Hestern Electric Co.. Incorporated,
Equipment Engineering Branch, Harthorne.
(5 Pages, Page 1)
Issue 1 BI 240252 Angust 15; 1925.

This M. of 0 . was prepared from Issue Io. 2 of ES-240252.
WHTHOD OF OPERATICH
Three Wire Office Selector Circuit - Pwo Calls Per Revolution of Sequence Switch - Panel Machine Switohing Systen.

DEVELOPMRET

1. FURPOSE OF CIRCUIT
1.1 This circuit is for use in establishing connections between a panel machine switching office and miscellaneous local trums, trunks to long distance or tandem offices and other central offices.
2. WORKING LIMITS
2.1 This circuit has an external circuit range for selections of 1225 ohms maximm resistance.

OXARATION
3. FRINCIPAL FUNCTIONS
3.1 This circuit is used in establishing calls between the district selector frame multiple bank and outgoing trums terminating on the office frame maltiple.
3.2 Seleotion to distant mechanical or mannal office or to a distant or local operator.
3.3 Sequence switch arranged for two calls per revolution.
3.4 Self returning from position awaiting sender for group selection.
4. COHNECTIHG CIRCUITS
4.1 This office selector will function with senders, districts, incomings, two-wire affice selectors or final circuits.

DESCRIPPION OF OPESATIOS

5. SEIEURE

When a district selector connects to the tip, ring and sleeve terminals of this selector in position 1 or 10 . the fumdenental circuit is
(5 Pages, Page 2)
Issue 1 BT 240252
August 15, 1925.
closed from battery through the 1100 ohm winding of the (L) relay contacts of cam E and F, over the tip side of the fundmental circuit to the associated district and sender cirouits back over the ring side of the line, through both inner contacts of cam G to groumd, operating the (L) relay. The (L) relay operated, connects ground under control of the district sleeve through the contacts of cam C to battery through the I magnet, advancing the switch to position 2 or 11. In position 2 or 11 the up-drive magnet is energized for brush selection. As the switch enters position 2 or 11 ground through the contacts of cam H is connected to the district sleeve terminal holding the selected truak busy to cll other distriot selectors. This busy ground is effective in position $2 / 2 \frac{1}{2}-3 \frac{3}{4} / 7$ or $11 / 11 \frac{1}{2}-12 \frac{3}{4} / 16$. In position $2 \frac{1}{2} / 3 \frac{1}{2}$ or $11 \frac{1}{2} / 12^{1}$ the busy condition is produced by a combination of 300 ohm ground and 400 ohm resistance to battery.
6. BRUSH SELECTION

As the selector moves upward a circuit is closed from ground on the A commutator brush and segment sending pulses back over the fundamental circuit to successively short-circuit and nermit the reoperation of the stepping relay in the associated sender circuit wntil the proper brush has been selected. When sufficient pulses have been sent back to satisfy the sender the fundamental circuit is opened, causing the (I) relay to release. The (I) relay released, opens the circuit through the up-drive magnet which stops the upward movement of the selector. The release of the (L) relay also oloses a circuit through the R magnet advancing the switch to position 3 or 12. When the switch reaches $2 \frac{1}{3}$ or 1li, ground from the district sleeve is closed through cam J to hold the S winding of the (L) reley shunted at this time. When the switch advances to position 3 or 12 ground over the fundamental tip will be closed to the P winding of the (L) relay which operates and moves the switch to position 4 for group selection. The trip magnet is energized in position $3 / 5$ or $12 / 14$ from ground at cam H. With the switch in position 4 or 13 the up-drive magnet is again energized moving the selector upward for gropp seleotion. The trip magnet being operated causes the previously selected brush to trip as the selector moves upward for group selection.
7. GROUP SELECTION

As the selector moves upward for group selection, a circuit is closed through the B commatar brush and segment and cam F, over whioh ground pulses are sent back over the fundamental circuit thus successively short-circuiting and permitting the reoperation of the stepping relay in the associated sender circuit until the proper group has been selected. When sufficient pulses have been sent back to satisfy the sender
the fundemental circuit is opened, releasing the (L) relay. The release of the (L) relay opens the circuit through the up magnet and oloses a circoit-for advancing the switch to position 5 or 14.

8. TRURK HURIING

Eith the switch in position 5 or 14 a circuit is closed from ground at can I to battery through the 300 ohm winding of the (L) relay and 400 ohm resistance operating the (I) relay, advancing the switch to position 6 or 15. In position 6 or 15 tronk monting takes place, the up-drive magnot being operated from ground at the armature of the (L) relay. If the first tronk of the group in wich the selector hunts is busy the (L) relay is held operated through its 1100 ohm winding to ground on the sleeve terminal of the busy trumix. is long as the (L) relay is held operated due to this basy condition the circuit to the up-drive megnet is maintained and the selector will travel upward until an idle trunk is found. When an idle trunk is foomd the circuit through the 1100 ohm winding of the (I) relay is opened and the relay will not release immediately dine to the circuit being closed through the C commutator segreent and the 300 ohm winding of the relay. When the circuit through the C commatator is opened the (I) relay releases, opening the circuit through the up-drive magnet which stops the selector brush on the terminals of the selected trank. The release of the (L) relay also oloses the circuit for advancing the switch to position 7 or 16.

9. C comarator

HONE:- The adjustment of the commatator is such with relation to the tripped sleeve maltiple brush that it does not break contact with the cocmatator segment until slightly after the holding circuit through the (L) relay is opened by the sleeve brush leaving the busy terminal and making contact with the sleeve terminal of the idle trunk. The up-drive magnet will, therefore, remain operated and contimue to carry the selector upmard ontil the brushes are properly centered on the trunk terminals.

TAKIIS
In position 7 or 16 the (L) relay opurates through its P and S windings from ground at cam H and D in sories with 400 ohm resistance (A), adrancing the switoh to position 8 or 17. When operated in position 7 or 16, the (I) relay locks to this same groumd but in position 8/9 or 17/18 it locks to gromi on the sleeve brusk of the associated district circuit. In position 8 or 17 the talking circuit is closed through cams

3
F and G. The P and S windings in series with the 400 ohm resistance (A) is for the purpose of reducing current drain at this time.

11. RETMNT TO NCRMAL

At the completion of conversation the district selector is disconnected from the office selector onening the circuit through the P and S windings of the (L) relay which releases. When the (L) relay releases, ground is compected to the R magnet advancing the switch from position 8 or 17 to position 9 or 18. In position 9 or 18 ground is connected to the down drive magnet through the inner contacts of cam J, returning the selector to normal. When the selector reaches the bottom of the bank, ground on the Y commatator brush and segment is connected to the R magnet through cam B, advancing the switch to position 10 or 1 .

11.1 Self Returning Feature in Position Amaiting Sender for Grour

 selectionIf the aelector is moved off normal by hand or anganced bom position 3 falsoly with the elevator off normal, (brushes above Y segment) it will return to normal. This is accomplighed by operating the (L) relay through its secondary winding from ground on cam I in series with the 400 ohm resistance to battery. On regular calls the S winding will be shunted by ground from the district sleeve and the relay will function in a manner similar to that for brush selection.
12. REGISTRATION

In position 5 or 14 ground on cam L is olosed to operate the selector group register.
13. OVERFLOW

If all the trunks in a group are busy the selector travels to the top of the group and rests on the overflow terminals. As there is no ground on the sleeve of the overflow terminal the (L) relay will release and cause the switch to advance to position 7 or 16 in which position the (I) relay again operates to ground on cam H and locks to the same ground as previously described, advancing the switch to position 8 or 27. In position 8 or 17 a circuit is closed from the ground on the Z commatator brush and segment, advancing the switch to position 9 or 18. As the switch passes through position 7 or 26
a circuit is closed to operate the overflct register. This circuit is traced from ground on the 7 . commatator brush and semment through cams E and P out over the tip of the selectcr to battery through the associated register circuit (not shown). When the switch advances to position 9 or 18 battery through the 1000 ohm resistance (a) is connected through cam G over the ring lead through the district und overflow relay in the sender circuit, back over the tip lead, contacts of cams F and E, to gronnd at the z commator. This circuit advances the sender and district and then the district sleeve is onen the (L) relay releases. The release of the (L) relay connects ground to the down drive magnet returning the circuit to normal as described under paragraph 11.

O CORMDAFOR SEGREAT

The fanction of the 0 comatator segment is to maintain an ida condition at the maltiple overflow terminals so that more than one sflector may stow on overflow at one time. Otherwise the first selector reaching overflow would make the sleeve multiple terminals busy, th:us causing the sacceeding selectors to continue upward beyond the next group of truniss. The 0 segment is opened at overflce but the S bar is continuous. Both the 0 and S commatator brushes are permenently stramped together and wired to the maltiple sleeve brash. When the selector is at overflow, the 0 commatator brush is resting on an open segment and as the busy ground is effeetive through the 0 commatator bar only, this arrangement maintains a non-busy condition on the sleeve terminals. When necessary to combine two or more groups of trunks the multiple sleeve overflow teminals between the combined groups are permanently made busy by being comected to ground. As the E commatator bar is closed at overflow the (I) relay is held operated at this time and the seiector, therefore, honts past the made busy" terminal into the next group.
15. تGLL-MLIE

When the selector is driven to tellotale a circult is closed from ground through the X commatator segment and brush, cam B to battery through the R magnet, advancing the switch to position 7 or 16 . The local operation of the (I) relay advances it to position 8 or 17. The X commatator again advances the switch to position 9 or 18. From this peint on the circuit functions in the same manner as previously described under "Overflow". Brcept that the ground is supplied to the seader over the tip lead from the X commatator.

ERGR: P.E.B. Abgust 15, 1925. BMS

APP'D. BY: E. R. COOKE
H.G.J.

