous or nonautonomous source.

Note: An autonomous peripheral unit failure
is attributed to an internal peripheral unit trou-
ble in an autonomous unit whereas the

nonautonomous peripheral unit failure is attri-
buted to a communication problem between
central control and a peripheral unit, or an in-
ternal trouble in a nonautonomous unit.

(b) The failure occurred during the execution of a
central pulse distributor (CPD) enabled order
or a coded enabled order (ie, K-code enabled).

(¢) The MCC or an I0C (I0US and one I0UC/
IOMP) was addressed or was not addressed on
the failing order.

For failures caused by autonomous peripheral units,
by nonautonomous units other than MCC/IOs, or by
a CPD enabled order, PFLR passes control to an ap-
propriate application fault recovery program. Only

1SS 5, SECTION 254-280-310

failures related to the MCC or IO are kept under the
control of the PFLRPIIR pident.

C. BMCC/IO4 F-Level Recovery Routines

10.39 The PFLRPIIR recovery routine uses the

data stored by SIRE in the F-level interrupt
bin to perform common (applicable to the MCC and
10) recovery initializations that include the storing
of pertinent data about equipment in service,
initializing tables to be used by fault analysis, and
deciding whether the fault source is the MCC or I10.
Then unique initialization routine and test routines
are entered since the MCC, the IOU, pand the IOP»
have their own peculiarities. An MCC first-look ini-
tialization routine determines if the software is
blamed for the ASW, answer parity, or reply mis-

MACP MIRA
MAINTENANCE DIAGNOSTIC MANUAL INPUT
PROGRAM PROGRAM o

1A PROCESSOR POWER CONVERSION AND DISTRIBUTION
FRAME FAULT RECOVERY PROGRAM

MCCM
MASTER CONTROL
CONSOLE COMMON
CONTROL AND
MONITOR PROGRAM

PODG
POWER
DISTRIBUTION
DIAGNOSTIC
CONTROL PROGRAM

#Fig. 23—Primary PFLR—Pident Interfaces 4

Page 113

SECTION 254:280-310

match failure. An 10C first-look initialization rou-
tine (there are three of these routines, one for each
type of 10 frame) tries to establish a failing order or
a test sequence to be used in the main recovery rou-
tines.

10.40 The main recovery routines (unique to the
MCC or 10) determine the following:

(a) The failure was caused by the absence of an

ASW signal, by the detection of an answer
parity error, or by the detection of a reply mis-
match error (L-register reply mismatch in central
controls).

(b} The fault is transient/marginal
(nonrepeatable or temporarily repeatable) or
the fault is hard (repeatable and permanent).

10.41 If the failure is determined to be repeatable

(hard), PFLR performs a series of configura-
tion and test routines, ie, a deductive search to isolate
the fault source to the peripheral unit bus communi-
ty, the MCC/IO unit itself, the busing unit, or the
central control.

10.42 If repeated trials of controller/bus configu-

rations indicate a major bus problem (ie,
trouble in the active or standby peripheral unit bus),
results are set up in data words and passed to the
appropriate application fault recovery program. This
application fault recovery program determines by
bus loop-around tests if the failure exists in a portion
of the peripheral unit bus or just in the MCC/IO
busing unit. If a peripheral unit bus problem is deter-
mined, the application program processes and passes
the results on to MARP. However, if a busing unit
trouble is determined, the application fault recovery
program passes control back to PFLR at entry point
PFLRACPT for the recovery action disposition rou-
tine (paragraph 10.45). All other decisions of recov-
ery action are also passed to the applications
recovery program, but control is always returned to
PFLRACPT.

D. Short-Term Error Analysis

10.43 W#The short-term error analysis routine is

entered at entry point PFLRANYL. For the
CPR5 and CPR6 generics, the PFLR program main-
tains a short-term error history in a 4-entry table.
For the CPR7 generic, the PFLR program maintains
a short-term error history in an 8-entry table.4 A re-

Page 114

cord is made each time an interrupt is classified as
a transient or a unit/subunit is removed and a diag-
nostic requested. Each record contains the identity of
the unit/subunit, type of action (removal for diagnos-
tic or transient), and a counter indicating the number
of times the action has been taken. When an entry is
made in the table, a search is made of the other table
entries looking for a match of unit/subunit identity
and action type. If a match is made, the counter asso-
ciated with the existing entry is incremented. If the
counter exceeds a fixed threshold, the entry is made
inactive and the calling program unit is informed
that the threshold has been exceeded. If no match is
found, all entries are pushed down and the new entry
is placed at the top of the table. Thus, the oldest entry
at the bottom of the table is eliminated. In this way,
only the four most recent actively occurring unit/
subunit problems are watched at once.

Note: The Error Analysis Program (ERAP)
program provides an additional facility for
manual analysis of system trouble data that
may be used to aid in resolving transient/
marginal faults whose frequency falls below the
predefined threshold. For a description of
ERAP, refer to Section 254-280-320.

E. Babbling Isolation Routine

10.44 The babbling isolation routine is entered

from the Babbling Bus Fault Recovery Pro-
gram at entry point PFLRBABL. This routine then
removes the processor peripheral interface and 10s
from the bus in the processor area and initiates a
check for babbling (incoherent data on the peripheral
bus). If babbling is detected on the bus with no pe-
ripheral units configured, the condition is classified
as unresolvable by automatic means and manual in-
tervention is required. Otherwise, the units are
reconfigured to the bus one at a time to see which
unit introduces the babbling. Thus, either the faulty
unit is detected or the babbling stopped. Program
control is passed to the Peripheral Unit Bus Fault
Recovery Program if the entry is from the Babbling
Bus Fault Recovery Program or to the client program
if the entry resulted from a phase of software initial-
ization.

F. Final Disposition Routine

10.45 CPR5 and CPR6 Generics: At entry
point PFLRACPT, the final disposition rou-
tine is responsible for achieving the fault recovery

decision made by PFLR’s recovery routines, error
analysis routines, or by an application fault recovery
program (when PFLR passes an MCC/I0 busing unit
trouble report). The action disposition routine checks
the trouble reported. If the central control trouble
has been reported, the disposition routine transfers
to the Central Control Fault Recovery Program
(CCFR) which is responsible for all remaining fault
recovery actions. Other troubles reported usually
result in the removal of a faulty unit or subsystem.
If a unit is taken out of service and this is not a re-
peated action, the final disposition routine requests
a diagnosis to be run on a deferrable-time basis. For
MCC/10 busing unit reported troubles, only a recon-
figuration of hardware access is needed. After fulfill-
ing recovery actions, the PFLR disposition routine
transfers to MARP with an order about the appropri-
ate return point to normal call processing.

1046 ®CPR7 Generic: At entry point

PFLRACPT, the fault is identified as F-level.
The analyze and report routine (PFLRANRR) is
called to analyze and then to implement the fault re-
covery decision. On return from the analyze and re-
port routine, the final disposition routine transfers to
MARP with an order concerning the appropriate re-
turn point to normal call processing.4

G. Status Information and Recovery Reports

10.47 Throughout PFLR F-level fault recovery
procedures, status words and state words are
updated. At any specific time, this status informa-
tion identifies the current state in recovery process
and shows the hardware and software status of the
MCC/I0 and the peripheral unit bus. ,
10.48 Also throughout the recovery procedures,
sources blamed for the F-level failures are
buffered and, at the end of recovery actions, this data
is transferred to the application system’s report
table PUIRESULT. (Application error analysis uses
this data.)

10.49 Note that communication exists eontinu-

ously between PFLR and IOCP about func-
tioning I0Cs so that messages may be rerouted from
an out-of-service unit to a predefined backup.

H. Processor Peripheral Interface Loop-Around Test
Subroutine

10.50 The processor peripheral interface loop-
around test subroutine, entered at

ISS 5, SECTION 254-280-310

PFLRLOOP, executes test sequences from informa-
tion in the client program’s input. (A client pro-
gram’s request may involve a subset of a test
sequence set.) Peripheral unit access testing may be
for any combination of central control/peripheral
unit bus loop-around configurations or a mapping
selection for looping data back to the central con-
trols. Note that the processor peripheral interface
loop-around routine tests an isolated portion of the
peripheral unit bus; a continuity test for the entire
peripheral unit bus is not done by any client. A test
failure return is accompanied by a failed test re-
sponse that aids in determining a specific location of
central control/peripheral unit bus circuitry faults.

10.51 The processor peripheral interface loop-

around test can verify the functional opera-
tion of the peripheral unit busing unit receivers and
drivers and the portion of the peripheral unit bus
lying between the central control and the processor
peripheral interfaces frame. The loop-around test
cannot check for faults that are functionally associ-
ated with internal central control peripheral system
circuitry such as the interleaved parity generation
circuit or the answer parity check circuits. However,
the capability of looping and applying desired test
sequences allows PFLRLOOP to resolve troubles that
are associated with a specific bit combination.

I. F-level Fault Recovery Summary

10.52 In general, PFLRPIIR is mainly concerned
with resolving hard faults caused by ASW
failures or answer parity failures detected while
accessing the MCC or an I0C. The search for the fail-
ure cause consists of sequences of bus
reconfigurations followed by test routines.

10.53 For the MCC, following a bus reconfigura-

tion, the failed order is retried to determine
if it is possible to recover access to the control and
display logic. No extensive testing to the control and
display logic is made if the MCC is able to execute a
failed order and pass a short test sequence.

10.54 However, attempting to retry a failed order

to an I0C is generally unsatisfactory. In-
stead, a substitute test order or test sequence is used
to obtain accurate test results. When PFLRPIIR de-
termines an I0C is faulty, it has to localize the fault
to the I0US or the IOUC/IOMP. If the IQOUC/IOMP
is blamed for an ASW failure, no further testing is
necessary. Status and/or error source register data

Page 115

SECTION 254-280-310

is used to aid in distinguishing IOUS errors from bus-
related errors. (The IOP has a 24-bit combined status
and error source register.)

10.55 However, if the failure is not an access fail-

ure, the IOUS to IOUC/IOMP interface cir-
cuitry is tested to determine if the I0US is to be
removed from the service. If the IOUS is not blamed,
only the IOUC/IOMP that was addressed is removed
from service.

10.56 When a unit is removed from service, PFLR

usually requests that the appropriate diag-
nosis (IODG, I2DG, or MCDG) be scheduled by
MACP. If the unit has a history of removal and all
tests pass diagnostics, then the unit is not diagnosed.

PFLRBLMH DESCRIPTION
A. General

10.57 The PFLRBLMH pident contains all base
level 10 fault recovery routines, performed
either as a routine or demand exercise. Two pro-
grams use PFLRBLMH routines to perform this
noninterrupt fault recovery function as follows:

(a) The IOCP program detects failures in the
I0US or IOUC resulting in maintenance re-
quests and invalid polling responses.

(b) The MACP program periodically runs a fault
recovery exercise routine to check all mainte-
nance circuitry of every I0C (old type 10U only).

Note: The I0P executes its own exercise rou-
tine from RAM.

10.58 Other subroutines in PFLRBLMH are used,
as needed, for recovering from base level

fault detection.

B. 1OCP Entry

Maintenance Requests

10.59 Periodically IOCP polls the MOs4 to detect
failures, one of which may be a maintenance
request. Maintenance requests are generated when
the following failures occur;
e Input buffer overflow

e Character parity failure

Page 116

e Carrier failure alarm from a data set
e Low paper alarm from a terminal

e Character overrun

e Character time-out

e Automatic call unit error

e Protocol error

e Peripheral controller software error

e Peripheral controller invalid command.

10.60 When IOCP detects a maintenance request,

IOCP enters PFLRBLMH at entry point
PFLRIOMR. This routine determines the source of
the maintenance request and takes appropriate ac-
tion. If the maintenance request source is an input
buffer overflow, a character parity failure, a protocol
error, character overrun, or character time-out that
exceeds a predefined error threshold (CPR5 and
CPR6 generics) the faulty I0C is removed from ser-
vice; for all other maintenance request sources
(alarms), the I0OC is taken out-of-service immediate-
ly. $For the CPR7 generic, the faulty I0C is marked
for suggested removal in the request table
(PUIRESULT); for all other maintenance request
sources (alarms), the I0C is marked for suggested
removal from service in the request table.4

Note: A buffer overflow condition exists
when an attempt is made to load characters in
an algeady full buffer (in IOUC/IOMP).

10.61 #For the CPR5 and CPR6 generics, when the

first protocol error of a 5-minute interval
occurs, the error is ignored. If another protocol error
occurs within 5 minutes, the error is reported and a
hangup (restart) is issued to the channel to
reinitialize the link. On the third protocol error
within the 5-minute period, the error threshold is
exceeded. The channel is then removed from service.

10.62 For the CPR7 generic, when the first protocol

error of a 5-minute interval occurs, the error
isignored. If another protocol error occurs within the
5-minute interval, the error is reported and a hangup
(restart) is requested (via the request table) to be
sent to the channel to reinitialize the link. On the
third protocol error within the 5-minute period, the

error threshold is exceeded. The channel is then
marked for removal from service.

10.63 At 5-minute intervals, IOCP enters PFLR at
entry point PFLRHANG to clear the error
counts for parity errors and protocol errors.4

Invalid Polling Responses

10.64 When an PIOU/IOP4 is polled and the IOUS

responds with an indication that it has work
to do, but the IOCP reading of the IOUS’s poll request
register is all zeros (a false service request), IOCP
enters PFLRBLMH at entry point PFLRPOLL. This
routine resolves the false service request. The pro-
gram action to resolve the false service request de-
pends on the type of IOU that has failed. For the old
type IOU usually, the source of an invalid service re-
quest is a clock failure, ie, an IOUS timing sequence
failure. The PFLRPOLL routine determines the trou-
ble to be in the IOUS, the bus, or the central control.
However, for the new type IOU, the source of an in-
valid service request is usually an internally detected
error in the IOP. For this condition, the PFLRPOLL
routine determines the trouble to be in either the
IOUS, the IOMP, or the IOUC. After determining the
cause of the trouble (for either type IQOU), the
PFLRPOLL routine performs the appropriate
reconfigurations and test routines, prints out the
appropriate messages to the TTYs, takes the appro-
priate action to remove the affected equipment, and
requests, as applicable, the IO diagnostic to be sched-
uled.

C. MACP Entry

10.65 Several times daily MACP enters

PFLRBLMH at entry point PFLRIORX, the
IO routine exerciser, to check the maintenance cir-
cuits of all I0Cs (for old type IOU only). Routine
PFLRIORX ensures that the IOUS/IOU circuits are
capable of handling polling requests.

Note: In addition to the above described 10
routine exerciser (not a diagnostic) being exe-
cuted on base level processing several times dai-
ly, MACP also controls the daily execution of
the MCC/I0OU diagnostics. Refer to paragraphs
10.71 through 10.78 for a discussion about the
diagnostic request routine for these diagnostics
(I0DG, 12DG, and MCDG).

D. Other PFLRBLMH Subroutines

10.66 Besides the PFLRBLMH routines used peri-
odically, PFLRBLMH contains other subrou-

1SS 5, SECTION 254-280-310

tines that are used on base level processing by PFLR
or other programs. Examples of these routines and
their functions are:

(a) PFLRUPMA AND PFLRIOMA (used on old

type 10U only)—Sets the maintenance flip-
flop(s) in one IOUC or all IOUCs, respectively, as-
sociated with a particular IOUS (set for diagnostic
usage).

(b) PFLRFRLP—Audits the out-of-service lamps
for all IOU frames.

(¢) PFLRIOLP—Maintains primary and second-
ary trouble lamps on the MCC for the IOUSs

and IOCs (indicates communication by normal bus

configuration or by standby bus configuration).

E. ®Andalyze and Report Routine

~ 10.67 The analyze and report routine (entry

PFLRANRR) calls the short-term error
analysis routine PFLRANYL in pident PFLRPIIR to
enter the unit in the tables. If a removal from service
was indicated in the request table (PU1IRESULT) and
the unit did not exceed the error threshold, the action
is changed to a remove and diagnose. For the CPR5
and CPR6 generics, the PFLR fault recovery action
is then reported to MARP and a return is made to the
appropriate fault recovery routine. For the CPR7
generic, after entering the unit in the error analysis
table, the PFLR requested action is reported to
MARP. A call is then made to the application admin-
istration routines {via PATTANRR) to inform them
of the failure on the unit. The application may now
change the PFLR requested action. If a change is
made, the alternative action is indicated in the re-
quest table.

10.68 For the CPR7 generic, the analyze and report

routine checks the action reported. If the
central control trouble has been reported, the analyze
and report routine transfers to the Central Control
Fault Recovery Program (CCFR). The CCFR is re-
sponsible for all remaining fault recovery actions. If
the central control was not found at fault, the analyze
and report routine will take the appropriate action as
indicated in the request table. The routine then re-
ports to MARP its final recovery action.4

F. Base Level Recovery Summary

10.69 As conveyed by previous discussions, the
MCC/10 fault recovery funetions are shared

Page 117

SECTION 254-280-310

by base level (noninterrupt) processing and F-level
(interrupt) processing. The MCC base level process-
ing consists only of running a routine diagnostic dai-
ly. By sharing the MCC/I0 fault recovery functions
between interrupt and noninterrupt processing, de-
lays caused by interrupts in normal base level timing
are minimized.

10.70 Summarizing, 10 base level fault recovery

functions are done by PFLRIOMR and
PFLRPOLL (routines of PFLRBLMH) which are run
when fault flags are detected by IOCP through peri-
odic polling action. Also, several times daily,
PFLRIORX (I0C exerciser routine), which is MACP
controlled, is run to check the workability of all 10
maintenance circuitry on a channel basis (old type
10U only). :

PFLRDGNH DESCRIPTION
A. General

10.71 Routines in the PFLRDGNH pident perform

functions relating to the execution of the
MCC/10 diagnosties, MCDG, 10DG, and I2DG. The
two main functions, involving two routines for the
IODG/12DG and two routines for MCDG, handle re-
quests resulting from fault recovery actions. These
two functions are:

(a) To initialize a diagnostic (prediagnostic rou-
tine)

(b) To be the diagnostic final handler (post-
diagnostic routine).

10.72 As mentioned previously, PFLRDGNH also

contains a diagnostic routine used periodi-
cally (daily) to request MACP to run specified por-
tions of the MCC or 10 diagnostics. Other diagnostic
control routines in this pident perform miscellaneous
services, such as setting up unit type and member
numbers, etc.

B. Prediagnostic Initialization Routines

10.73 The prediagnostic initialization routine is

entered from the Diagnostic Control Pro-
gram (DCON) either at entry point PFLRDIMC or
PFLRDIIO before executing diagnostic MCDG,
I0DG, or 12DG, respectively. These prediagnostic
routines perform relevant hardware and software
initialization, configuration, or service operations for

Page 118

units pending diagnosis. If units are unavailable to do
the diagnostic tasks specified by the fault recovery
actions, the requested diagnostic is canceled.

10.74 The MCC units pending diagnesis may in-

volve the entire processor peripheral inter-
face/MCC logic, or only the processor peripheral
interface bus circunitry. If the processor peripheral
interface/MCC bus diagnostic task was requested,
the MCC bus must be capable of communicating over
the remaining in-service bus. For any MCC diagnos-
tic task, the MCC is removed from service. This rou-
tine also specifies the address of the post-diagnostic
routine (explained below).

10.75 The I0 prediagnostic routine sets up an ad-

dress for the post-diagnostic routine, checks
the availability of units specified for diagnosis,
checks the status of backup channels (in service, or
unequipped), and removes units of IO from service, as
required. The IOs prepared for diagnosis may involve
the entire selector (I0Us) or a single controller
(IOUC) or an entire microprocessor (IOMP) or IOUS
bus interface.

C. Post-Diagnostic Final Handling Routines

10.76 The post-diagnostic final handling routine is

entered from DCON at entry point
PFLRDFMC or PFLRDFIO at the completion of di-
agnostic MCDG, I0DG, or I2DG, respectively. (After
the PFLRDGNH final handling routine completes its
work, it passes control back to DCON which passes
control to MACP.) The post-diagnostic routines ana-
lyze the diagnostic results, interpret this output from
the type of diagnostic request, and decide whether
the diagnosed unit(s) should be restored to service.
Specifically, if the diagnostic outcome is ATP, and
the request was not a diagnose only request, the unit
is restored to service.

D. Diagnostic Routine Exerciser

10.77 The diagnostic routine exerciser located in

the PFLRDGNH pident is entered periodi-
cally (daily) by MACP at entry point PFLRMREX or
PFLRIREX to run MCC or IO diagnostics, respective-
ly.

E. Diagnostic Request Routine

10.78 A subroutine with entry point PFLRDIAG is
called to set up an MACP job to run a diag-

nostic on either the MCC or 10 or some portion of ei-
ther one. Routine PFLRDIAG determines the
MCC/10 unit to be diagnosed, and requests MACP to
initialize the applicable software tables.

PFLRRRCR DESCRIPTION
A. General

10.79 The PFLRRRCR pident contains a collection

of subroutines used to administer the
servicing needs of the MCC/IO units and related bus
circuitry during PFLR fault recovery processing;
these subroutines are also available for use by other
maintenance programs. The subroutines, in general,
can be classified in two main groups:

(a) Diagnostic routines, primarily configuration
routines

(b) Service routines, primarily unit removals and
restorations.

10.80 The following subroutine descriptions cover

only the most important ones in PFLRRRCR.
For explanations and comments of those subroutines
not explained in this section, refer to the PFLRRRCR
program listing (PR-5A342).

B. MCC/I0 Configuration Subroutines

10.81 Three basic configuration subroutines are

provided by PFLRRRCR for the purpose of
establishing any desired peripheral unit configura-
tion with the MCC or I0C. The entry points into these
subroutines followed by a brief description are as fol-
lows:

(a) PFLRBCON—According to the client pro-

gram’s input, a specified MCC controller or a
specified IOUS is configured to communicate with
the central control over a specified bus configura-
tion (client inputs controller’s K-code and desired
state of routing control flip-flops RO, S0, S1). See
Table F.

(b) PFLRUPDT—The bus configuration from a

specified MCC controller or a specified IOUS
(one channel) to the central controls is updated to
the standard peripheral unit bus configuration
used by simplex controllers. The standard periph-
eral unit bus configuration is obtained from a con-
figuration control table in PFLR. Once the desired

1SS 5, SECTION 254-280-310

configuration is established, the unit’s software
status (status word per MCC or per I0US) is up-
dated, if requested by the client program.

(¢) PFLRIOCU —The bus configurations of all

equipped I0USs in a switching office are up-
dated. The update places the peripheral unit bus-
to-central controls in the standard configuration
used by simplex controllers. A simplex controller
configuration table specifies these standard set-
tings of the routing control flip-flops (in central
controls and I0USs). See Tables E and F. Software
status words (a status word per channel) are also
updated.

C. Remove/Restore Subroutines
MCC Removal/Restoration

10.82 The MCC restore subroutine PFLRRSTM

configures the MCC on the peripheral unit
bus, puts the unit in normal mode, and requests
MCCM to update the matrix.

10.83 The MCC remove subroutine places the MCC
in a bypass mode, updates the MCC status
word to indicate the MCC is out-of-service, sets the
maintenance flip-flop, lights an out-of-service lamp
on the MCC/processor peripheral interface frame.

10.84 Subroutine PFLRMRQP (in PFLRRRCR) is

the request handler for all manual and TTY
requests for MCC removal and unconditional restora-
tion.

10 Unit Removal/Restoration

10.85 Subroutine PFLRRMIS, PFLRRMIP, or

PFLRRMIC is used to remove from service
an JOUS and all equipped IOUCs/IOMPs or an IOMP
and all equipped IOUCs or an IQUC associated with
an IOUS, respectively. When the unit(s) is removed
from service, pertinent software status words are
updated, appropriate lamps are lighted on the MCC,
and IOCP is notified that the applicable channel(s) is
out-of-service.

10.86 Subroutine PFLRRSTS, PFLRRSTP or

PFLRRSTC is used to restore to in-service
status an IOUS and all associated IOUCs/IOMPs or
an IOMP and all associated IOUCs or an 10UC/
IOMP, respectively. An IOUC/IOMP is restored only
if its JOUS is equipped and in service. On an IQUS

Page 119

SECTION 254-280-310

restoral, an IOUC/IOMP is restored only if the
I0UC/IOMP is equipped and not marked in-trouble.
When the units are returned to service, pertinent
software status words are updated.

10.87 Subroutine PFLRMRQI (in PFLRRRCR) is

the request handler for all manual and TTY
requests for IO removal and unconditional restora-
tion.

D. ¥ Routines Provided for Application Interface

10.88 For the CPR7 generic, subroutines

PFLRXID, PFLRSTAT, PFLRTRBL, and
PFLRRJOB provide status information and perform
functions for the application. The PFLRXID subrou-
tine will write a given vector into the first transmit
buffer of a high speed IO protocol channel TN82. The
PFLRSTAT subroutine will return to the application
the status of any given 10. The PFLRTRBL subrou-
tine will set or clear trouble bits on any given I10. Fi-
nally, the PFLRRJOB subroutine will request a run
job for restoral on any given 10.4

11. TAPROCESSOR POWER CONVERSION AND DISTRI-
BUTION FRAME FAULT RECOVERY PROGRAM—
PDFR

INTRODUCTION

11.01 The power conversion and distribution frame

(PCDF) of the 1A Processor is made up of

duplicated distribution circuits and C converters. The

distribution circuits supply -48 and +24 volt power to
the various processor frames. Power problems, such
as blown fuses, are detected by power monitors and
reported by standard 1A power control switches lo-
cated within each circuit. The C converters also con-
tain power monitors for detecting such problems as
out-of-tolerance voltages and currents. The monitors
also take the necessary action to remove any faulty
unit (converter or distribution circuit) from service
and report the problem to the operating personnel.

The monitors are important in protecting the proces-

sor from power problems and must also have safe-

guards against malfunctions. The 1A Processor

Power Conversion and Distribution Frame Fault

Recovery Program (PDFR) is used for this purpose. .

Figure 24 shows the programs that interface with i
PDFR.

11.02 The functions of the monitors are tested by
a wired test package, FB153, connected to

each monitor. The test may be initiated by either
software or direct manual actions. By using this test
on the distribution circuits power monitors, their
ability to efficiently detect and report distribution
problems can be tested. The primary function of
PDFR is to test these power monitors on request. The
requests come from three sources. First, the moni-
tors are routinely exercised once per day during a
non-busy hour. Second, TTY messages test specific
functions or units. Finally, power control switch scan
point changes are detected by the scan point monitor
program MCCM. The PDFR program identifies the
unit or units involved, does whatever work was re-
quested, and reports the results to the operating per-
sonnel. If removal is necessary PDFR can only grant
permission; the unit will not stop supplying power
until powered off by the operating personnel.

PDFR—FUNCTIONS AND STRATEGY

11.03 The PDFR program has a variety of jobs to

do from routine daily testing to granting and
denying & request for out-of-service. These jobs are
initiated in one of the following ways.

A. Routine Exercise

11.04 Once each day all monitors in the PCDF are

sequentially tested. The Maintenance Con-
trol Program (MACP) schedules this task at a
nonbusy hour and brings in PDFR. The PDFR pro-
gram requests a PCDF diagnostic via the Diagnostic
Control Program (DCON) and acts as initial and final
handler for the diagnostic. The PDFR program se-
lects the monitors to be tested, analyzes the diagnos-
tic results, and outputs the data via TTY. The routine
exercise is canceled if any of the converter scan
points are in an abnormal state.

B. TTY Requests

11.05 The PDFR program accommodates four TTY
maintenance input messages initialized by

the Manual Input Request Administration Program
{MIRA) as follows:

(a) Diagnose (DGN)—The TTY request for a DGN

on a specific unit enters PDFR from MIRA.
The PDFR program provides a diagnostic routine
and acts as the initial handler routine. The PDFR
program checks the converter scan points for ab-
normal states and, if satisfactory, sets the proper
phase bits for the request. Results of the diagnos-

1z1 @6oyg

e —— — ——

Fig. 24— 1A Processor Power Conversion and Distribution Frame Fault Recovery Pro-

gram (PDFR)--Program Interfaces

(CPR 7 GENERIC)
APPLICATION
APPLICATION INPUT/QUTPUY
ST FNLLT ADMINISTRATIVE 100P meP
RECOVERY PROGRAMS
PROGRAM
e T ——— —]
PFLRFTIR FFLRBLM
I T ol I
| PFLAFLEV BSINS PLERIOR FFLRPOLL TORX(10U) |
FILTERS ALL ol RECOVERY FRan | [RECOVERY From SEVERAL TDES
] F-LEVEL Mt PAINTENANCE IWALTD DALLY, |
INERPTS REQUESTS POLLING EXECUTION OF
| RESPONGES D ROUTINE |
EXERCISE
| NDNATORROUS |
| INTERRIPTS - |
COED EMABLING FFLRDGMH
| OF MCC/I0U EXECUTION OF |
| DALLY o |
| FECOVERY 160 FALTE ROUTINE |
RIUTIES EXERCISE FOR
| AR o/IU — — —] rc/100 |
| | INITIALIZATION |
| ROUTINES FOR
1 AN I0U
I MARGINAL |/=m.m | DIAGNOSTICS PFLROIIO(I0U) l
! (THRESHOLD PFLADIMC(MCC) |
| EXCEEDED) | PFLROFTO(I0U) |
FINAL HANDLING PFLROFNC(MCC)
N e o e o !
[feem = L e OIAGNISTICS |
' AMALYSTS DISPOSITION |
ROUTINES 4
| RECOVERY COLLECTION OF SUBROUTINES USED BY PFLR AND OTHER MAINTENANCE |
|_REPORTS PROGRAMS. CONTAINS DIASNOSTICS, TEST, AND SERVICE ROUTINES
e —t = S S Sp— — -
i 1
PROGRAMS
o || wwe NIRA DCON neen oy

O0L€-08T-¥SZ NOILD3S ‘S SSI

SECTION 254-280-310

tic are reported via TTY from DCON. Units are not
removed from service as the result of diagnostic
failures since this indicates monitor troubles as
opposed to convert problems; however, the failed
unit will appear on the out-of-service list. The op-
erating personnel may then make further tests
and/or repairs for failures.

(b) Remove (RMV)—The RMV message is used

primarily for test purposes and if actual re-
moval is required the manual request-out-of-
service on the frame itself is used since further
manual action is needed to remove the frame from
service. The request enters PDFR from MIRA and
the unit requesting out-of-service is identified. If
no unit is specified, the request is denied as inval-
id. If the unit is a power distribution circuit, the
request is granted without further test since the
power switch of the distribution circuit is not re-
quired for proper operation of the PCDF. If the
request is for a converter, PDFR must verify that
no other converter is out of service or is function-
ing improperly. The PDFR program makes two
checks for this condition. First, each converter is
tested for in-service indications via the MCCM
scan points. If all units pass, PDFR then runs diag-
nostics against the monitors of the supporting
converters of the PCFD member requesting out-
of-service. If either check fails, the request is de-
nied an RMV. A denied message is printed and a
spurt minor alarm will sound. If the checks pass,
the appropriate lamps are turned on and software
tables updated. If one converter in each half of the
PCDF is off-line, the primary lamp is lighted; oth-
erwise, the secondary lamp is used.

(c) Exercise (EX)—The TTY request to exercise a
particular unit enters PDFR from MIRA. The
PDFR program actions then follow the same pat-
tern used for the DGN request. The converter scan
points are checked for proper states, and diagnos-
tic routines in DCON are called that provide, in
addition to diagnostic functions, provide control
features such as looping within the diagnostic.

(d) Restore (RST)—The TTY request to restore

enters PDFR from MIRA and must specify a
particular subunit or else the request is denied as
invalid. This request may be conditional or uncon-
ditional restore. If it is conditional MIRA requests
that PDFR run diagnostics against the particular
unit providing that all other converters are in the
normal state. If the diagnostics pass, then the unit
is restored and the appropriate message is sent via

Page 122

TTY. If the request is for unconditional restore,
then MIRA comes directly to PDFR which grants
the restore without any testing.

C. Scan Point Changes

11.06 Changes on the supervisory scan points of

the power conversion and distribution frame
(PCDF) are detected by the sean point monitor pro-
gram MCCM, and PDFR is entered through MIRA.
The PDFR program analyzes the transition codes
and determines which of the several functions are
required. the PDFR then enters one of the following:

(a) Request-Out-of-Service—When a change

from normal to request-out-of-service is de-
tected, PDFR treats it in the same way as the con-
ditional remove request, and it is granted if
companion units are functional. In addition the
ACK lamp, which is turned on as an acknowledg-
ment of the request, is extinguished.

(b) Power Off —The scan point monitor program

MCCM reports power-off problems and the
unit involved via TTY. The PDFR program then
updates the status table and the primary and sec-
ondary trouble lamps.

(c) Power Alarm and Fuse Alarm—The scan

point monitor program MCCM reports these
problems via TTY and initiates a software major
alarm. The PDFR program updates the status ta-
ble, trouble lamps, and then grants an immediate
out of service if other converters on that PCDF are
in a normal state. For a fuse alarm, a hardware
major alarm is also initiated from the frame
power switch.

(d) Return to Normal—On detecting a change

back to normal, MIRA obtains a general
buffer table and requests a diagnostic. The PDFR
program acts as initial and final handler, sets the
phase bits, and returns to DCON. The DCON pro-
gram performs the diagnostic and analyzes the
results of the test. If the test passes, it will indicate
ATP but the lamps will not be extinguished. An
RST message at the TTY is necessary to complete
the restoral and extinguish the lamps.

TROUBLE REPORTING

11.07 The PCDF frame troubles are reported by

four means. The hardware generates two of
these through office alarms, bells, and light emitting
diodes (LEDs). The LEDs are mounted on the frames
and point directly to trouble areas. Output messages

identifying problem areas via TTY come from the
scan point monitor program MCCM if detected there
or from PDFR if detected during a diagnostie. The
last means of trouble reporting is the equipment sta-
tus lamps on the MCC. The PDFR program has con-
trol of these lamps. The primary lamp shows that
more than one C converter is down in the PCDF #or
a distribution and monitor circuit is powered down
while the secondary lamp shows a single C converter
failure or a distribution and monitor circuit is out of
service.4

PDFR—PROGRAM STRUCTURE
A. General

11.08 The PDFR program is a single pident pro-

gram containing 20 program units. The pro-
gram units are routines that perform the various
maintenance and reporting functions required for
the PCDF. Figure 24 shows the various programs
that interface with PDFR. Four major entry points
are provided: three are for use by MACP and one for
DCON. A discussion of these entries and their func-
tions follow.

B. PDFR Routines
PDFRRDST Description

11.09 The PDFRRDST routine is entered from one

of two sources, scheduled from MACP, or a
manual entry from the MCC. The MACP program
periodically reports a list of out-of-service units, and
enters PDFR to obtain the status of all PCDF units
for this report. The PCDF status table, PD1RST, is
the source of out-of-service units. The PDFR pro-
gram maintains and updates the table when scan
point changes occur. On entry, PDFR checks the sta-
tus of each unit, converter, and distribution circuit in
the PCDF and reports this status sequentially to
MACP. As each unit is checked and reported, MACP
returns to PDFR and continues looping until all units
are checked. Final exit from the PDFRRDST routine
is to MACP indicating that all units have been
checked.

PDFRRTNX Description

11.10 The monitor circuits are routinely exercised

once each day to verify that they are func-
tioning properly. The MACP program schedules this
task at some nonbusy hour and enters PDFR at
PDFRRTNX. Routine PDFRRTNX then obtains a

ISS 5, SECTION 254-280-310

general buffer table from MACP, initializes it, re-
quests an MACP job via the job request table, and
exits to DCON for routine exercise. The DCON pro-
gram reenters PDFR at PDFRDFNH to act as initial
and final handler for the diagnostic. The PDFR pro-
gram selects the proper routine for the exercise, sets
the diagnostic phase bits, and goes to the Power Dis-
tribution Diagnostic Control Program (PDDG) for
the power monitor test on units specified by PDFR.
The PDDG program calls set the test results of the
power monitor test and return to PDFR which checks
to see if all tests are complete. If they are, PDFR sets
up for the next member, if required, or issues an end
job request if all tests are complete.

PDFRDFNH Description

11.11 The PDFRDFNH routine is entered from

DCON to act as initial handler for the PDDG
diagnostics for several functions. One of these func-
tions is the routine exercise periodically scheduled by
MACP and was discussed in conjunction with the
PDFRRTNX entry. In addition, this routine is also
entered to process the following functions:

Scan point changes to normal

Diagnose TTY message

e Conditional restore message

o Exercise TTY message.

For these functions, MIRA is entered to set up the
general buffer table and request diagnostics from
DCON. The DCON program then enters the
PDFRDFNH routine that selects an initial handler
routine for the diagnostics. The PDFR program sets
up the data in K register and reads scan points of the
unit involved. If the unit’s scan points indicate nor-
mal states, control passes to DCON to run the diag-
nosties. If the unit scan points were abnormal,
restoral requests are denied and an endjob is issued.
On completion of diagnosties, DCON returns control
to PDFR to analyze the results. The PDFR program
final handling routines determine if the test passed
and, if not, a failure message is sent via TTY and the
out-of-service lamp is left on. If the test passed, then
PDFR runs the out-of-service/off routine that turns
the out-of-service lamp off. In addition, the equip-
ment status light on the MCC is turned off.

Page 123

SECTION 254-280-310

PDFRREMYV Description

11.12 The PDFRREMY routine is «n MACP entry
to process the following requests:

o Remove TTY message

e Normal to request-out-of-service scan point
change

e. Normal to power alarm scan point change
e Normal to power-off scan point change
e Unconditional restore TTY message.

On receipt of any one of these requirements, MIRA
requests that MACP schedule the PDFR program
and then enters the PDFRREMYV routine. The
PDFRREMYV routine sets up and reformats the input
data for later use, identifies the job requested, and
transfers to that routine. For an unconditional re-
store request, control passes to the restore routine
that does the restore with no testing and extin-
guishes the out-of-service lamp.

11.13 If the request is for a remove or request-out-
of-service, PDFR uses the PDREMYV removal
routine. This routine first identifies the requesting
unit and, if it is a distribution circuit, the out of ser-
vice is granted automatically. If the request is for a
C converter, the power distribution frame status
table is checked for any complementary converters
out of service. If any complementary converters are
out of service, the request is denied and a denial mes-
sage is sent via TTY. If no converters are found out
of service, PDFR obtains and loads a general buffer
table to run diagnostics on each complementary C
converter. The PDFR program transfers to PDDG
which runs the diagnostic and, if any failures are
found, the request is denied and the operating per-
sonnel notified via TTY. If no failures are found, the
out of service is granted and the proper lamps are
turned on. The PDFR program issues an endjob on
completion, and control returns to MACP.

PDFR INTERFACES

11.14 MACP—The MACP program enters PDFR
at PDFRRTNX once each day to run the rou-

tine exercise on the PCDF. On completion, the exer-

cise issues an ENDJOB macro to return to MACP.

Page 124

11.15 DCON—AIl entries from DCON for the
PCDF initial handler routine come to
PDFRDFNH. This entry is used for diagnosing TTY
messages, conditional restore messages, exercise
messages, routine exercises, and for all scan point
changes to the normal state. The PDFR program de-
fines the task and branches to the proper routine. An
ENDJOB macro is issued at the end of processing for
any of these routines.
11.16 MIRA—All entries from MIRA come to
PDFRREMYV. This includes the remove TTY
message, unconditional restore message, and all scan
point changes from the normal state. The PDFR pro-
gram defines the task, selects the proper routine for
execution and, on completion, issues the ENDJOB
macro.

11.17 MCCM—The PDFR program interfaces with

MCCM for all requests that involve lamp sta-
tus. The final disposition of the OS and ACK lamps
is sent to MCCM via the OSLAMP-ON and OSLAMP-
OFF subroutines. The unit’s identity is sent as re-
quested in the K register. After any status change,
the equipment status lamps on the MCC are updated
via the MCCON and MCCOFF macros. On a periodic
basis, the OS lamps status is audited on an entry
from MCCM at PDFAUD.

11.18 PDDG—The PDFR program calls the PCDF

program’s diagnostic (PDDG) through
DCON. The DCON diagnostic buffer table is filled as
required for each case. The PDDG program then
tests either one full power conversion and distribu-
tion circuit or some subset consisting of one or more
of the subunits. This data is passed to PDDG in the
phase request bits. The PDDG program runs the
power monitor test against the specified units. The
results are entered in the diagnostic buffer table and
printed by DCON before passing control back to
PDFR. ’

12. ABBREVIATIONS AND ACRONYMS
12.01 The following is a list of the commonly used

abbreviations and acronyms used within this
section.

ADDG Auxiliary Data System Diagnostic
Control Program
APCL Attached Processor Communica-

tion Link

APFR

API
APS
ASW
ASWF
ATP
AU
AUB
AUBSQ
AUFR

BUFOFL
CCDG

CCFR

CPD
CPSR
CSFR

DCON

DFOFL

DKAD

DMA

DMERT

DPWEF

DUAD

DUFR

Attached Processor Fault Recov-
ery

Attached Processor Interface
Attached Processor System
All-Seems-Well
All-Seems-Well Failure

All Tests Pass

Auxiliary Unit

Auxiliary Unit Bus

Auxiliary Unit Bus Sequencer

Auxiliary Unit Fault Recovery
Program

Buffer Overflow

Central Control Diagnostic Pro-
gram

Central Control Fault Recovery
Program

Central Pulse Distributor
Control Pulse Source Response

Call Store Fault Recovery Pro-
gram

Diagnostic Control Program

Disk File Overflow Source

File Store Administration Pro-
gram

Direct Memory Access

Duplex Multienvironment Real
Time Operating System

Data Parity or Write Enable Fail-
ure .

Data Unit Administration

Data Unit Fault Recovery Pro-
gram

DUS
ERAP

FSFR

GCP
IDMM
10
10C
10CP
10DG

IOMP
I0P
10U
100C
I10US

12DG

LED
MACP

MARP
MCC
MCCM

MCDG
MIRA
PCDF

PCRV

ISS 5, SECTION 254-280-310

Data Unit Selector
Error Analysis Program

File Store Fault Recovery Pro-
gram

Generate Control Pulse
Identification Tag Mismatch
Input-Output

Input/Output Channel
Input/Output Control Program

Input/Output Unit Diagnostic
Program

Input/Output Microprocessor
Input/Output Processor
Input/Output Unit
Input/Output Unit Controller
Input/Output Unit Selector

Input/Output Processor Diagnos-
tic Program

Light Emitting Diode

Maintenance Control Program

Maintenance Restart Program
Master Control Console

Master Control Console Common
Control and Monitor Program

Master Control Console Diagnos-
tic Program

Manual Input Request Adminis-
tration Program

Power Conversion and Distribu-
tion Frame

Processor Configuration Recovery
Program

Page 125

SECTION 254-280-310

PDDG

PDFR

PEST

PFLR

PIC
pident
PR

PSFR

Page 126
126 Pages

Power Distribution Diagnostic
Control Program

1A Processor Power Conversion
and Distribution Frame Fault
Recovery Program

Prevent Error Source Transmis-
sion

1A Processor F-Level Fault Recov-
ery Program

Peripheral Interface Controller
Program ldentification
Program Listing

Program Store Fault Recovery
Program

RAM
SADK

SAWS
SIRE

SSFR

SYUP
TRAMM

TUC

UTRAMM

Random Access Memory

System Audit for File Store Ad-
ministration Program

Writable Store Audit Program

System Interrupt Recovery Pro-
gram

Single Strategy Fault Recovery
for Attached Processor System

Systems Update Program

Translated Address Mismatch
Source)

Tape Unit Controller

Untranslated Record Address
Mismatch

	General
	General Approach to 1A Processor Fault Recovery
	Central Control Fault Recovery Program -- CCFR
	Call Store Fault Recovery Program -- CSFR
	Program Store Fault Recovery Program -- PSFR
	1A Processor Auxiliary Unit Fault Recovery Program -- AUFR
	File Store Fault Recovery Program - FSFR
	Attached Processor System Single Strategy Fault Recovery -- SSFR
	Data Unit Fault Recovery Program -- DUFR
	1A Processor F-Level Fault Recovery Program -- PFLR
	1A Processor Power Conversion and Distribution Frame Fault Recovery Program -- PDFR
	Abbreviations and Acronyms
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	Table A
	Table B
	Table C
	Table D
	Table E
	Table F

