Task Oriented Practice (TOP)

D4 CHANNEL BANK

NOTICE
This document to elther
AT\&T- Propdetary, or WESTERN
AT\&T - Proprletary, or WESTE
ELECTAIC - Proprielary
Pursuant to Judge Greane's Order of August 5. 1983.
begmning on January 1 1, 1944, ATST will casse to usi

Port in that Order. Pursuant thereto, any referance to
By deleted and "expounged"
Printed in I.SA

TOP Comments Hot Lina (1)800-334-0404
8:00 a.m. - 4:00 p.m. Eastern Tima
Monday through Friday
In North Carolina call 919-727-3167

Task Oriented Practice

(TOP)

D4 CHANNEL BANK

Printed in U.S.A.

The D4 channel and maintenance banks are acceptance tested to verify proper installation of the banks and to test factory wired power circuits. Any defects found and not corrected during acceptance testing should be referred to the installation group for correction.
Equipping the banks with plug-ins, performing transmission tests, and establishing service are accomplished during circuit order activities to establish the facility/system or to establish service on the facility/system and, therefore, are not a part of acceptance testing.

ACCEPTANCE TASKS	PROCEDURE MUMAER
Accept D4 Channel Bank	NTP-003
Accept D4 Maintenance Bank	NTP-004

1ssue A	MAR	1982
365.170 .000	NTP	
PAGE 1 of 1	002	

1	Obtain Test Apparatus Listed Below: - Voltmeter (KS-20599 DVM or KS-14510 VOM or Equivalent) - D3/D4 Portable Test Set - J98718AL - Noise Measuring Set - J94003C or Equivalent - Patch Cords - 3P6A(2), P6AD(2), 3P6D(1) - Two Pin Plugs - KS-19531				-
2	Make/Verify Cross-Connections Between Channel Bank and DSX Patch and Cross-Connect Bay				- 504
	installation of plug.in units and tests for channel bank				
3	If System (Digroup) Is Being Established in Bank Having an Existing Digroup In Service, Go to Item 14 and Perform as Necessary. Then Resume Procedure at Item 16. If Bank Has No Digroup in Service, Continue Procedure at Item 4				
4	Remove -48 main alm, -48 MAIN 10A, and -48ABS Fuses From PDU Subassembly				. 547
5	Install PDU				. 523
6	Install -48 MAIN 10A, -48 MAIN ALM, and -48ABS Fuses on PDU Subassembly if Not Already Installed				-
7	Verify That Fuses Are Installed in PDU				. 548
8	Measure Voltage Between -48V Jack and GRD Jack on PDU Requirement: -43 VDC to -53 VDC				. 549
9	Verify Operation of Fuse Alarm Circuits				- 560
10	With Switch on PCU Set to OFF, Install PCU in PCU Slot and Set Switch to ON				-550
11	$\begin{aligned} & \text { Measure Voltages at PQ Test Points } \\ & \text { Requirements: }+12 \mathrm{~V}=11.4 \text { to } 13 \mathrm{VDC} \\ &+5 \mathrm{~V}=4.5 \text { to } 6 \mathrm{VDC} \\ &-12 \mathrm{~V}=11.4 \text { to } 13 \mathrm{VDC} \end{aligned}$. 551
12	Install TPU Equalizers For Mode 3 (T1) Operation				- 552
13	Set Channel Counting Options on TPU to SEQ For Digroup Being Equipped and Install TPU				-553
ESTABLISH DACS TESTPORT FACILITY AT D4 CHANNEL BANK		Issue		MAR	1982
		365-170-000			NTP
		PAGE 1	1 of	3	010

trouble analysis

Trouble procedures in this document involve replacing suspected plug-in units. Except for lamps the plug.in unit is the smallest replaceable item considered in the trouble clearing procedures. Assumptions made in trouble clearing are:
(1) Only one trouble is addressed at a time.
(2) Replacement units are in good working order. (Most units can be tested in the maintenance bank. Maintenance bank transmission tests are listed in the IXL.)
(3) Test equipment is in good working order.

LOOPING

During trouble analysis the bank is looped at the ACU and not at the LIU. Modes 2 and 4 have a "fast loop" capability which is also used during trouble analysis.

ChanNeL UNIT TEST CARDS

Test cards normally ordered with and stored in the maintenance bank are used to test channel units in the maintenance bank.

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAD |
| PAGE 1 of 1 | 100 |

| Issue 4 | MAR 1982 |
| :--- | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 1 of 3 | 101 |

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 2 of 3 | 101 |

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 3 of 3 | 101 |

Issue 4	MAR	1982
$365 \cdot 170-000$	TAP	
PAGE 1 of 2	102	

Issue 4	MAR	1982
$365-170-000$	TAP	
PAGE 2 of 2	102	

[1] On LIU. 2 or LIU.4T, momentarily depress tst pushbutton

[5] Set upper switch on ACU to NORM and depress aco if office alarm sounds

| Issue 4 | MaR 1982 |
| :---: | :---: | :---: |
| 365.170 .000 | TAP |
| PAGE 1 of 2 | 105 |

NOTE 1
Equalizers should be replaced in TPU for transmit bank only for Mode 4

Issue 4	MAR 1982
365-170-000	TAP
PAGE 2 of 2	105

Issue 4	MAR	1982
365-170-000	TAP	
PAGE 1 of 2	107	

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 2 of 2 | 107 |

DETERMINE TROUBLE ON CHANNEL

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 1 of 2 | 108 |

TABLE BEND.TO-END TESTIMG				
TEST	REFEREMCE	MEAR-EAD (DA) RECUIREMEST	FAR-END GANK	FAR-END REQUIREMENT
Net Loss	DLP-542	$\begin{aligned} & \mathrm{CAU} \text { indicates }-0.25 \mathrm{to} \\ & \\ &+0.25 \mathrm{~dB} m \end{aligned}$	D3 or D4	-0.25 to +0.25 dBm
			D2	+6.75 to +7.25 dBm
			D1D	$+2.5 \mathrm{dBm}$
Idle Circuit Noise	DLP-543	23 dBrnc or less	D3 or D4	23 dBrnc or less
		28 dBrnc or less	D2	35 dBrnc or less
		26 dBrnc or less	D1D	28 dBrac or less
Distortion	DLP-544	$0 \mathrm{~dB}-56$ dBrnc or less	D3 or D4	$0 \mathrm{~dB}-56$ dBrnc or less
		$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less		$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
		$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less		$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less
		$30 \mathrm{~dB}-26$ dBrnc or less		$30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less
		$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less		$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less
	DLP-544	Pad out - 56 dBrnc or lessPad A - 36 dBrnc or lessPad B - 24 dBrnc or less	D2	$0 \mathrm{~dB} \cdot 56$ dBrnc or less
				$10 \mathrm{~dB} \cdot 46 \mathrm{dBrnc}$ or less
				$20 \mathrm{~dB} \cdot 36 \mathrm{dBrnc}$ or less
				$30 \mathrm{~dB}-28 \mathrm{dBrnc}$ or less
				$40 \mathrm{~dB}-26$ dBrnc or less
	DLP-544	$0 \mathrm{~dB}-56 \mathrm{dBrnc}$ or less		$0 \mathrm{~dB}-56$ dBrac or less
		$10 \mathrm{~dB}-46 \mathrm{dBr} \mathrm{c}^{\text {d }}$ or less		$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
		$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less	D1D	$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less
		$30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less		$30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less
		$40 \mathrm{~dB}-22 \mathrm{dBrac}$ or less		$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less
Crosstalk	DLP-545	27 dBrnc or less	D3 or D4	27 dBrnc or less
		27 dBrnc or less ${ }^{*}$	D2	27 dBrnc or less*
		32 dBrac or less	D1D	32 dBrnc or less
Impulse Noise	DLP-546	At 63 dBrn: 1 count (or none) in 5 minutes At $58 \mathrm{dBr}:$ 5 counts (or less) in 5 minutes	D3 or D4	
			D2	
			DID	

*29 dBrnc is allowable for first interfering channel test

```
[1] Verify channel is not in service and replace channel unit using same type and same options
```


[1] Have service removed if applicable from both digroups if bank has LIU-1 or from digroup with faulty channel for LIU-2, 3, or 4 and loop digroup at acu [DLP-558]

[4] Set switch on ACU(s) to NORM and have trouble cleared in bank at far end or in line facility

table A		
LOOPED TESTS	Procenures	REQUIREMENTS
Distortion	DLP-609	SEND LEVEL DB at $0=56 \mathrm{dBrnc}$ or less SEND LEVEL DB at $10=46 \mathrm{dBrnc}$ or less SEND LeVEL DB at $20=36 \mathrm{dBrac}$ or less SEND LEVEL DB at $30=26$ dBrnc or less SEND LEVEL DB at $40=22 \mathrm{dBrnc}$ or less
Crosstalk	DLP-610	27 dBrnc or less
Net Loss	DLP-611	Green-Black-Green area
Impulse Noise	DLP-612	0.1 count in 5 minutes
Ide Circuit Noise	DLP-613	23 dBrnc or less

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 1 of 1 | 110 |

NOTES

2. Switch on PCW must be set to ON after PCU is installed
3. If 4erm unit is replaced, XMT and RCV attenuators must be set to match original
4. If $1 A$ or in msts is replaced, panel switches must be set to match original

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 2 of 3 | 111 |

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 3 of 3 | 111 |

Issue 4	MAR	1982
$365-170-000$	TAP	
PAGE 1 of 1	112	

Issue 4	MAR	1982
$365-170-000$	TAP	
PAGE 1 of 2	113	

TABLE BEND-TO-END TESTING				
TEST	REFEREPACE	MEAR-END (D4) REQUIREWENT	FAR-END BANK	FAR-END REQUIREMEAT
Net Loss	DLP-542	$\begin{aligned} \mathrm{CaU} \text { indicates } & -0.25 \mathrm{to} \\ & +0.25 \mathrm{dBra} \end{aligned}$	D3 or D4	-0.25 to +0.25 dBm
			D2	+6.75 to +7.25 dBm
			D1D	+2.5 dBm
Idle Circuit Noise		23 dBrac or less	D3 or D4	23 dBrnc or less
	DLP-543	28 dBrnc or less	D2	35 dBrnc or less
		26 dBrnc or less	D1D	28 dBrnc or less
Distortion	DLP-544	$0 \mathrm{~dB} \cdot 56 \mathrm{dBrnc}$ or less	D3 or D4	
		$10 \mathrm{~dB} \cdot 46 \mathrm{dBrnc}$ or less		$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
		$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less		$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less
		$30 \mathrm{~dB}-26 \mathrm{dBr} n \mathrm{c}$ or less		$30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less
		$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less		$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less
	DLP-544	Pad out - 56 dBrnc or lessPad A - 36 dBrnc or lessPad B - 24 dBrnc or less	D2	$0 \mathrm{~dB}-56 \mathrm{dBrac}$ or less
				$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
				$20 \mathrm{~dB}-36 \mathrm{dBrac}$ or less
				$30 \mathrm{~dB}-28 \mathrm{dBrnc}$ or less
				$40 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less
	DLP-544	$0 \mathrm{~dB} \cdot 56 \mathrm{dBrnc}$ or less $10 \mathrm{~dB}-46$ dBrnc or less $20 \mathrm{~dB}-36$ dBrnc or less $30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less $40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less	D1D	$0 \mathrm{~dB}-56 \mathrm{dBrac}$ or less
				$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
				$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less
				$30 \mathrm{~dB}-26$ dBrnc or less
				$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less
Cresstalk		27 dBrnc or less	D3 or D4	27 dBrnc or less
	DLP-545	27 dBrnc or less*	D2	27 dBrnc or less*
		32 dBrac or less	DID	32 dBrac or less
Impulse Noise	DLP-546	At 63 dBra: 1 count (or none) in 5 minutes At $58 \mathrm{dBr}:$ 5 counts (or less) in 5 minutes	D3 or D4	At $63 \mathrm{dBrn}:$ 1 count (or none) in 5 minutes At $58 \mathrm{dBrn}:$ 5 count (or less) in 5 minutes
			D2	
			DID	

*29 dBrnc is allowable for first interfering channel test

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 2 of 2 | 113 |

[5] Set switch on ACU(s) to NORM and have trouble cleared in bank at far end or in line facility

table a		
LOOPED TESTS	PROCEDURES	REQUIREMENTS
Distortion	DLP-609	SEND LEVEL DB at $0=56$ dBrac or less SEND LEVEL DB at $10=46 \mathrm{dBrnc}$ or less SEND LEVEL DB at $20=36$ dBinc or less SEND LEVEL DB at $30=26$ dBrac or less SEND LEVEL DB at $40=22$ dBrnc or less
Crosstalk	DLP-610	27 dBrnc or less
Net Loss	DLP-611	Green-Black-Green area
Impulse Noise	DLP-612	$0 \cdot 1$ count in 5 minutes
Ide Circuit Noise	DLP-613	23 dBrnc or less

ISOLATE SYSTEM TROUBLE

Issue 4	MAR	1982
$365-170-000$	TAP	
PAGE 1 of 1	114	

NOTE 1
Proper signaling conditions to channel unit may be verified by connecting PGAC SIG cord to channel unit and measuring expected signaling conditions (voltage, ground, or open) at black 310 plug, using VOM

Issue 4	MAR	1982
365-170-000	TAP	
PAGE 1 of 1	115	

| Issu6 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 1 of 1 | 116 |

Issue 4		MAR 1982	
365-170-000	TAP		
PAGE 1 of 2	117		

TABLE B	
UNIT*	conditiows
TPU AOU LIU SU OIU SPTS	One per bank [DLP-552] and [DLP-553] In digroup under test (one per bank in Mode 1) If contained in bank If contained in bank
* ACO on $A C U$ must be depressed to silence alarm after replacing some units	

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 2 of 2 | 117 |

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| 365-170-000 | TAP |
| PAGE 1 of 1 | 118 |

| Issue A | MAR 1932 |
| :---: | :---: | :---: |
| $365.170-000$ | TAP |
| PAGE 1 of 1 | 119 |

DETERMINE IF CHANNEL UNITS OR OIU AT FAR END IS CAUSING DATAPORT TROUBLE

Issue 4		
365-170-000	MAR	TAP
PAGE 1 of 2	120	

[^0]	Issue 4	MAR 1982
$365-170-000$	TAP	
PAGE 2 of 2	120	

[1] See CAUTION 1. Have service removed from digroup(s)

(3) Perform looped bank
dataport test
[DLP.615] from ocuDP
[DLP.616] from DSODP

Issue 4	MAR 1982
$365-170-000$	TAP
PAGE 2 of 2	121

table A	
failed test	REQUIREMENTS
Receiver Gain	CaU in black area
Net Loss	CAU in green-black-green area
Idle Circuit Noise	23 dBrac or less
Distortion	56 dBrnc or less - SEND LEVEL DB at 0 46 dBrnc or less - SEND LEVEL DB at 10 36 dBrnc or less - SEND LEVEL DB at 20 26 dBrnc or less - SEND LEVEL DB at 30 22 dBrnc or less - SEND LEVEL DB at 40
Crosstalk	27 dBrac or less

Issue 4		MAR 1982
$365-170-000$	TAP	
PAGE 1 of 3	123	

	TABLE A
UNIT*	COWDITIONS
RU	In digroup under test
TU	In digroup under test
ACU	In digroup under test (one per bank in Mode 1)
LIU	One per bank. Pin plug must be in LP jack
TPU	One per bank. [DLP-552] and [DLP-553] for channel bank. [DLP-531] for maintenance bank
SU	If contained in bank
OIU	If contained in bank [DLP-555]
PCU	Set switch to OFF and then to Of
PDU	Replace for noise trouble only [DLP-523]
SPTS	Signaling test only
4E\&M	Maintenance bank only
IA MBTS	Maintenance bank only. Release screw in in rear of bank
1 B MBTS	Maintenance bank only. Release screw in rear of bank
* aco must be depressed on $A O W$ to silence alarm after replacing some units	

TABLE B	
FAILED TESt	RECUIREMENTS
Receiver Gain	Cau in black area
Net Loss	CAU in green-black-green area
Idle Circuit Noise	23 dBrnc or less
Distortion	56 dBrnc or less - SEND LEVEL DB at 0 46 dBrnc or less - SEND LEVEL DB at 10 36 dBrnc or less - SEND LEVEL DB at 20 26 dBrac or less - SEND LEVEL DB at 30 22 dBrac or less - SEND LEVEL DB at 40
Crosstalk	27 dBrac
Signaling	Switch A to I Switch A to O Switch B to O Switch E to I A lamp lights B lamp lights
Impulse Noise	0 to 1 count in 5 minutes
Alarm	- -

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 3 of 3 | 123 |

[1] Set switch on POU to OFF
[2] At PDU remove ALM,
10A, and -48ABS fuses in order listed
[3] On NMS set switches as follows: FUNCTION to BRDG, NORM.DAMP to DAMP, DBRN to 80 and WTG to C-MESSAGE \qquad
[4] See DANGER 1. Make connections per FIG. 1 holding one probe to back contact of IOA fuse holder [NOTE 1] \qquad AND

5] Does NMS indicate 55 dBrnc or less

FIG. 1

CHECK OFFICE BATTERY SUPPLY FOR EXCESSIVE NOISE

NOTE 1
Test cords must be made up locally

DANGER I Office bsttery (-48 volts) is present at fase bolders

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 1 of 1 | 124 |

Issue 4	MAR	1982
$365-170-000$	TAP	
PAGE 1 of 2	126	

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | TAP |
| PAGE 1 of 2 | 127 |

TABLE AEND-TO-END TESTING			
Net Loss	NEAR-END (D4) REQUIREMENT	FAR-END BAN	FAR-END REQUIREMENT
	$\begin{aligned} & \text { C\&U indicates }-0.25 \text { to } \\ &+0.25 \mathrm{dBm} \end{aligned}$	D3 or D4	-0.25 to +0.25 dBm
		D2	+6.75 to +7.25 dBm
		DID	$+2.5 \mathrm{dBm}$
Idle Circuit Noise	23 dBrnc or less	D3 or D4	23 dBrnc or Tess
	28 dBrac or less	D2	35 dBrnc or less
	26 dBrnc or less	D1D	28 dBrnc or less
Distortion	$0 \mathrm{~dB}-56$ dBrnc or less	D3 or D4	$0 \mathrm{~dB} \cdot 56$ dBrnc or less
	$10 \mathrm{~dB}-46 \mathrm{dBr} n \mathrm{c}$ or less		$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
	$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less		$20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less
	$30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less		$30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less
	$40 \mathrm{~dB}-22$ dBrnc or less		$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less
	Pad out - 56 dBrnc or lessPad A - 36 dBrnc or lessPad B - 24 dBrnc or less		$0 \mathrm{~dB}-56 \mathrm{dBrac}$ or less
			$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
		D2	$20 \mathrm{~dB} \cdot 36 \mathrm{dBrnc}$ or less
			$30 \mathrm{~dB}-28 \mathrm{dBrnc}$ or less
			$40 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less
	$0 \mathrm{~dB}-56 \mathrm{dBrnc}$ or less $10 \mathrm{~dB} \cdot 46 \mathrm{dBrnc}$ or less $20 \mathrm{~dB}-36 \mathrm{dBrnc}$ or less $30 \mathrm{~dB}-26 \mathrm{dBrnc}$ or less $40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less		$0 \mathrm{~dB}-56 \mathrm{dBrnc}$ or less
			$10 \mathrm{~dB}-46 \mathrm{dBrnc}$ or less
		D1D	$20 \mathrm{~dB} \cdot 36 \mathrm{dBrnc}$ or less
			$30 \mathrm{~dB} \cdot 26 \mathrm{dBrnc}$ or less
			$40 \mathrm{~dB}-22 \mathrm{dBrnc}$ or less
Crosstalk	27 dBrnc or less	D3 or D4	27 dBrnc or less
	27 dBrnc or less*	D2	27 dBrnc or less*
	32 dBrac or less	D1D	$32 \mathrm{dBr} n \mathrm{c}$ or less
Impulse Noise	At $63 \mathrm{dBr}:$ 1 count (or none) in 5 minutes At $58 \mathrm{dBrn}:$ 5 counts (or less) in 5 minutes	D3 or D4	At $63 \mathrm{dBra}:$ 1 count (or none) in 5 minutes At $58 \mathrm{dBrn}:$ 5 count (or less) in 5 minutes
		D2	
		D1D	

*29 dBrnc is allowable for first interfering channel test

Issue 4	MAR	1982
$365-170-000$	TAP	
PAGE 2 of 2	127	

Is sue 4	MAR 1982	
$365-170-000$	TAP	
PAGE 1 of 3	128	

[19] Set upper switch on looped ACU(s) to NORM, depress ACO, and verify far end is unlooped
[20] Replace equalizers in TPU following instructions written in equalizer slots on TPU and verify far end is unlooped

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| 365-170-000 | TAP |
| PAGE 3 of 3 | 128 |

[1] Locate bank with lighted
TPD-A and/or
TPD-B lamps lighted (yellow) on TPU

NOTES	
1. In Mode 1	
operation there	
is only one ACU	
per bank that	
can be replaced.	
It is installed	
in digroup A	
2. Original AQ may	
have faulty LED	
lamps. It can be	
checked by	
installing into	
maintenance book	
and inserting pin	
plug into RCODE	
on RU. AR or AY	
lamp that does	
not light, may	
be replaced per	
DLP. 520	

[1] Record any defects found in the following steps so that they may be referred to installation group if necessary
[2] Locate the four shelves that will mount D4 equipment in the bay [FIG. 1]
[3] Verify that shelves are tightly secured and free of defects or damage

Shelves, PDU subassembly, and connectors
[4] Verify that PDU subassembly is intact and secured [FIG.
[5] Verify that all electrical connectors inside the shelves are vertical and secured \qquad
\qquad
 checked

NOTE 2
The space between banks 2 and 3 in some bays may also be used to mount either a D4 maintenance bank or an ED-3C660 communications panel

Issue 4	MAR
1982	
$365-170-000$	DLP
PAGE 2 of 2	500

[1] At front of bay remove fuses
from power distribution
subassembly [FIG. 1]
[2] Obtain KS-14510 voltmeter (VOM) or equivalent and condition to measure dc volts [DLP-521] [NOTE 1]
[3] Touch + red lead to ground (chassis)
[4] Insert - black lead into 10A fuse holder, ensuring that it touches back contact of fuse holder
 ND indica 43 to 53 Vdc

[6] Refer trouble to installation group

FIG. 1-Power Distribution Subassombly

Issue 4	MAR 1982
365.170-000	DLP
PAGE 1 of 4	501

[15] Remove test connections and install fuses (match color bead with dot)

At rear of PDU subassembly:
[16] Locate terminal strip, remove plastic cover, and notice holes in plastic shield [FIG. 2] \qquad
[17] See DANGER 1. Touch + (red) lead to terminal 4

[18] Touch - (black) lead to terminal 3 then to terminal 2 and observe meter each time \qquad 20] Refer trouble to

FIG. 2

CHECK INCOMING VOLTAGES TO CHANNEL OR MAINTENANCE BANK

DANGER 1
85 VAC ringing
voltage may be
present on ts2
terminals 4 and 5
behind PDU slot
Issue 4 MAR 1982 $365-170-000$ DLP PAGE 3 of 4 501

NOTES 2. If supplied, $20 \cdot \mathrm{~Hz}$ wiring appears at 752 terminals 5 and 6 at rear of bank [FIG. 2, Page 3] 3. $20 \cdot \mathrm{~Hz}$ should be wired as follows to TS2: 85 VAC to terminal 585 VAC ground to terminal 6		
U	MAR 198	
65-170-000		
PAGE 4		

[1] Record any defects found in the following steps so that they may be referred to installation group if necessary
[2] Locate two shelves that will
mount equipment in bay [FIG. 1]. Normally these are between second and third channel banks (counting up) \qquad
[3] Verify that shelves are tightly secured and free of defects or damage

Shelves, PDU
subassembly, and
connectors checked

FIG. 1

1ssue 4	MAR 1982
$365.170-000$	DLP
PAGE 1 of 2	502

VISUALLY INSPECT D4 MAINTENANCE BANK

At rear of bay:
[7] Verify that there are no broken or unattached wires \qquad
[8] Verify that there are no bent, broken, or crossed terminals on any connector

] Verify that plastic covers are placed behind each shelf \qquad

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 2 | 502 |

[1] Get test equipment listed in TABLE A
[2] Verify that no plug.in units are installed into bank to be tested (conmon or channel units)
[3] Verify that trunk circuits are either not connected to bank or jacked opened if connected

[4] On power distribution subassembly remove ALM fuse
[5] Install PD SIM into D4 bank PDU slot and insert BAT connector into ALM fuse holder \qquad
[6] Set ON/OFF switch to ON \qquad

TABLE A	
EOUIPMENT RENURED	RECOMENDED TYPE
Common Equipment Voltage Indicator (CEVI)	J98726MA
Power Distribution	
Simulator (PD SIM)	J98726MB
PWR cowv SIM	J98726MC
Channel Unit Voltage Indicator (OUI)	J98726MD
Connector Access Unit	ED-3C766

PERFORM POWER WIRING TEST ON D4 CHANNEL BANK USING VOLTAGE INDICATORS

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365 \cdot 170.000$ | DLP |
| PAGE 1 of 7 | 503 |

| I s sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170.000$ | DLP |
| PAGE 2 of 7 | 503 |

[12] Connect cord marked CEVI (supplied with test equipment) to -20V IN jack on CEvi and install CEVI unit into PCU slot
[13] Connect other end of cord of step 12 to CEVI jack on PD SIM
[14] Verify \boldsymbol{C} switch on CEVI is in center position
[15] Operate silver toggle switch on top of CEVI and observe that all LEDs except 14 are lighted. Replace any LEDs that do not light [DLP.520] [NOTE 1] [DLP.520]

[16] Release toggle switch of step 15

PERFORM POWER WIRING TEST ON D4 CHANNEL BANK USING Voltage indicators

NOTES		
1. LED 14 may light		
2. LED 13 lightsonly on banks		
having printed		
wiring backplane		
Issue 4	mar	1982
365-170-0		DLP
Page 3 of		503

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 4 of 7	503	

[31] Set $\boldsymbol{\alpha}$ switch on
LED S 1,4,5,6,
CEVI to digroup being
8 , and 13 lighted tested (A or B)
 on Clvi
[32] See WARNING 1. Connect cord marked CWI (supplied with test equipment) to -20V IN jack on CVI and install aVI into channel unit slot 1 for digroup being tested
(33] Connect other end of cord of step 32 to CUVI jack on PD SIM

[36] Are avi lighted 1 ed thru 13

Page 6
[34] Operate silver toggle switch on top of CUVI and observe that all LED are lighted. Replace any LED that do not light [DLP-520]
[35] Release toggle switch of step 34

NOTES
4. LED 12 should not light on banks with printed wiring backplane unless bank is connected to 2ESS
5. LED 16 will light if 24 volts is supplied to bank from 2ESS

[38] Refer to

 TABLE E, Page 7 for correlation of LED S and connector pins to repair wiring
PERFORM POWER WIRING TEST ON DA CHANNEL BANK USING VOLTAGE INDICATORS

DARNING 1 Care should be taken when installing aVI into channel slot to protect wiring on CUVI

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365.170-000$ | DLR |
| PAGE 5 of 7 | 503 |

PERFORM POWER WIRING TEST ON D4 CHANNEL BANK USING VOLTAGE INDICATORS

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| 365-170-000 | DLP |
| PAGE 6 of 7 | 503 |

LED	function *	PIN
1	+5 V circuit	29
2	-12 V circuit	50
3	+12 V circuit	23
4	-48V circuit	19
5	-48V circuit	20
6	-48V circuit	46
7	12V GRD	24
8	48V GRD	22
9	5 V GRD	2
10	Frame GRD	1
11	5 V over voltage circuit	29
12	12 V over voltage circuit	50
13	Foreign voltage or GRD	All leads except power and GRD leads
14	Foreign voltage	All leads except power and GRD leads
15	12V GRD (indicates foreign voltage on GRD lead)	24
16	48V GRD (indicates foreign voltage on GRD lead)	22
17	5V GRD (indicates foreign voltage on GRD lead)	2

*Wen PD SIM and PWR CONV SIM are in bank, voltage circuits are as follows: $+5 \mathrm{~V}=-15 \mathrm{~V},+12 \mathrm{~V}=-8 \mathrm{~V}$, $-12 \mathrm{~V}=-32 \mathrm{~V}$, and $-48 \mathrm{~V}=-36 \mathrm{~V}$

LED	function -	PIN
1	+5V circuit	30
2	-12V circuit	2
3	RU lead	39
4	+12 V circuit	4
5,6	48 V circuit	43,54
7,8,9,10	TPU leads	26,44,50,53
11	12V GRD	3
12	SIG GRD (TST switch in normal position)/	21
	5 V GRD (TST switch operated)	5
13	SIG GRD (TST switch in normal position)/	17
	Frame GRD (TST switch operated)	1
14	5 V over voltage circuit	26,30, 44, 50, 53
15	12 V over voltage circuit	2,39
16	Foreign voltage or GRD	All leads except power and GRD leads
17	Foreign voltage	All leads except power and GRD leads
18	5 V and 12 V GRD (indicates foreign voltage or open circuit)	5,3
19	SIG GRD (indicates foreign voltage or open circuit)/ frame GRD	21,17
20	48V GRD (indicates voltage on these GRDs	15,27

*When PD SIM and PWR CONV SIM are in bank, voltage circuits are as follows: $+5 \mathrm{~V}=-15 \mathrm{~V},+12 \mathrm{~V}=-8 \mathrm{~V}$,
$-12 \mathrm{~V}=-32 \mathrm{~V}$, and $-48 \mathrm{~V}=-36 \mathrm{~V}$

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 7 of 7	503	

[1] Locate DSX-() panels and jack circuits for channel bank and span line or multiplexer which are to be cross-connected
[2] Insert 258 -type dummy plugs
[2] Insert 258 -type dumny plugs
in mow jack for D4 bank and MON jack for span line or multiplexer [FIG. 1, Page 2]
\qquad
[3] Get equipment per TABLE A and make cross-connections (TL lights can be seen from behind panels). See FIG. 1, 2, 3, 4, and 5 for DSX-1 and DSX-1C, and FIG. 1, 2, 6 , and 7 for DSX-2

$$
2-
$$

TABLE A	
EQUIPMENT REQUIRED	RECOMMENDED TYPE
Bulk Cross. Connect Wire	```3-Pair twisted, Y1 type (for DSX-1 and DSX-1C) 3-Pair shielded-RCN1261, Gore and Associates (DSX-2)```
Skinning Tool	
Wire Wrapping Tool	

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 1 of 9	504	

FRONT VIEN - 2-INCH PATCH AND CROSS-CONNECT PANEL

FRONT VIEN - 4-INCH PATCH AND CROSS-COMNECT PANEL

FIG. 1

Issue 4	MAR	1982
365-170-000	DLP	
PAGE 2 of 9	504	

FIG. 2-Typical Cross-Connect Runs

FIG. 3 - Cross-Connections (DSX-1 or DSX-IC)

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 4 of 9 | 504 |

FIG. 4 - Cross-Connections Sehematic (DSX-1 or DSX-IC)

Issue 4	MAR	1982
$365 \cdot 170-000$	DLP	
PAGE 5 of 9	504	

FIG. 5 - Multiple Lineup Cross-Connects

FIG. 5 - DSX-2 Cross-Connections

FIG. 6 - DSX-2 Cross-Connections

MAKE CROSS-CONNECTIONS AT DSX-() BAYS

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 8 of 9 | 504 |

FIG. 7 - Designation Cards (Examples)

Issue 4	MAR	1982
$365-170.000$	DLP	
PAGE 9 of 9	504	

[1] On front of repeater bay, remove cover for span and bay cross-connect strips [FIG. 1, Page 2 (220/221 type), or FIG. 3, Page 3 (206 type)]
[2] Use office records and equipment stenciling to locate D4 bank at bay cross-connect strip and span line at span X-Conn [FIG. 2, Page 2 (220/221 type), or FIG. 4, Page 3 (206 type)
[3] Get equipment per TABLE A and make required cross-connections between bay and span cross-connect strips. [See FIG. 2 or FIG. 4 for examples]

Table A
Equipment recurned
Bulk Cross-Connect Wire
Skinning Tool
Wire-Wrapping Tool

MAKE CROSS-CONNECTIONS AT OFFICE REPEATER BAY

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 3 | 505 |

fIG. 1 - Location of Cross-Connects on 220/221 Office Repeater Bay

FIG. 2 - Cross-Connects at 220/221 Repeater Bay (Examples)

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | OLP |
| PAGE 2 of 3 | 505 |

FIG. 4 - Cross-Connections ot 206 Repeater Bay (Examples)

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 3 of 3 | 505 |

[1] Locate central cross-connect cabinet [FIG. 1]
[2] Use office records and equipment stenciling to locate D4 bank connections on cross-connect field inside cabinet

[3] Get equipment per TABLE A and make required cross-connections between banks and span lines [See FIG. 2 for example]

table a
equipment required
Bulk Cross-Connect Wire
Skinning Tool
Wire-Wrapping Tool

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 2 | 506 |

FIG. 2 - Cross.Connections of Central Cross-Connect Field (Example)

| Issue 4 | MAR | |
| :---: | :---: | :---: | 1982 DLP

SUMMARY

Make test connections per FIG. 1. Insert pin plug into R CODE on $R U$ to test receiver gain. CAU must indicate in black area for receiver gain or green-black-green area for net loss
[1] Obtain test equipment per TABLE A
[2] Check calibration of CAU [DLP-518]
[NOTE 1]
[3] On CAU set TEST to CHAN LINE and REJ FLT to OUT
[4] Make test connections per FIG. 1
[5] On CAU set SEND LEVEL DB switch to OFF

TABLE A	
EquiPment required	RECOMMEMDEO TYPE
D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU)	J98718AL PTS
2 Patch Cords	3 39718AJ CAU
1 Patch Cord	P6AD
Pin Plug	KS-19531

[6] At digroup to be tested, test receiver gain by inserting pin plug into R CODE jack on RU and depress ACO on AOU \qquad

NOTE 1 When using cau for a series of tests, the calibration requires checking only once unless cau is suspected of causing trouble

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 3 | 507 |

[8] Repeat steps 3 thru 7

TAP-122

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 3 | 507 |

SUMMARY

Make test connections per FIG. 1 and measure noise. Level should be 23 dBrnc or less
[1] Get test equipment per TABLE A \qquad
[2] Check calibration of noise measuring set (NMS) [DLP-519]
[3] Make test connections per FIG. 1

[4] On PTS-CAU set REJ FLT switch to OUT, SEND LEVEL DB to OFF, and TEST switch to CHAN LINE
[5] On NMS, set FUNCTION switch NM 600/900, NORM-DAMP switch to DAMP, DBRN switch to 85 , and weighting network so that C-MESSAGE is aligned with WTG

[^1]\qquad
\qquad
\qquad

TABLE A	
equipment required	RECOMMENDED TYPE
Noise measuring set (NMS)	J94003 C
D3/D4 PORTABLE TEST SET (PTS)	J98718AL PTS
With Channel Access Unit (CAU)	J98718AJ CAU
1 Patch Cord	P6AD
2 Patch Cords	3P6A
1 Patch Cord for NMS	3P6D

6] On NMS rotate DBRN switch
TAP-122 reading counterclockwise for on-scale
\qquad (
\square

PERFORM LOOPED D4 CHANNEL BANK IDLE CIRCUIT NOISE TEST

Issue 4	MAR	1982
365-170-000	DLP	
PAGE 1 of 3	508	

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365 \cdot 170-000$ | DLP |
| PAGE 2 of 3 | 508 |

NOTE 1

All transmission tests can be performed on looped bank before removing test connections

SUMMARY
Make test connections per FIG. 1 and measure noise for requirements per TABLE B
[1] Obtain test equipment per table A \qquad
[2] Check calibration of CAU [DLP.518] [NOTE 1]
[3] Check calibration of noise measuring set (NMS) [DLP-519]
[4] On NMS set FUNCTION switch to N/M 600/900, NORM-DAMP switch to DAMP, DBRN switch to 85 , and weighting network for C-MESSAGE weighting
[5] On PTS-CaU set reJ flt switch to In, TEST switch to CHAN line, and SEND level db switch switch to 0 \qquad
[6] Make test connections per FIG. 1 \qquad
[7] See TABLE B. Measure for requirements for each position of SEND LEVEL DB switch. NMS DBRN switch must be rotated counterclockwise for on-scale reading each time \qquad

TABLe A	
equipment required	recommended type
Noise measuring set (NMS)	J94003C
D3/D4 Portable TEST SET (PTS) With Channel Access Unit (CAU)	J98718AL PTS J98718AJ CAU
1 Patch Cord	P6AD
2 Patch Cords	3P6A
1 Patch Cord For NMS	3P6D

NMS calibration checked, NMS/PTS switches set, and connections made

$$
\text { steps } 4
$$

$$
\text { thru } 8
$$

TABLE B			
switah	positiows	requirements	
	0	56	
	dBrnc or less		
Send level	10	46	
dBrnc or less			
dB	20	36	
dBrnc or less			
on CaU	30	26	
	40	22	
	dBrnc or les less less		

NOTE 1 When using cau for a series of tests, the calibration requires checking only once unless CAU is suspected of causing trouble		
	ma	

PERFORM LOOPED D4 CHANNEL BANK DISTORTION TEST

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 2 of 3	509	

NOTE 2
All transmission tests can be performed on looped bank before removing test connections

Issue 4	MAR	1982
365-170-000	DLP	
PAGE 3 of 3	509	

SUMMARY

Make test connections per FIG. 1. Measure crosstalk on one channel while sending tone into one interfering channel (TABLE B). Then measure again while sending tone into second interfering channel. Requirement is 27 dBrac or less
[1] Obtain test equipment per TABLE A
[2] On TPU locate option stamping for digroup to be tested [FIG. 1]
[3] Determine which option (DID, SEQ, or D2) has been selected by location of white plug \qquad n se

4] Go to portion of TABLE B for that option and select channel to be measured

[5] Using TABLE B, determine two most likely interfering channels \qquad \longrightarrow

TABLE A	
equipment required	recommenoed type
Noise Measuring Set (NMS)	J94003C
D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU)	J987188L PTS J98718AJ CAU
2 Patch Cords	3P6A
2 Patch Cords	P6AD
1 Patch Cord For NMS	3P6D

Test and

FIG. 1 Examples

TABLE B				
CHARNEL OPTION		mOST LIKELY INTERFERING CHANMELS	CHANEEL TO BE MEASURED (13-24)	most likely INTERFERING CHANNELS
D1D	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	 24 12 13 1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	1 24 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10 21 11 22 12 23
D2	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	13 12 14 11 15 9 16 10 17 1 18 2 19 3 20 4 21 5 22 6 23 7 24 8	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	12 24 11 23 9 21 10 22 1 13 2 14 3 15 4 16 5 17 6 18 7 19 8 20
$\begin{aligned} & \text { D4 OR } \\ & \text { D3 } \\ & \text { (SEQ) } \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	24 23 1 24 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 11 10	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	12 11 13 12 14 13 15 14 16 15 17 16 18 17 19 18 20 19 21 20 22 21 23 22

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 6 | 510 |

On CaU:
[8] Check calibration of
CAU [DLP-518] [NOTE 2\}
[9] Set test switch to CHAN LINE
[10] Set REJ FLT switch to OUT
[11] Set send Level switch
to 0

On NMS:
[12] Check calibration of NMS [DLP-519]
[13] Verify that weighting network is installed with C-MESSAGE designation aligned with WTG

NOTE 2
When using cau for a series of tests, the calibration requires checking only once unless cau is suspected of causing trouble

Issue 4	
365-170-000	DAR 1982
PAGE 3 of 6	510

[17] Make test connections per
FIG. 2, Page 5. Connect to channel
to be measured and connect
to one interfering channel
[TABLE B]
[18] Rotate DBRN switch on NMS counterclockwise for on-scale reading \qquad

PERFORM LOOPED D4 CHANNEL BANK CROSSTALK TEST

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170.000$ | DLP |
| PAGE 4 of 6 | 510 |

PERFORM LOOPED D4 CHANNEL BANK CROSSTALK TEST

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170.000$ | DLP |
| PAGE 5 of 6 | 510 |

SUNMARY

Alarm the system, first in one direction then in the other. This is done on $D 4$ by plugging the R CODE jack on RU to produce the red $A R$ alarm. The other end will display a yellow alarm. Alarms at both ends will clear after the red alarm condition is removed
[1] Establish communications with
far office and establish which
digroup is to be tested
[2] Verify 3-position switch, on ad for digroup to be tested, is in NORM position and there is no plug in LP jack on LIU
[3] Obtain pin plug (such as KS-19531) which will fit jacks on D4 common equipment

[4] Insert pin plug into red
Red RCV, AR, R CODE jack of RU in digroup to be tested
[5] On ACU momentarily depress aco pushbutton

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 2	of 3	5111

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365 \cdot 170.000$ | DLP |
| PAGE 3 of 3 | 511 |

SUMMARY

Make test connections per Fig. l to test channel. Verify connections are made at far end. CAU indication should be between -0.25 and +0.25 . Verify that test indications at far end are within specified limits

TABLE A	
Equipment required	RECOMmEDED TYPE
D3/DA PORTABLE TEST SET (PTS) With Channel Access Unit (CAU)	J98718AL PTS J98718AJ CAU
2 Patch Cords	3P6A
1 Patch Cord	P6AD

NOTE 1 Test equipment and procedures for D1D, D2, and D3 banks are given in BSPs for those banks. Issue 4 MAR 1982 365-170-000 PAGE 1 of 4

On D3/D4 PORTABLE TEST SET (PTS):
[6] Check calibration of Cal
[DLP-518]
[7] Set TEST switch to CHAN LINE \qquad
\qquad
\qquad

```
                                \square
```

```
                                \square
```

```
                                \square
```


[8] Set REJ FLT switch
to OUT
[9] Set send level de
switch to 0
[10] Make test connections per FIG. 1,
Page 3

[11] Verify that test equipment is connected at other office and that test is ready to be performed

If far end is DID and not using 438B plug in MATCH NET; receive level will be . 25 dB hot and read on right side of CAU

Issue 4	MAR 1982
365.170 .000	$01 P$

PAGE 2 of 4

FIG. 1

PERFORM END-TO-END NET LOSS TEST

| Issue A | MAR 1982 |
| :---: | :---: | :---: |
| 365-170-000 | DLP |
| PAGE 3 of 4 | 512 |

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 4 of 4 | 512 |

SUMMARY

Make test connections per FIG. 1, Page 2. Verify far end has made test connections to same test channel. Verify D4 bank meets noise requirement of 23 dBrac or less
[1] Obtain test equipment per TABLE A

2] Set switches on CAU as follows:

TABLE A	
EQUIPMENT REQUIRED	
D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU)	J98718AL PTS
Noise Measuring Set (NMS)	J989718AJ CAU equivalent
2 Patch Cords	3P6A
1 Patch Cord	P6AD
1 Patch Cord	3P6D

[3] Check calibration of NMS
\qquad

FIG. 1
moise measuring set

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 3 | 513 |

[6] Measure noise by rotating DBRN switch on
NMS counterclockwise for on-scale reading

[9] Does far. end noise meet requirement for type equipment they have

[8] Verify that test connections
are correct
according to FIG. 1 ,
Page 1

TABLE B	
banx AT far end	REOIRMENTS
D1D	26 dBrnc or less
D2	28 dBrnc or less
D3	23 dBrnc or less
D4	23 dBrnc or less

PERFORM END-TO-END IDLE CIRCUIT NOISE TEST

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 3 of 3 | 513 |

SUMMARY

Set switch on MB ALM to ALARM DISAB. Install J98726mM
or MN^{N} extender to test ES2 or ES3 units. Perform test per

VF TESTS or SIG TESTS card. Release settings for one test before performing next test. Remove channel unit, set MB ALM to MOR, and depress switches 9 and 17 on 1B MBTS
[1] See Warning 1. Perform maintenance bank VF calibration and signaling test check [DLP-538]
[2] Verify switch on MB ALM is set to ALARM DISAB
[3] Verify all switches on ib MBTS are out (black showing) \qquad
4) Obtain VF TESTS and SIG TESTS cards for unit to be tested and verify that SIG TESTS card(s) correspond to signaling options selected on unit [NOTE 1] \qquad [6] Are you
testing ES2 or ES3 units

[5] Read instructions on test cards and set options on channel unit and ATtEN switches on lambis per card \qquad

test channel unit in maintenance bank (except dataport)
NOTE 1 SIG TESTS cards will not be available for some units

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 2 of 4	514	

NOTE 2
If testing ES2 or ES3 unit, extender and unit must be moved to SPTS slot for signaling tests per instruction on signaling test card

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365.170-000$ | DLP |
| PAGE 3 of 4 | 514 |

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 4 of 4	514	

[1] On MB ALM unit, verify
that switch is in
alarm disab position
[2] Verify that push switches 1 thru 17 on 18 MBTS are extended (black showing) and there is no unit in CUT position

[3] Perform tests 1 thru 8 of TABLE A by depressing required push switches on 18 MBTS and observing lamps. Release setting for each test before going to next one in sequence \qquad

[8] Release switches 2 and 10 (black showing) and depress
 switch 9 (green showing)

TABLE A		
test	SWITCHES DEPRESSED	LAMPS LICHTED On 18 mets
1	1 and 2	C and D
2	1, 2, and 3	A and
3	1 and 4	\mathbf{C} and \mathbf{F}
4	2 and 4	A and D
5 *	5 and 6	20 Hz
6	7, 8, and 9	H and J
7	1 and 10	C and F
8	2 and 10	A and D

```
[7] Refer to
SD.3C290 to
repair bay
wiring
```


- Applicable if $20 \cdot \mathrm{~Hz}$ fuses are provided on PDU

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365.170-000$ | DLP |
| PAGE 1 of 5 | 515 |

FIG. I - 1A MBTS Switches
[13] See FIG. 1. Depress switches 18 and 19 on IA mBTS to provide 4 IW and 600Ω
[14] See FIG. 1. Depress all trmi atten and rev atten switches (green showing) on la mets

NOTE 1		
Switches 10 and 11		
operate independent		
of one another		
but 12 thru 17		
interact. Pressing		
one will release		
prior setting		

TEST MAINTENANCE BANK TEST SET AND MONITOR ALARM

Is sue 4	MAR	1982
$365-170-000$	DLP	
PAGE 3 of 5	515	

[24] Return 4eam unit to 4eem slot
[25] Verify that all white plugs are placed on zero side of T and R attenuators inside 2E\&M channel unit [DLP-565]
[26] Verify all TRmT ATTEN and RCV ATTEN switches on IA ${ }^{\text {ABBTS}}$ are depressed (green showing) \qquad TS are depresse
\qquad
(black showing)
) 18 and 19 on 1A MBTS for 2W, 900Ω [FIG. 1, Page 2]
[28] Verify that either option X or Z is set in 2E\&M unit and install unit into aT slot [DLP-576]

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 4 of 5 | 515 |

[29] Go to step 15 Page 3

```
[30] On 18 mBTS
release switch 10
and depress switch
17; switch }
still in
ch 10
witch
```


[37] On IB MBTS release switch 11

[38] On iB MBTS depress switch 17;
 switch 9 still in $\longrightarrow \begin{aligned} & \text { lighted } \\ & 1 a \text { mBTS }\end{aligned}$
[39] Release any switches that are depressed on IA MBTS
[40] On MB ALM unit, place switch in MOR position
prace switch

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 5 of 5 | 515 |

NOTE 1
Trunk circuits (if connected already) may begin pumping while the bank is in preservice loop. This is recognized by relay chatter in channel units and is stopped by plugging FTP (force trunk processing) jack(s) on ACU

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 1 of 1	516	

CHECK CALIBRATION OF CHANNEL ACCESS UNIT (CAU)

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 2 | 518 |

CHECK CALIBRATION OF CHANNEL ACCESS UNIT (CAU)

Issue 4	MAR 1982
$365 \cdot 170.000$	DLP
PAGE 2 of 2	518

[1] Remove cover from NMS
[2] Set FUNCTION switch to OFF

[4] At front of NMS below meter, adjust screw until pointer is over line at left of scale
[5] Verify that weighting network is installed and that C-message is aligned with WTG [FIG. 1, Page 2]
[6] Rotate Dern switch to 85 -

[8] Is pointer indicating in
[7] Rotate function switch to BAT shaded area marked BAT

[9] Set function switch to off and replace battery [FIG. 1, Page 2]. Repeat procedure

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 1 of 3	519	

[10] Set DBRN switch
to 80 \qquad
[11] Set function switch to NM 600/900
[12] On D3/D4 portable test set (PTS) channel access unit (CAU), set REJ FLT to OUT and TEST to CAL
[13] Make test connection per FIG. 1, Page 2 \qquad [15] Adjust CaL (screwdriver slot) for 10 on meter

CHECK CALIBRATION OF 3-TYPE NOISE MEASURING SET

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 3 of 3	519	

[1] Get longnose pliers
[2] Open pincers and position pincers on sides of LED [FIG. 1 and WARNING 1]

[3] Lightly grip LED and maintain only enough pressure to hold it

[4] Pull LED straight out

[1] Place meter on horizontal surface with face of meter up [NOTE 1]
[2] Set function switch to OFF [FIG. 1]
[3] Adjust meter zero screw for zero indication
and
Page 2
[4] Verify that red test lead goes to meter + jack
[5] Verify that black test lead goes to meter - jack
[6] See FIG. 1. Set function switch for required measurement and range

FIG. 1

NOTE 1 Meter should not be placed on a magnetic surface or other location where meter movement will be subject to influence of magnetic fields

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 2 | 521 |

varnings

1. Resistance measurement should not be made to circuit with power applied, as damage to meter will result
2. To prevent damage to meter when waking either current or voltage measurements, function switch should be set to proper range before asking contact with test probes to the circuit being measured. If there is any doubt as to the approzimate value of the voltage or current to be measured, function switch should be set to highest range and then decreased step by step for on-scale indication

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 2 of 2	521	

TABLE A	
EOUIPMENT RECUIRED	RECOMMENDED TYPE
Volt-ohm-millaimmeter (VOM)	KS - 14510 or equivalent
Patch Cord	3P6D
VF oscillator	HP3550B or equivalent

voltmeter jacks

CHECK CALIBRATION OF 6H IMPULSE COUNTER

[5] Condition VOM to measure
+15 volts dc \qquad
[6] Observing + and - polarity
of VOW, connect + and - VOM
leads to + and - BATT
Observing + and - polarity
of VOM, connect + and - VOM
leads to + and - BATT
Observing + and - polarity
of VOM, connect + and - VOM
leads to + and - BATT leads on 6 H

Observing + and - polarity
of VOM, connect + and - VOM
leads to + and - BATT -

7] Rotate timer control on 6 H to 5 MINUTE interval
 counter is on verge of counting (registers occasional count)
[9] Disconnect equipment from 6 H ;
[12] Rotate replace batteries in 6 H (compartment on back) ; repeat calibration check
mINUTES control remove all test
equipment connections
[10] Get another 6H impulse counter; repeat calibration check

| Is sue 4 | MAR 19E2 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 2 | 522 |

SUMMARY

To install power distribution unit (PDU), straighten leads and slide PDU into slot. At rear of bank connect spade lugs for leads 2, 3, and 4 to same terminals under plastic shield at top of slot [FIG. 1, Page 2]. Screw fastener into hole on back of POU. To remove PDU, reverse these operations

[2] Remove fuses in following order: ALM first, IOA second, and -a8ABS third

NOTE 1
Mode 4 requires a PDU in both banks

At rear of bank:

[5] Remove large plastic cover from back of bank \qquad
[6] Screw fastener into hole on back of $\operatorname{PDO}(\mathrm{s})$ and loosen screws 2, 3, and 4 on terminal strip [FIG. 1]
[7] See DANGER 2. Connect PDU leads to terminals (match lead and terminal numbers) [TABLE A]
[8] Tighten terminal screws
[9] Install large plastic cover on back of bank removed in Step 5

TABLE A	
LEAD COLOR	LEAD MUMBER
Pink	2
Green	3
Gray	4

[10] At front of bank, install -48 Main 10A, -48 MAIN ALM, and -48ABS fuses

FIG. 1-Rear Viem of PDU Slot

INSTALL OR REMOVE POWER DISTRIBUTION UNIT

At rear of bank:
[11] Remove large plastic cover on back of bank
[12] See DANGER 3. Disconnect spade lugs from terminal and push cables away from terminal strip [FIG. 2]

[14] At front, remove POU(s) pulling on handle
[13) Using screwdriver unscrew fastener holding PDU(s) in slot \qquad

FIG. 2 - Rear Viow of PDU Slot

DANGER 3 85 VAC ringing voltage may be present on TS 2 terminals 4 and 5 behind PDU slot		
Issue 4	MAR	1982
365.170.000		DLP
PAGE 3 of		52

INSTALL OR REMOVE POWER DISTRIBUTION UNIT

SUMMARY

Have installer at far DX set short T and R leads. Connect VOM to terminals 24 and 51 using J98726ME connector extender. On 2 -wire circuits measure loop resistance to obtain RLP setting. On 4 -wire circuit measure loop resistance and divide by 2 for RLP setting
[1] Verify channel to be tested
is removed from service \qquad
[2] Get KS-14510 VOM or equivalent and condition it to measure
resistance [DLP-521]
[3] Have technician in field short T and R leads at far DX set (one pair for 4-wire)

[4] Obtain extender (FIG. 1) and install into assigned channel slot \qquad
[5] Connect Vow to connector extender terminals 24 and 51
\square

FIG. 1

Extender installed; VOM connected [FIG. 1]
$\xrightarrow{ }$

Is sue 4	MAR	1982
$365-170-000$	DLP	
PAGE 1 of 1	524	

TABLE A	
Equipment Reouired	RECOMmended TYPE
Channel Access Unit (CAU)	J98718AJ CAU in
in D3/D4 PORTABLE TEST SET (PTS)	J98718AL PTS
RETURN LOSS MEASURING SET (RLMS)	KS-20501
1 Patch Cord	P6AD
2 Patch Cords	3P6A

MAKE CONNECTIONS FOR ECHO RETURN LOSS, SINGING POINT, OR OFFICE CAPACITANCE TESTS

NOTE 1
Circuit can be seized and held for testing 2-wire fxo units by installing SPTS in far end bank (same channel slot) and setting switches A and B to 0 . Circuit can be seized and held for testing 2-wire FXS units by installing SPTS in far end bank (same channel slot) with switch a set to 1 and B to O and using TMS with holding coil at station end equipment

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 5 | 525 |

Per FIG. 1, Page 3:
[4] Connect signal output of test set to Ext OSC jack on CAU
[5] Connect signal input of test set to EXT DETR jack on CAU
[6] Connect CaU XMT jack to D4 TST CKT XMT jack [NOTE 2]

Test connections
[7] Connect CAU RCV jack to D4 TST CKT RCV jack [NOTE 2]
[8] Connect P6AD cord between channel to be tested and D4 TST CKT (knurled side to left) [NOTE 2]
[9] Connect power cord of portable test set to $115 \mathrm{~V}, 60 \cdot \mathrm{~Hz}$ power outlet

On CAU:
[11] Set REJ FLT switch to OUT
[12] Set SEND LEVEL dB switch to o

[13] Set TEST switch to CHAN DROP

MAKE CONNECTIONS FOR ECHO RETURN
LOSS,SINGING POINT, OR OFFICE CAPACITANCE TESTS
Page 4

FIG. 1
MAKE CONNECTIONS FOR ECHO RETURN
LOSS, SINGING POINT, OR OFFICE CAPACITANCE TESTS

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 3 of 5	525	

[17] Insert one end of 3P6C cord in $T \in R$ jack for channel unit to be tested

[18] See FIG. 2. Attach clip lead across tip and ring at other end of cord

MAKE CONNECTIONS FOR ECHO RETURN

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | OLP |
| PAGE 4 of 5 | 525 |

On portable test set/cau:
[19] Connect power cord of portable test

Per FIG. 3:
22] Connect CAU XMT jack to DA TST CKT XMT jack
[23] Connect CAU RCV jack to D4 CKT RCV jack
[24] Connect P6AD cord between channel to be tested and D4 TST CKT (knurled side to left)
[25] Place 262B plugs in EXT OSC and EXT DETR jacks on CAU

FIO. 3

MAKE CONNECTIONS FOR ECHO RETURN

LOSS, SINGING POINT, OR OFFICE CAPACITANCE TESTS	Issue 4	MAR 1982
365-170-000	OLP	
PAGE 5 of 5	525	

TABLE A	
EOUIPMENT REOUIRED	RECOMmENDED TYPE
D3/D4 PORTABLE TEST SET (PTS) with Channel Access Unit (CAU)	J98718AL PTS J98718AJ CAU
2 Patch Cords	3 P6A
1 Patch Cord	P6AD
RETURN LOSS MEASURING SET (RLMS)	KS-20501
2 Patch Cords	3P6D
Channel Unit Extender	J98726MF, List 2
1 Patch Cord	3P6C

NOTE 1

Circuit can be seized and held for testing 2 -wire fxo units by installing SPTS in far end bank (same channel slot) and setting switches a and B to 0 . Circuit can be seized and held for testing 2-wire fxs units by installing spts in far end bank (same channel slot) with switch a set to 1 and B to O and using TMS with holding coil at station end equipment

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 7 | 526 |

On Channel Unit:
[5] Set N/L switch as follows:
N for nonloaded customer loop
L for loaded customer loop
[6] Set L switch on R/R1 control
[FIG. 3] as follows: L showing for MAT; L not showing for other cable \qquad
[7] Set LBOC (S1) as follows if not previously set:

LBOC in (white) $0.056 \mu_{f}$ [FIG. 1] for loaded;
LBOC out (black) for nonloaded [DLP-564]
[8.] Record $\mathbf{S 2}$ control setting then temporarily set $\mathbf{5 2}$ control to $\mathbf{0}$ [FIG. 2]
[9] Set PBN controls (R/R1, R2, and Z) for trial values per TABLE B
[NOTE 2 and FIG. 3]

determine precision balance network (pBN) SETTINGS

FIG. 1-LBOC Control (Example
FIG. $\begin{aligned} & 1-\operatorname{LBOC} \text { Control (Example } \\ & 0.056 \mu \mathrm{f}=\operatorname{CDE} \text { Selected) }\end{aligned}$

FIG. 3 - PBN Controls (Sample Settings $R / R 1=4$ and L showing, $R 2=8$, and $Z=8$)

NOTE 2 Only R and Z controls are used for loaded cable; RI stamping and R2 control can be ignored. R1 stamping and R2 and \mathbf{Z} controls are all used for nonloaded cable		
Issue 4	MAR 1982	
365-170-000		DLP
PAGE 2 of 7		526

N/L set; SL to 0;
trial LBOC and
PBN settings
made

\longrightarrow Page 3

FIG. 4

table C	
FAR - END EOUIPMENT	termimution
6008 PBX	$600 \Omega+2.15 \mu \mathrm{~F}$
900Ω PBX	$900 \Omega+2.15 \mu \mathrm{~F}$
Telephone Set	Of $\mathrm{f} \cdot \mathrm{hook}$, loop current

Is sue 4	MAR	1982
$365.170-000$	DAP	
PAGE 3 of 7	526	

At voice frequency patch bay or equivalent:
[13] Insert one end of 3P6C cord into T R jack for channel unit to be tested \qquad
[14] See FIG. 5. Attach clip lead across tip and ring of other end of cord \qquad

3PGC OR APPROPRIATE CORD
[15] On RLMS set switches as follows: ADD dB to 0 TEST TYPE to ERL TEST LOCATION to to dB (HYBRID TESTS on List 1)

[16] Adjust THL (THL or ADD on List 1 or 3) switches for 0 indication on meter

NOTE 3
FIG. 5
With ADD dB switch to $-10,10 \mathrm{~dB}$ must be added to meter reading

DETERMINE PRECISION BALANCE NETWORK (PBN) SETTINGS

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 4 of 7	526	

[21] Measure SRL-HI (TEST TYPE SRL-HI) and maximize reading by changing LBOC (in channel unit). Record reading on top half of worksheet (TABLE D)
[22] Measure SRL (TEST TYPE SRL) and maximize by changing R. Record reading
[23] Measure ERL and maximize by changing R. Record reading
[24] Measure SRL-HI and maximize by changing Z. Record reading
[25] Measure SRL and ERL again. Record reading on bottom of worksheet

[26] Calculate difference between SRL readings (bottom minus top) and between ERL readings (bottom minus top)

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 5 of 7 | 526 |

[27] Measure SRL (TEST TYPE SRL), ERL (TEST TYPE ERL), and SRL-HI (TEST
TYPE SRL-HI). Record readings in
top part of worksheet
(TABLE E)

[28] Maximize SRL by changing RI (in channel unit). Record final reading on worksheet \qquad

Maximize ERL by changing R2
final reading on worksheet Record
\qquad
[30] Maximize SRL-HI by changing Z. Record final reading on worksheet \qquad

TABLE E	
STEP	READING
27	SRL
27	ERL
27	SRL-HI
28	SRL
29	ERL
30	SRL•HI

[31] Calculate difference between SRL readings (bottom minus top)
[32] Calculate difference between ERL readings (bottom minus top)
[33] Calculate difference between SRL•HI readings (bottom minus top)

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 6 of 7 | 526 |

[1] See NOTE 1. Obtain test equipment per TABLE A and verify service is removed from test channel
[2] Check calibration of CAU [DLP-518]
[3] Set attenuators in your unit per circuit layout card or trial values per TABLE B [DLP-565]
[4] Verify that attenuators on connecting channel unit have been set per circuit layout card or per TABLE B
[5] Set CAU switches as follows: REJ FLT to OUT SEND LEVEL TO 0 TEST to CHAN DROP
[6] Install channel unit extender into slot and insert channel unit into it \qquad
[7] Make test connections per FIG. 1 \qquad

FIG. 1
Trial channel
unit settings and tone toward connecting
channel

NOTE 1
Attenuator settings in this procedure are based on standard transmit and receive carrier levels. Other levels may be required by WORD or engineering. If so, external oscillator and detector must be used

DETERMINE ATTENUATOR SETTINGS FOR BACK-TO-BACK (TANDEM) CHANNEL UNITS

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 6 | 527 |

table B				
CHNEEL UNIT	FIG.	Bavx	transmit atten	receive atten
TDM	2A	$\begin{array}{\|l\|} \hline \text { D4 } \\ \text { D3 } \\ \text { D1 } \\ \hline \end{array}$	1.5 dB $\mathrm{ATI}=1.0 \mathrm{~dB}$ 2.5 dB	Fixed Fixed 1 dB
PLR	2B	$\begin{aligned} & \text { D4 } \\ & \text { D3 } \\ & \text { D1 } \end{aligned}$	$\begin{aligned} & 3.7 \mathrm{~dB} \\ & \mathrm{AT1}=0.8 \mathrm{~dB}, \\ & \text { AT3 }=7 \mathrm{~dB} \\ & 2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~dB} \\ & \mathrm{AT} 2=1 \mathrm{~dB}, \\ & 3 \mathrm{~dB} \end{aligned}$
$\begin{aligned} & 4 \mathrm{TO} \\ & (+7,-16 \\ & \text { interface }) \end{aligned}$	2C	D4 D3 D1	TRMT GAIN (black showing), TRMT ATTEN $=15 \mathrm{~dB}$ $\mathrm{AT} 1=0.2 \mathrm{~dB}$; $\mathrm{AT} 2=12 \mathrm{~dB}$ ATT1 OUT ATT2 IN	RCV GAIN (black showing), RCV ATTEN $=15 \mathrm{~dB}$ $\mathrm{AT} 3=1 \mathrm{~dB} ;$ AT4 $=15 \mathrm{~dB}$ ATTI OUT ATT2 IN
470 (Connected with another 4T0)	2D	D4 D3 D1	TRMT GAIN (white showing), TRMT $\operatorname{ATTEN}=15 \mathrm{~dB}$ ATl $=0.8 \mathrm{~dB}$; $\mathrm{AT} 2=5 \mathrm{~dB}$ ATTI OUT ATT2 IN	RCV GAIN (white showing), RCV ATTEN $=8 \mathrm{~dB}$ $\mathrm{AT} 3=0.8 \mathrm{~dB} ;$ $\mathrm{AT} 4=0 \mathrm{~dB}$ ATTI IN ATT2 OUT
EsH	2B	D4 D3 D1 Analog	$\begin{aligned} & \hline 1 \mathrm{~dB} \\ & 1 \mathrm{~dB} \\ & \text { Halfway } \\ & \text { Halfway } \end{aligned}$	$\begin{array}{\|l} \hline 1 \mathrm{~dB} \\ 1 \mathrm{~dB} \\ \text { Halfway } \\ \text { Halfway } \end{array}$

O
CHAO
CH

A. TANDEM UNITS

04

04

C. 4 HTO UNITS ($-16,4$ Interface)

04

0. 4nto units (0 dBm interface)

FIG. 2

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 6 | 527 |

TCI Library: www.telephonecollectors.info

[1] See FIG. 1 and circuit layout information. Arrange for frequency response test out to customer station equipment
[2] Obtain test equipment per TABLE A and verify circuit is seized [NOTE 1]
 Page 2
[3] Install channel unit extender into channel slot and insert channel unit into it

NOTE 1

Circuit can be seized and held for setting equalizers on 2-wire FXO units by installing SPTS in far end bank (same channel slot) and setting switches \mathbf{A} and \mathbf{B} to 0 . Circuit can be seized and held for setting equalizers on 2 -wire FXS units by installing SPTS in far end bank (same channel slot) with switch A set to 1 and \mathbf{B} to 0 and using TMS with holding coil at station end equipment

TABLE A	
EQuipment required	recomuended type
D3/D4 PORTABLE TEST SET With Channel Access Unit (CAU)	J98718AL PTS with J98718AJ CAU
Transmission Measuring Set (TMS)	TTS4BNH or equivalent
2 Patch Cords	3P6A
1 Patch Cord	P6AD
1 Patch Cord	3P6D
Channel Unit Extender	J98726MF, List 2

2-hire chammel unit WITH GAIM TRAMSFER

$A=$ AMPLIFIER
$\mathrm{E}=$ equalizer
FIG. 1

Issue 4	MAR	1982
365-170-000	DLP	
PAGE 1 of 8	528	

[4] Connect power cord on PTS
to ac outlet and set PWR
switch to 0 N \square
\qquad
[5] Set switches on CAU
as follows:
REJ FLT to OUT
SEND LEVEL db to 0
TEST TO CHAN DROP
[6] Condition TMS
Page 3
[DLP-539]
[7] Verify TMS controls are set as follows:
FUNCTION to SEDDTTALKKREC,
LINE to REC, REC IMP to 600d,
and REC LEVEL to 0

FIG. 2

| Is sue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 3 of 8 | 528 |

FIG. 3 - Equalization Control

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 4 of 8 | 528 |

		table C		
		trouble		adjustment
		2.4-3.0 kHz	$3.0-3.2 \mathrm{kHz}$	
		Too much loss Too much loss Too much loss OK OK Too much gain Too much gain Too much gain	OK Too much loss Too much gain Too much loss Too much gain OK Too much loss Too much gain	Increase BW;increase HT if necessary Increase BW;adjust HT if necessary Increase BW;decrease $\boldsymbol{H T}$ Increase HT;adjust BW* Decrease HT;adjust BW Decrease BW;adjust HT Decrease HW;increase HT if necessary Decrease BW; decrease HT
		- With small BW values, H h has almost no effect on midband, but with larger BW values it does		

determine equalizer settings

Issue 4	MAR 1982	
$365-170-000$	DLP	
PAGE 7 of 8	528	

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 8 of	8	528

SUMMARY

See NOTE 1. With tester at station end, arrange to measure transmission level in both directions (to and from channel drop). Make connections per FIG. 2. Have tone applied in only one direction at a time to prevent
interference on 2 -wire circuits. Set channel unit attenuators to produce required TLP at channel and at station end. Gain of any voice amplifiers at station end can also be adjusted
[1] See NOTE 1, FIG. 1, and circuit layout information. Arrange for loss test with tester at customer station equipment
[2] Obtain test equipment per TABLE A and verify service is removed from test channel
[3] Install channel unit extender into channel slot and insert channel unit into it

th

\qquad

[4] Condition TMS [DLP-539] and verify controls are set as follows: FUNCTION to SEND+TALK+REC, LINE to REC, REC IMP to 600 , and REC LEVEL to 0

NOTE 1

Equalization of customer loop at channel unit, if desired, should be accomplished per [DLP-528] before setting attenuators per this procedure

table A	
EOUIPMENT REQUIRED	RECOMMENDED TYPE
D3/D4 PORTABLE TEST SET with Channel Access Unit (CAU)	J98718AL PTS with J98718AJ CAU
Transmission Measuring Set (TMS)	TTS4BNH or equivalent
2 Patch Cords	3P6A
1 Patch Cord	P6AD
1 Patch Cord	3P6D
Channel Unit Extender	J98726MF, List 2

DETERMINE ATTENUATOR SETTINGS FOR SPECIAL SERVICE CHANNEL UNITS

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| 365-170-000 | DLP |
| PAGE 1 of 5 | 529 |

[9] Have tester at station equipment or intermediate amplifier equipment send 1000 Hz at TLP for that location
[10] Measure level with TMS and attempt to obtain required level by adjusting transmit attenuation in channel unit \qquad

NOTE 7
Using near max gain may indicate the need to examine the circuit for trouble

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170.000$ | DLP |
| PAGE 4 of 5 | 529 |

DETERMINE ATTENUATOR SETTINGS FOR SPECIAL SERVICE CHANNEL UNITS

Issue 4	MAR	1982
$365.170-000$	DLP	
PAGE 5 of 5	529	

[1] Get test equipment listed in TABLE A
[2] Verify that no plug-in units are installed into bank to be tested (common or channel units)
[3] On power distribution subassembly remove ALM fuse
[4] Install PD SIM into maintenance bank PDU slot and insert BAT connector into ALM fuse holder
[5] Set ON/OFF switch to ow

table a	
equipment required	RECOMMEDEE TTPE
Common Equipment Voltage Indicator (CEVI)	J98726MA
Power Distribution Simulator (PD SIM)	J98726MB
PWR CONV SIM	J98726MC
Channel Unit Voltage Indicator (OWI)	J98726MD
Connector Access Unit	ED-3C766

PERFORM POWER WIRING TEST ON D4 MAINTENANCE BANK USING VOLTAGE INDICATORS

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170.000$ | DLP |
| PAGE 1 of 7 | 530 |

PERFORM POWER WIRING TEST ON D4 MAINTENANCE BANK USING VOLTAGE INDICATORS

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365.170-000$ | DLP |
| PAGE 2 of 7 | 530 |

[11] Connect cord marked CEvI (supplied with test equipment) between -20V IN jack on CEYI and CEVI jack on PD SIM
[12] Install CEVI unit into PCU slot

[13] Verify \boldsymbol{O} switch is in center position

[14] Operate silver toggle switch on top of CEVI and observe that $\bar{a} T \mathrm{LED}$ except 14 are lighted. Replace any LED s that do not light [DLP-520] [NOTE 1]

[15] Release toggle switch of step 14

\qquad

[30] Set CU switch on CEVI to A
 and 13 light On CEVI
[31] Connect cord marked avi (supplied with test equipment) to -20V IN jack on CUVI and install QVI into CUT slot
[32] Connect other end of cord of step 31 to CUVI jack on PD SIM \qquad
[33] Operate silver toggle switch on top of CUVI and observe that all LEDs are lighted. Replace any LEDs that do not light [DLP.520]

NOTE 2
Steps 35 thru 39 , test CuT slot first SPTS second, and 4E\&M third

PERFORM POWER WIRING TEST ON D4 MAINTENANCE BANK USING VOLTAGE INDICATORS

Is sue 4	MAR	1982
$365-170-000$	DLP	
PAGE 5 of 7	530	

LED	function -	PIN
1	+5V circuit	29
2	-12V circuit	50
3	+12 V circuit	23
4	-48V circuit	19
5	-48 V circuit	20
6	-48V circuit	46
7	12V GRD	24
8	48 V GRD	22
9	5 V GRD	2
10	Frame GRD	1
11	5 V over voltage circuit	29
12	12V over voltage circuit	50
13	Foreign voltage or GRD	All leads except power and GRD leads
14	Foreign voltage	All leads except power and GRD leads
15	12V GRD (indicates foreign voltage on GRD lead)	24
16	48V GRD (indicates foreign voltage on GRD lead)	22
17	5V GRD (indicates foreign voltage on GRD lead)	2
* When PD SIM and PWR CONV SIM are in bank, voltage circuits are as follows: $+5 \mathrm{~V}=-15 \mathrm{~V},+12 \mathrm{~V}=-8 \mathrm{~V}$. $-12 \mathrm{~V}=-32 \mathrm{~V}$, and $-48 \mathrm{~V}=-36 \mathrm{~V}$		

LED	FUNCTION -	PIN
1	+5V circuit	30
2	-12 V circuit	2
3	RU lead	39
4	+12V circuit	4
5,6	-48 V circuit	43,54
7,8,9,10	TPU leads	26,44,50,53
11	12 V GRD	3
12	SIG GRD (TST switch in normal position)/	21
	5V GRD (TST switch operated)	5
13	SIG GRD (TST switch in normal position)/	17
	Frame GRD (TST switch operated)	1
14	5 V over voltage circuit	26,30,44,50,53
15	12 V over voltage circuit	2,39
16	Foreign voltage or GRD	All leads except power and GRD leads
17	Foreign voltage	All leads except power and GRD leads
18	5 V and 12 V GRD (indicates foreign voltage or open circuit)	5,3
19	SIG GRD (indicates foreign voltage or open circuit)/ frame GRD	21.17 1
20	48V GRD (indicates voltage on these GRDs	15,27
- When PD SIM and PWR CONV SIM are in bank, voltage circuits are as follows: $+5 \mathrm{~V}=-15 \mathrm{~V},+12 \mathrm{~V}=-8 \mathrm{~V}$. $-12 \mathrm{~V}=-32 \mathrm{~V}$, and $-48 \mathrm{~V}=-36 \mathrm{~V}$		

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170.000$ | DLP |
| PAGE 7 of 7 | 530 |

[1] Obtain KS-21838, Ll extractor or longnose pliers
[2] In window on TPU plug-in, place white plugs in SEO position for each digroup [FIG. 1], using tool
3) Get two equalizers per TABLE A for type LIU to be installed in bank and install equalizers \qquad

TPD-A
4] Install TPU plug-in in TPU slot

TPD-B
\qquad

FIG. 1

INSTALL TPU EQUALIZERS AND SET CHANNEL COUNTING OPTION - D4 maintenance bank

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 1 of 1 | 531 |

[1] Install mbalm in alm slot (upper shelf) and set switch to ALARM DISAB [NOTES 1 and 2]
\qquad $\longrightarrow \begin{aligned} & \text { ALARM DISAB } \\ & \text { lamp lighted }\end{aligned}$
[2] Remove plastic cover from rear of bank
[3] Install IA mBTS and 18 mBts, tighten retaining screws on rear, and install plastic cover removed in step 2 \qquad

4] Set all switches on iA mbis and ib mats to out position (black showing)

5] Install any other units for upper shelf [FIG. 1, Page 2]
[6] Refer to TABLE A and install plug.ins in designated slots [FIG. 1] \qquad

table a			
H00E 1	MOOE 2	MOOE 3	MODE 4
(2) TU	(2) TU	(2) TU	(2) TU
(2) RU	(2) RU	(2) RU	(2) RU
(1) ACO (Digroup A)	(2) $\mathrm{A} W$	(2) ACO	(2) ACO
(1) LiU. 1	(1) LIU- 2 (1) SU	(1) LIU-3	(2) LIU-4 (T and R) (2) SU

INSTALL PLUG-INS IN D4 MAINTENANCE BANK

FIG. 1

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 2 | 532 |

[1] On MB ALM unit set switch to
ALARM DISAB position \qquad
[2] On 18 MBTS depress switch 9 so that green surface shows
[3] On 18 MBTS verify that switches 1 thru 8 and 10 thru 17 are extended (black showing)
[4] Refer to FIG. 1 and identify digroup positions of maintenance bank [NOTE 1] \qquad

FIG. I

NOTE 1
Identity of each digroup is necessary because
transmission
tests are required
on both digroups

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |

PAGE 1 of 1 533

SUMMARY

Make test connections per FIG. 1. Insert pin plug into R CODE on RU to test receiver gain. The meter CaU must indicate in black area for receiver gain or green-blackgreen area for net loss
[1] Obtain equipment listed in TABLE A and check calibration of CAU [DLP-518] [NOTE 1] \qquad

TABLE A	
EQuipmert required	RECOMMENDED TYPE
D3/04 PORTABLE TEST	J98718AL PTS
SET (PTS) With Channel Access Unit (CAU)	J98718AJ CAU
2 Patch Cords	3P6A
1 Patch cord	P6AD
Pin Plug	KS-19531

On CAU:
[2] Set TEST switch to CHAN LINE
[3] Set REJ FLT switch to out
[4] Make test connections per FIG. 1
 and

[5] Set send Level dB switch to OFF \qquad
[6 See NOTES 2 and 3. At digroup to be tested, insert pin plug into R CODE jack on RU

NOTES

1. When using cau for a series of tests, the calibration requires checking only once unless CAU is suspected of causing trouble
2. Switch on MB ALM should be set to alarm disab
3. On iB MBTS, switch 9 should be depressed showing green and all others showing black

I Esue 4	MAR 1982
$365-170-000$	DLP
PAGE 1 of 3	534

FIG. 1

PERFORM D4 MAINTENANCE BANK RECEIVER GAIN AND NET LOSS TEST

Issue 4		MAR 1982
$365-170-000$	DLP	
PAGE 2 of 3	534	

TCI Library: www.telephonecollectors.info

SUMMARY

Make test connections per FIG. 1 and measure noise. Level should be 23 dBrnc or less
[1] Get test equipment per
TABLE A and check calibration of
NMS [DLP.519]
[2] Verify switches are set as follows; switch on MB ALM to ALARM DISAB and switch 9 on IB MBTS depressed green showing

[3] Make test connections per FIG. 1, Page 2
[4] On PTS-CAU, set REJ FLT switch to OUT, SEND LEVEL DB to OFF, TEST switch to CHAN LINE \qquad

5] On NMS, set FUNCTION switch to $600 / 900$, MORM-DAMP switch to DAMP, DBRN switch to 85; and weighting network so that C-MESSAGE is aligned with WTG \qquad
\qquad
[6] On NMS, rotate DBRN switch counterclockwise for on-scale reading g

7] Verify switch on MB ALM is set to ALM dISAB position and that switch 9 on 18 mats is showing green and all others are showing black \qquad

TABLE A	
Equipment required	RECOMmended TYPE
Noise Measuring Set (NMS)	J94003C
D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU)	J98718AL PTS J98718AJ CAU
1 Patch Cord	P6AD
2 Patch Cords	3P6A
1 Patch Cord for NMS	3P6D

MMS calibration checked, NMS/PTS switches set, and

Issue 4	MAR
1982	
$365-170-000$	DLP
PAGE 1 of 3	535

[11] Test digroup B by moving connection from channel unit in aut slot to channel unit in 4EEM slot and repeat test from step 6, Page 1

NOTE 1
All transmission
tests can be performed on bank before removing test connections

Issue 4	
365-170.000	MAR 1982
PAGE 3 of 3	535

[1] Obtain test equipment per TABLE A and check calibration of CAU [DLP-518] [NOTE 1] \qquad

table A	
equipment requireo	RECOMMENDED TTPE
Noise measuring set (NMS)	J94003C
D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU)	J98718AL PTS J98718AJ CAU
1 Patch Cord	P6AD
2 Patch Cords	3P6A
1 Patch Cord For NMS	3P6D

[3] Check calibration of noise measuring set (NMS) [DLP-519]
[4] On NMS, set FUNCTION switch to N/M 600/900, NORM-DAMP switch to DAMP, DBRN switch to 85 , and weighting network for C-MESSAGE weighting \qquad
NMS calibration checked, NMS/PTS switches set, and connections made
[5] On PTS.cau, set reJ flt switch to IN, TEST switch to CHAN line, and send level. db switch to 0 \qquad
\qquad年

Page 3
[6] See NOTES 2 and 3. Make test connections per FIG. 1, Page 2 \qquad
[7] See TABLE B, Page 3. Measure for requirements for each position of SEND LEVEL DB switch. NMS DBRN switch must be rotated counterclockwise for on-scale reading each time \qquad

PERFORM D4 MAINTENANCE BANK DISTORTION TEST

	1. When using cau for a series of tests, the calibration requires checking only once unless CAU is suspected of causing trouble		
2. Switch on mb alm should be set to ALARM DISAB position 3. On IB MBTS switch 9 should be depressed showing green and all others showing black			
	Issue 4		1982
365-170.000			
	Page 1 of		

| Issue 4 | MAR 1982 |
| :---: | :---: | :---: |
| $365-170-000$ | DLP |
| PAGE 2 of 3 | 536 |

TCI Library: www.telephonecollectors.info

[1] Install SIGNALING PATH TEST SET (SPTS) into CUT position of maintenance bank \qquad
[2] Verify switch on MB ALM is set to ALARM DISAB and that switch 9 on IB MBTS is showing green and all others are showing black

[4] Are requirements of TABLE A met
[3] See TABLE A and perform tests 1 and 2 setting switches to positions as indicated \qquad

TABLE A			
TEST	SNITO	POSITION	SPTS LAMPS LIGHTED
1	A	1	A only
	B	0	
2	A	0	B only
	B	1	

Is sue 4	MAR	1982
365.170 .000	DLP	
PAGE 1 of 1	537	

[7] Install SPTS into SPTS slot and 4Eem channel unit into 4Eem slot
[6] Move SPTS to 4Eem position and repeat from step 2

Set switch on mb ALM to ALARM DISAB position. Perform switch operations and check that appropriate lamps are lighted per TABLES A and B
[1] On MB ALM unit set switch to ALM DISAB position
[2] Verify that switches 1 thru 17 on 18 MBTS are extended (black showing) and that there is no unit in CUT position

[3] Perform tests and check for appropriate lamps lighted per TABLE A. Release setting for each test before going to next test in sequence \qquad AND

TEST	SWITCYES DEPRESSED OW 10 mats	LANPS LICHTED ON iA mats
1	9 and 12	CAL
2	9,11 , and 13	MC PASS
3	9,11 , and 14	MC PASS
4	9 and 17	MON

MAKE D4 MAINTENANCE BANK VOICE FREQUENCY CALIBRATION AND SIGNALING TEST CHECK

Issue 4	MAR	1982
$365-170-000$	DLP	
PAGE 1 of 2	538	

[5] Depress all switches on 18 MBTS to extended (out black showing) position
[6] On 18 MBTS perform tests and check for appropriate lamps lighted per TABLE B. Release setting for each test before going to next test in sequence
[11] Depress all switches on 1 B MBTS to extended (out black showing) position

TABLE B		
TEST	Switares depressed	Lamps Liemted
1	1 and 2	C and D
2	1,2, and 3	A and F
3	1 and 4	C and F
4	2 and 4	A and D
5°	5 and 6	$20-H z$
$6 \dagger$	7,8, and 9	H and J
7	1 and 10	C and F
8	2 and 10	A and D

- Applicable if $20-\mathrm{Hz}$ fuses are provided on PDU
\dagger Lamp 8 may light
make d4 maintenance bank voice frequency calibration AND SIGNALING TEST CHECK

NOTE 1

LED may be removed

by pulling straight out using long nose pliers	Is sue 4	MAR 1982
$365-170-000$	DLP	
PAGE 2 of 2	538	

Issue 4	MAR	1982
$365-170-000$	OLP	
PAGE 2 of 2	539	

[1] Are you working with 4-wire E\&M unit

TABLE A	
DEsigmation	description
TPO	End Office (Class 5)
TP2	Analog Toll Office
TP3	Digital Toll Office

[3] Refer to TABLE A and determine which designations apply to near and far offices
[4] Calculate required drop buildout by subtracting office drop cabling loss from 1.5 dB (buildout $=1.5$ - drop loss)
[5] Add value of step 4 to values (transmit and receive) per TABLE B for type offices \qquad

TABLE C			
TRUNK LOSS (EML)			
MEAR	FAR OFFICE		
OFICE	TPO	TP2	TP3
TP0	3 dB	5 dB	6 dB
TP2	5 dB	4.5 dB	6 dB

TABLE B attennator settings			
$\begin{aligned} & \text { MEAR } \\ & \text { OFFICE } \end{aligned}$	far office		
	TPO	TP2	TP3
TPO	$\begin{aligned} & 3 \mathrm{~T}, \\ & 1.5 \mathrm{R} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~T}, \\ & 3.5 \mathrm{R} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~T}, \\ & 4.5 \mathrm{R} \end{aligned}$
TP2	$\begin{aligned} & 1 \mathrm{~T}, \\ & 1.5 \mathrm{R} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~T}, \\ & 1.0 \mathrm{R} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~T}, \\ & 2.5 \mathrm{R} \end{aligned}$

[6] If EML of trunk is different than that indicated in TABLE C, add or subtract difference to receive value of step 5 [NOTE 1]
\qquad

NOTES		
1. If EML is greater		
than that of		
TABLE C,		

determine attenuator settings for message service channel unit

[1] See NOTE 1. Get two KS-19531 or equivalent pin plugs that fit pin jacks on RU and LIU
[2] On AOU to be tested, set 3-position switch to NORM and set MEM switch to OFF
[3] On LIU, insert pin plug into
LP jack [NOTE 2

```
n jacks on
``` tch
[8] Familiarize yourself with steps 9 and 10
before proceeding
[9] Insert pin plug into red \(R\) CODE jack on RU for digroup being

[11] On Aa momentarily depress aco pushbutton

1

Page 3 tested
\begin{tabular}{|c|}
\hline TABLE A \\
\hline LAM \\
\hline RCY On RU \\
AR On ACU \\
TP On ACU \\
TPD On TPU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 5 & 541 \\
\hline
\end{tabular}

[20] Observe that AR and AY lamps on \(A O U\) are lighted Page 5 after 20 seconds
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 4 of 5 & 541 \\
\hline
\end{tabular}
[21] Familiarize yourself with steps 22 through
24 before proceeding
[22] Remove pin plug from R CODE jack on R

[23] Insert pin plug into
LP jack on LiU
\begin{tabular}{|c|}
\hline TABLE B \\
\hline Lem \\
\hline RCY on RU \\
AR on ACU \\
ACO on AOU \\
TPD on TPU \\
AY on AOU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 541 \\
\hline
\end{tabular}

\section*{SUMARY}

Make test connections per Fig. l to test channel. Verify connections are made at far end. CAU indication should be between -0.25 and +0.25 . Verify that test indications at far end are within specified limits

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 3 & 542 \\
\hline
\end{tabular}

On D3/D4 PORTABLE TEST SET (PTS):
[4] Check calibration of CAU
[DLP-518]
[5] Set TeSt switch to CHAN LINE

switch to 0
[8] Make test connections per FIG. 1
(9] Verify that test equipment is connected at other office and that test is ready to be performed

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 3 & 542 \\
\hline
\end{tabular}

\section*{SUMMARY}

Make test connections per FIG. l. Verify far end has made test connections to same test channel. Verify D4 bank meets noise requirement of 23 dBrnc or less
[1] Obtain test equipment per TaBLE A
[2] Set switches on CAU as follows: rej flt to OUT, SEND LEVEL to OFF, and TEST to CHAN LINE \(\qquad\)
[3] Check calibration of NMS [DLP-519] \(\qquad\) ? S to \(600 / 900\), NORM-DAMP to DAMP, DBRN to 85 , and C-MESSAGE to align with WTG
[5] Make test connections per FIG. 1 and verify far end has made test connections to same test channel

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 3 & 543 \\
\hline
\end{tabular}

fig.
MOISE REASURIMG SET
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365.170-000\) & DLP \\
\hline PAGE 2 of 3 & 543 \\
\hline
\end{tabular}
[6] Measure noise by rotating DBRN switch on NMS counterclockwise for on-scale reading

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{table b} \\
\hline \[
\begin{aligned}
& \text { BNOM AT } \\
& \text { FAR EXD }
\end{aligned}
\] & \[
\begin{gathered}
\text { De } \\
\text { REOUIREMENTS }
\end{gathered}
\] \\
\hline D10 & 26 dBrnc or less \\
\hline D2 & 28 dBrnc or less \\
\hline D3 & 23 dBrnc or less \\
\hline D4 & 23 dBrnc or less \\
\hline
\end{tabular}

\section*{SUNAARY}

Make test connections per FIG. 1, Page 3.
Verify that test equipment is connected at other office for channel being tested. Requirements are given in TABLE B, Page 4. Verify that test indications at other office are within specified limits
[1] Obtain test equipment per TABLE A [NOTE 1]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{table A} \\
\hline equipment recuired & RECOMneped TYPE \\
\hline D3/D4 PORTABLE TEST & J98718AL (PTS) \\
\hline SET (PTS) with Channel & J98718AJ (CAU) \\
\hline Access Unit (CAU) & \\
\hline Noise Measuring Set (NMS) & J94003C or Equivalent \\
\hline 2 Patch cords & 3P6A \\
\hline 1 Patch Cord & P6AD \\
\hline 1 Patch Cord & 3P6D \\
\hline
\end{tabular}

NOTE 1
Test equipment and procedures for DID, D2, and D3 banks are given in BSPs for those banks
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 4 & 544 \\
\hline
\end{tabular}
[2] On D3/D4 PTS
set switches as follows:
REJ FLT to IN
send level do to o
test to chan line
[3] Check calibration of NMS [DLP-519]
[4] Set NMS switches as follows:
FUNCTION to 600 or
to 600/900 (on 3C NMS)
NORM-DAMP to DAMP
DBRN to 85
C-MESSAGE to align with WTG

[5] Make test connections per FIG. 1, page 3 [See NOTE 2]

NOTE 2
With test equipment connected as shown in FIG. 1, you can transmit and receive at same time; therefore, the plug need not be moved between transmit and receive positions
Issue 4 |mar 1982 365-170-000 PAGE 2 of 4544

FIG. 1
MOISE MEASURING SET
\begin{tabular}{|c|c|}
\hline Issue A & MAR \\
\hline 365-1782 \\
\hline PAGE 3 of 4 & 544 \\
\hline
\end{tabular}
[7] See table b. Set SEND LEVEL switch (on CAU) to each position (\(0-40\)) while far end measures for each setting

[10] See Table B. Have far end send at each level listed while you measure for each setting
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{table 8} & \multicolumn{2}{|c|}{table C} \\
\hline SED LEVEL D8 & D4 demen meter REQUIREMENTS & PAD KEY SETTIM & DA denan meter REQUIREMENTS \\
\hline 0 & 56 or less & CTR & 56 or less \\
\hline 10 & 46 or less & A & 36 or less \\
\hline 20 & 36 or less & B & 24 or less \\
\hline 30 & * 26 or less & & \\
\hline 40 & \(\dagger 22\) or less & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(* 28\) if far end is D2 bank
\(\dagger 26\) if far end is D2 bank}} & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365 \cdot 170.000\) & DLP \\
\hline PAGE 4 of 4 & 544 \\
\hline
\end{tabular}
[1] Get equipment listed in TABLE A
[2] Find section in TABLE B that corresponds to type bank at far end (use only that section throughout the test)

Page 2
[3] For channel under test determine two most likely interfering channels. See TABLE B

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ table A } \\
\hline \multicolumn{1}{|c|}{ equipment required } & \multicolumn{1}{c|}{ recomienoed type } \\
\hline Noise measuring set (NMS) & J94003A, B, or C \\
D3/D4 PORTABLE TEST & J98718AL PTS - \\
SET with channel access & J98718AJ CaU \\
Unit (CAU) & \\
2 Patch Cords & 3P6A \\
2 Patch Cords & P6AD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE B} \\
\hline FAR-END BANK & ChANAEL BEING measured (1-12) & MOST LIKELY INTERFERING CHANELS & CHANEL BEING mEASURED
\[
(13.24)
\] & MOST LIKELY INTERFERING CHANMELS \\
\hline D1D & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & \(\begin{array}{rr}24 & 12 \\ 13 & 1 \\ 14 & 2 \\ 15 & 3 \\ 16 & 4 \\ 17 & 5 \\ 18 & 6 \\ 19 & 7 \\ 20 & 8 \\ 21 & 9 \\ 22 & 10 \\ 23 & 11\end{array}\) & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24 \\
& \hline
\end{aligned}
\] & \(\begin{array}{rr}1 & 24 \\ 2 & 13 \\ 3 & 14 \\ 4 & 15 \\ 5 & 16 \\ 6 & 17 \\ 7 & 18 \\ 8 & 19 \\ 9 & 20 \\ 10 & 21 \\ 11 & 22 \\ 12 & 23\end{array}\) \\
\hline D2 & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24
\end{aligned}
\] & \\
\hline D3 OR D4 & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 1 of 5 & 545 \\
\hline
\end{tabular}

On CAU:
[4] Check calibration of CaU [DLP-518]
[5] Set switches as follows:
REJ FLT to OUT SEND LEVEL to 0 TEST to CHAN LINE

On noise measuring set (NMS):
[6] Check calibration of NMS [DLP-519]
[7] Make sure 497A network is installed with c-message designation aligned with WTG
[8] Set switches as follows: FUNCTION to NM 600/900 for 3C (or 600 for 3A) NORM-DAMP to NORM DBRN to 50
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 5 & 545 \\
\hline
\end{tabular}
[10] Make test connections for first interfering channel [See FIG. 1, Page 5] \(\qquad\)
[11] Have far end measure crosstalk level [see TABLE C]

12] Repeat steps 10 and 11 for second interfering channel \(\qquad\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{table C} \\
\hline \begin{tabular}{l}
TrPE EMNK \\
at FAR END \\
\hline
\end{tabular} & de mequinemment \\
\hline \[
\begin{gathered}
\text { D3 or D4 } \\
\text { D2 } \\
\text { D1D }
\end{gathered}
\] & \begin{tabular}{l}
27 dBrnc or less \\
27 dBrnc or less * \\
32 dBrnc or less
\end{tabular} \\
\hline \multicolumn{2}{|l|}{* First interfering channel is allowed 29 dBrnc or less} \\
\hline
\end{tabular}

\section*{PERFORM END-TO-END CROSSTALK TROUBLE TEST}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 545 \\
\hline
\end{tabular}
[14] Make test connections per FIG. 1, Page 5
to channel being measured
[15] Verify far end is connected to
first interfering channel
[16] Measure and note crosstalk level by rotating DBRN switch for on-scale reading [See TABLE D]
 done transmit part of test
 interfering channel while you measure level. See TABLE D
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{table d} \\
\hline trpe banx at fak end & O4 REQUIREMENTS \\
\hline D3 or D4 & 27 dBrnc or less \\
\hline D2 & 27 dBrnc or less* \\
\hline D10 & 32 dBrnc or less \\
\hline \multicolumn{2}{|l|}{* First interfering channel is allowed 29 dBrnc or less} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 4 of 5 & 545 \\
\hline
\end{tabular}

SUMARY
Make test connections per FIG. 1. Verify that test equipment is connected at other office for channel being tested. Requirements are no more than 1 count in 5 minutes
at 63 dBrnc and no more than 5 counts at 58 dBrnc. Verify that test indications at other office are within specified limits
[1] Get test equipment per TABLE A
[2] On D3/D4 PTS, set switches as follows: REJ FLT to OUT
SEND LEVEL to OFF
TEST to CHAN LINE TEST to CHAN LINE
\(\qquad\)

6H impulse
counter calibrated
and switches
set on D3/D4 PTS
[3] Check calibration of impulse counter [DLP-522]
[4] Set test set switches on Impulse Counter as follows:
DIAL-MEAS to MEAS IMPULSES ABOVE DBRN to 63
[5] Make test connections per FIG. 1

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline \multicolumn{2}{|c|}{ EQUIPMENT REQUIRED } \\
\hline D3/D4 PORTABLE TEST & J98718AL (PTS) \\
SET (PTS) with Channel & J98718AJ (CAU) \\
Access Unit (CAU) & \\
Impulse Counter & J94006H \\
3 Patch Cords & \(3 P 6 A\) \\
1 Patch Cord & P6AD \\
\hline
\end{tabular}
[6] Verify that test equipment is connected at other end \(\square\)

FIG. 1

PERFORM END-TO-END IMPULSE NOISE TROUBLE TEST
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR \\
\hline \(365-1982\) \\
\hline PAGE 2 of 3 & 546 \\
\hline
\end{tabular}

On 6H Impulse Counter:
[7] Rotate DURING INTERVAL
fully clockwise and then counterclockwise to 5 MINUTES
[8] Observe that counter indicates 0 or 1 after 5 minutes
[9] Set impulse above dern switch to 58 \(\qquad\)
[10] Rotate DURING INTERVAL fully clockwise and then counterclockwise to 5 minutes \(\qquad\)
[11] Observe that counter indicates 5 or less after 5 minutes
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 3 & 546 \\
\hline
\end{tabular}
[1] Locate PDU subassembly
[FIG. 1]
[2] Remove -48 main alm fuse

3] Remove - 48 main loa fuse

4] Remove -48 abs fuse

D4 Bank or
Maintenance Bank

F16. 1

REMOVE FUSES FROM PDU SUBASSEMBLY
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 547 \\
\hline
\end{tabular}

On PDU:
[1] See FIG. 1. Verify that - 48 S A
and a fuses are 70A (white bead)
or 70C (blue bead) fuses
[2] Verify that -48F \(A\) and \(B\) fuses are 70 C fuses (blue bead) [NOTE 1]

3] Verify that -48 V fuse is 70 B fuse (orange bead)
[4] Verify that 20 HZ fuse is 70 F fuse (violet bead) [NOTE 2]

\(\qquad\)

FIG. 1
[1] Obtain KS-14510 VOM or equivalent and condition it to measure dc volts [DLP.521] [NOTE 1]
[2] See NOTE 2. At PDU, connect + (red) lead to black GRD jack and - (black) lead to red -48 V jack \(\qquad\)

NOTES
1. KS-20599 digital
voltmeter or equivalent may be used
2. If channel bank is operating in Mode 4, Steps 2 and 3 must be performed on both banks
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Is suve 4 } & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 549 \\
\hline
\end{tabular}
[1] See FIG. 1. Set switch Fail and aco on PQU to OFF and lamps on insert PCU into PCU pCU lighted slot [NOTE 1

[2] Set switch on POU to ON

FIG. 1 . PCU
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
NOTE 1 \\
If channel bank is operating in Mode 4, PCU must be installed into both banks
\end{tabular}} \\
\hline Issue 4 & MAR & 1982 \\
\hline \multicolumn{2}{|l|}{65-170.000} & OL \\
\hline \multicolumn{2}{|l|}{PAgE 1 of 1} & 55 \\
\hline
\end{tabular}

NOTE 1
If channel bank is operating in Mode 4, PCU must be installed into both banks
[6] Refer to
SD-3C304 for channel bank or to SD-3C290 for maintenance bank to correct wiring problem

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE A} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { PCU } \\
& \text { TEST } \\
& \text { POINTS }
\end{aligned}
\]} & \multicolumn{2}{|l|}{CONWECTIOWS} & \multirow[t]{2}{*}{no LOAD yoltage REOUIREMENTS (VDC)} \\
\hline & \[
\begin{aligned}
& + \text { RED } \\
& \text { LEAD }
\end{aligned}
\] & \[
\begin{aligned}
& \text { - black } \\
& \text { LEAD }
\end{aligned}
\] & \\
\hline +12V & +12V & GRD & 11.4 to 13 \\
\hline + 5V & + 5V & GRD & 4.5 to 6 \\
\hline -12V & GRD & -12V & 11.4 to 13 \\
\hline
\end{tabular}
1. KS-20599 digital voltmeter or equivalent may be used.
2. If channel bank is operating in Mode 4, Steps 2 and 3 must be performed to both ends
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 551 \\
\hline
\end{tabular}

\section*{SUMARY}

Determine type and number equalizers needed from TABLE B.
Obtain equalizers and install on TPU(s).
[1] Determine D4 mode of operation from office records or from type LIU to be installed in bank [TABLE A]
(2] See TABLE B and determine number and type equalizers needed for D4 bank

[4] Get TPU plug-in, note equalizer placement instructions printed on circuit board, and install equalizers
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ table A } \\
\hline TIPE LiU & mooe \\
\hline LIU-1 & 1 \\
\hline LIU-2 & 2 \\
\hline LIU-3 & 3 \\
\hline LIU-4T & 4 \\
\hline LIU-4R & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{table b} \\
\hline \multirow[b]{2}{*}{} & \multicolumn{2}{|r|}{EQUALİER} & \multirow[t]{2}{*}{Cable Length to be EQUALIZED* (FEET)} \\
\hline & & TYPE & \\
\hline 1 & 1 & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\mathrm{ED} \cdot 3 \mathrm{C} 655-30, \mathrm{G1} \text { or } \mathrm{G6} \\
\mathrm{ED} \cdot 3 \mathrm{C} 655-30, \mathrm{G2} \\
\mathrm{FD}-3 \mathrm{C} 655.30 \mathrm{G3}
\end{array}\right.
\]} & \multirow[t]{2}{*}{\(0-133\)
\(133-267\)} \\
\hline 2 & 1 & & \\
\hline \(3^{\dagger}\) & \multirow[t]{2}{*}{\(2^{\ddagger}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ED-3C655-30,G4 } \\
& \text { ED-3C655-30,G5 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 400-533 \\
& 533-655
\end{aligned}
\]} \\
\hline & & & \\
\hline \multirow[t]{3}{*}{\(\dagger\)} & \multirow[t]{3}{*}{\(2^{\ddagger}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{ED} \cdot 3 \mathrm{C} 585 \cdot 30, \mathrm{G1} \\
& \mathrm{ED} \cdot 3 \mathrm{C} 585 \cdot 30, \mathrm{G} 2 \\
& \mathrm{ED} \cdot 3 \mathrm{C} 585 \cdot 30, \mathrm{G} 3
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
0-220 \\
220-440 \\
440-655
\end{array}
\]} \\
\hline & & & \\
\hline & & & \\
\hline \multirow{7}{*}{4} & \multirow{7}{*}{\[
\begin{aligned}
& 1 \text { (in } \\
& \text { each } \\
& \text { TPU) }
\end{aligned}
\]} & \multirow[t]{7}{*}{\[
\begin{aligned}
& \mathrm{ED}-3 C 656 \cdot 30, \mathrm{Gl} \\
& \mathrm{ED}-3 \mathrm{C} 656 \cdot 30, \mathrm{G} 2 \\
& \mathrm{ED} \cdot 3 \mathrm{C} 656 \cdot 30, \mathrm{G3} \\
& \mathrm{ED}-3 \mathrm{C} 656 \cdot 30, \mathrm{G4} \\
& \mathrm{ED}-3 \mathrm{C} 656 \cdot 30, \mathrm{G5} \\
& \mathrm{ED}-3 \mathrm{C} 656 \cdot 30, \mathrm{G6} \\
& \mathrm{ED} \cdot 3 \mathrm{C} 656 \cdot 30, \mathrm{G7}
\end{aligned}
\]} & \multirow[t]{7}{*}{\[
\begin{array}{r}
0-90 \\
91-250 \\
251-410 \\
411-570 \\
571-730 \\
731-890 \\
891-1050
\end{array}
\]} \\
\hline & & & \\
\hline 4A & \[
\begin{aligned}
& 1 \text { (in } \\
& \text { each } \\
& \text { TPU) }
\end{aligned}
\] & ED-3C656-30,G7 & 25 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
* Cable length from D4 bank to DSX-() cross-connect or to office repeater bay, if DSX-() is not used \\
\(\dagger\) Either 3C655 or 3C585 equalizers may be used for Mode 3 \\
\(\ddagger\) When service on one digroup will precede service on other digroup in Mode 3, equalizers for both digroups should be installed to prevent service interruption later
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 552 \\
\hline
\end{tabular}
[1] See NOTES 1 and 2. From circuit order information determine what equipment will be connected at far end of each digroup
[2] Locate option stamping alongside TPU window [FIG.
[3] Get KS-21838, Ll extractor or longnose pliers

[5] Install TPU in TPU slot (TPD \(A\) and B lamps lighted)
[4] For each digroup (A and B), position (with tool) white plug inside unit to match far end equipment [FIG. 1]

b. d2 selected

C. SEQ (D3, D4, DIGROUP TERHINAL) OR OACS SELECTED
fIG. 1 - Channel Counting Options

SET CHANNEL COUNTING OPTIONS ON TPU AND INSTALL TPU - D4 CHANNEL BANK

\section*{NOTES}
1. When service on one digroup wi-11 precede other in Mode 3. options in TPU for both digroups should be set to prevent service interruption later.
2. If channel bank is operating in Mode 4, this procedure must be performed on both banks
\begin{tabular}{|c|c|c|}
\hline Issue 4 & \multicolumn{2}{|c|}{ MAR 1982} \\
\hline 365-170-000 & OLP \\
\hline PAGE 1 of 1 & 553 \\
\hline
\end{tabular}

\section*{SUMMARY}

Determine required plug-ins and install per FIG. 1
[1] Observe stamping under each slot for required
plug-in unit
[2] Install TUs and RUs
in designated slots [NOTE 1]
[3] Install plug-ins shown per FIG. 1, Page 2 to produce required mode

[4] Depress ACO pushbutton on alarmed \(\mathrm{AO}(\mathrm{s})\)

\section*{NOTE 1}

Modes 1 and 2 require one bank or two digroups to be loaded. Mode 3 requires one digroup. Modes 4 and 4 A require
two banks or four digroups to be loaded
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Modes 1 and 2 require one bank or two digroups to be loaded. \\
Mode 3 requires one digroup. Modes 4 and 4 A require two banks or four digroups to be loaded
\end{tabular}} \\
\hline Issue 4 & MAR & 1982 \\
\hline 365-170.000 & & DLP \\
\hline PAGE 1 of & 2 & 554 \\
\hline
\end{tabular} \begin{tabular}{|c|c|}
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 2 & 554 \\
\hline
\end{tabular}

F16. 1-D4 Channel Bank

\section*{SUNMARY}

Determine required timing from circuit order. Set timing options on oIU per FIG. 1 and 2, Page 2. Install oIU

\section*{NOTES}
1. Both digroups will be loop timed to reference digroup which must go to either
No. 4 ESS or
DDS equipment
2. olu-2, List 2
does not
contain D \(T\) option plug
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 2 & 555 \\
\hline
\end{tabular}

[1] Get KS-14510 or equivalent VOM and
condition VOM to measure
volts dc [DLP-521]
[NOTE 1]
[2] See NOTE 2. See table a. Measure dc voltages at Pal test points
\(\qquad\)

NOTES
1. KS-20599 digital voltmeter or equivalent may be used.
2. If channel bank is operating in Mode 4, Steps 2 and 3 must be performed on both banks
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365=170.000\) & \\
\hline
\end{tabular} 365-170-000 \(\quad\) DLP
PAGE 1 of 1
[1] Get two KS-19531 or equivalent
pin plugs to fit pin jacks on
RU and LIU [NOTES 1 and 2]
[2] On ACU to be tested, set
3-position switch to
MORM and set MEM
switch to OFF
[3] On LIU, insert pin plug into LP jack [NOTE 3] \(\qquad\)
[5] On MB ALM operate switch to alarm disab and verify that all switches on 1A or 18 MBTS are out (black showing)

NOTES
1. If channel bank
is connncted to a remote E2 alarm system, proper operation of that system can be verified during performance of this procedure by having personnel at E2 equipment monitor alarms
2. This procedure should be performed as follows: Maintenance Bankone time on each ACU installed. Channel Bank Mode 1 - one time Mode 2 - two times (once on each ACU) Mode 3 - one time on ACU in digroup being turned up Mode 4 - Four times (once on each ACU).
3. For Mode 3, pin plug should be inserted into LP jack corresponding to digroup being tested (LPA or LPB)
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170.000 & DLP \\
\hline PAGE 1 of 8 & 557 \\
\hline
\end{tabular}
[8] Familiarize yourself
with steps 9 and 10
before proceeding
[9] Insert pin plug into red \(R\) CODE jack on RU for digroup being tested

\begin{tabular}{|c|}
\hline TABLE A \\
\hline LAmp \\
\hline RCV on RU \\
\hline AR on ACU \\
\hline TP on AOU \\
\hline TPD on TPU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 8 & 557 \\
\hline
\end{tabular}
[15] Repeat procedure beginning with step 6, Page 1

\begin{tabular}{|l|l|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 8 & 557 \\
\hline
\end{tabular}
[25] Familiarize yourself with steps 26 through 29; timing is important (less than 20 seconds between
steps 26 and 28)
[26] On ACU set 3-position switch to LT, pause
for at least 2 seconds, then set to NORM
[27] Insert plug into R CODE on RU
[28] Remove pin plug from LP jack on LIU

[32] Familiarize yourself
with steps 33 through
35 before proceeding
[33] Remove pin plug from
R CODE jack on RU

\(\left\{\begin{array}{l}{[35] \text { Do }} \\ \text { lamps extinguish } \\ \text { per TABLE } B\end{array}\right.\)
\([36]\) On ACU,
set TP MEM
switch to
OFF
[34] Insert pin plug into LP jack on LIU

\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 8 & 557 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 6 of 8 & 557 \\
\hline
\end{tabular}

TEST BANK ALARMS
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 7 of 8 & 557 \\
\hline
\end{tabular}
[57] On ACU, set 3 -position switch
to NORM, depress ACO, then set to
LT
[58] Insert pin plug into \(R\) CODE jack on either RU in bank
\(\qquad\)

59] Momentarily press TST button on LIU \(\qquad\)

FIG. 2 - Maintenance Bank

LOOP D4 CHANNEL BANK DIGROUP(S) OR MAINTENANCE BANK
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 558 \\
\hline
\end{tabular}
[1] Obtain D4 SIGNALING PATH TEST SET (SPTS) from SPTS slot in maintenance bank
2) Select test channel in
digroup under test
[3] Remove channel unit (if installed)

[4] Insert SPTS in channel slot selected in step 2 \(\qquad\)
[5] See TABLE A and perform tests 1 and 2 setting switches to positions indicated
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TABLE A } \\
\hline TEST & SWITCH & POSITION & LAMP LIGHTED \\
\hline 1 & \(A\) & 1 & A only \\
& \(B\) & 0 & \(A\) and \\
\hline 2 & \(A\) & 0 & B only \\
& \(B\) & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & OLP \\
\hline PAGE 1 of 1 & 559 \\
\hline
\end{tabular}
[1] Obtain blown fuse and spare
fuse holder cap

2] Insert fuse into fuse holder cap
[5] Install all removed fuses into their proper fuse slots
[3] Substitute assembly of step 2 into each fuse slot listed in TABLE A and observe for requirements [NOTES 1 and 2] for requirement
\(\qquad\)

6] Replace
PDU [DLP-523]
and install 10 amp
fuse into 10A slot.
Repeat steps 3
and 4
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE A} \\
\hline & \multirow[b]{2}{*}{LOCATION} & \multicolumn{2}{|c|}{RECUIREMENTS} \\
\hline \[
\begin{aligned}
& \text { FUSE } \\
& \text { SLOT }
\end{aligned}
\] & & CHANELEL BANK & MAINTEMANCE
BANK \\
\hline ALM & Power Distribution Subassembly * & & \\
\hline -48ABS & Power Distribution Subassembly * & & \\
\hline -48S A & Power Distribution Unit (PDU) & Office alarm & ALM lamp \\
\hline -485 B & Power Distribution Unit (PDU) & sounds and & lights on \\
\hline -48F A & Power Distribution Unit (PDU) & ALM lamp & PDU for \\
\hline -48F B & Power Distribution Unit (PDU) & lights on PDU & each fuse \\
\hline -48V & Power Distribution Unit (PDU) & for each & \\
\hline 20 Hz & Power Distribution Unit (PDU) & fuse slot & \\
\hline
\end{tabular}
* Power Distribution Subassembly is panel stamped -48 maIN and \(-48 A B S\)

\section*{CHECK OPERATION OF FUSE ALARM CIRCUITS - D4 CHANNEL OR MAINTENANCE BANK}
[7] Refer to SD-3C304 for channel bank or to SD-3C290 for maintenance bank to repair bay wiring
1. If channel bank is operating in Mode 4, test of TABLE A must be performed on both banks
2. Office alarm will not sound when testing maintenance bank because no plug.ins are installed
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 560 \\
\hline
\end{tabular}
[1] See FIG. 1 for all leads that appear at distributing frame. See TABLE A for connection of trunk processing leads 1 and 2 or A1, \(\mathrm{A} 2, \mathrm{~B} 1\), and B 2 to office leads
table A
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ TABLE A } \\
\hline \multicolumn{1}{|c|}{ office } & \multicolumn{3}{|c|}{ LEAD desiguation from bana } \\
\hline & 1 & 2 & A1 or B1 & A2 or B2 \\
\hline No. 4A Crossbar & MS & \(*\) & & \\
\hline No. 5 Crossbar & B2 & B1 & & \\
\hline Panel & S & \(*\) & & \\
\hline \begin{tabular}{c}
No. l Crossbar or \\
Crossbar Tandem
\end{tabular} & S1 & \(*\) & & \\
\hline ESS offices & \(*\) & \(*\) & A \(\dagger\) & B \(\dagger\) \\
\hline Step-By-Step & \begin{tabular}{c}
S \\
Switch \\
Side
\end{tabular} & \begin{tabular}{c}
S \\
Line \\
Side
\end{tabular} & & \\
\hline
\end{tabular}
- Individual channel connection not required
\(\dagger\) Connection required to ESS \(A\) and \(B\) leads from Al and A2 leads of digroup A and from B1 and B2 leads of digroup B

FIG. I - Universal Channel Wiring To 8.Point Terminal Block
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365.170-000\) & DLP \\
\hline PAGE 1 of 1 & 561 \\
\hline
\end{tabular}
[1] Align front edge of switch with notch corresponding to desired setting [FIG. 1], [NOTE 1]

FIG. 1
NOTE 1
Switch may be mounted so 150 position is at top instead of bottom

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
NOTE 1 \\
Switch may be mounted so 150 position is at top instead of bottom
\end{tabular}} \\
\hline Issue 4 & Mar & 1982 \\
\hline \multicolumn{2}{|l|}{365-170-000} & DLP \\
\hline \multicolumn{2}{|l|}{Page 1 of 1} & 562 \\
\hline
\end{tabular}

\section*{SELECT TERMINATING IMPEDANCE ON CHANNEL UNIT}

\begin{tabular}{|c|c|c|c|c|}
\hline | \(\begin{aligned} & \text { U } \\ & \square\end{aligned}\) & \(\cdots\) & & - & \(\square\) \\
\hline & \(\stackrel{\square}{\circ}\) & & 0 & - \\
\hline & \(\infty\) & \[
\left|\begin{array}{c}
\underset{\sim}{\infty} \\
\underset{\sim}{2}
\end{array}\right|
\] & 0 & \\
\hline \(\square\) & + & & 0 & \(\left|\begin{array}{l}W \\ \square\end{array}\right|\) \\
\hline & \(\bigcirc\) & & 0 & \(\left\lvert\, \begin{aligned} & \square \\ & \square\end{aligned}\right.\) \\
\hline \[
1 \begin{aligned}
& \square \\
& \square
\end{aligned}
\] & \(\cdots\) & & 0 & \\
\hline
\end{tabular}
(EXAMPLE - 2.2 DB LOSS)

\(\square \square)
(EXAMPLE - 1.0 O8 IN BOTH T AND R)
FIG. 1

\section*{SET ATTENUATOR OPTIONS}

FIG. 2

FIG. 3

FIG. 4
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 4 & 565 \\
\hline
\end{tabular}
[2] Find combination of numbers on attenuator that adds to desired transmit and receive settings. Refer to FIG. 5 for single (\(T\) or R) attenuator or to FIG. 6 for dual (T and R) attenuator

\section*{[3] See Warning 1. Use} KS-21838, L1 extractor
[FIG. 7] or longnose pliers to position plugs beside each number used in step 2. Position other plugs beside 0 used in step 2. See NOTE 1
 SET THIS ATTENUATOR FOR 2.2 DB

FIG. 5

BOTH T AND R SIDE SHOW . 2 AND . 8 FOR TOTAL OF 1.0 DB IN BOTH DIRECTIONS

FIG. 6

FIG. 7

NOTE 1

\section*{[4] Find} combination of numbers on attenuator that adds to desired setting
[5] Depress switches next to each number used in step 4. Depress switches away from each number not used in step 4. See FIG. 8

* shaded area represemts shitch depressed at THAT SIDE. ATTEMUATOR IS SET FOR 4.3 DB
\((3.2+0.8+0.2+0.1)\)

FIG. 8
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 3 of 4 & 565 \\
\hline
\end{tabular}

DARK AREA OM SUITCH IMOICATES POSITIOM. ATTEMUATOR IS SET FOR 4.3 D8 (4.0+0.2+0.1)

FIG. 9
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & OLP \\
\hline PAGE 4 of 4 & 565 \\
\hline
\end{tabular}

comnector plugs may appear as SINGLE OPTIONS OR AS GROUP OF OPTIONS

PLUG IS IMSERTED INTO SLOT CORRESPONDIMS TO DESIRED OPTION. AS SHOWM, OPTIONS
E AND H SELECTED

* BLACK SHOWING * WHITE SHOWING option not selected option selected

FIG. 1
- OM SOME UNITS. AN OPTION IS SELECTED 8Y BLACK SHOHIMG Imstead of white showimg. Exanple: 4-hire tandem unit option e is selected by black showimg

FIG. 2
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 566 \\
\hline
\end{tabular}

SET CONNECTOR PLUG OPTIONS

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 567 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set NBOC on channel unit [NOTE 1]
[FIG. 1] [DLP.564]
[2] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP.565]
[3] From information on WORD or CLRC, set options 16, SD, L, S [NOTE 1] [FIG. 1] [DLP-566]

TCI Library: www.telephonecollectors.info
[1] From information on WORD or CLRC, set NBOC [FIG. 1] [NOTE 1]
[DLP.564]
[2] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP-565]

[1] From information on WORD or CLRC, set transmit and
receive attenuators, \(T\) and
R [FIG. 1] [DLP-565] \(\qquad\)
[2] From information on WORD or
CLRC, set options EPD, EPI
EG, and IG [FIG. 1] [NOTE 1] [DLP-566] \(\qquad\)

[1] From information on WORD or CLRC, set NBOC on channel unit [NOTE 1] [FIG. 1] [DLP.564]
[2] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP.565]
[3] From information on WORD or CLRC, set options CN6, ON9, SD, SLI, and SL2 [NOTE 1][FIG. 1] [DLP-566]

[1] Read NOTES 1 and 2
[2] From information on WORD or CLRC, set NBOC on channel unit [FIG. 1] [DLP-564]
[3] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP-565]
[4] From information on WORD or CLRC, set options LXI, LX2, CN9, RG, LS, and 19 (or G5) [FIG. 1] [DLP-566]

FIG. 1

\section*{SET OPTIONS 2FXO CHANNEL UNIT (J98726BE) 900 OHM OR (J98726SS-1) 600 OHM}

[1] From information on WORD or CLRC, set transmit (\(T\)) and receive (\(R\)) attenuators [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set NBOC [NOTE 1]
[FIG. 1] [DLP.564]
[3] From information on WORD or CLRC, set options 16 and SD [NOTE 1]

[1] From information on WORD or CLRC, set transmit (\(T\)) and receive (\(R\)) attenuators [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set NBOC [NOTE 1]
[FIG. 1] [DLP-564]
[3] From information on WORD or CLRC, set option BT [NOTE 1]
[FIG. 1] [DLP.566]

[1] From information on WORD or CLRC, set NBOC on channel unit [NOTE 1] [FIG. 1] [DLP.564]
[2] From information on WORD or CLRC, set transmit and receive attenuators, T and R [FIG. 1] [DLP.565]

[1] Read NOTES 1 and 2
2] From information on WORD or CLRC, set NBOC on channel unit [FIG. 1 or 2] [DLP-564]

3] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1 or 2] [DLP.565]

[4] From information on WORD or CLRC,
set options EG, EPD, EPI, \(\mathbf{Z}, \mathbf{x}, \mathbf{Y}\)
CN, and 1 c [FIG. 1 or 2] [DLP-566]

NOTES
1. The two channel units shown in FIG. 1 and 2 represent different list numbers of 2 EL
2. Each option on this unit is selected by inserting plug into black side (white showing) of applicable connector section
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 576 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set NBOC [FIG. 1] [NOTE 1]
[DLP-564]
[2] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP-565]

3] From information on WORD or CLRC, set options 4ESS, STA, CN6, ON9, SL1, and SL2 [FIG. 1] [NOTE 1] [DLP-566]
SET OPTIONS 2FXSLS CHANNEL UNIT (J98726BK)
Each option on this unit is selected by inserting plug into black side (white showing) of applicable connector section
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 577 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set NBOC [FIG. 1] [NOTE 1]
[DLP.564]
[2] From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP-565] \(\qquad\)
3) From information on WORD or CLRC, set options LXI, ON9, LX2, LS, and 4ESS [FIG. 1] [NOTE 1] [DLP.566]

[1] From information on WORD or CLRC, set NBOC [FIG. 1] [NOTE 1] [DLP.564]
2) From information on WORD or CLRC, set transmit and receive attenuators, \(T\) and R [FIG. 1] [DLP.565]

3] From information on WORD or CLRC
set options DP, 1G, and SD
[FIG. 1][NOTE 1] [DLP-566]

[1] From information on WORD or CLRC, set transmit and
receive attenuators, \(T\) and
R [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set options MB, MPD,
and MG [NOTE 1] [FIG. 1] [DLP-566]

[1] From information on WORD or CLRC, set transmit and
receive attenuators, \(T\) and
R [FIG. 1] [DLP-565]
[2] From information on WORD or CLRC, set options EG, EPI, EPD, and 16 [NOTE 1] [FIG. 1] [DLP-566]

- OIfferent list mmbeas of this chanwel unit may differ slightly from fig.

FIG. I
Each option on this unit is selected by inserting plug into black side (white showing) of applicable connector section
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 581 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set NBOC [FIG. 1] [NOTE 1] [DLP-564]
[2] From information on WORD or CLRC, set attenuators (\(T\) and \(R\)) [FIG. 1] [DLP-565] \(\qquad\)

NOTE 1 Each option on this unit is selected by inserting plug into black side (white showing) of applicable connector section
FIG. 1

\section*{SET OPTIONS ES2T CHANNEL UNIT (J98726BR)}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 582 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set NBOC [FIG. 1] [NOTE 1]
[DLP-564]
[2] From information on WORD or CLRC, set attenuators \(\mathbf{T}\) and \(\mathbf{R}\) [FIG. 1] [DLP-565]

[1] From information on WORD or CLRC, set NBOC [NOTE 1]
[FIG. 1] [DLP-564]
[2] From information on WORD or CLRC, set attenuators ATI and AT2 [FIG. 1] [DLP.565] \(\qquad\)
[3] From information on WORD or CLRC, set options ON, X, Z, Y, IG, EPD, EPI and EG [NOTE 1] [FIG. 1] [DLP.566] \(\qquad\)

[1] From information on WORD or
CLRC, set T and R
attenuators [FIG. 1]
[DLP-565]
[2] From information on WORD or CLRC, set option \(\mathbf{J 2}\) (SD) [NOTE 1] [FIG. 1] [DLP-566]

FIG. 1
NOTE 1
Option SD is selected by inserting plug into black side (white showing) of J 2
\begin{tabular}{|l|l|}
\hline Is sue 4 & MAR 1982 \\
\hline 365.170 .000 & DLP \\
\hline PAGE 1 of 1 & 585 \\
\hline
\end{tabular}

SET OPTIONS ES3 CHANNEL UNIT (J98726BU)
[1] From information on WORD or
CLRC, set \(T\) and \(R\) attenuators
[FIG. 1] [DLP-565]
(2] From information on WORD or CLRC set options SD, MF, and SX-SX [NOTE 1] [FIG. 1] [DLP-566]

FIG. 1

NOTE 1 Options SD, MF, and \(5 \times\) are selected by inserting plug into black side (white showing) of applicable J2 section. Options DP and LP are selected by inserting plug into white side (black showing)
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 586 \\
\hline
\end{tabular}
[1] Install option plug on D side of J3 jack [FIG. 1]
[2] From information on WORD or CLRC, option J2 to select desired option per faceplate stamping. See FIG. 1 and NOTE 1 \(\qquad\)

FIG. 1
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
NOTE 1 \\
Top to bottom plug positions of J2 correspond to top to bottom stamping on faceplate. As shown, EC IN and SLC-96 have been selected
\end{tabular}} \\
\hline Issue 4 & \multicolumn{2}{|l|}{MAR 1982} \\
\hline \multicolumn{2}{|l|}{365-170-000} & DLP \\
\hline Page 1 of & 1 & 58 \\
\hline
\end{tabular}
[1] Verify oow has correct list number [see TABLE A]
[2] Install option plug on D4 side of SLC/D4 jack to expose white [FIG. 1] \(\square\)
[3] From information on WORD or CLRC, set options FLBO,
DSU/CSU, and CRTC [FIGS. 1 and 2]

[4] Install option plug on 0 side of DT jacks to expose black per FIG. 1 STEP 3* \(\ddagger\)

\(\qquad\)

this side SELECTED

side view of rocker shitch
* AS SHOUN. CSU in Is SELECTED

FIG. 2
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & OLP \\
\hline PAGE 1 of 1 & 588 \\
\hline
\end{tabular}

SET OPTIONS OCUDP CHANNEL UNIT (J98726DB)
[1] Use screwdriver to set all switches in SI next to numbers on switch [see FIG. 1]
[2] From information on WORD or CLRC, set pointer on \(\mathbf{S 2}^{2}\) to \(\mathbf{5}\) for 2.4 kilobit rate, or 6 for 4.8 kilobit rate, or 8 for 9.6 kilobit rate [see FIG. 1]

FIG. 1
\begin{tabular}{|c|c|c|}
\hline 1ssue 4 & MAR & 1922 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 589 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set TRMT and RCV at tenuators [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set options J2, J3, J4, SD, J6, and J7 [TABLE A] [FIG. 1] [DLP-566]
[3] From information on WORD or CLRC, set slide switches SL, BW, and HT [FIG. 1] [DLP.563]
[4] From information on WORD or CLRC, set terminating impedance for TRM (S 1) and RCV (\(\mathbf{S 2 \text {) [FIG. 1] [DLP-562] }}\)

SET OPTIONS 4FXS CHANNEL UNIT (J98726SB)
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 590 \\
\hline
\end{tabular}
(1) From information on WORD or CLRC, set TRMT and RCV attenuators [FIG. 1] [DLP-565]
[2] From information on WORD or CLRC, set options J4, J5, LXI, GS, RG, and LS [FIG. 1] [DLP-566]
[3] From information on WORD or CLRC set slide switches HT, BW, and SL [FIG. 1] [DLP-563]
[4] From information on WORD or CLRC, set terminating impedance for S1 and 52 [FIG. 1] [DLP-562]

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 591 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC,
set TRMT and RCV attenuators [FIG. 1] [DLP-565]
[2] From information on WORD or CLRC, set options J2, J3, J4, A, and B [TABLE A] [FIG. 1] [DLP-566]
[3] From information on WORD or CLRC, set slide switches S1, S2, S5, R/R1, R2, and \(\mathbf{Z}\) [FIG. 1] [DLP-563]
[4] From information on WORD or CLRC, set switch NR [FIG. 1]
[5] From information on WORD or CLRC, set RLP balancing potentiometer [FIG. 1]
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ TABLE A } \\
\hline \multicolumn{1}{|c|}{ optiow } & \multicolumn{1}{|c|}{\begin{tabular}{c}
mirte \\
SHORIMG
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
elack \\
shomime
\end{tabular}} \\
\hline J3 & \begin{tabular}{l}
Precision network \\
selected
\end{tabular} & \begin{tabular}{l}
Compromise network \\
selected
\end{tabular} \\
\hline J4 & \begin{tabular}{l}
Make busy after \\
2.5 seconds
\end{tabular} & No conditioning \\
\hline J5 (A/B) & \begin{tabular}{l}
Capacitors \\
selected
\end{tabular} & \begin{tabular}{l}
Capacitors not \\
selected
\end{tabular} \\
\hline J2* & LB0C In & LBOC Out \\
\hline J2 may exist on some earlier units \\
\hline
\end{tabular}

* j2 may exist on some earlier units

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 592 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set trmig and rCVG attenuators [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set options A, B, and C [FIG. 1] [NOTE 1] [DLP-566]
[3] From information on WORD or CLRC, set slide switches SL, BW, and HT [FIG. 1] [DLP.563]
[4] From information on WORD or CLRC, set NOR-REV switch [FIG. 1]
[5] From information on WORD or CLRC, set DX balancing potentiometer RLP [FIG. 1]
[6] From information on WORD or CLRC, set terminating impedance for \(T\) and R [FIG. 1] [DLP.562]

NOTE 1
FIG. 1

Each plug option on this unit is selected by inserting plug into black side (white showing) of applicable connector section
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 593 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set transmitter attenuator [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set options \(\mathbf{Y}, \mathbf{Z , ~ E G ,}\) \(\mathbf{S}, \mathbf{T}, \mathbf{R}, \mathbf{E}, \mathbf{W}\), and V [FIG. 1] [TABLE A] [DLP-566]

FIG. 1

SET OPTIONS 4TDM CHANNEL UNIT (J98726SF)
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 594 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set XMT and RCV attenuators
[FIG. 1] [DLP-565]
[2] From information on WORD or CLRC.
set options J2, J3, J4, J5, and J6
[TABLE A] [FIG. 1] [DLP-566]

[3] From information on WORD or CLRC, set slide switches S1, S2, S4, R/R1,
R2, and \(\mathbf{Z}\) [FIG. 1] [DLP-563]

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{table a} \\
\hline OPTIOW & \[
\begin{aligned}
& \text { WHITE } \\
& \text { SHOWING }
\end{aligned}
\] & black SHOWING \\
\hline J2 & \begin{tabular}{l}
1300 Ohm Range -48 V \\
2000 Ohm Range -72V
\end{tabular} & Not Required \\
\hline J3 & Precision Network selected & Compromise Network selected \\
\hline J4 & Make Busy Line Trunk & No Conditioning \\
\hline J5* & LBOC IN & LBOC OUT \\
\hline J6 & -72V & -48V \\
\hline \multicolumn{3}{|l|}{* J5 may exist on some earlier units} \\
\hline
\end{tabular}

* js may exist on some earliter units

FIG. 1
[1] From information on WORD or CLRC, set trmt atten and rcv atten [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set options TRMT GAIN, RCV GAIN, and J4 [FIG. 1] [TABLE A] [DLP-566] \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline OPTION & \[
\begin{aligned}
& \text { WHITE } \\
& \text { SHOWING }
\end{aligned}
\] & slack
Showing \\
\hline J2 & \[
\begin{aligned}
& \text { Receive Anplifier } \\
& \text { Gain }=5 \mathrm{~dB}
\end{aligned}
\] & \begin{tabular}{l}
Receive Amplifier \\
Loss \(=2 \mathrm{~dB}\)
\end{tabular} \\
\hline J3 & Transmit Amplifier Gain \(=8.8 \mathrm{~dB}\) & Transmit Amplifier Gain \(=1.7 \mathrm{~dB}\) \\
\hline J4 & 30 MA Sealing Current to \(\mathrm{T} \cdot \mathrm{R} / \mathrm{Tl} \cdot \mathrm{Rl}\) & No Sealing Current \\
\hline
\end{tabular}

FIG. 1

SET OPTIONS 4TO CHANNEL UNIT (J98726SH)
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR & 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 596 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC,
set TRMT and RCV attenuators
[FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set J 2 option [NOTE 1] [FIG. 1] [DLP-566]
[3] From information on WORD or CLRC, set slide switch Si [FIG. 1] [DLP-563]

FIG. 1

SET OPTIONS 2TO CHANNEL UNIT (J98726SJ)

NOTE 1
J2 option is selected (30 mA
sealing current) by inserting plugs into black sides (white showing)
\begin{tabular}{|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 597 \\
\hline
\end{tabular}

1] From information on WORD or CLRC set TRMT and RCV attenuators [FIG. 1] [DLP-565]
[2] From information on WORD or CLRC, set options J2, J3, J4, J6 and LS [TABLE A] [FIG. 1] [DLP-566]

[3] From information on WORD or CLRC. set slide switches \(\mathbf{5 1}\), \(\mathbf{5 2}\), 54 (loaded or nonloaded), R/R1, R2, and \(\mathbf{Z}\) [FIG. 1] [DLP.563]

\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ TABLE A } \\
\hline option & \multicolumn{1}{|c|}{\begin{tabular}{c}
mitit \\
SHownc
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
Black \\
showing
\end{tabular}} \\
\hline J2 & \begin{tabular}{l}
Loop Resistance \\
greater than \\
600 ohms
\end{tabular} & \begin{tabular}{l}
Loop Resistance \\
less than \\
600 ohms
\end{tabular} \\
\hline J3, RG & \begin{tabular}{l}
Make Busy (ring \\
ground)
\end{tabular} & No Conditioning \\
\hline J4 & Ground Start & Loop Start \\
\hline J6 & \begin{tabular}{l}
Precision Network \\
selected
\end{tabular} & \begin{tabular}{l}
Compromise Network \\
selected
\end{tabular} \\
\hline 33, LS & \begin{tabular}{l}
Make Busy (loop \\
closure)
\end{tabular} & No Conditioning \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 Of 1 & 598 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set TRMT GAIN and RCV GAIN attenuators [FIG. 1] [DLP.565]
[2] From information on WORD or CLRC, set options J2 and J3 [FIG. 1] [TABLE A] [DLP.566]
[3] From information on WORD or CLRC, set slide switches SL, BW, and HT [FIG. 1] [DLP-563]
[4] From information on WORD or CLRC, set terminating impedance for TRMT and RCV [FIG. 1] [DLP-562]
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ TABLE A } \\
\hline option & \multicolumn{1}{|c|}{\begin{tabular}{c}
mitre \\
showime
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
BLACK \\
stowing
\end{tabular}} \\
\hline J2 & \begin{tabular}{l}
30 mA sealing \\
current to \\
T-R/T1-R1
\end{tabular} & \begin{tabular}{l}
No Sealing \\
Current
\end{tabular} \\
\hline J3 & \begin{tabular}{l}
Attenuation In \\
Transmit Path \\
of 7dB
\end{tabular} & \begin{tabular}{l}
No 7dB \\
Attenuation
\end{tabular} \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 1 of 1 & 599 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel
[2] Get test equipment listed in TABLE A
[3] Connect cords as shown in FIG. 1, Page 2 \(\qquad\)
[4] Depress POwER switches on TRANSMITTER and RECEIVER
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS-20909 \\
RECEIVER & KS-20908 \\
D3/DA DATAPORT TEST & ED-3C792 \\
INTERFACE UNIT & \\
LOOPBACK COMNECTOR & ED-3C793 \\
CABLE ASSEMBLY & COMCODE \\
& 842725111 \\
\hline
\end{tabular}
[7] Refer to SD-3C304 to repair bay wiring
[6] Replace oIU and repeat steps 3 through 5
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Issue 4 } & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 4 & 600 \\
\hline
\end{tabular}

F16. I
[8) Set switches on test sets per TABLE B
[9] Set transmitter output and RECEIVER INPUT switches to far LOGIC \(\qquad\)

10] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold DSU pushbutton for 1 second

DSU LOOPBACK TEST lamp lights. BYTE PATTERN lamps 2 thru 7 on RECEIVER flicker when pushbutton is released

Counter operate COUNTER MODE switch to RESET
\(\qquad\) indicates 000
[11] On RECEIVER momentarily

[12] After 15 minutes operate COUNTER MODE switch to HOLD

TABLE B
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{TRAMSMITEER} & \multicolumn{2}{|l|}{RECEIVER} \\
\hline SwITCA & Positiow & SWITCH & POSITION \\
\hline data rate & Same as customer & data rate & Same as customer \\
\hline FUNCTION & LOOPBACK TEST & \begin{tabular}{l}
COUNTER \\
TEST MORD
\end{tabular} & BLOCK ERRORS LOOPED \\
\hline HODE & REPEAT & ChanNel or SUBRATE CMANNEL & SINGLE \\
\hline
\end{tabular}

PERFORM DSU LOOPBACK TEST FROM OCUDP
\begin{tabular}{|c|c|c|}
\hline 1ssue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 3 of 4 & 600 \\
\hline
\end{tabular}
[14] Set TRANSMITtER OUTPUT and RECEIVER INPUT switches to near logic \(\qquad\)
[15] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold DSU pushbutton for 1 second

dSU LOOPBACK TEST lamp lights. BYTE pattern lamps 2 thru 7 on Receiver flicker when pushbutton is released
[16] On RECEIVER momentarily operate COUNTER MODE switch to RESET

Counter

[17] After 15 minutes operate COUNTER MODE switch to HOLD \(\qquad\)
[19] Disconnect and put away test equipment
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365 \(170-000\) & DLP \\
\hline PAGE 4 of 4 & 600 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel
[2] Get test equipment listed in TABLE A

\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS.20909 \\
RECEIVER & KS-20908 \\
D3/DA DATA PORT & ED-3C792 \\
TEST INTERFACE & \\
UNIT & \\
LOOPBACK & ED.3C793 \\
CONNECTOR & \\
CABLE ASSEMBLY & COMCODE \\
& 842725111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365 \cdot 170-000\) & DLP \\
\hline PAGE 1 of 5 & 601 \\
\hline
\end{tabular}

FIG. 1

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{table B} \\
\hline \multicolumn{2}{|c|}{TRANSMITTER} & \multicolumn{2}{|l|}{receiver} \\
\hline SWITCH & position & SWITCH & Position \\
\hline data rate & Same as customer & data rate & Same as customer \\
\hline function & \[
\begin{aligned}
& \text { LOOPBACK } \\
& \text { TEST }
\end{aligned}
\] & COUNTER & BIT ERRORS \\
\hline MODE & REPEAT & CHMNEL or SUBRATE CHATNEL & SIMGLE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 601 \\
\hline
\end{tabular}
[10] Set transmitter output and RECEIVER INPUT SWitches to FAR LOGIC \(\qquad\)
[11] On transmitter momentarily depress RESET pushbutton then depress and hold CHAN pushbutton for 1 second
[12] On RECEIVER momentarily
operate COUNTER MODE switch to RESET \(\qquad\)

lamp lights. BYTE
PATTERN lamps 2 thru
7 on RECEIVER flicker
when pusbutton is
released
\(\qquad\) Counter indicates 000
[13] After 15 seconds operate COUNTER MODE switch to HOLD

[14] Counter should indicate 000

16] If no further datapo:t tests are needed, disconnect and put away test equipment
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 4 of 5 & 601 \\
\hline
\end{tabular}
[17] Set TRAMSMITTER OUTPUT and receiver input switches to mear logic
[18] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold for 1 second CHAN pushbutton

[19] On RECEIVER momentarily operate COUNTER MODE switch to RESET

Counter indicates 000

20] After 15 seconds operate COUNTER MODE switch to HOLD \(\qquad\) [22] If no further dataport tests are needed, disconnect and put away test equipment
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 601 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel
[2] Get test equipment listed in table a
[3] Connect cords as shown in FIG. 1, Page 2

4] Depress POWER switches on tRANSMITTER and RECEIVER
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS-20909 \\
RECEIVER & KS-20908 \\
D3/DA DATAPORT & ED-3C792 \\
TEST INTERFACE & \\
UNIT & \\
LOOPBACK & ED.3C793 \\
CONOECTOR & \\
CABLE ASSEMBLY & COWCODE \\
& 842725111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 5 & 602 \\
\hline
\end{tabular}

FIG. 1

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE B} \\
\hline \multicolumn{2}{|c|}{trensmitten} & \multicolumn{2}{|l|}{receiver} \\
\hline Surtor & position & Smita & position \\
\hline data rate & Same as customer & data rate & Same as customer \\
\hline FUNCTION & LOOPBACK TEST & COUNTER TEST MORD & BIT ERRORS LOOPED \\
\hline MODE & REPEAT & CHANEEL or SUBRATE CHANNEL & SINGLE \\
\hline
\end{tabular}

TCI Library: www.telephonecollectors.info
PERFORM OCU LOOPBACK TEST(S) FROM OCUDP
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 602 \\
\hline
\end{tabular}
[10] Set transmitter output and RECEIVER IMPUT switches to far logic
[11] On TRANSmitter momentarily depress RESET pushbutton then depress and hold ool pushbutton for 1 second
[12] On RECEIVER momentarily operate COUNTER MODE switch to RESET
\(\qquad\)
od LOOPBACK TEST
lamp lights, BYTE
pattern lamps 2
thru 7 on RECEIVER
flicker when
 pushbutton is released

13] After 15 seconds operate COUNTER MODE switch to HOLD \(\qquad\)

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365.170 .000 & DLP \\
\hline PAGE 4 of 5 & 602 \\
\hline
\end{tabular}
[17] Set TRANSMITTER OUTPUT and RECEIVER INPUT switches to NEAR LOGIC \(\qquad\)
[18] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold 0 OU pushbutton for 1 second

OCU LOOPBACK TEST
lamp lights
byTE PATTERN lamps
[19] On RECEIVER momentarily operate COUNTER MODE switch to RESET

[20] After 15 seconds operate COUNTER MODE SWitch to HOLD
\(\qquad\)
[21] Counter should indicate 000
 on RECEIVER flicker
[1] Make sure there is no service on channel
[2] Get test equipment listed in TABLE A
[3] Connect cords as shown in FIG.] Page 2
[4] Depress POWER switches on TRANSMITTER and RECEIVER
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{table a} \\
\hline TRANSMITTER & KS-20909 \\
\hline RECEIVER & KS-20908 \\
\hline D3/D4 DATAPORT & ED-3C792 \\
\hline TEST INTERFACE & \\
\hline \multicolumn{2}{|l|}{UNIT} \\
\hline LOOPBACK & ED-3C793 \\
\hline \multicolumn{2}{|l|}{CONEECTOR} \\
\hline Cable assembly & COmCODE \\
\hline & \[
842725111
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 5 & 603 \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 5 & 603 \\
\hline
\end{tabular}
[8] Set switches on test sets per TABLE B and depress termimate switch if available on Page 4 receiver. terminated lamp lights if available
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{table B} \\
\hline \multicolumn{2}{|c|}{TRMASMITTER} & \multicolumn{2}{|l|}{receiver} \\
\hline SWITCH & Position & SwITOM & POSITION \\
\hline data rate & Same as customer & data rate & Same as customer \\
\hline FUNCTION & LOOPBACK TEST & \begin{tabular}{l}
COUNTER \\
TEST MORD
\end{tabular} & BLOCK ERRORS LOOPED \\
\hline OUTPUT & BIPOLAR & CHAMELEL Or SUBRATE CHANEEL & SIMGLE \\
\hline MODE & REPEAT & INPUT & BIPOLAR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 603 \\
\hline
\end{tabular}
[9] Insert the ED-3C793 connector
so that white plug is on top
 COUNTER MODE SWitch to HOLD
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 4 of 5 & 603 \\
\hline
\end{tabular}
[14] Insert the ED-3C793 connector so that red plug is on top
[15] On TRaNsmitter momentarily depress RESET pushbutton then depress and hold DSU pushbutton for 1 second

[16] On RECEIVER momentarily operate COUNTER MODE switch to RESET

dSU LOOPBACK TEST lamp lights. BYTE pattern lamps 2 thru 7 on receiver flicker when pushbutton is released pushbutton is released

\begin{tabular}{|c|c|c|}
\hline Pssue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 603 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel \(\qquad\)
[2] Get test equipment listed in TABLE A

[3] Connect cords as shown in FIG. 1, Page \(\qquad\)

4] Depress POWER switches on TRANSMITTER and RECEIVER \(\qquad\) [6] Replace oru and repeat steps 3 through 5
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS-20909 \\
RECEIVER & KS-20908 \\
D3/DA DATAPORT & ED-3C792 \\
TEST INTERFACE & \\
UNIT & \\
LOOPBACK & ED-3C793 \\
CONNECTOR & \\
CABLE ASSEMBLY & COMCODE \\
& 842725111 \\
\hline
\end{tabular}
[7] Refer to SD-3C304 to repair bay wiring
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 5 & 604 \\
\hline
\end{tabular}

FIC. 1
[8] Set switches on test sets per TABLE B and depress terminate switch if available On RECEIVER. TERMINATED lamp lights if available

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE B} \\
\hline \multicolumn{2}{|c|}{TRMNSMITTER} & \multicolumn{2}{|l|}{receiver} \\
\hline switar & positiow & SWITOH & positiow \\
\hline data rate & Same as customer & data rate & Same as customer \\
\hline FUNCTION & LOOPBACK TEST & COUNTER TEST MORD & BIT ERRORS LOOPED \\
\hline OUTPUT & BIPOLAR & CHANNEL Or SUBRATE CHANNEL & SINGLE \\
\hline MODE & REPEAT & IMPMT & BIPOLAR \\
\hline
\end{tabular}

\section*{PERFORM CHAN LOOPBACK TEST(S) FROM DSODP}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 604 \\
\hline
\end{tabular}
[10] Insert the ED-3C793 connector so that red plug is on top
[11] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold CHAN pushbutton for 1 second

CHAN LOOPbACK TEST
lamp lights. BYte pattern lamps 2 thru 7 on RECEIVER flicker when
pushbutton is released
[12] On RECEIVER momentarily operate COUNTER MODE switch to RESET

Counter indicates 000
[13] After 15 seconds operate COUNTER MODE switch to HOLD \(\qquad\) no

[17] Insert the ED-3C793 connector so that white plug is on top
[18] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold Chan pushbutton for 1 second

CHAN LOOPBACX TEST
[19] On RECEIVER momentarily operate COUNTER MODE switch to RESET MODE indicates 000
 COUNTER MODE switch to HOLD \(\qquad\) [22] If no further dataport tests are needed, disconnect and put away test equipment
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 604 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel
[2] Get test equipment
\(\qquad\) listed in TABLE A
[3] Connect cords as shown in FIG. 1, Page 2
[4] Depress POWER switches on TRANSMITTER and RECEIVER \(\qquad\)
table A
TRANSMITTER KS 20909 RECEIVER KS-20908
D3/DA DATAPORT
ED-3C792
TEST INTERFACE
LNIT
LOOpBaCK
ED - 3 C793
COMNECTOR
Cable assemaly comcoot
842725111
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 5 & 605 \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 5 & 605 \\
\hline
\end{tabular}
[8] Set switches on test sets per TABLE B and depress terminate switch if available on RECEIVER. TERMIMATED lamp lights if available

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{table B} \\
\hline \multicolumn{2}{|c|}{transmitter} & \multicolumn{2}{|l|}{receiver} \\
\hline SuItce & Positiow & Sulitor & positiow \\
\hline data rate & Same as customer & data rate & Same as customer \\
\hline FUNCTION & LOOPBACK TEST & COUNTER & BIT ERRORS \\
\hline OUTPUT & bipolar & CHANEL OR SUBRATE CHANNEL & SINGLE \\
\hline MODE & REPEAT & INPUT & BIPOLAR \\
\hline
\end{tabular}

\section*{PERFORM OCU LOOPBACK TEST(S) FROM DSODP}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 605 \\
\hline
\end{tabular}
[10] Insert the ED. 3 C793 connector
so that red plug is on top
[11] On TRansmitter momentarily depress RESET pushbutton then depress and hold ocu pushbutton for 1 second

[12] On RECEIVER momentarily operate COUNTER MODE operate to RESET

Counter
[13] After 15 seconds operate COUNTER MODE switch to HOLD \(\qquad\) OCU LOOPBACK TEST lamp lights. BYTE PATTERN lamps 2 thru 7 on RECEIVER flicker when pushbutton is released

\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 4 of 5 & 605 \\
\hline
\end{tabular}
[17] Insert the ED-3C793 connector so that white plug is on top
[18] On TRANSMITTER momentarily depress RESET pushbutton then depress and hold oCU pushbutton for 1 second

[19] On RECEIVER momentarily operate COUNTER MODE switch to RESET

Counter indicates 000
[20] After 15 seconds operate COUNTER MODE switch to HOLD \(\qquad\)
[22] If no further dataport tests are needed, disconnect and put away test equipment
\begin{tabular}{|l|l|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 605 \\
\hline
\end{tabular}

Yake sure there is no service on channel
- Set test equipment listed in TABLE A
\(i=\) Sontact far end and request their assistance.
hey will need one ED-3C793 connector
[4 \%onnect cords as shown in FIG. 1, Page 2
[5: Lepress POWER switches on TRANSMITTER and RECEIVER

[6] Set switches on test sets per TABLE B

\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS-20909 \\
RECEIVER & KS-20908 \\
D3/DA DATAPORT TEST & ED-3C792 \\
INTERFACE UNIT & \\
LOOPBACK CONNECTOR & ED.3C793 \\
CABLE ASSEMBLY & COWCODE \\
& 842725111 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{4}{|c|}{ TABLE B } \\
\hline \multicolumn{2}{|c|}{ TRANSMITER } & \multicolumn{2}{|c|}{ RECEIVER } \\
\hline \multicolumn{1}{|c|}{ SWITOH } & POSITION & \multicolumn{1}{|c|}{ SWITCH } & POSITION \\
\hline DATA RATE & 9.6 & DATA RATE & 9.6 \\
OUTPUT & BIPOLAR & INPUT & BIPOLAR \\
FUNCTION & LOOPBACK & COUNTER & BIT ERRORS \\
& TESTS & TEST WORD & LOOPED \\
MODE & REPEAT & CHANNEL OT & SINGLE \\
& & SUBRATE CHANNEL & \\
\hline
\end{tabular}

PERFORM DSODP LOOPBACK TEST FROM DSODP
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 4 & 606 \\
\hline
\end{tabular}

FIG. 1

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 4 & 606 \\
\hline
\end{tabular}
[12] Depress terminate switch on receiver if RECEIVER has that switch
terminated lamp lights if available, also BYTE PATTERN
lamps 2 thru 7 flicker
[13] On RECEIVER momentarily operate COUNTER MODE switch to RESET

[14] After 15 seconds operate COUNTER MODE switch to HOLD

[15] Have far end remove ED-3C793. If no further dataport tests are needed, disconnect test equipment
[1] Make sure there is no service on channel
[2] Get test equipment listed in TABLE A
[3] Contact far end and request their assistance. They will need one ED-3C793 connector

4] Connect cords as shown in FIG. 1, Page 2

5] Depress POWER switches on TRANSMITTER and RECEIVER

['6] Set switches on test sets per TABLE B
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS-20909 \\
RECEIVER & KS-20908 \\
D3/DA DATAPORT TEST & ED-3C792 \\
INTERFACE UNIT & \\
LOOPBACK CONNECTOR & ED-3C793 \\
CABLE ASSEMBLY & COMCODE \\
& 842725111 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{4}{|c|}{ TABLE B } \\
\hline \multicolumn{2}{|c|}{ TRANSMITTER } & \multicolumn{2}{|c|}{ RECEIVER } \\
\hline SWITCH & POSITION & \multicolumn{2}{|c|}{ SWITON } \\
\hline DATA RATE & 9.6 & DATA RATE & 9.6 \\
OUTPUT & FAR LOGIC & INPUT & FAR LOGIC \\
FUNCTION & 2047 & COUNTER & BIT ERRORS \\
& & TEST WORD & 2047 \\
MODE & REPEAT & CHANNEL OR & SINGLE \\
& & SUBRATE CHANNEL & \\
\hline
\end{tabular}

PERFORM DSODP LOOPBACK TEST FROM OCUDP
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 3 & 607 \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR & 1982 \\
\hline 365.170-000 & DLP \\
\hline PAGE 2 of 3 & 607 \\
\hline
\end{tabular}
[7] Have far end insert ED-3C793 into DSODP
byte pattern lamps 2 under test
 thru 7 flicker
[8] On RECEIVER momentarily operate COUNTER MODE switch to RESET

Counter shows 000

[9] After 15 seconds operate COUNTER MODE switch to HOLD
[11] Have far end remove ED-3C793. If no further dataport tests are needed, disconnect and put away test equipment
[1] Get and condition KS-14510 volt-ohm-milliameter [DLP-521]
or equivalent (may also use
KS-20599 digital voltmeter)
[2] Prepare meter to measure up to 5 V dc

3] Connect one meter lead to frame ground and other lead to OIU as shown in FIG. \(\qquad\)
[5] Replace
OIU and
repeat from step 3

[6] Notify engineering that clock is not connected to bank

F16. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & Mar & 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 608 \\
\hline
\end{tabular}

SUMMARY
Make test connections per FIG. 1 and measure noise for requirements per TABLE B.
[1] Obtain test equipment per table a
[2] Check calibration of CaU [DLP-518] [NOTE 1]
[3] Check calibration of noise measuring set (NMS) [DLP-519]
[4] On NWS set FUNCTION switch to N/M 600/900, NORM-DAMP switch to DAMP, DBRN switch to 85, and weighting network for C-MESSAGE weighting \(\qquad\)
[5] On PTS-CaU set REJ FLT switch to IN, TEST switch to CHAN LINE, and SEND LEVEL dB switch switch to 0
[6] Make test connections per FIG. 1
[7] See TABLE B. Measure for requirements for each position of SEND LEVEL DB switch. NMS DBRN switch must be rotated counterclockwise for on-scale reading each time \(\qquad\) reding
\(\qquad\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{table A} \\
\hline EQUIPMENT REQUIRED & RECOMMENDED TYPE \\
\hline Noise measuring set (NMS) & J94003C \\
\hline D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU) & \[
\begin{aligned}
& \text { J98718AL PTS } \\
& \text { J98718AJ CAU }
\end{aligned}
\] \\
\hline 1 Patch Cord & P6AD \\
\hline 2 Patch Cords & 3P6A \\
\hline 1 Patch Cord & 3P6D \\
\hline
\end{tabular}

\section*{NMS calibration} checked, NMS/PTS switches set, and connections made
[8] Observe NMS for requirements of TABLE B
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ TABLE B } \\
\hline swita & positiows & REQuirements \\
\hline & 0 & 56 \\
dBrnc or less \\
Send level & 10 & 46 \\
dBrnc or less \\
dB & 20 & 36 dBrnc or less \\
on CaU & 30 & 26 dBrnc or less \\
& 40 & 22 dBrnc or less \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
NOTE 1 \\
When using cau for a series of tests, the calibration requires checking only once unless CAU is suspected of causing trouble
\end{tabular}} \\
\hline Issue 4 & MAR & 19 \\
\hline \multicolumn{2}{|l|}{365-170-000} & DL \\
\hline PAGE 1 of & 2 & \\
\hline
\end{tabular}

PERFORM LOOPED CHANNEL BANK DISTORTION TROUBLE TEST

\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\cline { 1 - 2 } PAGE 2 of 2 & 609 \\
\hline
\end{tabular}

\section*{SUMMARY}

Make test connections per FIG. 1. Measure crosstalk on one channel while sending tone into one interfering channel (TABLE B). Then measure again while sending tone into second interfering channel. Requirement is 27 dBrnc or less.
[1] Obtain test equipment per TABLE A
[2] On TPU locate option stamping for digroup to be tested [FIG. 1
[3] Determine which option (DID, SEO, or D2) has been selected by location of white plug
[4] Go to portion of TABLE B for that option and select channel to be measured \(\qquad\)
[5] Using TABLE \(B\), determine two most likely interfering channels

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline \multicolumn{1}{|c|}{ Equipment required } & RECOMmenoed TYPE \\
\hline Noise Measuring Set (NMS) & J94003C \\
\hline \begin{tabular}{l}
D3/D4 PORTABLE TEST SET (PTS) With \\
Channel Access Unit (CAU)
\end{tabular} & \begin{tabular}{l}
J98718AL PTS \\
J98718AJ CAU
\end{tabular} \\
\hline 2 Patch Cords & 3P6A \\
\hline 2 Patch Cords & P6AD \\
\hline 1 Patch Cord & 3P6D \\
\hline
\end{tabular}

Test and interfering channels known
[6] Are channel units provided in Yes and on one interfering channel [NOTE 1]

[7] Insert channel units in these channels

NOTE 1
Channels are identified by number designations below slots; A or Test and interfering channels must be in same digroup
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 5 & 610 \\
\hline
\end{tabular}

BOTH DIGROUPS SET FOR D3/DA

DIGROUP B \(=\) DID DIGROUP \(\mathrm{A}=\mathrm{D} 2\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{table B} \\
\hline \[
\begin{aligned}
& \text { aweel } \\
& \text { aptinc } \\
& \text { option }
\end{aligned}
\] & Cunnel TO BE measured (1-12) & \multicolumn{2}{|l|}{most likely INTERFERIMG aramels} & CHANEEL TO BE measured (13-24) & \multicolumn{2}{|l|}{most likely interfering CHNWELS} \\
\hline DID & \[
\begin{array}{r}
\hline 1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & 24
13
14
15
16
17
18
19
20
21
22
23 & 12
1
2
3
4
5
6
7
8
9
10
11 & 13
14
15
16
17
18
19
20
21
22
23
24 & 1
2
3
4
5
6
7
8
9
10
11
12 & 24
13
14
15
16
17
18
19
20
21
22
23 \\
\hline D2 & \[
\begin{array}{r}
1 \\
2 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & 15
16
17
18
19
20
21
22
23
24 & \[
\begin{array}{r}
12 \\
11 \\
9 \\
10 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24
\end{aligned}
\] & \[
\begin{array}{r}
12 \\
11 \\
9 \\
10 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}
\] & \[
\begin{aligned}
& 24 \\
& 23 \\
& 21 \\
& 22 \\
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { D4 OR } \\
& \text { D3 } \\
& \text { (SEQ) }
\end{aligned}
\] & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & 9
9
10
11 & 23
24
1
2
3
4
5
6
7
8
9
10 & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24
\end{aligned}
\] & 12
13
14
15
16
17
18
19
20
21
22
23 & 11
12
13
14
15
16
17
18
19
20
21
22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 5 & 610 \\
\hline
\end{tabular}

On CNU:
[8] Check calibration of
CAU [DLP-518] [NOTE 2\}
[9] Set TEST switch to CHN LIME
[10] Set rej flt switch to \(\alpha\)
[11] Set SEND LEVEL switch
to 0
On NMS:
[12] Check calibration of NMS [DLP-519]
[13] Verify that weighting network is installed with C-MESSAGE designation aligned with WTG
[14] Set Function switch to \(\quad\) 600/900
[15] Set NORM-DAMP switch to DAMP
[16] Set DRRN switch to 50

NOTE 2
When using CAU for a series of tests, the calibration requires checking only once unless CAU is suspected of causing trouble
\begin{tabular}{|l|l|}
\hline Issue 4 & MAR 1982 \\
\hline 365. 170 & \\
\hline
\end{tabular}
365-170-000 \(\quad\) DLP

Page 3 of \(5 \quad 610\)
[17] Make test connections per
FIG. 2, Page 5. Connect to channel
to be measured and connect
to one interfering channel
[TABLE B, Page 2]
[18] Rotate DBRN switch on NMS counterclockwise for
on-scale reading
[19] Observe NMS for level of 27 dBrnc or less
[20] Connect to other interfering channel and observe NMS for level of 27 dBrnc or less

FIG. 2

PERFORM LOOPED CHANNEL BANK CROSSTALK TROUBLE TEST
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 610 \\
\hline
\end{tabular}

\section*{SUMMARY}

Make test connections per FIG. 1. Insert pin plug into R CODE On RU to test receiver gain. CaU must indicate in black area for receiver gain or green-black-green area for net loss
[1] Obtain test equipment per TABLE A
\begin{tabular}{l|l|l|}
\hline 1 Patch Cord & P6AD \\
\hline Pin Plug & KS-19531 \\
\hline
\end{tabular}
[2] Check calibration of CAU [DLP-518] [NOTE 1]
[3] On CAU set TEST to CHAN LINE and REJ FLT to OUT
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{TABLE A} \\
\hline EOUIPMENT REQUIRED & RECOMmeved TYPE \\
\hline D3/D4 PORTABLE TEST SET (PTS) With Channel Access Unit (CAU) & J98718AL PTS J98718AJ CAU \\
\hline 2 Patch Cords & 3P6A \\
\hline 1 Patch Cord & P6AD \\
\hline Pin Plug & KS - 19531 \\
\hline
\end{tabular}
[4] Make test connections per FIG. 1
[5] On CaU set SEND LEVEL DB switch to OFF
[6] At digroup to be tested, test receiver gain by inserting pin plug into R CODE jack on RU and depress \(A C O\) On \(A O U\) \(\qquad\)

[7] Observe CAU for indication in black area

NOTE 1

a series of tests the calibration requires checking only once unless cau is suspected of causing trouble

PERFORM LOOPED CHANNEL BANK RECEIVER GAIN AND NET LOSS TROUBLE TEST
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365 \cdot 170-000\) & DLP \\
\hline PAGE 2 of 3 & 611 \\
\hline
\end{tabular}

\section*{PERFORM LOOPED CHANNEL BANK RECEIVER GAIN AND NET LOSS} trouble test

NOTE 2
All transmission tests can be performed on looped bank before removing connections
Issue 4 MAR 1982
\begin{tabular}{|l|l|}
\hline 365-170-000 & DLP \\
\hline
\end{tabular}
PAGE 3 of \(3 \quad 611\)
\begin{tabular}{|l|l}
\hline \multicolumn{1}{c|}{ SUMARYY } & \begin{tabular}{l}
tested. Requirements are 1 count in 5 minutes at 63 dBrnc \\
Make test connections per FIG. I. Verify that test \\
equipment is connected at other office for channel being
\end{tabular}
\end{tabular} \begin{tabular}{l}
and no more than 5 counts at 58 dBrnc. Verify that test \\
indications at other office are within specified limits.
\end{tabular}
[1] Get test equipment
per TABLE A \(\qquad\)
[2] On D3/D4 PTS, set switches as follows:
REJ FLT to OUT
SEND Level to off test to Chan line \(\qquad\) 6 H impulse counter calibrated and switches set on D3/D4-PTS
[3] Check calibrations of impulse set [DLP-522]
 D \({ }^{\text {D }}\)

[4] Set test set switches as follows:
dial-meas to meas
IMPULSES ABOVE DBRN to 63 \(\qquad\)

[5] Make test connections per FIG. 1
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 3 & 612 \\
\hline
\end{tabular}

FIG. 1

PERFORM LOOPED IMPULSE NOISE TROUBLE TEST
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 2 of 3 & 612 \\
\hline
\end{tabular}

On 6H Impulse Counter:
[7] Rotate DURING INTERVAL
fully clockwise and then counterclockwise to 5 MINUTES
[8] Observe that counter indicates
0 to 1 after 5 minutes
[9] Set Impulse above dBra
switch to 58

[10] Rotate DURING INTERVAL fully clockwise and then counter-
clockwise to 5 mimutes \(\qquad\) cates

SUMMARY
Make test connections per FIG. 1 and measure noise. Level should be 23 dBrnc or less
[1] Get test equipment per
TABLE A \(\qquad\)
[2] Check calibration of noise measuring set (NMS) [DLP-519]
[3] Make test connections per Fig. 1

[4] On PTS-CAU set REJ FLT switch to OUt, SEND LEVEL DB to OFF, and test switch to CHAN LINE
[5] On NMS, set FUNCTION switch NM 600/900, NORM-DAMP switch to DAMP, DBRN switch to 85, and weighting network so that c-message is aligned with WTG
[6] On NMS rotate DBRN switch counterclockwise for on-scale reading

PERFORM LOOPED IDLE CIRCUIT NOISE TROUBLE TEST
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\cline { 1 - 2 } PAGE 1 of 2 & 613 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\cline { 1 - 2 } 365.170 .000 & DLP \\
\cline { 1 - 1 } PAGE 2 of 2 & 613 \\
\hline
\end{tabular}
[1] Obtain D4 signaling path test set (SPTS) from SPTS slot in maintenance bank
[2] Select test channel in digroup under test
[3] Remove channel unit (if installed)

(4) Insert SpTs in channel slot selected in step 2
[5] See TABLE A and perforn tests 1 and 2 setting switches to positions indicated \(\qquad\)
\begin{tabular}{|c|c|c|l|}
\hline \multicolumn{4}{|c|}{ TABLE A } \\
\hline TEST & siniton & rosition & Lanes LIEMTED \\
\hline 1 & A & 1 & a only \\
& B & 0 & \\
\hline 2 & A & 0 & B only \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 614 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel \(\qquad\)
[2] Get test equipment listed in TABLE A
[3] Contact far end and request their assistance.
They will need one ED-3C793 connector
[4] Connect cords as shown in FIG. 1, Page 2

[6] Set switches on test sets per TABLE B
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{4}{|c|}{ TABLE B } \\
\hline \multicolumn{2}{|c|}{ TRANSMITTER } & \multicolumn{2}{|c|}{ RECEIVER } \\
\hline SWITCH & POSITION & \multicolumn{1}{|c|}{ SWITCH } & POSITION \\
\hline DATA RATE & 9.6 & DATA RATE & 9.6 \\
OUTPUT & FAR LOGIC & INPUT & FAR LOGIC \\
FUNCTION & 2047 & COUNTER & BIT ERRORS \\
& & TEST WORD & 2047 \\
MODE & REPEAT & CHANNEL OR & SINGLE \\
& & SUBRATE CHANNEL & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS -20909 \\
RECEIVER & KS -20908 \\
D3/D4 DATAPORT TEST & ED -3C792 \\
INTERFACE UNIT & \\
CABLE ASSEMBLY & COMCODE \\
& 842725111 \\
LOOPBACK CONNECTOR & ED -3C793 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365 \cdot 170-000\) & DLR \\
\hline PAGE 1 of 3 & 615 \\
\hline
\end{tabular}

FIG. 1
[8] On RECEIVER equipped with
BYtE PATTERN lamps 2
thru 7 flicker and, if
terminate pushbutton, depress
TERMINATE pushbutton

available, TERMIMATED
lamp lights
[9] On RECEIVER momentarily operate COUNTER MODE Switch to RESET

Counter shows 000

[10] After 15 seconds operate COWNTER MODE switch to HOLD \(\qquad\) [12] Have far end remove ED-3C793. If no further dataport tests are needed, disconnect test equipment
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 3 & 615 \\
\hline
\end{tabular}
[1] Make sure there is no service on channel
[2] Get test equipment listed in TABLE A \(\qquad\)
[3] Contact far end and request their assistance. They will need one ED-3C793 connector
[4] Connect cords as shown in FIG. 1, Page 2

\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline TRANSMITTER & KS-20909 \\
RECEIVER & KS-20908 \\
D3/D4 DATAPORT TEST & ED.3C792 \\
INTERFACE UNIT & \\
CABLE ASSEMBLY & COMCODE \\
& 842725111 \\
LOOPBACK CONNECTOR & ED.3C793 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ TABLE B } \\
\hline \multicolumn{2}{|c|}{ TRANSMITER } & \multicolumn{2}{|c|}{ RECEIVER } \\
\hline SWITOH & POSITION & \multicolumn{1}{|c|}{ SWITOH } & POSITION \\
\hline DATA RATE & 9.6 & DATA RATE & 9.6 \\
OUTPUT & BIPOLAR & INPUT & BIPOLAR \\
FUNCTION & LOOPBACK & COUNTER & BIT ERRORS \\
& TESTS & TEST WORD & LOOPED \\
MODE & REPEAT & CHANNEL OR & SINGLE \\
& & SUBRATE CHANNEL & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 3 & 616 \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 3 & 616 \\
\hline
\end{tabular}
[7] Depress terminate switch on receiver if RECEIVER has that switch

TERMIMATED lamp lights if available, also BYTE PATTERN lamps 2 thru 7 flicker
[8] On RECEIVER momentarily operate COUNTER mODE switch to RESET

[9] After 15 seconds operate COUNTER MODE switch to HOLD \(\qquad\)

10] Observe counter for 000 indication \(\qquad\)
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170.000 & DLP \\
\hline PAGE 3 of 3 & 616 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{6}{*}{decal located ON BACK OF faceplate} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MODE } \\
& \text { SELECT }
\end{aligned}
\]} & \\
\hline & M1 & M2 & \\
\hline & 0 & 0 & EC; 04 \\
\hline & 0 & 1 & EC: SLC-96, MODE II \\
\hline & 1 & 0 & NON EC: D4, SLC-96 MODE I, III \\
\hline & 1 & 1 & EC: SLC-96, MODE I, III \\
\hline
\end{tabular}

FIG. I
[1] From information in office records, set rocker switches Sl (EC IN/OUT)
and S2 (MODE SELECT M1/m2).
[See FIG. 1 and 2]
[2] From information in of fice records, set plug option J 2 (EC IN/OUT). See NOTES 1 and 2 and DLP-566

FIG. 2

NOTES
1. On early versions of channel unit J2 (EC IN/OUT) will be factory wired option.
2. Plug should be in top (white showing) for EC IN and in bottom (black showing) for EC OUT
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Issue 4 } \\
\hline \(365-170-000\) & MAR 1982 \\
\hline PAGE 2 of 2 & 617 \\
\hline
\end{tabular}

FIG. 1
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ 1ssue 4 } & MAR 1982 \\
\hline \(365.170-000\) & DLP \\
\hline PAGE 1 of 2 & 618 \\
\hline
\end{tabular}
[1] From information in office records, set rocker switches listed in TABLE A.
See FIG. 1 and 2
[2] From information in of fice records, set plug options Jl0l D/T and J103 EC - IN/OUT. See NOTE 1, FIG. 1, and DLP-566 \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{table A} \\
\hline Switcr & mum & positiows \\
\hline S101 & EC & In/OUT \\
\hline S102 & MODE SELECT & 1/0 \\
\hline & m2 & 1/0 \\
\hline \[
\begin{gathered}
\text { S103* } \\
\text { (3 switches) }
\end{gathered}
\] & & DSU/CSU CRTC/OUT OUT/CM \\
\hline \multicolumn{3}{|l|}{* Sl03 will not exist on later units} \\
\hline
\end{tabular}

FIG. 2
J103 (EC - IN/OUT)
will be factory
wired option on
early versions of
channel unit
\begin{tabular}{|l|l|}
\hline Issue 4 & MAR 1982 \\
\hline
\end{tabular}
365-170-000
PAGE 2 of 2

\section*{SUMARY}

Make test connections per FIG. 1, Page 2. Verify that test equipment is connected at other office for channel being tested. Requirements are no more than 1 count in 5 minutes
at 63 dBrac and no more than 5 counts at 58 dBrnc. Verify that test indications at other office are within specified limits
[1] Get test equipment per TABLE A
[2] On D3/D4 PTS, set switches as follows: REJ FLT to OUT SEND LEVEL to OFF TEST to CHAN LINE

[3] Check calibration of impulse counter [DLP-522]
[4] Set test set switches on Impulse Counter as follows:
DIAL-MEAS to MEAS
IMPULSES ABOVE DBRN to 63
[5] Make test connections per FIG. 1
 Page 3
[6] Verify that test equipment is connected at other end

FIG. I

PERFORM END-TO-END IMPULSE NOISE TEST
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 2 of 3 & 619 \\
\hline
\end{tabular}

On 6H Impulse Counter:
[7] Rotate DURING INTERVAL fully clockwise and then counterclockwise to 5 minutes
[8] Observe that counter indicates
0 or 1 after 5 minutes

ABOVE DARN
switch to 58
 requirements met at both ends
[10] Rotate during interval fully clockwise and then counterclockwise to 5 MINUTES \(\qquad\)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Issue 4 } & MAR 1982 \\
\hline \(365-170-000\) & DLR \\
\hline PAGE 3 of 3 & 619 \\
\hline
\end{tabular}

Make test connections per FIG. l, Page 3.
Verify that test equipment is connected at other office for channel being tested. Requirements are given in TABLE B, Page 4. Verify that test indications at other office are within specified limits
[1] Obtain test equipment per TABLE A [NOTE 1]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{table A} \\
\hline ECUIMMENT RECUIRED & \\
\hline D3/D4 PORTABLE TEST & J98718AL (PTS) \\
\hline SET (PTS) with Channel & J98718AJ (CAU) \\
\hline Access Unit (CAU) & \\
\hline Noise Measuring Set (NMS) & J94003C or Equivalent \\
\hline 2 Patch cords & 3P6A \\
\hline 1 Patch Cord & P6AD \\
\hline 1 Patch Cord & 3P6D \\
\hline
\end{tabular}

\section*{PERFORM END-TO-END DISTORTION TEST}

NOTE 1
Test equipment and procedures for DID, D2, and D3 banks are given in BSPs for those banks
\begin{tabular}{|c|c|c|}
\hline Issue A & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 4 & 620 \\
\hline
\end{tabular}
[2] On D3/D4 PTS set switches as follows:

REJ FLT to IN SEND LEVEL DB to 0 TEST to CHAN LINE
[3] Check calibration of NMS [DLP-519]
[4] Set NMS switches as follows:
FLUNCTION to 600 or
to \(600 / 900\) (on 3C NMS)
NORM-DAMP to DAMP
DBRN to 85
C-message to align with wTg \(\qquad\)

NMS calibrated and switches set on NAS and D3/D4 PTS
[5] Make test connections per FIG. 1, Page 3 [See NOTE 2]

NOTE 2
With test equipment connected as shown in FIG. 1, you can transmit and receive at same time: therefore, the plug need not be moved between transmit and receive positions
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 4 & 620 \\
\hline
\end{tabular}

FIG.
NOLSE MEASURING SET

PERFORM END-TO-END DISTORTION TEST
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 3 of 4 & 620 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 4 of 4 & 620 \\
\hline
\end{tabular}
[1] Get equipment listed in TABLE A
[2] Find section in TABLE \(B\) that corresponds to type bank at far end (use only that section throughout the test) \(\qquad\) AND
[3] For channel under test determine two most likely interfering channels. See TABLE B

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ table A } \\
\hline \multicolumn{1}{|c|}{ equipment required } & recommended trpe \\
\hline Noise measuring set (NMS) & J94003A, B, or C \\
D3/D4 Portable test & J98718AL PTS - \\
SET with channel access & J98718AJ cau \\
Unit (CAU) & \\
2 Patch Cords & 3P6A \\
2 Patch Cords & P6AD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE B} \\
\hline FAR-ED BaNK & \begin{tabular}{l}
CHNEL \\
BEINS \\
MEASURED \\
(1-12)
\end{tabular} & mOST LIKELY INTERFERING CMONELS & \begin{tabular}{l}
Chanel. \\
BEING \\
measured \\
(13-24)
\end{tabular} & MOST LIKELY
INTERFERING
CHANELS \\
\hline D1D & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & \(\begin{array}{rr}24 & 12 \\ 13 & 1 \\ 14 & 2 \\ 15 & 3 \\ 16 & 4 \\ 17 & 5 \\ 18 & 6 \\ 19 & 7 \\ 20 & 8 \\ 21 & 9 \\ 22 & 10 \\ 23 & 11\end{array}\) & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24
\end{aligned}
\] & \\
\hline D2 & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24
\end{aligned}
\] & \[
\begin{array}{rr}
12 & 24 \\
11 & 23 \\
9 & 21 \\
10 & 22 \\
1 & 13 \\
2 & 14 \\
3 & 15 \\
4 & 16 \\
5 & 17 \\
6 & 18 \\
7 & 19 \\
8 & 20
\end{array}
\] \\
\hline D3 OR D4 & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & & \[
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23 \\
& 24 \\
& \hline
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 5 & 621 \\
\hline
\end{tabular}

On cau:
[4] Check calibration of CaU [DLP-518]
[5] Set switches as follows: REJ FLT to OUT SEND LEVEL to 0 test to Chan lime

On noise measuring set (NSS):
[6] Check calibration
of NMS [DLP.519]
[7] Make sure 497A network is installed with
 C-message designation aligned with WTG \(\qquad\)
[8] Set switches as follows: Function to \(\mathbf{~ 6 0 0 / 9 0 0}\) for 3C Network CAU and \(\rightarrow\)
 (or 600 for 3A) NORM-DAMP to MORM DBRN to 50
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365.170-000\) & DLP \\
\hline PAGE 2 of 5 & 621 \\
\hline
\end{tabular}
[10] Make test connections for first interfering channel [See FIG. l,
Page 5] \(\qquad\)
[11] Have far end measure crosstalk level [see TABLE C]

[12] Repeat steps 10 and 11 for second interfering channel
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ TABLE C } \\
\hline \begin{tabular}{c}
Trme baw \\
at FAR ED
\end{tabular} & FAR end requirements \\
\hline D3 or D4 & 27 dBrnc or less \\
D2 & 27 dBrnc or less \\
DID & 32 dBrnc or less \\
\hline * First interfering channel is \\
allowed 29 dBrnc or less \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 5 & 621 \\
\hline
\end{tabular}
[16] Make test connections per FIG. 1, Page 5
to channel being measured
[17] Verify far end is connected to first interfering channel
[18] Measure and note crosstalk level by rotating DBRN switch for on-scale reading [See TABLE D]

[20] Are requirements met at near (D4) end
[19] Verify far end is connected to second interfering channel while you measure level. See TABLE D
\begin{tabular}{|c|c|}
\hline & table d \\
\hline TYPE BANK AT FAR END & O4 REOUIREMENTS \\
\hline D3 or D4 & 27 dBrnc or less \\
\hline D2 & 27 dBrnc or less* \\
\hline D10 & 32 dBrnc or less \\
\hline \multicolumn{2}{|l|}{* First interfering channel is allowed 29 dBrac or less} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 4 of 5 & 621 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline I s sue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 5 of 5 & 621 \\
\hline
\end{tabular}

\section*{SUMMARY}

Loop bank by inserting pin plug in appropriate LP jack at LIU and insert pin plug into \(R\) CODE jack on RU Remove TPU and make connections per FIG. 1. Adjust receive attenuators in channel unit for \(-3.0 \pm 0.1 \mathrm{dBm}\)
indication on TMS. Remove pin plug from \(R\) CODE jack on RU and adjust signal generator for \(-3.0 \pm 0.05 \mathrm{dBm}\) output Adjust transmit attenuators for \(-3.0 \pm 0.1 \mathrm{dBm}\) indication on TMS
[1] Obtain equipment per TABLE A and condition TMS [DLP-539]
[2] Verify TMS controls are set as follows: FUNCTION tO SEND + TALK + REC, LINE to REC, REC IMP to 600 ohms, and REC LEVEL to 0

3] Verify channels to be adjusted are out of service

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ TABLE a } \\
\hline \multicolumn{1}{|c|}{ equipment required } & \multicolumn{1}{|c|}{ RECOMMENDED TYPE } \\
\hline \begin{tabular}{l}
Transmission \\
Measuring Sets (TMS)
\end{tabular} & TTS 4BNH or Equivalent \\
\hline Signal Generator & HP3550 or Equivalent \\
\hline \begin{tabular}{l}
Channel \\
Unit Extender
\end{tabular} & J98726MF \\
\hline 2 Patch Cords & 3P6D \\
\hline 2 Pin Plugs & KS -19531 \\
\hline
\end{tabular}
[4] Insert pin plug into \(R\) CODE jack on RU and depress ACO switch on \(A\)

[7] Install channel unit extender into test channel slot and insert 4eemer channel unit into extender
[6] Unseat TPU from slot \(\qquad\)
5] On LIU, insert pin plug into LP-A or LP-B jack corresponding to digroup containing test channels \(\qquad\)

DETERMINE ATTENUATOR SETTINGS FOR 4 WIRE E\&MER CHANNEL UNIT
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 2 & 622 \\
\hline
\end{tabular}
[8] Make test connections per FIG. 1
[9] Set signal generator impedance to 600 ohms and output to send \(-3.0 \pm 0.05 \mathrm{dBm} 1004 \mathrm{~Hz}\) tone \(\qquad\)
1

[12] Adjust transmit attenuators on channel unit for \(-3.0 \pm 0.1 \mathrm{dBm}\) indication on TMS
[13] Remove test connections and channel unit extender \(\qquad\)
[14] Install TPU and CEEMER channel unit into bank \(\qquad\)
[15] Remove pin plug from LP jack

FIG. I- 4EMER Channel Unit Inserted into Extender
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 2 & 622 \\
\hline
\end{tabular}
equipment per TABLE \(A\) and verify circuit is seized [NOTES 1 and 2]
\([2]\) Install channel
unit extender into
channel slot to be
tested and install
channel unit into
extender

[5] Refer to FIG 3
and 4, Page 3 to make
connections and set
CAU controls as follows:
TEST to CHAN DROP and
SEND LEVEL DB to 0
[NOTE 3]
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ TABLE A } \\
\hline EQUIPMENT REQUIRED & RECOMENDED TYPE \\
\hline \begin{tabular}{l}
Channel Access \\
Unit (CAU) in \\
D3/D4 Portable \\
Test Set (PTS)
\end{tabular} & \begin{tabular}{l}
J98718AJ CAU in \\
J98718AL PTS
\end{tabular} \\
\hline \begin{tabular}{l}
Channel Unit \\
Extender
\end{tabular} & \begin{tabular}{l}
J98726 MF, \\
List 2
\end{tabular} \\
\hline Test Cords & \begin{tabular}{l}
P6AD, 3P6A, and \\
3P6D (2)
\end{tabular} \\
\hline \begin{tabular}{l}
Transmission \\
Measuring Set
\end{tabular} & \begin{tabular}{l}
TTS4BNH or \\
equivalent
\end{tabular} \\
\hline \begin{tabular}{l}
Signal Generator \\
(oscillator)
\end{tabular} & \begin{tabular}{l}
HP3550B or \\
equivalent
\end{tabular} \\
\hline \begin{tabular}{l}
Channel unit extenders used for \\
ES2 and ES3 channel units are as \\
follows: \\
ES2 - J98726mM
\end{tabular} \\
\hline
\end{tabular}
[4] Refer to
FIG. 1 and 2, page 2 to make connections and, on CAU set TEST to CHAN DROP [NOTE 3]

\section*{NOTES}
1. Circuit can be seized and held for testing 2 -wire fxo units by installing SPTS in far end bank (same channel slot) and setting switches \(\mathbf{A}\) and \(\mathbf{B}\) to \(\mathbf{0}\). Circuit can be seized and held for testing 2-wire FXS by installing SPTS in far end bank (same channel slot) with switch \(A\) set to 1 and switch \(B\) set to 0 and using TMS with holding coil at FXS end
2. P6AD cord should be connected before seizing circuit.
3. TMS or OSC connected to channel unit extender will indicate or should be set for actual circuit level. Connected to PTS, TMS will indicate 0 dBm for -8.5 dBm carrier XMT TLP and OSC should be set for 0 dBm for +4.0 dBm carrier RCV TLP
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 1 of 3 & 623 \\
\hline
\end{tabular}
make Connections at d4 CHANNEL BANK FOR DROP SIDE TESTING

FIG. 1-Connections for Transmit Direction

FIG. 2 - Testing in Transmit Direction
MAKE CONNECTIONS AT D4 CHANNEL BANK FOR DROP SIDE TESTING
\begin{tabular}{|c|c|c|}
\hline Is sue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 3 & 623 \\
\hline
\end{tabular}

TCI Library: www.telephonecollectors.info
MAKE CONNECTIONS AT D4 CHANNEL BANK FOR DROP SIDE TESTING
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 3 & 623 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{table a} \\
\hline OHNWEL & OPTIOWS RECUIRED \\
\hline \[
\begin{array}{|l|}
\hline \text { DS0 DP } \\
\text { J98726 DA }
\end{array}
\] & J2 to EC IN and D4 (white concealed) and J3 to \(D\) (white showing) \\
\hline \[
\begin{array}{|l|}
\hline 56 \text { DSO DP } \\
\text { J98726 DD }
\end{array}
\] & Jlol to \(D\) (white showing) S1 - EC OUT, and S2-M1 \(=1\) and \(\mathrm{M} 2=0\). \\
\hline \multicolumn{2}{|l|}{* For testport operation, 56 DSO DP should not have error correction options selected} \\
\hline
\end{tabular}

\section*{NOTES}
1. Each testport requires two channel slots to be equipped in a D4 bank for a maximum of twelve testports per D4 digroup
2. Three types of channel units may be required for DACS testport operation. They are: OOU DP or 56 OCU DP for dataport and 4ELWD for all other types of circuits
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of 1 & 624 \\
\hline
\end{tabular}
SET OPTIONS 4E\&MD CHANNEL UNIT (J98726CG)

NOTE 1
If drop side
measurements are
required at this
time to set \(T\) and \(R\)
attenuators, DLP-623
may be used
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 625 \\
\hline
\end{tabular}
[1] See WARNING 1. Verify maintenance bank is List WD or WE [NOTE 1]
[2] Option od channel unit as required per CLRC or WORD document for intended service. For DSO Units, set switches as follows:
J98726DA - J2 to EC OUT, J98726DD - S1 to EC OUT and 52 to \(\mathrm{ML}=1\) and \(\mathrm{m}_{2}=0\)
[3] Set switch on mb alm to alarm disab and install channel unit into CUT slot
[4] On IB MBTS, depress button 9 (green showing) and verify all other buttons have black showing
[5] Option OIU-2 for local timing (LOC T) and install in oru slot of maintenance bank
[6] Obtain equipment per TABLE \(A\) and make connections per FIG.

\section*{TEST DATAPORT CHANNEL UNITS IN D4 MAINTENANCE BANK}

\section*{NOTE 1}

List WD or WE banks
do not have -48
volts on pin 31 of aut slot

[8] Depress power switches on Transmitter and RECEIVER

[9] Set switches on test sets per TABLE B
[10] Verify that CLOCK indicators on test sets are lighted [NOTE 2]
[11] Verify BYTE PATTERN indicators 2 thru 8 light on RECEIVER, then depress ALL is On TRANSMITTER \(\qquad\)
\(\qquad\) \(\rightarrow\)

\section*{POWER ON}
lamps lighted

[14] Obtain another channel unit and repeat procedure. Return faulty unit for repair
[12] Observe that RECEIVER counter display counts errors, then momentarily operate COUNTER MODE switch to RESET \(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE B} \\
\hline \multicolumn{2}{|r|}{TRANSMITTER} & \multicolumn{2}{|l|}{RECEIVER} \\
\hline SWITCH & POSITION & SWITCH & POSITION \\
\hline RESET & Depress & COUNTER MODE & COUNT \\
\hline MODE & REPEAT & COUNTER & ERRORS BIT \\
\hline FUNCTION & TEST WORD 2047 & TEST WORD & 2047 \\
\hline OUTPUT & LOGIC FAR & INPUT & LOGIC FAR \\
\hline DATA RATE & \[
\begin{aligned}
& 2.4-\mathrm{J} 98726 \mathrm{DB} \mathrm{L1} \\
& 4.8 \text { - J98726DB L2 } \\
& 9.6 \text { - J98726DB L3 } \\
& 56 \text { - J98726DE }
\end{aligned}
\] & DATA RATE & Same as setting for TRANSMITTER \\
\hline
\end{tabular}

NOTE 2
If clock indicators do not light, test connections and OIU-2 should be checked
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Issue 4 } & MAR 1982 \\
\hline \(365-170-000\) & OLP \\
\hline PAGE 2 of 4 & 626 \\
\hline
\end{tabular}
[15] On TRANSMITTER, set switches as follows: FUNCTION to LOOPBACK test and output to LOGIC NEAR
[16] On transmitter, depress reset then LOOPbaCk TEST OCU
[17] On RECEIVER, set switches as follows: TEST WORD to LOOPED and INPUT to LOGIC NEAR \(\qquad\)

\(\qquad\)

18] On RECEIVER, momentarily operate COUNTER MODE to RESET and observe counter for 15 seconds

TEST DATAPORT CHANNEL UNITS IN DU MAINTENANCE BANK
\begin{tabular}{|c|c|}
\hline Issue 4 & MAR \\
\hline 1982 \\
\hline 365-170-000 & DLR \\
\hline PAGE 3 of 4 & 626 \\
\hline
\end{tabular}
[26] Depress POWER switches on TRANSMITTER and RECEIVER

[27] Set switches on test sets per TABLE C \(\qquad\)
[28] Verify that Clock indicators on test sets are lighted [NOTE 3]
[29] Install channel unit into CUT slot and verify it is connected per FIG. 1, Page 1 \(\qquad\)
\(\qquad\) \(\longrightarrow\)

Using dual channel oscilloscope, monitor clock signal at OIU connector terminals 11 and 12 for EXT timing or at terminals 51 and 52 , and 53 and 54 for LOC or LT timing.
[1] Obtain dual channel oscilloscope with invert switch on one channel and an add display mode
] Energize oscilloscope and set each channel to 5 volts per vertical division and \(20 \mu \mathrm{sec}\) per horizontal division \(\qquad\)
[5] Determine external clock source cable length to bank
[6] Connect oscilloscope probes to terminals 11 and 12 of office interface unit (oiv) connector at back of bank
[7] Refer to FIG. 2, 3, 4 , or 5, Pages 2,3 , and 4 for cable length determined in Step 5, and monitor external clock pulses [NOTE 1]
 [3] What type
of timing option
is selected on
oru faceplate

FIG. 1 - Clock Pulses at OIU Output Terminals 51-52 and 53-54 With 133 ohm Termination

* 133 ohm resistor plus 0 to 6 J98726AL-1, L2 OIU-2 \({ }^{\text {s }}\)
\(\ddagger 133\) ohm resistor plus one J98726AL-1, Ll or one J98726AL-1, L1, Mod A and 0 to 5 J98726AL-1, L2 OIU \({ }^{S}\)

FIG. 2 - Clock Pulses - Coble Length 50 Feet or Less
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 2 of 4 & 627 \\
\hline
\end{tabular}
- 133 ohm resistor plus 0 to 6 J98726AL-1, L2 OIU-2s
\(\ddagger 133\) ohm resistor plus one J98726AL-1, Ll or one J98726AL-1, L1, mod A and 0 to 5 J98726AL.1, L2 OIU.2s

FIG. 3 - Clock Pulses - Cable Length 500 Feet
- 133 ohm resistor plus 0 to 6 J98726AL-1, L2 OIU-2s
\(\ddagger 133\) ohm resistor plus one J98726AL-1, Ll or one J98726AL-1, L1, mod A and 0 to 5 J98726AL•1, L2 OIU-2 \({ }^{\text {s }}\)

FIG. 4 - Clock Pulses - Cable Length 1000 Feet
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR & 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 3 of 4 & 627 \\
\hline
\end{tabular}

VERIFY CLOCK SIGNAL IS PRESENT AT BANK, USING OSCILLOSCOPE

- 133 ohm resistor plus 0 to 6 J98726AL-1, L2 OIU- \(2^{\text {S }}\) \(\ddagger 133\) ohm resistor plus one J98726AL-1, Ll or one J98726AL-1, L1, mod A and 0 to 5 J98726AL-1, L2 OIU-2 \({ }^{\text {S }}\)

FIG. 5-Clock Pulses - Cable Length 1500 Feet
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 4 of 4 & 627 \\
\hline
\end{tabular}

\section*{SUMMARY}

Using voltmeter at rear of bank, measure for -72 volts at pin 16 of each channel unit slot connector that requires channel unit with 72 volt option.
[1] Obtain KS-14510 VOM or KS-20599
digital voltmeter, or equivalent and prepare meter to read
-72 volts dc

2] At rear of bank, measure between ground (with VOM red lead) and pin 16 (with VOM black lead) of channel slot containing channel unit requiring 72 volt option \(\qquad\)

[4] Repeat Steps 2 and 3 on all channel slots being turned up requiring \(\mathbf{- 7 2}\) volts
[5] Refer trouble to engineering
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170-000\) & DLP \\
\hline PAGE 1 of & 1 & 628 \\
\hline
\end{tabular}
[1] Obtain SPTS and install in any channel unit slot. Verify far end installs SPTS in same channel slot

[3] Have far end perform steps of TABLE A and you observe lamps per TABLE A

\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ TABLE A } \\
\hline STEP & \begin{tabular}{c}
SPTS SWITCN \\
POSITIONS AT \\
OWE ENO
\end{tabular} & \begin{tabular}{c}
LAMPS LIEHTED \\
AT OTHER END
\end{tabular} \\
\hline 1 & \begin{tabular}{l}
A to \\
B to
\end{tabular} & A only \\
\hline 2 & \begin{tabular}{l}
A to \\
B to
\end{tabular} & B only \\
\hline
\end{tabular}
[5] Remove SPTS and install original channel
units at both ends if applicable
\begin{tabular}{|c|c|c|}
\hline Issue 4 & MAR 1982 \\
\hline \(365-170.000\) & DLP \\
\hline PAGE 1 of 1 & 629 \\
\hline
\end{tabular}
[1] From information on WORD or CLRC, set options JI and J2 [NOTE 1]
[FIG. 1] [DLP-565]

FIG. I

NOTE 1
Option Jl (DIV) is
selected by inserting plug into black side (white showing).
Option \(\mathbf{J 2}\) (\(\mathrm{m} / \mathrm{S}\)) is selected by inserting plug into applicable side of connector
\begin{tabular}{|l|l|}
\hline Issue 4 & MAR 1982 \\
\hline 365-170-000 & DLP \\
\hline PAGE 1 of 1 & 630 \\
\hline
\end{tabular}
```

[1] From information on WORD or CLRC, set options J1, J2, J4, J5, and J9 [NOTE 1] [FIG. 1] [DLP-565]

```


J4

FIG. 1
\begin{tabular}{|l|}
\hline \multicolumn{2}{|c|}{ NOTE 1} \\
Option J5 (DIV) is \\
selected by \\
inserting plug into \\
black side (white \\
showing). Options \\
J1 (\(3 / 30\)), J2 (\(M / 5\)). \\
and J9 (\(+/-\)) are \\
selected by inserting \\
plugs into applicable \\
side of connectors. \\
Option J4 is \\
selected by \\
inserting both plugs \\
into applicable \\
positions. Example: \\
Both in H, both in \\
M, or both in L
\end{tabular}

This book is called a Task Oriented Practice or "TOP". It is a special type of Bell System Practice (BSP). It is a programmed document that gives step-by-step instructions to enable you to do a job (or task). A TOP can be a very useful aid in doing your everyday work if you use it correctly.
An important thing to remember about TOP is that it is a programmed document giving step-by-step instructions to do a job. Since the instructions are given in the order that they must be done, you cannot enter a procedure except at the beginning. You must do the step-by-step instructions in the order given. Failure to follow the instructions in the proper order may cause service interruptions.
Another thing to remember about TOP is that it contains all the instructions that you need to do a job. If you are experienced on a particular job, TOP will provide you with just that information you need to do the job. If you are doing the job for the first time, you will be given step-by. step instructions with enough detail so that you will not have to guess or remember where to find the necessary details. Remember that TOP can provide you with just that information you need regardless of your experience in doing a job.
The work that you do can be classified into two broad job categories - Trouble Clearing and Non Trouble Clearing. This is how TOP defines these two types of work:

\section*{Trouble Clearing}

Trouble clearing is simply what it says - that work you do to clear and repair troubles in the system. Trouble clearing may be done in answering a customer complaint or in responding to an office alarm, a trouble report, or an abnormal TTY printout, etc.

\section*{Non Trouble Clearing}

Non trouble clearing is simply what it says - that work you do which is not connected with trouble clearing. This type is work that you do to accept a system after it has been installed, turn up a system for service, maintain a system according to a controlled maintenance plan, etc.
Now glance briefly at the front cover. In the upper rigit corner is a 9 -digit number. This number is the BSP number for the volume. Near the center is the title of the volume which tells you something about the contents, such as the system (or subsystem) name and perhaps what kind of jobs are included in the volume. Next is the decision-action-logic diagram which directs you either to this training package or to 001 depending on your ability to use TOP.
Now turn to FIG. 1 which shows a typical page of 001 . In the lower left is the title, "TASK INDEX LIST" which tells you something about this list, such as it is a listing of tasks arranged in alphabetical order. This list is actually a listing of the tasks included in the volume. The tasks are listed in alphabetical order and permuted on key words to simplify locating a task. On the right side of the page is a column of reference numbers under the heading "THEN GO TO." To use this list, locate the job to be done and turn to the reference number in the "THEN GO TO" column.
Now assume that you have been assigned the task of performing a system test on a system covered by a TOP. On 001 in FIG. 1, locate the job "System Test." Notice that this entry tells you to go to NTP-016 under the "THEN GO T0" column. Next you will have to locate the procedure, NTP-016. All procedures in a TOP are arranged in numerical sequence. In actual use of TOP, you would simply turn to

\begin{tabular}{|c|c|c|}
\hline Find your job in the list below & \multicolumn{2}{|r|}{THEN GO TO} \\
\hline Alert, External - Horn, Ringer, Etc - Remove & \multicolumn{2}{|r|}{NTP. 028} \\
\hline Amplifiers; Channel - Recorded Announcement Frame - Test & \multicolumn{2}{|r|}{NTP-009} \\
\hline ARO3 PHR ALM RA bb -bb \(=16.30\) & \multicolumn{2}{|r|}{TAP. 105} \\
\hline BRDG LED - Does Not Light - Correct & \multicolumn{2}{|r|}{Tap-117} \\
\hline Bridging Controller; Trunk - JlC015MB - Replace & \multicolumn{2}{|r|}{DLP. 572} \\
\hline Channel Amplifiers - Recorded Announcment Frame - Test & \multicolumn{2}{|r|}{NTP.009} \\
\hline Drum wiper - Cormon Systems Recorded Announcement Frame - Inspect & \multicolumn{2}{|r|}{NTP. 010} \\
\hline Extended Station Capability - Nonkey Set Only - Reported Failure & \multicolumn{2}{|r|}{TAP-123} \\
\hline External Alert - Horn, Ringer, Etc. - Remove & \multicolumn{2}{|r|}{NTP. 028} \\
\hline Interchange Two Working Station Numbers & \multicolumn{2}{|r|}{NTP. 081} \\
\hline LED; \(\mathrm{BRDG}^{-}\)Does Not Light - Correct & \multicolumn{2}{|r|}{TAP-117} \\
\hline Loudspeaker Paging - Add & \multicolumn{2}{|r|}{NTP. 059} \\
\hline Loudspeaker; SPOKESMAN - Remove & \multicolumn{2}{|r|}{NTP. 006} \\
\hline SPOKESMAN Loudspeaker - Remove & \multicolumn{2}{|r|}{NTP-006} \\
\hline Station Capability; Extended - Nonkey Set Only - Reported Failure & \multicolumn{2}{|r|}{tap. 123} \\
\hline System Test - Perform & \multicolumn{2}{|r|}{NTP-016} \\
\hline Trunk Bridging Controller - Jicolsmb - Replace & \multicolumn{2}{|r|}{DLP. 572} \\
\hline TTY Printout - AR03 PVR ALM RA bb - bb - 16.30 & \multicolumn{2}{|r|}{TAP. 105} \\
\hline Wiper: Drum - Common Systems Recorded Announcment Frame - Inspect & \multicolumn{2}{|r|}{NTP. 010} \\
\hline \multirow[b]{3}{*}{TASK INDEX LIST (Contd)} & \multicolumn{2}{|l|}{} \\
\hline & 123-456-739 & \(1 \times 1\) \\
\hline & Page 2 of 2 & 001 \\
\hline
\end{tabular}

FIG. 1

the procedure. Look over the following example which shows a typical page of NTP-016. Note that the items are numbered in the left column. They must be completed in that order. You will also note that in item 2 there are some lettered (A, B, C) items. These lettered items are optional ways to do an item, that is you only have to do one of the lettered items.

Remember that this procedure gives you all the items that must be done and the order in which they must be done to complete the job. If you know how to do an item, you
should go ahead and do it without going to the referenced details in the "FOR DETAILS, GO TO" column. If, on the other hand, you need additional details on how to do the item, then you should turn to the procedure listed in the "FOR DETAILS, GO TO" column. In either case, after completing an item, you should continue with the next item.

A TOP is designed so that you have to read only what is necessary to get your job done. If you know how to do an item, look no further for the "how to" information - just

\section*{DO THE ITEMS BELOW IN THE ORDER LISTED \\ FOR DETAILS, GO TO}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Obtain Support Apparatus Listed Below: \\
- Hewlett-Packard 3531A Transmission Measuring Set \\
- 2P4C Patching Cord
\end{tabular}} & \multicolumn{2}{|r|}{-} \\
\hline \multirow[t]{6}{*}{2} & \multicolumn{2}{|l|}{Place SEC/SEB in Off-Line Mode} & \multicolumn{2}{|r|}{-} \\
\hline & A. If in On-Line Mode, Change System From On-Line to Off-Line & & \multicolumn{2}{|l|}{DLP. 509} \\
\hline & B. If Powered Down, Condition System for Off-Line Operation as Follows: & & \multicolumn{2}{|c|}{-} \\
\hline & 1. Power up Minicomputer & & \multicolumn{2}{|l|}{DLP. 503} \\
\hline & 2. Power up Line Printer & & \multicolumn{2}{|l|}{DLP. 528} \\
\hline & 3. Power up Maintenance Terminal & -1 DLP 510 & \multicolumn{2}{|l|}{DLP. 510} \\
\hline \multicolumn{5}{|l|}{\(\qquad\)} \\
\hline 8 & Mount Tape & & \multicolumn{2}{|l|}{DLP. 500} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{PERFORM SYSTEM TEST}} & \multicolumn{3}{|l|}{\begin{tabular}{|l|l|l|}
Issue 1 & DEC 1980 \\
\hline 123.456589
\end{tabular}} \\
\hline & & 123-45 & & NTP \\
\hline & & PAGE 1 & 4 & 016 \\
\hline
\end{tabular}

do the item and go on to the next item. This idea is called "bypassing" in TOP. In addition to not having to look further for details, three other ways of "bypassing" are provided in TOP to help you bypass reading information you already know (see FIG. 2):

\section*{Sumary Statement}

A summary statement is used with a procedure to tell you briefly how to do the procedure and what type measurement or result can be observed. If you can do the procedure after reading the summary, go ahead and do it without reading any further. Simple procedures may not have summaries.

\section*{Result Statement}

A result statement may be used in a flow-charted procedure along with the AND symbol. If, after reading the results statement, you know how to do the action indicated, go ahead and do it without reading the steps associated with the AND symbol.

\section*{Support Procedures}

When you see the following kind of reference in TOP it refers to a support procedure:

The support procedure [DLP-530] provides the information on how to operate the VTVM. Here again, if you already know how to operate the VTVM, go ahead and do it without looking up any further information.

Now assume that you are doing a system test on a system covered by a TOP. In the process of doing this test you are instructed to mount a tape. For the purposes of this example, assume that you do not know how to mount the tape and must look up additional details. Figure 2 on Page 5 shows you examples of bypassing that can be used. Take a few moments to examine this figure and make sure you understand the techniques of bypassing.

While using a TOP, you will probably run across a reference similar to this:

This reference to TAP-103 indicates that the equipment is not operating correctly, and that you should refer to TAP. 103 and clear this trouble condition. After clearing the trouble, you should reenter the flowchart at the beginning (Step 1).

```

SUMARY
Mount empty take-up reel and proper file reel with write
enable ring (if required). Release brakes. Thread tape and
wind onto take-up reel. Advance tape until it stops at
beginning of tape marker.
Summary Statement - If you can do
the procedure after reading, go
ahead and do it.

```
(1) Get file reel and
empty take-up reel
[2] Set START/ STOP
(3] \(\begin{aligned} & \text { Set on Lime/off Lime } \\ & \text { switch to off Lime }\end{aligned}\)
(3] \(\begin{aligned} & \text { Set on Lime/off Lime } \\ & \text { switch to off Lime }\end{aligned}\)
(3] \(\begin{aligned} & \text { Set on Lime/off Lime } \\ & \text { switch to off Lime }\end{aligned}\)
[4] Set LOAD/BR REL switch
to center position

Results Statement - If you can do this action, go ahead and do it without reading Steps 1, 2, 3 , and 4.

[6] Ensure that write enable ring is not installed on file reel [DLP-563]

MOUNT TAPE

FIG. 2

This idea can be carried further. In some cases, a decision block may have more than one abnormal output. This means that you should try more than one solution to the problem. See the example below.

Trouble-clearing information in TOP is used basically the same way as non trouble-clearing information. When an alarm or trouble report requires you to troubleshoot a system covered by a TOP, the TASK INDEX LIST (IXL-001) is the place to start. After locating your job on IXL-001 you will be referenced to a Trouble Analysis Procedure (TAP) to find the information to aid in the location of the trouble. The TAP may reference to other information, such as Trouble Analysis Data (TAD) or Isolation Diagram (ISD) as an aid in the trouble-clearing process.

Now assume that you have to clear a major alarm on a terminal in a system covered by a TOP. Figure 3 on Page 7 shows how to access and how to use trouble-clearing information.

A TOP shows hard-wired and plug-in units on Isolation Diagrams (ISD) in the following manner:

Plug-In

Always do a job safely. Below are three things you should heed in TOP:

TABLE A on Page 8 shows some of the more important symbols and definitions.

While using TOP, if you find errors, or if a procedure is inadequate or missing, call the TOP HOTLINE number shown on the front cover. Your comments are greatly needed to help prepare better documentation. Comments may also be forwarded using form E3973 which is available through your company.
Now that you know how to use TOP, return to IXL-001 and find the job you need to do.

FIG. 3

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{TABLE A} \\
\hline SYmbol & definition \\
\hline & The AND operation symbol is used where the successful completion of a group of instructions accomplishes a meaningful result that can be defined. The symbol indicates that each input instruction must be performed in the order given to accomplish the output (result statement). In instances where results cannot be defined, results statements are not provided. \\
\hline & The flow-through symbol relates graphically a single instruction to the expected observable result(s). \\
\hline & The end-of-procedure symbol denotes that the procedure has been completed. \\
\hline \(\rightarrow\) & The reference bubble symbol indicates an exit from a page (either to a continuation page or to trouble-clearing data) or indicates the starting point of a procedure. \\
\hline Acceptance (NTP-002) & Acceptance gives an overview of the acceptance techniques and facilities. \\
\hline Maintenance Philosophy (TAD-100) & The maintenance philosophy, when provided, gives an overview of the considerations designed into the trouble-clearing procedures. \\
\hline Checklist (CKL-891) & The checklist reflects the volume content (inventory) at any given time, the issue identifier of each data element therein, those data elements revised and/or added, and those data elements deleted from a previous issue. \\
\hline Documentation Plan (DPL-895) & The documentation plan gives a bird's-eye view of all the TOP volumes covering a system. This plan can help you to quickly determine the correct volume. \\
\hline
\end{tabular}

\section*{D4 CHANNEL BANK TOP DOCUMENTATION}

```


[^0]:    DETERMINE IF CHANNEL UNITS OR OIU AT FAR END IS CAUSING DATAPORT TROUBLE

[^1]:    G

