
BELLSYSTEM PRACTICES
AT&TCo WCS

SECTION254-280-260
Issue 1, June 1977

,f-

?

1.

2.

AUDIT PROGRAMS

SOFTWARE DESCRIPTION

1A PROCESSOR

CONTENTS

GENERAL

lNTRODUCTtON

PIDENTS DESCRIBED IN SECTION .

PURPOSE OF 1A PROCESSOR AUDITS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1A PROCESSOR WRITABI.E STORE AUDIT PROGRAM (SAWS)

GENERAL

A. Purpose of SAWS . . , . .

B. SAWS Audit Strategies . , .

SAWS—FUNCTIONAL DESCRIPTION .

A. General

B. SAWSCMMN-Functional

Osmefal o....

. . . .

Description

. . . .

Hashing And Matching Functions

Obtaining The Hash Sum . .

Hash Sum Stmage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Control Of Audits In SAWSCMMN/SAWSBASE

Audit Control Block (ACB) Initialization .

File Store Requests And Buffer Administration

Segmenting and Exits

SAWS Multitask Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4 m

4

5

5

6

6

6

6

6

6

7

7

7

7

8

8

9

9

9

10

#-

Not for q~ or-disclosure outside the

Bell System except under written agrsanent

Printed in U.S.A. Page 1

CONTENTS PAG6

SAWSlnterface With Update fiwmms 10

Carmctiin of Error s......o. o.. .o .“. ..” .10

SAWSCMMN Progmm Units..”” ”””ll

SAWSBASE Pragram Units.. ...12

C. SAWSSUBR-Functianal Dtiptkn . 12

Genera l O....”.”” ““”. ”” .12

SAWSSUBR PmgmmUnit$.”” .13

3. SYSTEM AUDIT OF STORES USING TAPE PROGRAM (SAST) 14

GENERAL

SYSTEM AUDIT OF STORES

SYSTEM AUDIT OF STORES

A. Noncarrecting Mode

B. Correcting Mode . .

C. Data lading Mode

. ...” “ 14

USING TAPE—MAIN MEMORY RESIDENT PORTION (SASR) 15

USING TAPE PROGRAM (SAST)—PIDENT 15

15. .“””” “

. ““”’” “ 15

16.” ““””” “

SAST PROGRAM OPERATION ...16

A. Noncwrecting Made....””..”. .“””””-”’6

Genera l+”””..”” ““”” ”.s16

lnitialiin”.”....” ““” ”””.”

Checking MabMemaw-T*fibS* eM&up Map 17

ChechgTh elDtag-T#tbS- Addr=s Map 18

CheckhtgTheHashSumH-dTable . 18

CheckhtgTheHashSumblriionti 19

Cheddng Hash Sums”.””.”.””. ““”””20

CheckhtgOataO.”.OOO””.”” ““”” .””20

B. Cewecting Made.....s. ””” s.” .“. ”-”--”20

C.progmm interfaces ...21

Cammon Progmmlnt*c*. ...21

Page 2

1,

.

.

.

.

.

.

.

.

.

.

.

.

SECTION 254-230-260

CONTENTS

Program Interfaces

Mbmatches caused

SAWS Audit . .

PAGE

21Application

ldentifyhtg

Requesting

.

By Recent Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.21

22

22

22

22

22

23

23

23

23

23

.

.

.

.

.

.

.

.

.

.

.

.

(SADK)

.

.

.

.

.

.

.

.

4.

t

5.

AUXILIARY UNIT SYSTEM AUDIT PROGRAM

GENERAL

FUNCTIONAL DESCRIPTION OF SADK

. . . , .

.

.

.

.

.

.

.

.

.

.

.

.

●

✏✍

A. Initializing the

B. Memory Audit

C. Timing of File

DRR Requests

File Store System

.

Store Requests

. . .

.

.

.

. . .

. . .

. . .

. . .

.

Queued Requests

D. Automatic Message Accounting (AMA) Buffer Audit

PROGRAM UNIT DESCRIPTIONS

A. General

B. Fiie Store Audit PU

C. File Store Initialization PU

D, File Store Request Timing PU

E. Automatic Message Accounting Buffer Audit W

REFERENCES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

24

24

24

24

25

26

26

.

.

..

.

.

. .

.

.

.

.
FIGURES

1. 1A ProcessorAudit progmms-pr~ram Interface ~ Diagram 28.

2. 1A processor Audit Programs-Functional Black Diagram , 29

TABLE

A. ABBREVIATIONS AND ACRONYMS . 30

SECltON 254-280260

‘firR This description is based on the CPR2 generic program in issue as of the date of this ~
sectio% but is akzo applicable for those o~ces equipped with the CPR1 generic program.

1. GENERAL 1

INTRODUCTION .

1.01 This section provides the following information for telephone company personnel in switching offices
equipped with a 1A Processo~

(a) A functional description of the 1A

(1) SAWS–Writable Store Audit

.

-
Processor Audit programs

\

(2) SAST–System Audit of Stores” Using Tape

(3) SADK–Auxiliary Unit System Audit.

(b) A discussion of the software functions which are accomplished by SAWS, SAST, and SADK. No
dkcussion is provided about the detailed encoded instructions contained in the programs.

(c) A discussion of the software interactions of SAWS, SAST, SADK, and the programs with which
they function. This discussion includes the reasons for the interactions, descriptions of the data m

exchanged between programs at the interfaces, and a brief summary of the functions performed by
the “programs with which SAWS, SAST, and SADK interface.

SAWS and SAST perform the following functions

(1) Check the integrity of the stored program and nontransient data

(2) Provide error information

(3) Provide corrective action.

SADK performs the following functiomx

(1)

(2)

(3)

(4)

Initialize the file store system

Audit memory .

Time file store requests
.

Audit Automatic Message Accounting (AMA) buffer pointers. -,

K The program listing may use the term “disk” rather than the term ‘We store” which
is used Jn this section.

?

1.02 When this section is reissued, the reason for reissue will be listed in this paragraph. The material
in this section was formerly contained in Section 254-280-260, Issue B, September 1976.

F09e4

1SS 1, SECTION 254-280-260

1.03 Table A provides a list of abbreviations and acronyms with applicable terms used in this section.

PIDENTS DESCRIBED IN SECTION

1.04 This section describes the following program identifications (PIDENTs):

(a) 1A Processor Writable Store Audit Programs (SAWS) which consist ofi

(1) SAWSBASE (PR-5A238)

(2) SAWSCMMN (PR-5A239)

(3) SAWSSUBR (PR-5A240).

(b) System Audit of Stores Using Tape Programs (SAST) which consist of

(1) SAST (PR-5A237)

(2) SASR (PR-5A236).

(c) Auxiliary Unit System Audit (SADK) (PR-5A235).

PURPOSE OF 1A PROCES50R AUDITS

1.05 The reliability of an electronic switching system is critically
stored program and its associated nontransient data in the 1A

resides in a “protected write” area of writable store memory which

dependent on the integrity of the
Processor. This primary data base
contains both program stores and

call stores. Th-eprotected write feature significantly reduces the probability of software error propagation,
but there is still an ever present possibility of memory mutilation from software errors and hardware
failures. Additional provisions are required for protection and maintenance of the software. The 1A
Processor audits provide preventive and corrective maintenance. This is accomplished by checking the
integrity of the stored program and nontransient data, then providing error information as well as
corrective action.

1.06 Backup data consists of two file store copies of the generic program and nontransient data. SAST
uses backup system tapes and buffers in the paging area in its task of auditing stores and making

necessary corrections. SAST is manually requested to correct problems SAWS could not handle. Figures 1
and 2 are functional diagrams showing the relationship of the 1A Processor audits and their relationship
with other software programs.

1.07 SADK performs audits of the DRR, DRB, CAB, and queue data to ensure that the DRRs do not
contain incorrect information which would prevent the FS hardware from answering the request.

A particular DRR containing such data would remain in the busy state indefinitely, eventually timing out
if no audit check were made. SADK also verifies that no data which is in the DRRs or their associated
memory will destroy valid data in either main memory or the file stores.

Note: Call store and
is applicable to either

program store are referred to in this section as main memory. Th_is term
core store or semiconductor store.

Page 5

SECTION 254-280-260

2. 1A PROCESSOR WRITABI.E STORE AUDIT PROGRAM (SAWS)

A. Purpese of SAWS
-,

2.o1 The 1A Processor Writable Store Audit Program (SAWS) monitors and maintains the integrity of
the resident ESS nontransient data base in both primary and secondary memory. Memory mutilation

is detected by means of matching and hashing techniques. Failing ranges are corrected if a good copy .
can be identified, based on hash sum results.

2.02 In addition to the common audit and application interfaces (SAWSCMMN), a common interface .
(SAWSSUBR) is used to maintain hash sums

affecting the stored program and various types of

B. SAWS Audit Strategies

and coordinate all update, audit, and tape copy activity
hashed office data. -

2.03

(a)

(b)

Audit strategies include:

Hashing of nontransient data

Matching of store and backup copies.

Hashing I)rovides a fast and Dowerful means of error detection over a given range without specific error-. .
resolution. Matching provides the ability to. identify specific error addresses if each copy is not-overwritten ~
with the same bad data. However, matchihg is necessarily slow due to file store dependence.

2.04 Combined hashing and matching utilizes the advantages of both audit strategies. Frequent hashing
of store data followed by a three-copy hash and match of “bad” ranges provides protection of

store resident generic program and office data. Combined hashing and matching of all copies on a less
frequent basis provides protection and error information for the backup data. In both cases, error
information and automatic correction capabilities are maximized.

2.05 Combined hashing and matching is also used to audit nontransient data which is file store resident
only.

SAWS—FUNCTIONAL DESCRIPTION

A. General

2.06 SAWS is made up of the three PIDENTs .

(a) SAWSCMMN/SAWSBASE

(b) SAWSSUBR.
T

The combination of SAWSCMMN and SAWSBASE perform the common audit functions of hashing, matching,
and correcting nontransient data. SAWSBASE is associated with Program Store O (PSO). SAWSSUBR
consists of the client service subroutines used in maintaining interfaces between SAWS and other programs
which update, copy, or audit the hashed data. All three PIDENTs are used by the Processor Configuration
Recovery Program (PCRV). In order to perform audits on writable stores which are associated with ~
application programs, SAWS, must access application interface programs to acquire the preliminary
information required to perform the audits.

Page 6

1SS 1, SECTION 254-280-260

6. SAWSCMMN-Functional Description

General

2.07

(1)

(2)

2.08

The program SAWS (Writable Stores Audit) consists of two distinct audit functions
generally applicable to the nontransient ESS data base. These two fun~tions are

Hashing

Matching.

which are

The hashing function makes use of previously initialized resident hash sums to detect memory
mutilation within BINK (Binary one-thousand See 2.11) ranges. The matching function detects

mutilation of individual memory words by comparing duplicated copies of the nontransient data base.

2.09 The hashing function and the matching function are combined to audit various data types by IDtag.
The data may be store-resident or file-store-only. The audit can employ the hashing mode or the

hashing-matching mode. Failing BINKS (Binary one-thousand See 2.11) are corrected automatically by
overwriting the bad copy from a good copy provided the following conditions exist

(a) Automatic correction is not inhibited.

(b) A good copy of a failing

Hashing and Matching Functions

Obtaining the Hash Sum

BINK can be identified.

2.10 Hashing consists of end-around-carry addition of consecutive words in a specified memory range,
coupled with rotation. Rotation is accomplished by rotating the accumulator left by five bit positions

prior to each addition. Rotation starts over on 32-word boundaries. This facilities the updating of
32-word blocks and associated file store writes which must be done in multiples of 32 words. For purposes
of System Reinitialization (SYSR) and System Update Programs (SYUP), hash sums having a value of
logic zero are changed by the loader programs to minus zeros.

2.11 The standard hashing range for the 1A Processor is 1-BINK. A BINK is a binary (BIN) one
thousand (K), or 1024 words which is the closest power of 2 to 1000. Each hash range begins

and ends on BINK boundaries. This scheme provides speed and simplicity in detecting, resolving, and
correcting errors. It also makes possible the auditing of any portion of memory in terms of its 1-131NK
subblocks. This is especially important because of SAWS’ interface with update programs which may
invoive temporary lockouts of audit or update activity.

2.12 Hashing of a specific structure is accomplished by hashing the 1-BINK range in which the structure
is ctmtained. The only structures which do not have 1-BINK hashing ranges are the merge

structures. The merge structures are structures which are created during reinitialization and system
update; they consist ofi

(a) Main memory-to-file store map

(b) IDtag-to-file store range table

(c) Hash sum headcell and headtables

(d) Hash table.

Page 7

—

SECTION 2s4-2-260

Three special hash sums are computed over these critical merge structures to permit verification of their
integrity before auditing other data. --%,

2.13 A small number of 1-BINK ranges contain a combination of generic program data, various types
of office data, and unhashed transient data. Whenever a combination of generic data and one or

more types of office data occur in the same BINK, their partial hash sums, known as collisions, are _
maintained separately. No hash sum covers more than one data type. When running the System Audit
of Stores Using Tape (SAST) (see 3.32), the use of separate hash sums eliminates confusion in determining
which tape is to be mounted. The use of separate hash sums is also important in the interface between
the audit and other programs that update, copy, or audit the same data. Transient data and data types -
other than the type being hashed (those having different IDtags) are skipped over during hash computation.
The distinction between data types (such as generic and office data assembler (ODA)) and the skipping
of transient data are accomplished via the range descriptors of the main memory-to-file store map and -
the IDtag-to-file store range table.

-%

2.14 Since the stored hash sums are generated off-line by the generic loader and various office data
assembler programs, it is possible to check the validity of tape data during a system reinitialization

or system update by using hash sums. During a partial system update, the system data to be updated
is checked before the update is performed. Hashes over the structures created during a system
reinitialization are generated by the System Reinitialization Program (SYSR). Hashes over the structures
created during a system update are generated by the System Update Program (SYUP).

Hash Sum Storage

2. Is . Hash sum storage is in the highest numbered call store for the following reasons. Hash sum
storage must take into account memory spectra for more than one electronic switching system. It

must accommodate stores containing mixed data types and the scattering of data types over the memory ~
address spectrum without requiring an interface between the generic loader and ODA programs. In
addition, immediate accessibility of hash sums during system reinitialization is required.

2.16 The hash sums for both main memory resident data and file-store-only data are in”a single hash
table. This table consists of 64-word blocks. There is one block for each store containing hashed

data and one block for each successive 64-BINK range of the file store spectrum containing hashed data
that is file store resident only. The first 64-word block is reserved for extra hash sums that result
when multiple data types occur within the same 1-BINK range. This first 64-word block is referred to
as the collision block.

2.17 The hash table’s origin and length are specified in a two-word head cell. Two head tables provide
6-bit indices into the hash table. One head table is for main memory resident data and is indexed

by a main memory address. The other head table is for file-store-only data and is indexed by file store =
address. The head cell and the head tables reside in Program Store O at Datapool-defined locations. For
purposes of system reinitialization, hashes over the merge structures also reside in Datapocd-defined
locations in Program Store O. .

Gntrol Of Audits In SAWSCMMN/SAWSBASE

2.18

(a)

(b)

(c)

Any application of the 1A Processor must provide certain application functions to be used by the
Writable Store Hashing and Matching Audit (SAWS). These application functions include T

Initialization of control data

Handling of entries -

Segmenting and exits

Page 8

1SS 1, SECTION

(d) Administration of a buffer used for ~le store requests and automatic correction

(e) Outputting of error data.

Audit Control Block (ACB) Initialization

2.19 Before initial entry into SAWS, a number of control and data words must be
the audit. These words are part of the ACB which can also accommodate

initialized for use by
words to be used by

the audit scheduler. SAWS uses the ACB to save control and error information over a real-time brefi.
Initial values of the audit control words determine the mode (hash-only or hashing-matching), range, and
file store IDtags for the audit task associated with the particular ACB.

File Store Bequests and Buffer Administration “

2.2o When auditing in the matching mode, a SAWS task requires use of a store buffer for its file store
reads. The buffer may have shared usage but must be provided and administered by the application

system. Before any SAWS task begins matching a BINK or the merge structure, it must request the
use of the buffer. An entry into SAWSCMMN/SAWSBASE for an audit task that is already in the
matching mode implies that the buffer has already been obtained and its start address is stored in the
ACB. When a SAWS task in the hash-only mode detects a hash failure, it must obtain use of the buffer
before reauditing the failing range in the matching mode. This is handled by temporarily placing the
task in the matching mode and exiting from SAWSCMMN/SAWSBASE to global PATTSZBF. Then, as
with any SAWS task in the matching mode, a subsequent entry to SAWSCMMN/SAWSBASE implies that
the buffer has already bees seized.

2.21 Application administration of the buffer includes handling of file store request completion returns.
Before submitting a file store request, SAWSCMMN/SAWSBASE transfers to PATTLFSC where it

leaves a completion return address. This address is used by the File Store Administration Program
(DKAD) when the file store operation is complete. SAWSCMMN/SAWSBASE reports each immediate
success return from DKAD by transferring to PATTFSIR.

2.22 After submit~ng file store requests and segmenting, SAWSCMMN/SAWSBASE expects no further
entries until all file store requests have been successfully completed. When auditing of a BIN’K

or auditing of the merge structures in the matching mode is complete, the buffer is released by a transfer
to PATTRLBF. At this point a SAWS task that has been temporarily placed in the hashing/matching
mode is restored to the hashing mode. PATTRLBF returns to SAWSCMMN/SAWSBASE after the buffer
is released.

2.23 More than one SAWS audit (or task) may be in progress at any given time on a time-shared basis.
However, of those tasks in the matching mode, only one can have control of the buffer and other

memory used by a matching task. Control of the buffer and other needed memory is seized alternately
by various SAWS tasks for the auditing of a single BINK, or of the merge structures, and then released.

Segmenting and Exits

2.24 SAWSCMMN/SAWSBASE returns control to the audit controller for segment breaks and upon
completion of an audit task. Two modes of segmentation and a single completion return are used.

2.25 One mode of segmentation is used to return control when normal interleaving with other audits is
acceptable. A subsequent entry is not necessarily expected during the next base level cycle.

2.26 A second mode of segmentation is used as a non-interleaving return. This mode is used by SAWS
tasks when a BINK or merge data is being matched. A subsequent segment entry is expected,

preferably during the next base level cycle if file store requests are complete. When auditing of the

Page 9

SECTION 254-280-260

BINK or merge structures is complete, the buffer is released and the normal segmenting return is again -
used.

2.27 Upon final completion of an audit task, SAWSCIvfMN/SAWSBASE returns control to the audits
controller by using the task completion return. n

SAWS Multitask Interface

2.28 Since a number of SAWS tasks can be concurrently active (on a time-shared basis), measures have
been taken to prevent possiblq interwrite problems where more than one SAWS task would

concurrently audit and attempt to correct the same data. This is accomplished by subdividing an audit -
into subtasks based on file store IDtag and resident or file-store-only storage of data. A record is kept ~
of active subtasks. Before a subtask is scheduled, the record is checked. If that subtask is already in
progress, the SAWS task performing the check returns control to the audit scheduler and waits until the
subtask is marked inactive. Once the subtask has been marked inactive, the SAWS task waiting to initiate
that subtask obtains the subtask information it requires, including the file store IDtag and the file-store-only
indicator, by transferring to PATTGSBT.

SAWS Interface With Update Programs

2.29 In addition to coordinating SAWS audit tasks, SAWS must interface with update programs to prevent
auditing of data that is being updated, copied, or audited by other programs such as recent change

System Update Programs, the Generic Utility Procedure, System Audit of Stores Using Tape (SAST),
and Tape Writing Program (TWRP). SAWS handles this interface through SAWSSUBR which maintains n
an inhibit word and an activity word in call store. The inhibit word includes the client identifier and
file store IDtags of data being changed, copied, or audited. The activity word includes a record of overall
SAWS subtask activity.

2.30 Before initiating a SAWS subtask, SAWSCMMNA3AWSBASE checks the inhibit and activity words
maintained by SAWSSUBR to determine if there is conflicting audit or update activity. If the

subtask is in conflict with update activity which is in progress, control is either returned to the audit
scheduler or a nonconflicting audit subtask is initiated.

Camoctiin of bran

2.31 SAWS’ correction strategy is to correct failing ranges whenever hashing and matching results point =
unambiguously to a good copy. Correction is accomplished by overwriting the bad copy from the

g&d copy. Whenever SAWS is entered, the hash sums and other merge structures critical to the audit
are normally checked first. If an unresolved error is detected during this phase of the audit, SAWS L
outputs an error message and continues auditing in a noncorrective, hash-only mode.

2.32 SAWS routinely hashes (or hashes and matches in some instances) each 1-BINK range of nontransient -
data, comparing the resulting hash sum of each BINK with that BINK’s hash sum stored in the

hash sum table. If the hash sums match, 5AWS proceeds to the next BINK. If the hash sums do not +
match, SAWS performs a combined hash and match of the BINK and the BIIWt’s duplicated data located
in file store O and file store 1 (if the BINK does not routinely receive a hash and match). The three
hash sums and each data word in the three locations are compared in an attempt to find a match. (Hash
sums of matching copies must be equal. However, hash sums can match if the data words are different. ~
That is why each data word is compared.) If SAWS can determine that one of the data copies is correct,
then the bad data is overwritten from the good copy. If a good copy cannot be identified, an error
message is generated containing the relevant data.

Poge 10

2.33 Failure to find a correct copy of
should result in manual initiation

actions include:

1SS 1, SECTION 254-280-260

the data and the resulting error message which is generated
of System Audit of Stores Using Tape (SAST) actions. These

(a) Mounting and matching of the appropriate system reinitialization tape(s) containing system data.

(b) Saving mismatching data

(c) Rollback of mismatched data at the completion of the match.

The System Audit of Stores Using Tape (SAST) is discussed further in another part of this section.

2.34 Hash sums of matching copies must be eqtial. However, copies do not necessarily match if their
hash sums are equal. If such an event does occur, neither of the mismatching copies is regarded

as a correct copy even though their hash sums appear correct. Such an inconsistency results in appropriate
error messages.

SAWSCMMN Program Units

2.35 PIDENT SAWSCMMN consists of the following program units. The title, which depicts the function,
and the global entry point(s) of each are provided. A detailed description of the program units

may be obtained from the current program listing of PIDE~ SAWSCMMN.

Pu

1

1

1

1

1

1

2

3

4

5

TITIE/FUNCTION “GLOBALENTRY POINT(S)

Determines and initiates the next logical audit SAWSEXEC
function in the program sequence. That
function will be one of the following

(a) Start next subtask if none is in progress

(b) Proceed with next step of automatic
correction

(c) Hash and check results over the current
BINK for the specified IDtag

(d) Match data in the buffer, checking the
results if the BINK is complete

(e) Submit a file store request(s) to move file
store data into the buffer for matching during
the next entry.

Subtask Selector (local)

Range Update SAWSNEXT

Verify Merge Structures (local)

Miscellaneous Internal Subroutine (Initialization (local)
and Updating)

Page 11

SECTION 254-280-260

Pu TITIE/FUNCTION

6 IDtag-To-File-Store-Only Range

“7 File Store Read Into Buffer

8 Match and Hash

9 Mismatch Handler

10 Analyze BINK Failure

11 Automatic Correction

Selector

GLOBAL ENTRY POINT(S)

SAWSIDFR
SAWSIDFS

(local)

(local)

(local)

(local)

SAWSAUTO

12 Error Data Filter and Formatter (local)

SAWSBASE Program Units

2.36 PIDENT SAWSBASE consists of the following program units. The title, which depicts the function,
and the global entry point(s) of each are provided. A detailed description of the program units

may be obtained from the current program listing of PIDENT SAWSBASE.

Pu “ TITIE/FUNCTION

1 Store-to-File-Store Range Selector

2 Hash Buffer Range

3 Hash BINK (pass/fail used by PCRV)

4 Hash Sum Fetch For Specified BINK,
Store IDtag

6 Mod 24 Rotate Amounts

C. SAWSSUBR-Functional Description

General

File

GLOBAL ENTRY POINT (S)

SAWSC2FS
SAWSC2F0
SAWSC2FR

SAWSHSH1
SAWSHSH2

SAWSHTBK

SAWSGHPB
SAWSGHSH

SAWSMD24

2.37 PIDENT SAWSSUBR consists of client service subroutines used in maintaining interfaces between
SAWS and other programs that update, copy, or audit hashed data such as recent change, System

Update Program, Generic Utility Program, and System Audit of Stores Using Tape (SAST). The two ‘
basic functions involved are ?

(1) Data production. This feature prevents SAWS from auditing any data while that data is being
updated or copied, and conversely, inhibits updates of any data while SAWS is auditing that data.

(2) Update. The following information

(a) Hash sums over updated data

Page 12

is updated ?

1SS 1, SECTION 254-280-260

—
(b) Superhash (hash sum over the hash table).

2.38 SAWSSUBR accomplishes its data protection function by maintaining in call store the client identifier
and file store IDtags of data being changed, copied, or audited. This is an inhibit word. It also

maintains in call store a record of overall SAWS subtask activity. This is an activity word. Before
initiating any update activity affecting the hashes, an interfacing program must transfer to SAWSSUBR
(PU 1) where the inhibit and activity words are checked for conflicting audit and update activities. If a
conflict is apparent, the client is given a client-in-progress return implying that the requested update
activity is temporarily inhibited. Otherwise, the appropriate client activity and file store IDtag indicators
are set and a success return is given. Upon completion of any update activity, the update program
transfers to SAWSSUBR (PU 1) which resets the subtask’s activity indicator in the activity word located
in call store.

2.39 Any of the interfacing programs can modify the hash table and the hash over the hash-table
(superhash). For this reason only one update program may be active at any given time.

2.40 Associated with the update functions of SAWSSUBR are several subroutines used in the timing of
file store activity. These are intended to guarantee the client program a completion return without

unreasonable delay from a subroutine which depends upon file store operations. Update subroutines which
are dependent on the File Store Administration Program (DKAD) obtain a timing list entry (PAT’M’IME)
after successfully submitting their first file store request(s). Following a successful completion of the
subroutine function, the timing list entry must be cancelled. This is accomplished via an entry into
PATTRMOV. If DKAD fails to give a completion return to the update subroutine within a reasonable
length of time, a timeout occurs. The subroutine then cancels any outstanding file store requests via
SAWSCNCL (PU 15), and gives the client a completion failure return.

SAWSSUBR Program Units

2.41 PIDENT SAWSSUBR consist of the following program units. The title, which depicts the function,
and the global entry point(s) for the program units are provided. A detailed description of the

program units may be obtained from the current program listing of PIDENT SAWSSUBR.

Pu

1

2

3

4

5

6

TITLE/FUNCTION

Set Interface Activity and Inhibit Bits

Reset Interface Activity and Inhibit Bits

Print and Pass Interface Error Data

Check Client Activity and Inhibits

Compute Updated Superhash

Update File Store Range and Hashes From
Data Buffer

GLOBAL ENTRY POINT(S)

SAWSSAIB

SAWSRAIB

SAWSNTFC
SAWSNTFJ
SAWSSERD
SAWSSUER
SAWSHPRJ
SAWSHPRB

SAWSCCIA
SAWSCCAI
SAWSRCLK

SAWSCUSH
SAWSCSH1

SAWSUPFS
SAWSUPFC

Page 13

SECTION 254-280-260

Pu

7

8

9

.10

11

14

15

TITIE/FUNCTION

Update Hash Over Hashtab]e

Hash BINK, Single IDtag

Build Partial Hash Block For Given K-Code,
File Store ID

Overwrite Procedure Hash Update

Write Hash Table To File Store

Submit Audit Request To Hash Specified Range

Cancel Outstanding Subroutine File Store
Requests

GLOBAL ENTRY POINT(S) .

SAWSUHOH
UHOHSUBR

SAWSHSBK

SAWSBPHB

SAWSOPHU

SAWSWHFS

SAWSHKCD

SAWSCNCL

3. SYSTEM AUDIT OF STORES USING TAPE

GENERAL

3.OI The Swtem Audit of Stores Using

PROGRAM (SAST)

.
Tape Program (SAST) is a paged client of the Maintenance

Qmtr~l Program (MACP). SAST-aud~ts the-lA Processor store memory using the appropriate
system backup tape as a reference.

3.02 The System Audit of Stores Using Tape-Resident Portion (SASR) is a main memory resident
portion of SAST. SASR provides interface functions for SAST communications with the teletypewriter

(TIT) and MACP. With the exception of SASR, SAST is entirely paged.

3.o3 SAST is performed in two successive parts. These are:

(1) The non-correcting mode

(2) The correcting mode.

During the noncorrecting mode, system maps are audited and corrected images are built. The actual
data is then audited and mismatches found between main memory or file store and the tape are buffered
and printed to aid in identification of types or patterns of mutilation. The correcting mode writes the
corrections into main memory and file store.

3.04 SAST may also be used to load nonmemofy allocating file store-only data tapes. In this mode,
maps are checked for consistency with system maps. If all tests pass, the data is written directly

into file store. This feature is useful after a system reinitialization or a system update.

3.o5 SAST requires a large buffer for file store reads, tape reads, and correction blocks. The scratch
pad and unused portions of the paging area are used as the necessary buffers. Figure 2 is a

functional diagram showing SAST’S relationship with SAWS and other programs.

Page 14

/’-

ISS 1, SECTION 254-280-260

SYSTEM AUDIT OF STORES USING TAPE—MAIN MEMORY RESIDENT PORTION (SASR)

3.06

(a)

(b)

(c)

(d)

Entry

SASR is the onl~ portion of SAST which is main memory resident. The remainder of SAST is
entirely paged. SASR contains:

Input message entry point

Message processing routines

MACP request code

Termination routines.

to SAST and exit from SAST are accomplished via SASR which interfaces with the ‘ITY. Manual
entries into the TTY are the only method of entry into SASR and, consequently, into SAST.

3.o7 SASR accepts input messages from the TTY, analyzes the messages, sends an acknowledgment to
the TTY, requests SAST paging, and sets up the proper data to initiate SAST operation. Output

messages from SAST are processed by SASR and passed to the TTY. Upon completion of the SAST
operation, SASR handles the termination routines.

SYSTEM AUDIT OF STORES USING TAPE PROGRAM (SAST)—PIDENT

A. Noncormcting Mode

3.08

(a)

(b)

When running in the noncorrecting mode, errors which’ are detected in the data are buffered in a
form known as correction blocks. These correction blocks contain

The address of the mismatch

The corresponding data from tape, main memory, and both file stores.

The noncorrecting mode continues until either the entire tape has been processed or the correction block
buffer area is filled. (If the correction block buffer area is” filled, a check should be made to ensure
that the proper tape is mounted since it would be very unusual for that many errors to exist.) In either
case, a number of correction blocks will be printed so they may be visually examined for any patterns
in data mutilation.

3.o9 Upon completion of the noncorrecting mode, SAST will enter a “wait loop” for up to ten minutes,
awaiting manually entered instructions. No corrections are made unless a message is entered to

begin the corr~cting mode. If the message is not entered, the audit will time out and all
by the audit is lost.

B. Correcting Mode

3.10 SAST enters the correcting mode only after the noncorrecting mode has completed

data gathered

and then only
when the proper, manually entered message is received instructing it to begin the correcting mode.

When the correcting mode is begun, mismatches found in main memory data are corrected using the tape
data in each correction block as a reference. The main memory corrections are made in one time segment.
Then all file store backup copies and file-store-only data are repaired with segment breaks occurring
between file store read and

3.11 As described in 3.08,
two reasons. Either

write operations.

when SAST was in
the correction block

/

the noncorrecting
buffer was filled

mode, processing
(probably caused

stopped for one of
by the wrong tape

Page 1S

SECTION 254-280-260

being mounted) or the tape completed. At that point, the audit either timed out or the correcting mode -
was requested. If the correcting mode was requested and the tape had finished running, then the
corrections will be made and the audit will be terminated by SASR. However, if the correcting mode
was requested and the tape had not finished running (the correction block buffer was full), then the
noncorrecting mode will be reactivated and SAST will continue reading the tape, building a new set of
correction blocks. Corrections will be made automatically this time without manual intervention. This +
cycle continues until the tape is completely processed and all corrections have been made.

3.12 After the entire tape has been processed and the corresponding corrections have been made, SAST .
moves the tape header to the correct location in file store, places the maps in file store, generates

the “superhash” words used by SAWS, and stores the “superhash” words.

C. Data loading Made T

3.13 After system reinitialization, system update, or some phases, areas of file store are zeroed which
may be assigned to file-st.me-only hashed data structures. Since tapes containing this data are not

included as part of a system reinitialization or system update, another method of loading the tapes is
required.

3.14 SAST has the capability of loading tapes which have memory allocation provided by either DataPool
(on generic tape) or office-dependent data assemblers. When it receives a request to load such a

tape, SAST verifies that the data contained in the maps does not conflict with data contained in system
maps. If any conflicts are detected, the tape is not loaded. If the tape is compatible with system data,
SAST moves data from the tape through a main memory buffer to file store. It then places the hash
sums in the correct locations in main memory and file store, creating additional head table indices as _
necessary.

SAST PROGRAM OPERATION

A. Nancarrecting Made

General

3. Is The noncorrecting mode of SAST
the indicated program units

Pu FUNCTIONS

1 Initialiition

is divided into the following functions which are performed by

2 Checking Main Memory To File Store Backup
Map

3 Checking The ID Tag To File Store Address
Map

4 ChecMng Hash Sum Head Table

5 Checking Hash Sum Collision Block

6 Check Hash Sums

6 Check Data

Pago 16

PROGRAM UNITS

Initialization and Startup

Audit Main Memory To File Store Map

Audit IDtag To File Store Map

Audit Hash Sum Headtable

Audit Hash Sum Collision Block

Audit Hash Sum Tables

Audit Data With Input IDtag

‘-%

1SS 1, SECTION 254-280-260

Initialization

3.16 Since SAST uses the unoccupied portion of the paging area and the MACP scratch pad as buffers,
SAST must determine and save the addresses of available areas. The tape header is read and

F matched to information contained in the input message. If an error occurs, a message reporting a tape
header mismatch will be printed.

Check@ Main Memory-?o+ie Store 8ackup Map

3.17 Each tape which SAST uses to audit has a partial main memory-to-file store map. The data in
the tape main memory-to-file store map is assumed to be correct. Any entry in the system main

memory-to-file store map which conflicts with the tape version is assumed to be mutilated. In order to

F- preserve all data on the tape and eliminate any mutilated or overlapping descriptors, a revised main
memory-to-file store map is constructed.

3.18

(1)

(2)

When

The main memory-to-file store map consists of a head table and a number of three-word file store
descriptor blocks (DDB). The following validity checks are made on the head table

Head table entries which indicate the presence of DDBs are checked to verify that the pointer to
the DDBs fails within the range of the main memory-to-file store map.

Head table entries which indicate 32 BINK of homogeneous backed up data are checked to verify
that the file store address is valid.

these internal checks are made. the svstem head
F discrepancies between the two are counted. “

3.19

(1)

(2)

Next the DDBs are checked. The following tests

table is compared

are made:

The main memory start addresses and main memory end addresses
assure that they fall into the same 32-BINK range.

to the tape head table and

in the DDBs are checked to

File store addresses in the DDBs are checked to assure that they are valid.

All DDBs which pass these tests are transferred to the revised main memory-to-file store buffer. Any
tests which fail cause the error counter to be incremented.

f-
3.20 After ordering the DDBs in the buffer, the DDBs from tape are merged with those in the buffer.

Any system DDB which only partially matches a tape DDB or which overlaps a tape DDB is deleted
and the error counter is incremented.

3.21 After the merge procedure, the DDBs which remain are internally consistent (no overlaps) and are
in order by ascending main memory address. The final step is to verify the linkage from the

head table to the corresponding DDBs. If there are DDBs present for a range which the tape claims is
either not backed up or is a 32-BINK homogeneous data area, then all the DDBs are deleted. After all
pointers are adjusted and consistency checks are made between the DDBs and the head table, the unused

P portion of the DDB area is zeroed.

3.22 The main memory-to-file store map which is built by SAST is consistent but not necessarily
complete. All information pertaining to the given tape is correct and complete and all information

c pertaining to ID tags not present on the tape is consistent with the tape data. A DDB of a different
ID tag may have been mutilated and deleted or mutilated in such a way as to have an incorrect (but not
overlapping) range. Such errors will remain until the tape of that data type is audited, at which time
the errors will be detected.

Page 17

—-

SECTION 254-280-260

Checldng The lDtag-To-File Store Addrees Map

3.23

(a)

(b)

Each system tape has a partial IDtag-to-file store map which contains ranges of file store addresses
corresponding to a given IDtag. The IDtag-to-file store map consists of

-
A head table which contains one entry for each IDtag

A number of four-word range descriptor blocks.

A revised IDtag-to-file store map is built by first placing all tape information into a buffer. Pointers are”
then adjusted to be consistent with the compool location of the IDtag-to-file-store map.

3.24

(a)

(b)

3.25

(a)

(b)

(c)

(d)

(e)

(f)

After

3.26

Next, the system head table and range blocks are checked for consistency, The following checks ~
are made o; the head table:

The pointer for IDtag zero must be zero since no range blocks are associated

Pointers to range blocks are range checked to verify that they fall within the
block area of the IDtag-to-file store map.

The range blocks are verified using the following checks

with this ID.

limits of the range

The file store start address of the range must be less than the maximum file store address minus
one sector.

The file store end address of the range must be less than the maximum file store address.

The start address must be less than the end address.

The range covered by any single range block must not be greater than the amount of storage on
a single file store.

The back linkage pointer must either point to the head table or to the previous range block of
the same ID.

The range specified is checked against each of the range blocks in the buffered IDtag-t.o-file-store
map. If no overlap is found, the test range block is moved @ the rebuilt map.

all range blocks have been checked, the unused portion of the range block area is zeroed.

As mentioned concerning the main memory-to-file store map, the IDtag-to-file store map built by
SAST is consistent but not necessarily complete. All information pertaining to the given tape is c

correct and complete and all information pertaining to IDtags not present on the tape is consistent with
tape data. All range descriptors of a nontape IDtag which follow a mutilated linkage pointer will be lost.
Ramzes mwtainimz to IDs not on the tat)e may be mutilated in such a way as to have an incorrect (but “-e-..

not conflicting) range.
tags should be audited.

CheckingThe Hash Sum

To detect and ~orrec~ such errors, the tape corresponding to the remaining ID ~

Head Table

3.27

Page

Several data structures are used to define the location of system hash sums. The hash sum head
cell is a block of two words containing the start address and length of the table containing the

18

1SS 1, SECTION 254-280-260

actual hash sums. The hash sum head table (main memory data) and the hash sum head table (file-store-
only data) are two adjacent tables containing indices defining the location in the hash sum table of those
hash sums pertaining to a particular 64-BINK range.

3.28 Head cell data appears only on the generic tape. If this tape is being audited, the tape values
are compared to system values and errors are noted. If any other type of tape is being audited,

systorn values are used.

3.29 The length is checked to assure that it is not larger than the maximum value. Then the rebuilt
main memory-to-file store map is checked to determine the file store address of the hash sums.

The main memory address of the hash sums is used to determine the entry into the main memory-to-file
store map. If no DDB can be found which describes the address range claimed by the head cell, SAST
will be unable to determine the file store address of the hash sums and will abort.

3.3o The following validity checks are made on the head table

(a) All duplicate indices are removed.

(b) The main memory-to-file store map is checked to verify that backed up data exists for each index
in the head table for main memory data.

(c) All indices are deleted which correspond to an area outside the length of the hash sum table defined
in the head cell.

(d) Indices are deleted which correspond to invalid file store addresses.

(e) All indices of hash sums which appear on the tape are verified.

3.31 SAST accomplishes the head table audit by building the head table in its buffer space. After the
audit, all indices are consistent and those pertaining to the hash sums on the tape are correct. It

is possible that an index pass all checks and still not indicate the correct hash sum location.

Checking The Hash Sum Cellision Block

3.32 A collision block is a method of storing hash sums for areas of main memory where two or more
types of hashed data fall within the same BINK boundary.

3.33 Since storage of hash sums in the hash table is limited by the table structure to one hash sum per
BINK, special provisions must be made for storage of hash sums over BINKS in which two or

more types of hashed data are present. When this case arises, the BINK address of the “collision,” the
IDtag, and the hash sum over data corresponding to that IDtag are placed in a collision block in the hash
index zero area of the hash sum table.

3.34 To audit the collision blocks, the main memory-to-file store map is interrogated using the index
corresponding to the collision address. This verifies that DDBs exist for the range in question.

All IDtags claimed in the collision blocks are verified by searching the corresponding DDBs. Only those
which are verified are moved to a buffer area.

3.35 Next, the collision blocks are read from tape. If collisions exist on the tape (a rare case), they
are compared to those in the rebuilt buffer. Any necessary corrections are made in the buffer

P
and the error count is incremented.

3.36 During the hash sum audit, if the system entry indicates collision blocks, SAST will interrogate
its rebuilt version to assure that the hash sum is correct.

Page 19

SECTION 254-280-240

3.37 After the collision area has been reconstructured, the table is placed in descending order according
to BINK address/IDtag.

Checking Hash Sums

3.38 The hash sum head table provides the means for locating the address of hash sums corresponding
to a given 64-BINK range. Since SAST cannot rely on the system copy of the head table, another

means must be used to locate the hash sums.

3.39 When a block of hash sums is read in from tape, SAST compares each nonzero entry to the
corresponding entry of the system hash sums for index 1, counting the number of matches found.

Then hash sums for index 2 are compared to the tape and the number of matches is counted. The
process is continued until the tape block has been compared to each block in the system. Whichever
index resulted in the highest number of (nonzero) matches is declared to be the correct index and the
corresponding entry in the
found.

3.4o The entire process is
have been processed,

the correct tape.

rebuilt head table is made. Correction blocks are built for all mismatches

repeated for each block of hash sums in the tape. When all tape hash sums
the rebuilt table reflects the position of each hash sum block for all data on

Checldng Data

3.41 After the merge data file has been processed, the remainder of the audit proceeds in a straightforward
manner. From this point on, there is a l-to-l correspondence between what is on tape and what

should be in the system. After a block of data is read from tape, the fiIe store data corresponding to
that data is read from each file store. The tape data is then compared in sequence to the main memory
data (if data resides in main memory), file store O data, and file store 1 data. If any of the three
mismatch, a correction block is built.

3.42 The data audit proceeds until all data on the tape has been checked or until the correction block
buffer is full. In either case, up to 600 correction blocks are printed to aid the craftsman in

visually detecting patterns to the mutilated addresses or data. SAST will then wait a maximum of
10 minutes for further instructions.

B. Correcting Made

3.43 The correcting mode of SAST is the part which actually makes changes in the system. During
the noncorrective mode, mismatches are only detected. During the correcting mode, the mismatches

which were detected are corrected. Normally, any mismatches which are the result of recent changes
are not considered as errors. However, a mode of operation is provided in which mismatches caused by
recent changes are treated as errors.

3.44 When the correcting mode is requested, SAST writes all main memory corrections in one segment,
using the correction blocks as a source. After a break, file store backup addresses are calculated

for each main memory address and the corrections are made to file store copies. Since file store correction
is a much longer process, it must be interleaved with other system processing via segment breaks. This
unavoidably leaves a period of time when main memory and file store are out of synchronization.

3.45 The

(1) The

(2) The

Page 20

noncorrecting mode will normally stop processing the tape for one of two reasons

tape is completely processed or

correction block buffer has filled up.

1SS 1, SECTION 254-280-260

f- If the correcting mode is requested and the tape finished, corrections will be made and the audit will
terminate. If the correcting mode is requested when the correction buffer is full, all corrections contained
in the correction area will be made as described. Then the audit will continue processing the tape. This
cycle continues until the tape is completely processed.

C. Program Interfaces

Common Program Interfaces

3.46 SAST has software interfaces with the following common programs for the reasons indicated

DKAD–File Store Administration Program. Standard DKAD roufines are used to read and write file
store. In addition, DKADCTDA is used to convert a main memory address to file store address.

DUAD–Data Unit Administration Program. SAST usesstandard DUAD routines to secure a tape unit
(DUADSECU), open and close nonstandard label file (DUADOPNL, DUADCLNL), read a data
block (DUADREAD), advance to end of file (DUADFEOF), and to terminate the use of the Tape
Unit Control (DUADFOFF).

IOCP–Input/Output Control Program. IOCP provides all routines necessary to interpret and acknowledge
input messages (IOCPIMCK, IOCPIACK) and to print output messages (IOCPPRNT).

MACP–Maintenance Control Program. Since SAST is a MACP client, it uses many of the client interface
MACP routines. MACPRJB1 is used to request a MACP entry, segment breaks are taken via

F MACPSRTT, and job termination is accomplished by transferring to MACPNEOJ. MACPABAD
is used to estabIiqh a default abort address; MACPDKOP provides the interface required to handle
delayed disk completion returns. MACPPTTY provides a delayed return point during printing
of partitioned TI’Y messages. MACPPLT2 is used to provide a l-second timing mechanism.

PAGS–Paging Program PAGSGFRA is used
the paging area after SAST has been

PATT-Processor Application Transfer Table.

to calculate the address and size of the unused
paged in.

All transfers to application programs are done

portion of

via PAl?T.

SAWS– Writable Store Audit. SAWS routines are used to establish and release the
client lockout mechanism (SASSAIB, SASRAIB). In addition, “superhashes”
SAWSHASH.

Application Program Interfaces

Identifying Mismatches Caused by Recent Changes

memory changing
are calculated by

3.47 Since SAST can be used to audit the office data assembler (ODA) tape, the probability is very high
that SAST will detect data which has been altered by recent change procedures. This situation

will arise if any recent changes have been introduced after the most current ODA tape has been written.
m To avoid an undesired rollback, all detected mismatches which are due to recent change activity should

be deleted from SASYS correction blocks. ,

3.48 Whenever an ODA tape is being used by SAST, a transfer will be made to an application recent

m change routine via PATTRCTA. The application routine will scan the SAST error correction blocks
and zero the mismatch address of any correction block which pertains to a recent change. When the
application routine finishes, SAST will delete all correction blocks with a zeroed address and will repack
the correction buffer.

Page 21

SECTION 254-280-260

IJequesting SAWS Audit

3.49 After SAST has completed its auditing procedure, a request is made via PATTMALL to run
SAWS. This verifies that the new system maps and superhash sums are correct and that any ~

“uncorrectable” conditions reported by SAWS have been corrected by SAST.

4. AUXILIARY UNIT SYSTEM AUDIT PROGRAM (SADK).

GENERAL ,

4.OI SADK performs the following four functions

(1) Initializes the file store system

(2) Audits memory, specifying

(a) File store equipage

(b) Mem&y used by the File Store Administration Program (DKAD)

(c) Outstanding file store requests

(d) High and low priority queues.

(3) Times the file store requests

(4) Audits the Automatic Message Accounting (AMA) buffer pointers.

4.02 SADK is executed under the control of an application audit control program. The application audit
control program first enters an application interface program which supplies preliminary information

required by SADK. Control is then passed from the interface program to SADK for execution of the
auxiliary unit system audits. If any errors are detected during the audits, the error information is
returned via the PA’1”1’table to the application audit control program. When SADK has completed, control
is returned to the audit control program via the PATT table. Figure 2 is a fictional block diagram
which depicts SADK’S relationship with other programs.

FUNCTIONAL DESCRIPTION OF SADK ROUTINES

A. Initializing the File Store System

4.03

(a)

(b)

(c)

(d)

This routine initializes the memory which is used by DKAD and idles all file store requests. In
order to idle the file store requests, this routine:

Zeroes the File Store Request Blocks (DRBs)

Zeroes the Client Answer Blocks (CABS)

Zeroes the queues

Writes all File Store Request Registers (DRRs) in the file store to the idle state.

This routine

Page 22

is normally called during a phase of memory initialization.

1SS 1, SECTION 254-280-26Q

/-

.

.f-

/--

.

B. Memory Audit

4.o4 The Memory Audit routine performs the following functions

(1) Audits office data specifying file store equipage against memory initialized by the File Store Fault
Recovery Program (FSFR)

(2) Audits memory used by DKAD such as:

(a)

(b)

(c)

(d)

The Call Store Last-Look (CSLL) words

File Store Request Block (DRB) address

Client Answer Block (CAB) address

The

(3) Audits

(4) Audits

C. Timirig of

number of DRRs used for each file store.

outstanding disk requests by comparing the DRB data with the DRR data

the high and low priority queues.

File Store R4quests

4.OS Each request for file store data transfer which is entered into the system is given a specified
number of seconds in which it must complete. A client does not, have to time each outstanding

file store request. SADK/DKAD will inform the client of all requests -which have timed out. However,
if a client must complete a function in a given amount of time, an overall sanity timer is used. The file
store requests are timed in the following manne~

DRR Requests

4.06 For each active request, a TIME flag is set. This flag is the first word of the Client Answer
Block (CAB). On the next entry the time flag is checked. If the flag is set, then the request is

considered to have timed out. The File Store Fault Recovery Program (FSFR) is then entered to resolve
the timeout.

4.o7 If FSFR reconfigures the file stores, all requests which have the TIME flag set in the CAB are
given an additional second in which to complete. If the FSFR determines that the timeout occurred

as the result of a software error, the request which initiated the FSFR will be cancelled. The client
will then be given a completion failure message with a return code specifying timeout. --

Queued Requests
.— —

4.08 The mechanism for timing queued requests is similar to the DRR timing in that a TIME flag is
set in a queue word. If a queue request times out, the request is unloaded from the queue and

the client is given a completion failure message with a return code specifying timeout. There is no
interface with FSFR for requests on queue which time out.

>--’

D. Automatic Message Accounting (AMA) Buffer Audit

4.09 This routine audits the consistency of the AMA buffer pointers. These pointers are used by the
AMA data transfer. If any inconsistent pointers are found, they are corrected.

Page 23

PROGRAM UNIT DESCRIPTIONS

A. General

4.10 SADK contains four program units which accomplish the functions described above. The following
is a brief description of the four PUS, their entry points, and the functions performed at each

entry point. A detailed description of the program units may be obtained from the current SADK program
?

listing.

B. File Stare Audit PU

Audit file store software

ENTRY POINTS

SADKENT (global)

FSADDRR (global)*

FUNCTIONS

(a) Audits DRB

(b) Audits CAB base addresses

(c) Verifies the word which indicates the
number of DRRs

(a) Audits DRB data and a corresponding A
DRR

(b) Audits the state of the CSLL.

*If the File Store Fault Recovery Program (FSFR) is copying a file, this portion of the audit is inhibited.

ACTION VERIFICATtON

FSADQUE (global) Audits high and low priority queues and the
various queue head cells.

Execute tables and error routines in this PU are entered as required during the audit.

C. File Store Initioliition PU

Purpose

(a)

(b)

(c)

(d)

(e)

Initialize memory used by DKAD

Idle all requests in the file store busy/idle registers

Zero the DRB and CABS

Initialize high and low priority queues to zero

Initialize the queue head cells,

--A

Page 24

1SS 1, SECTION 254-280-260

ENTRY POINTS

DKADINIT (global)

1C0MMUNIT% (local)

ICOMMUNITYl (local)

INITCNST (local)

FUNCTIONS

(a) Initializes memory for DKAD
Idles DRRs located in each of the in-service
FSCS.

(b) Idles all DRRs located in each file store
for Community A

(c) Idles all DRRs located in each file store
for Community B

(d) Reads file store equippage for a file store
community.

D. Pib Stare Request Timing PU

Purpose:

Entered on base level for the purpose of timing outstanding file store requests which
DRRs or on queue.

m
ENTRY POINTS FUNCTIONS

SADKTIME (global) When a request in a DRR times

are in the

out

SOF1’_ERROR (local)

(a) Prints a report message indicating a timeout

(b) Cancels the request indicating a timeout

(c) Transfers to FSFR to analyze the timeout.

When a high or low priority request which is
on queue times out

(a) Prints a report message indicating a timeout

(b) Cancels the request indicating a timeout

(c) Dispenses the queued request and the
client’s fail address.

When a software error occurs

(a) Cancels requests in the input register

(b) Resumes search of DRR requests.

Page 25

SECTION 254-2B0-260

ENTRY POINT

FS.RESTART (local)

TO_MSG (local)

PROCQUE (local)

FUNCTION

When file stores have been reconfigured or
reinitialized

(a) Allows all requests one additional second ~
to complete.

Prints a message indicating that a file stdre
request has timed out.

(a) Audits high and low priority requests ,
which are on queue to determine if any
requests have timed out -,

(b) If a request is found which has timed
out, the request is removed from the queue
and the client is given a completion failure
return.

E. Automatic Message Accounting Buffer Audit PU

Purpose

Audit the consistency of the Automatic Message Accounting (AMA) buffer pointers used by the a
Automatic Message Accounting Data Transfer Program (AMDX). Inconsistent pointers are corrected.

ENTRY POINTS FUNCTIONS

AMDXAUD (global) Audits the AMA buffer pointers.

5. REFERENCES

5.OI More detailed information about the programs described in this section may be found by referring
to the appropriate program listing (PR) of the following programs

?
SAWS - 1A Processor Writable Store Audit

SAST

SAWSCMMN PR-5A239

SAWSSUBR PR-5A240

SAWSBASE PR-5AZ38

- System Audit of

SAST PR-5A237

SASR PR-5AZ36

Stores Using Tape

SADK - Auxiliary Unit System Audit PR-5A235.

Page 26

m
5.02 The introductory BSP to the application programs provides a complete list of 1A Processor and

application programs and the sections in which they are described. More detailed information about
all programs referenced in this section may be found by referring to that BSP.

f-

.

#-

/’-

Page 27

SECTION 254-280-2~

I 1 [PCRV 1 ~

1

1A PROCESSORAUDIT PROGRAMS

PIOENTS:
SAWS- WRITASLE STORE AUOIT tFIG.2) -
SAWSCPWUSAWSSASE-WRITA$LE~~ ~lT -c-
SAWSSUBR- WR17ASLE STORE MOIT - SUSNOUTIN=

SAST - SYSTEM AUOIT OF STOWS USING TAPE (f IG. 2)
SAST - SYSTEM AUOIT OF STORES USING TAPE

SASR - SYSTEM AUDIT OF STCRCS USING TAPE-
RESIDCNT PORTION

SMK- AUXILIARY UNIT SYSTEM AUDIT

ERAP FRocfssm SYSTEM UPOATE

ERRORANALYSIS CONFIGuRAT10N PROGRAM

FWKRAM ANO RECOVERY
PROGRAM

A A

v v

D

PAGS

PAGING
FR~AM

E

NACP

NAINTENANCE
CONTROL
PROGRAM

TTY

TELETYPEURITCR

: &J~L g[~ QIF:.BLEI

AUDIT FUNCTIONS

I GULP I

-ks!c_
-n -

RECENT CHANGES

-1 F I LE STORE
ADMINISTRATION
PROGRAM

‘-m

Pig. 1— 1A Proces%ofAudit Programs- fiqmm lnterfa-
NOCICDiagram

‘-l

Page 28

,

.

nSYUP

1SS 1, SECTION 254-2*2@

I *IVFSFR
‘

AUFR
IOCP

A

I A PROCESSOR
Am I T PROGRAMS

I

I
WCAIWSAWSSA= 4

4(
COWON AUDIT

fUNCT 10NS < SADK
AuXILIARY UNIT

A
SYSTEM AUDIT

GfNCR I C
moG~AM
ANIJ oFF I CE A A

DATA AUDIT

(SAWS)
v

SAWSSWR

cL! fNT SERVICE <

I

1
IsASR

I I
1

>,a, LIl ““”, ,

OF STORES
.,e ,”,. TAnr Ill I

-.-. -. .-—
STtMES us ING TAm

* +

4

v

b!)PATT bDUAD

Fig. 2-1 A Proc- Au&t Pragrams- FunctfanaI H

Q
Diagram

.

?’-

Page 29

SKTION 254-280-260

ABBREVIATION

ACB
AMA
AMDX .
BINK

CAB
CSLL
DDB
DKAD
DRB
DRR
DUAD
ESS
FSC
FSFR
IDtag
IOCP
MACP
ODA
PAGS
PATT
PR
SADK
SASR
SAST
SAWS
SYSR
SYUP
TTY

TABLE A

ABBREVIATIONS AND ACRONYMS

TERM

Audit Control Block
Automatic Message Accounting
Automatic Message Accounting Data Transfer
BINwy One-thousand (K). This is a quantity of 1024, the closest binary number to
1000.
Client Answer Block
Call Store Last-Look
File Store Descriptor Block
File Store Administration Program
File Store Request Block
File Store Request Register
Data Unit Administration Program
Electronic Switching System
File Store Community
File Store Fault Recovery Program
Identification Tag
Input/Output Control Program
Maintenance Control Program
Office Data Assembler
Paging Program
Processor Application Transfer Table
Program Listing
Auxiliary Unit System Audit
System Audit of Stores Using Tape – Main Memory Resident Portion

System Audit of Stores Using Tape
1A Processor Writable Store Audit
System Reinitialization Program
System Update Program.
Teletypewriter

*

.

‘--N

Page 30
30 Pages

	General
	1A Processor Writable Store Audit Program (SAWS)
	System Audit of Stores Using Tape Program (SAST)
	Auxiliary Unit System Audit Program (SADK)
	References
	Figure 1
	Figure 2
	Table A

