CHANGES
A. CHANGED AND ADDED FUNCTIONS
A. 1 Provision has been added in this circuit so that when all trunks are held busy an all trunk busy relay will operate which will light a switchboard lamp and operate an all trunk busy register.
B. CHANGES IN APPARATUS
B. 1 Superseded

Fifure 21
Yl 67 Relay
(ATB)
Superseded By
Figure 25
UA 49 Relay
(ATB)
B. 2 Added

Figure 26
14E Register
(AB)
D. DESCRIPTION OF CIRCUIT CHANGES
D. 1 Figure 21 has been rated Manufacture Discontinued. Figure 25 has been added as Standard.
D. 2 Circuit Notes 102 and 103 have been chanced to reflect drawing Issue l7-D.
D. 3 Figure 1 and Figure 14 Option H has been rated Manufacture Discontinued.
Option A has been added as Standard.
D. 4 In Firure 4 the code of the IA and IB keys is changed from 92B to 552 A to
agree with the manufacturing information.
D. 5 Add wiring ZA to Figure 14.
D. 6 Figure 26 added to show a 14 E register.
D. 7 A U-3 relay cover is added to relay

DCl in the controller circuit to
reduce the nagnetic interference with relay DC.
D. 8 Ficure 22 is rated Special and removed from Note 102.
D. 9 In cabling Figure 52 lead "BL" is desirnated Special.

All other headings under Changes, no change.

1. PURPOSE OF CIRCUIT

This circuit is used to identify and give a lamp indication for any one of 100 customer lines that are being called and to provide a means for an attendant to answer the calls.

2. WORKING LIMLTS

2.1 Max. external conductor resistance for relay TC - 2000 ohms.
2.2 Earth potential ± 20 volts (between originating and terminating limits).

3. FUNCTIONS

3.01 Recognizes a call waiting to be served.
3.02 Recognizes CC+ and CC- pulses coming from the originating circuit.
3.03 Identifies the called subscribers line.
3.04 Lights a subscriber line lamp and closes a talking circuit between the answering jack and the incoming trunk.
3.05 Permits answering bureau attendant to seize and hold trunk by means of a dry bridge cord circuit.
3.06 Recognizes CC+ on tip of first trunk as time-out signal to recycle and
shift pulsing path to an auxiliary trunk.
3.07 Recognizes CC + on the tip of second trunk as an alarm release signal to restore pulsing path to original trunk.
3.08 Provides a high-low condition on the ring of the second trunk as a signal to the originating circuit to start pulsing the tens digit.
3.09 Provides an indicator control and two indicator allotters which serve calls
on an alternate basis.
3.10 Provides the following keys, lamps and jacks having functions as indicated
below.

Keys

CA (Option H or A) or EB (Option J Manufacture Discontinued) makes controller A busy.

CB (Option H or A) or EA (Option J
Manufacture Discontinued) makes controller B busy.

Il makes indicator No. 1 busy.
I2 makes indicator No. 2 busy.
I3 makes indicator No. 3 busy.
I4 makes indicator No. I busy.
IA makes indicator allotter A busy.
IB makes indicator allotter B busy.

Lamps

Tl to TL trunk busy.
I1 to I4 indicator selected.
TO time out.
FA fuse alarm.
Jacks
Test line answering jack and lamp circuit.
3.11 Provides for an all trunk bucy relay under control of the orifinitine, oquipment.
3.12 Provides for an all trunk busy lamp and repister.

4. CONNECTI NG CIHCUITS

When this circuit is shown on a keysheet the connecting information thereon should be furnished.
4.2 Telephone Answering Service Originating Circuit - SD-95739-01.
4.2 No. 557A Secretarial Line Circuit -SD-65716-01.*
4.3 No. 557B Secretarial Line Circuit -SD-65729-01.*
*Typical

DESCRIPTION OF OPERATION

5. GENERAL

5.1 Originating End Equipment

This concentrator-identifier system consists of two units interconnected by 2 to 4 trunks as shown in attached Figure 7.

The originating equipment located in the central office consists of an 11.6"
frame mounting about 225 relays and two crossbar switches (used as multicontact relays) which concentrates 200 lines (MAX.) over 4 trunks (MAX.) to the terminating equipment.

Each line to be served by the system is cross-connected to the orisinating equipment by a pair of wires at the "Main" frame. For identification purposes, each line connected is assigned an arbitrary 2dirit code from 00-99. The originating equipment components are as follows:

1. Auxiliary line circuit: (100 Max.) ode tube and a ring-up relay per line.
2. One units identifler, consistinc: of ten relays correspondint, to the unlts dicit $(0-9)$ operated by the auxiliary lino circuit to indicate to the $: y$:item the units difit of the callod line.
3. One tens identifior connector consictini ocisontiaily of two crossbar verticals, receives information from the auxiliary line circuit and the unit: identifier and passess tilis to the tens identifier.
4. One tens identifior consisting of ten relay: corresponding to the tens dipit $(0-9)$ which indicate to the :yytem the tens difit of the called line.
5. One entroller enmpetor provides a mean: of tramproring Trom one controller to the other on successive callis.
6. Two controllers that operate on alternate calls to pulse the line code number forward.
7. Two trunk allotters are provided to ceize an idle trunk. One allotter his access to all talking trunks. The alternate, used in case of emergency connects to only the first trunk.
8. Four trunk connectors consisting of four crossbar verticals per trunk. Each is provided to complete the transmission path from the subscribers line through to the allotted trunk.
9. One start circuit, not shown in the attached Figure 7, is provided to coordinate the functions of the various concentrating and identifying circuits.
10. Two to four trunks, each consisting of a transmission path and two composite signal paths.
11. One message register and all trunk busy control circuit to (a) indicate to the terminating end an ATB condition and (b) provide message register leads.

Page 2

5.2 Terminatinp, End Equipment

The terminating equipment located at the answerinp bureau is a floor supported cabinet 7^{\prime} hifh mounting about 100 relays three crossbar switches (used as multicontact relay) and a 24 -volt storage battery supply It is connected to the associated switchboard that contains the reauired answering jacks and line lanps. The terminatinp eouinment components are as follows:

1. Two to four trunks each consisting of a transmission path and two comMosite signal paths.
2. One contiroller connector provides means of transferrinp from one controller to the other on successive calls.
3. Two controllere "A" and "B" that operate alternately to receive the dirits pulsed by the oripinating end and to onerrize the indicatinf; equipment at the terminating. end.
4. Two indicator allotters "A" and "B" are provided which seize an idle indicator for each call and determine the length of time the switchboard lamp is liphted.
5. Four indicators are provided which lifht the proper switchboard lamps throuph the indicator connector.
6. One indicator connector is furnished consistinc of 8 verticals of 2 crossbar switches which closes the crosspoints to light the selected switchboard lamps.
7. One trunk connector is furnished consistinp of 16 verticals of 3 crossbar switches which closes the crosspoints to complete the transmission path from a trunk to the switchboard jack.
8. Three unit selectors which are part of the 3 crossbar switches determine the level at which the crosspoints are to be closed by both the trunk connector and the indicator connector.

5.3 General Operation

On an incominp call ringinp on the called line throurh the cross connections at the "Main Frame" causes the auxiliary line circuit to operate. This action enerpizes a "Start" circuit which calls in a units and tens identifier circuit in order to identify the two digit number of the line boinp called. This circuit then connects to a common "Controller" circuit which first checks the pulsing path for continuity and
then pulses the identified line number forward over the ring side of the first trunk to the terminating equipment. Receipt of this information is verified over the ring conductor of the second trunk circuit.

The originating equipment pulses the identified line forward by means of two digits. Each digit consists of three pulses, CC $+(+115$ volts dc) CC- (-115 volts dc) or an open as shown below:

Units or Tens Pulse	First Pulse	Second Pulse	Third Pulse
0	CC-		
1	CC-	CC-	CC+
2	CC-	CC-	CC-
3	CC-	CC+	cc-
4	CC-	CC+	$\mathrm{CC}+$
5	CC+		
6	CC+	CC-	CC+
7	CC+	CC-	CC-
8	$\mathrm{CC}+$	CC+	CC-
9	CC+	CC+	CC+

Simultaneously, the controller circuit in the originating end causes a trunk allotter circuit to hunt an idle trunk talking path. If available the path is closed through on crossbar switches at each end of the trunk for a period of about $1 / 2$ second.

In the meantime the terminatinp, equipment has received the units and tens pulses, selected and utilized an indicator circuit to light the proper line lamp on the associated switchboard and has connected the trunk determined by the originating. equipment through to the switchboard jack.

If the attendant has an answering cord connected to the jack associated with this lamp during the $1 / 2$ second period when the trunk path is closed through the switches, she will be connected with the calling party. Otherwise at the expiration of the $1 / 2$ second the trunk talking path will be released but it will be reinstated on the next identification of the calling line. Should the attendant plup in this jack when the line lamp is dark, the talking connection will not be completed until the next identification occurs.

Called line "scanning" is independent of trunk talkinf, path availability so that when all talking paths are busy the equipment continues to flash line lamps associated with other incoming calls.

A maximum of four talking paths are provided. However, the number of lamps that can be lighted is independent of this number of talking, paths. Four indicator circuits are provided at the terminating end so that a maximum of four lamps can be
lighted simultaneously. However, as many as six different lamps can be lighted successively durinf, six seconds which is the lenpth of each cycle of machine ringinf. While more than six unanswered calls exist, each call is indicated once by its lifhted lamp before any call is indicated a sccond time. Thus, each call will be indicated once every six seconds while six or less unanswered calls are waitinf; and while more than six calls are waiting, the interval between successive indications of the same call will be more than six seconds, the amount more beinf, determined by the total number of unanswered calls.

5.4 When the terminating, end is connected

to battery and pround at the time of
installation the followinf relays operate:
(1) relay $C C$ in the batterery control circuit (Fipure 12.) will operate from pround on its windinf throuph conticts of relay C'T to fuse CC if the battery voltirfe is of the correct value, (2) relay CA in the controller connector circuit (Fipure 1/4) operates on its primary windinf; throuph key EB, contacts of relays CBI and CB to rround, and (3) rolay IO in the indicator allotter circuit (second Firuure 5) operates on its primary windinp throuph contact of reliys Il, I2, I3, I4, lead G and to fround on contacts relay SA (Fipurc 4).

5.5 Relays PP and PN are sprinf, biased

 (released) polar relays connected so that $P P$ operates on current from a positive potential of about +115 volts dc and PN operates on current from a nepative potential of about -115 volts dc. Relays PP and PN release when no current flows throuph their windinfs or when the direction of the current is opposite to that on which they operate.
5.6 Identification and Supervisory Signalint:

Slpnilinf between the oripinating, and terminatine, end is accomplished over the comnosite lers derived from the trunk conductors. Four types of sifnals are used:
terminating end over the composite leg of the ring conductor of trunk No. 1 during normal operation. Verification of pulses received at the terminating end is made over the composite ler of the rinp, conductor of trunk No. 2.

During trouble conditions the pulsing and verification sipnalinf, is transferred to the composite legs of the ring conductors of trunks 3 and 4 respectively or to the tip and ring conductors of an auxiliary pair which is provided if trunks 3 and 4 are not equipped.

(2) Trunk Supervisory Signaling

The composite lefs of the trunk tip conductors are used for the following purposes: (1) trunk seizure of the terminatinf, end corresponding, with that selected at the oripinating end and (2) attendant sei\%ure and disconnection of the trunk circuit controlled by the terminatinp end.

(3) Trouble Supervisory Signals

The composite ler or the tip conductor of trunk No. 1 is used as an alarm time-out path to transfer the teminating equipment controller connector from A to B or 3 to A depending, upon the circuit in use at the time. The composite lep of the tip conductor of trunk No. 2 is used as an alarm time-out release path which releases the trouble relays at the terminatine, equipment. Both functions are independent of trunk supervisory sifinals.

(4) All Trunk Busy Signalinp:

Durinf normal operation and all trunks busy the composite lep of trunk No. 3 ring conductor supplies a 48 -volt battery which operates an A'ti relay at the terminatine, end to indicate an all trunk busy condi~ tion. This feature is canceled during an alarm time-out period.

The following table indicates the functions that take place over the various trunk conductors.
Originating End
Sends -48 volts as signal
of call to be served.
Sends units puises
Sends -48 volts to select
terminating end of allot-
ted trunk

Trunk Conductor

RJ.

R1
Tip of allotted trunk

Terminating End

Ground as gignal to start pulsing
Receives units pulses
Selects trunk
terminating end of allot-
ted trunk

Page 4

Originating End	Trunk Conductor
Sends -48 volts as signal units pulsing completed	R2
Sends tens pulses	R1
Removes -48 volts from rinp of trunk 2	R2
$\begin{aligned} & \text { Receives signal to trip } \\ & \text { ringing } \end{aligned}$	Tip of allotted trunk
Receives signal to release trunk	Tip of allotted trunk
Sends CC+ signal as an alarm (time out)	T1
Sends CC+ signal to release alarm (time out)	T2
Alternate for Rl	R3
Alternate for R2	R4
Sends -48 volts to terminating end as an ATB condition	R3

Terminating End

Shunt relay winding as signal or digits pulses registered and to pulse tens digit

Receives tens pulses
Registers tens pulses

Attendant answers
sends signal to trip ringing.

Attendant disconnects sends signal to release trunk

Heceives alarm (time out) signal

Receives alarm release signal

Alternate for R1
Alternate for R2
Operates ATB relay
lights ATB lamp
5.7 Functional designation of relays
$\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ - call indicator auxiliary
$A C$ - alternate controller
AR - alarm release
ATB - all trunks busy
CA - controller A
CB - controller B
CBI - auxiliary to CB
CC - charge control
CF - charge failure
CI - call indicator
CIA - call indicator auxiliary
CT - charge trip
DC - digit check
DCl - auxiliary to DC
E \& F - trunk auxiliary
FA - fuse alarm
HM - hold magnet
IO, II, I2, I3 \& I4 - indicator walling
IT\& ITl - interrupter
PCI - pulse counter
PC \& PC2 - auxiliary to PCl
PN - pulse receiving negative
PP - pulse receiving positive
RC - recycle
RCA - auxiliary to RC
SA \& SAI - shifts indicator allotters
SM - select magnet
TC, TCl, TC2 \& TCA - trunk connectors
TO - time out
TS - tens selector
US - units selector
$X, Y, X N, Y N, Z N, X P, Y P, \& Z P-$ pulse register

6. INCOMING CALL

When the originating. end has a call to be served, assuming, the first trunk is available, it connects -48 volts through the winding of a relay over the ring side of the first trunk through the composite equipment and lead Rl of the trunk circuit first
(Figure 1), contacts of relays TO and CA of the controller connector circuit (Fipure 14) lead R1, windines S of relay PP and PN, contact of relays PC, SM and DCl to local ground (with Option "S") first (Figure 3) or originating ground with Option "T". Relays PP and PN do not operate because of the relatively small current from the -48 volts. However, this current is large enough to operate the relay at the originating end to cause it to start pulsing the units digit.
7. RECEIVING UNITS DIGIT (Refer to Attached Figures)

Note: Assume line No. 63 is pulsed for purpose of describing circuit operation.

Assume that the units digit 3 will be pulsed and that controller "A" will handle the call. On the first pulse CC- will be connected to the ring side of the first trunk to operate relay PN. Relay PN operates relay XN which (1) locks through the winding of relay X, contacts of relays $S M$
and PC, lead G1 to ground at relay RCA (Figure 14), and (2) operates relay PCl over its primary winding and contacts of relay PC. Relay X does not operate due to the shunting ground at relay PP. At the end of the first pulse CC- is removed from the ring side of the first trunk to release relay PN. Relay PN released removes the shunt from relay X which operates in series with the holding ground for relay XN. Relay X operated (1) opens the operating path for relays XP , and XN , and (2) prepares a path for operating relays YP and YN. The second pulse CC+ operates relay PP which operates relay YP. Relay YP operated (1) locks through the winding of relay Y, contacts of relays $S M$ and PC, lead Gl to ground at relay RCA and provides an additional ground to hold relay PCl operated. Relay Y does not operate due to the shunting ground at relay PN. At the end of the second pulse, CC+ is removed from the ring of the first trunk allowing relay PP to release. Relay PP released removed the shunting ground from relay Y which operates in series with the holding ground for relay YP. Relay Y operated (1) opens the operating paths for relays YP and YN and (2) prepares the operating path for relays ZP or ZN . The third pulse CC- operates relay PN which operates relay ZN. Relay ZN operated locks over lead Gl to ground at relay RCA. At the end of the third pulse CC- is removed to release relay PN.

The register relays $X-Y-Z$ will operate for digit 0-9 as follows:

Units or
Tens Digit Register Relays Operated

0	$X N$	-	-
1	$X N$	$Y N$	$Z P$
2	$X N$	$Y N$	$Z N$
3	$X N$	$Y P$	$Z N$
4	$X N$	$Y P$	$Z P$
5	$X P$	-	-
6	$X P$	$Y N$	$Z P$
7	$X P$	$Y N$	$Z N$
8	$X P$	$Y P$	$Z N$
9	$X P$	$Y P$	$Z P$

When the originating end completes the units digit, it connects battery to the tip of the first trunk to select the corresponding trunk equipment at the terminating end. It also connects battery to the ring of the second trunk to indicate to the terminating end that units pulsing is completed. Relay TC operates from battery over the tip of the first trunk, lade Tl and $T 2$, varistor Σ, both windinfs of rolay TC to ground (Option S or T). Relay TC operated (1) causes relay TC2 to onerate through the normal contacts of relay TCl and (2) lights lamp TI if "A" or "H" Option is furnished. Relay TC2 operated (1) lights the trunk indicator lamp Tl if rym Option is furnished and (2) prepares a holding path for relay $C A$ and an onsating path for
relay CBI under control of relay PCl (Figure 3).
8. SELECTION OF INDICATOR AND TRUNK ("K" Option Figure 4) (Refer to Attached Figures)

Relay PCl operated (after first pulse) grounds lead AC through Figures 14 and 4 to operate relay AC in the indicator controller B (second Figure 5) and operates relay SAl (Figure 4). Relay AC operated operates relay Il and locks relay IO throurh key Il to ground at relay SA released. Relay Il operates relay CI (first Figure 6) through contacts of relay II IO, HIA and AC. Relay CI operated (1) lights indicator lamp 1, (2) operates relay CB1 (Figure 14) over leads T5 and G (Figures 1 and 6) lead H to ground at relay PCl, (3) provides a holding path for relay CA over same leads that operated relay CB1 and (4) releases relays A, B and C (Figure 6) if operated from a previous call. Relay CBI operated (1) locks relay PCl through the shunted windings of relay PC and (2) locks operated to ground at relay CB.

Note: After receiving the units digit the following condition exists:
(1) "A" controller relays " X, Y and Z " set up in preparation for operation of proper select magnet for unit digit 3 (Figure 3).
(2) First trunk circuit lamp Tl lighted (Figure 1).
(3) First indicator eircuit lamp Il liphted (Figure 6).
(4) Indicator prepared to set up proper relays and hold magnets in the indicator connector circuit after the tens digit is received (Figure 6).
9. EEGISTRATION OF UNITS DIGIT (Refer to Attached Figures)

Battery over the ring of the second trunk through the composite equipmert (Second Figure 1), lead R2 through controlier connector circuit (Figure 14) and through both windings of relay DC (controiler Λ) causes rejay DC to operate (Option "S" or "T") which operates relay DCI. Rela; DCI operated (1) operates relay US, (2) opens the operating path for relay TS, and (3) opens the puising path. Relay US onerated causes sclect magnet 33 (Figure 8) to ooerate over lead 3, contacts of relay $X N$, IT and ZN to ground at relay XP. Select mar net S3 grounds lead C1 to operate relay SM virich (1) locks in parallel with select marnet S3 over lead G to ground at relay CBl, (2) releases relay US, $X, Y, X N, Y P$, and $\mathcal{Z N},(3)$ grounds lead CT to operate relay CT (Fipure 12) to increase the battery charging rate and (4) shunts relay DC (second trunk) from high (24,160 ohms) to low (160 ohms) for operation of relays at the originating end as a
signal to pulse the tens digit. Release of relay $X N, Y P$, and $Z N$ open the ground shunt from the secondary windirg of relay PC allowing it to operate which (l) trancfers the pulsinf path to ground at relay DCl, (2) operates relay PC2 and (3) transfers the operating path for relay TS.

Note: The following conditions exist before pulsing the tens digit:
(I) First trunk circuit (Figure 1) relays TC and TC2 operated. Lamp Tl lighted.
(2) "A" controller (Figure 3) relays PC, PCl, PC2, DC, DC1, and SM operated.
(3) Indicator allotter "B" (Figure 5) relays AC, IO, and II operated.
(4) First indicator circuit (Figure 6) relay Cl operated and II lamps lighted.
(5) Solect magnct S3 (Ficure 8) operated.
(6) Eattery control (Figure 12) relay CT operated.
(7) Controller connector (Figure 14) relay CA and CBI operated.
10. RECEIVING TENS DIGIT (Refer to Attached Figures)

Assume that the tens digit 6 will be pulsed. The originating end connects -48 volts over the ring side of the first trunk through relays PP and PN to ground at relay DCl. This ground is a signal for the originating end to start pulsing the tens digit. The first pulse of CC+ will operate relay PP. Relay PP operated will cause relay XP to operate which (1) will lock through the shunted winding of relay X and (2) provides a holdinfs path for relay PCl. Relay X dons not operate due to the shuntinf irround. it the end of the firct pulse, $\mathrm{CO}+$ is resoved from the pulsing circuit all.cuiner relay ip to release removine the bround shunt from relay X which operates in series with the nolding path of relay XP. The second pulse of CC- will operate relay PN causing relay YN to operate which (1) locks through the shunted winding of relay Y and (2) provides a holding path for relay PCl. Relay Y does not operate due to the shunting ground. At the end of the second pulse CC- is removed from the pulsing circuit allowing relay $P N$ to release which removes the shunting ground allowing relay to operate in series with the holding path of relay YN. The third pulse of CC+ operates relay PP which in turn operates relay ZP . Relay ZP locks to ground over lead Gl. At the end of the third pulse CC+ is removed from the pulsing circuit to allow relay PP to release.

11. REGISTRATION OF TENS DIGIT CLOSURE OF TALKING PATH AND LIGHTING OF SUBSCRIBERS SIGNAL LAMP

The originating end now removes battery from the ring of the second trunk allowing relay DC to release which releases relay DCl. Relay DCl released operates relay TS which (1) operates hold magnet F (Figure 7) over lead F through contacts of relay CI (first Figure 6) to ground on relay PC2, (2) operates relay B through contacts of relays CI, TS, YN, ZP and YP to ground at relay XN, (3) operates relay C through contacts of relays CI, TS, ZP and YP to ground at relay $\mathrm{XN},(4)$ operates hold magnet C (Figure 2) over lead C, contacts of relay TC2 (Figure 1), lead C'through contacts of relays TS, XP, and PC2 to ground at relay YN and (5) operates relay E over lead E (Figure 1) through contacts of relays TS and PC2 to ground at relay $2 P$.

Notes: 1. Hold marnet E operates for numbers $0-49$ and hold magnet F operates for numbers 50-99.
2. Relays A, B, or C (Figure 6) operate as follows:

Tens Digit

0 or 5	none
1 or 6	B, C
2 or 7	C
3 or 8	A, B, C
4 or 9	A, C

3. $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D hold magnets
(Figure 2) operate as follows:
Tens Digit
Hold Magnet Operated

0,	1,
3,	2
5,	6,
8,	9

A
7
B
C
D
4. E or F rolays (Fifure 1) will operate as follows:

$$
\begin{aligned}
& \text { Tens Digit } \\
& 0,3,5,8 \\
& \frac{1}{2} \text { or } 7,6,9
\end{aligned}
$$

Relay Operated

none
 $\underset{\mathrm{F}}{\mathrm{E}}$

Operation of the F hold magnet (Fig ure 7) will close the six crosspoints on the crossbar switch at the level of the operated select magnet S3.

Battery from Figure 14 over lead B1 through the winding of relay CIA, contacts of relay B and C operated and lead 8 (Figure 6) through the crosspoint selected by select magnet 53 of the crossbar switch
(Figure 7), through the tip side of selected digit 63 (Figures 2 and 102) and the switchboard lamp to pround will lipht the lamp and operate relay CIA.

Operation of the F hold magnet (1) connects "D" ground to lead H (Fipure 7) throuph (Figure 14 and 4) to hold relay SAl which locks (relay SA does not operate due to a ground shunt), (2) operates relay HM over lead HM, contacts of relay SA (Figure 4) lead HM through Figure 14, lead HM through contacts of relay TS (Figure 3), lead G contacts of relay CI (Figure 6) lead 12 through contacts of hold magnet F (Figure 7), lead F, contacts of relay CI (Figure 6) to Figure 3 over lead F, contacts of relays TS and $X P$ to fround at relay PC2.

Note: When hold magnet C operated, the tip and ring of the first trunk was connected through the crossbar switch to the selected switchboard jack.

Relay HM operated (1) provides a locking path for relays B and C over lead D (Figure 6) through second Figure 5, through contacts of relays AC and HM to ground at relay $A C$ and (2) releases relay CI (Figure 5). Relay CI released (1) extinguishes lamp II, (2) locks hold magnet F operated over lead 12 (Fifure 7) through contacts of relay CI to ground at relay CIA, (3) locks relay B and C and (4) releases relay CA (Figure 14). Relay CA released transfers leads R1, R2 and opens lead G from controller A to controller B which cause relay $S M$ to release. Relay SM released (1) releases select mapnet $S 3$ (Fipure 8), (2) relenses relays US, XP, X, YN, Y and $Z P$ and (3) releases relay CT (Fíp,ure 12). Relays XP, YN and ZP released cause relays PC and PCI' to release. Release of relay PC (1) allows the pulsing paith to become available as soon as the pulsing path of the first trunk is shifted back to controller A and (2) release: relays PC2 and TS. Relay ICl relcatsed (1) allows relay $A C$ (second Figure 5: to release which in turn releases relays 10 and HM and (2) operates relay IT through contacts of relays ITI, AC, and SAl to ground at relay SA. Relay IT operated causes relay IT1 to operate which releases relay I'. (NOTE) This is the beginning of a "ivalking Sequence" which determines the len ${ }^{2} i \hat{h}$ of time the switchboard lamp will be lightco.

Note: Under asraal traffic the switchboard lamp wi: il be lighted for approximately 3 seconds. If the traffic is very lipht and the RU relay in the originating unit is operated for the second time during one rinf:ing interval or on a two ring circuit, the call may be served for the socond time. The terminating indicetor connector used the first time may or may not be used the second time (2 \% sill depend
upon the number of calls served and how far the terminating indicator allotter has advanced durinf, the interval). If the terminatinf. indicator connector is still on the first call, a second indicator connector may be set up for the same call and this overlap will extend the time that the switchboard lamp is lighted.
12. FIRST TRUNK CONNECTED THROUGH TO SWITCHBOARD JACK

When relay E (Figure 1) was operated the tip and ring of the first trunk was connected over leads 3 and 4, through the crosspoints in the vertical determined by hold magnet C operated (Figure 2) and the level determined by select magnet $S 3$ operated (Figure 8) through to the switchboard jack circuit. Hold marnet C operated causes relay TCl (Fifure 1) to operate and lock over lead M. Relay 'TCl operated (1) releases relay TC2 and locks hold magnet C and relay E operated. Relay TC2 released extinguishes lamp Tl if "J" Option was furnished.

13. ATYENDANT ANSWERS (Refer to Attached Figures)

When the attendant inserts the plug into the jack, relay TCA (Figure 1) operates over the loop in series with resistance TS to ground which (1) locks operated through the secondary winding, (2) supplies talking battery and ground to the extension circuit and (3) shunts the $24,000-o h m$ winding, of relay TC with resistance G (Figure 14) as a sipnal to the oripinating end to trip the ringing.

Relay CIA (Firure 6) releases due to opening. the path to ground through the extension jack allowing hold magnet F (Figure 7) to rolease which (1) opens the crosspointe in the indicator connector circuit. and (2) removes pround D from lead il throuri (Ni:rure 16 and 4) to operate relay SA.

Note: The relays operated during talking are as follows:
(1) First trunk circuit (Figure i) relay TCA, TC, TCI and E or F operated or released (E for this case).
(2) First trunk connector circuit (Figure 2) hold magnet A, B, C or D (C
for this case).
(3) Indicator control (Figure 4) relay SA and SAl (no immediate successive call).
(4) Indicator allotter (second Figure 5) see Paragraph 13 or 14.
(5) First indicator circuit (Figure 6) relays A, B, or C which do not re-
lease until reoperation of relay CI.
and C this case).
(6) Controller connector (Figure 14) relays CIB or CA (CIB for this case),

14. ATTGNDANT DISCONNECTS (Refer to

 Attached Fipures)When the attendant removes the plug from the jack, relay TCA releases due to an open loop and removes the shunt ground from the secondary winding of relay TC. The change in resistance of the winding of relay TC signals the originating end to remove battery from the tip of the second trunk allowing relay TC to release which (1) extinguishes lamp Tl if "H" Option is furnished and (2) releases relay TCl which in turn releases relay E and hold marnet C .

15. Z๒TURNING TH NORIAL (WALKING SEQUENGE) (Refer to Attached Figures)

Assume relays SA and SAl (Figure 4) normal. When relay PCl (Figure 3) is released after the controller connector (Figure 14) shifts controllers (release of relay CA) rcluy AC (second Figure 5) releases causing (I) relay IT to operate throurg contacts of relay I'rl, AC, lead H, contacts of relay SAl to cround at relay SA (provided either hold magnet E or F in Figure 7 operate), (2) releases relay $\mathrm{HI}:$ and (3) releases relay IO. Relay Il holds over lead 12 through key Il, lead 11, contacts of relays II, I2, I3, I4, lead 10, key I2, lead 2, contacts of relay AC, lead G to ground at relay SA. Relay IT operated causes relay I'Tl to operate which releases relay IT. Relay AC operates (relay IT operated and JT1 slow to release) causing relay I 2 to operate and hold relay Il over lead 9, key I2, lead 8, secondary windine and contacts of relay Ii, contacts of reliay $I O$ and $A C$, lead G to erround at relay SA. Relay I2 operated causes relay CI (second FiEure 6) to operate over lead 2, contact of relays I2, II, IO and HIM to ground at relay AC and light lamp I2. Relay ITl releases causing relay AC to release which (1) holds relay I2. operated over lead 9, key I2, lead 8 contact of relaye I2, I3, and I4, lead 7 key I3, lead 1, contacts of relay AC, lead G to β round at relay SA, (2) releases relays II and CI (first Figure 6) and (3) operates relay I'T, relay IT operated causes relay ITl to operate which (I) operates relay AC and (2) releases relay IT. Relay AC operated operates relay I3 and holds I2 over lead 6, key I3, lead 5 secondary winding and contacts of relay I2, contact of relays Il, IO and AC, lead G to cround at relay SA. Relay I\} operated causes relay CI (third Ficure 6) to operate over lead 3 and light lamp I3. Relay ITl releases causing relay $A C$ to release which (1) releases relays I2 and CI (second Figure 6), (2) operates relay IT and (3) holds relay I3 over lead 6, key I3, lead 5, contacts of relays I3 and 14 lead 2. key I4, lead 1.
contacts of relay $A C$, lead G to ground at relay SA. Relay IT operated causes relay ITl to operate which (1) releases relay IT and (2) operates relay AC which operates relay I4 over lead 4 , key I4, lead 3 secondary windinf; and contact of relay I3, contacts of relays I3, I2, I1, 10 and $A C$, lead G to ground at relay $S A$ and (2) releases relay IT. Relay I4 causes relay CI (fourth Figure 6) to operate over lead 4 and light lamp I4. Relay ITI releases causing relay AC to release which (1) releases relay IT. Relay I4 released operates relay IO. Relay IT operates (ITl slow release and AC released) causing relay ITI to reoperate which operates relay AC. Relay Il operates as before causing relay CI (first Figure 6) to operate which (1) opens lead 12 to Figure 7 to release hold magnet F, (2) releases relay B and C and (3) licht lamp Il. Hold magnet F released (1) releases relay CIA and (2) removes "D" cround from lead H to operate relay SA (removes cround shunt). Relay SA operated (1) removes ground from lead H to prevent relay IT from operating upon the release of relay AC, (2) operates relay IO of the first Firure 5 and (3) transfors leads $A O, H$ and $H M$ to the next indicator allotter circuit providing no call is started in either controller (Eround on lead M). Relay IT released causes relays ITI and AC to release. Relay AC released releases relay Il which releases relay CI. The indicator allotter is now returned to normal. It is this "Walking Sequence" that determines the length of time the switchboard lamp is lighted.

16. AL'TERNATE USE OF INDICATOR ALLOTTER (Refer to Attached Figures)

If the next call occurs after the allotter used in Purapraph 10 has roturned to normal, pround on lead M releases relay SAl which conncets ε round to lead H and operates relay IT (first Figure 5). The operation for the first allotter will be the same as described in Paragraph 10.

Note: With relay $S A$ operated and relay SAl released, the call will be served by the first indicator allotter. With relay SAI operated and relay SA released the call will be serviced by the second indicator allotter.

17. USE OF INDICATOR ALLOTTER ON SUCCESSIVE

 CALLS[^0]by indicator allotter B. Any succeeding, calls which oripinate while the crosspoints at either the E or F hold magnets are still closed from the provious call will also be served by indicator allotter B. When the E and F hold mapnets both release due to the absence of calls in the system, the shunting ground on the winding of relay $S A$ is removed and relay SA operates. When the next call is served, the crosspoints at the E and F hold mapnets will close causinp, relay SAl. to release. With the SA relay operated and relay SAl released, the call will be served by indicator allotter A. Any succeeding calls orjpinated before the crosspoints at the E and F hold marnets have had a chance to release, will continue to be served by indicator allotter A. When the crossooints of the indicator connestor switch open due to the rejease of the E and F hold mapnets between successive calls, relay $S A$ will release. This completes the cycle of events using alternate allotters and the next call. will be served by the second indicator allotter.

18. TIMEOUT (Refer to Figure 4 Attached)

When the originating circuit times out because of a trouble that prevents the comoletion of a call within the time-out interval, it applies CC+ to the tip of the first trunk to overate the recycle RC relay in this circuit. Relay RC operated operates relay RCA which in turn operates relay TO. Relay RCA operated removes locking ground for relays $X, X N, X P, Y, Y P, Z N$ and $Z P$ if these relays are operated. The release of these relays would in turn release relays PC, PCl and PC2 if they are operated. Relay TO operated (1) lights lamp TO to indicate a time-out, (2) operates relay CB or CB1 to use the controller which was not in service at the time the time-out occurred, (3) locks to AR relay normal and (4) removes the operating ground from the (ATB) relay, if Option ZA is furnished. When the originatinf end is restored Co; is removed from the tip of the first trunk to relense relay RC which in turn releases relay RCA, and CC+ is connected to the tin sidc of trunk 2 to operate relay AR which r eleases relay TO.

A 'lLMEHOU' (Refer to Fifure 4 Attached)

When the oripinatinr circuit times out as described in the precedinc parapraph, it oderates relay $T O$ in this circuit. Relay TO operated (i) transfers the pulsing, and signaling leads from trunks one and two to trunks ti.uee and four or to an auxiliary bair to coniorm with the transfer of the pulsing and si, naling leads made in the originatinf circuit and (2) opens a rround to the ATB relay if Ontion $2 . \Lambda$ is furnished. The operation of the alarm release key in the originatinf, circuit operatuc relay AR in
this circuit which in turn releases relay TO which (1) extinfuishes the TO lamp (2) transferrinf the pulsing, path to normal and (3) supplies operating, pround to the (ATB) relay if Option ZA is furnished.

20. BATTLRY CONTROL CIMCUIT FIGURE 12

The battery control circuit is furnished when the $24-$ volt supply is derived from a battery located in the cabinet below the switches and relays. When the circuit is idle a trickle charge of approximately 0.350 amperes is maintained on the battery. This trickle charge is adjusted to the proner value by varying resistor Rl. When relay SM operates it connects fround to lead C'T to operate relay CT of the battery control circuit which in turn releases relay CC. Relay CC released short circuits resistor $R 1$ which raises the charging, rate to 0.000 amperes or hifher if traffic conditions warrant. This hirher rate is adjusted to the proper value by varying resistor R2.

When relay SM releases, it releases relay CT which in turn closes the operating path for relay CC. Should the voltage drop to such a point that relay CC will not reoperate once it is released, the hipher charging rate will be maintained until the voltage is raised. sufficiently to op rate relay CC. The charge then drops back to a trickle charge.

21. CHARGING FAILURt ALARM FIGUKt 20

21.1 When the charging source is connected to lead Bl, relay CF will operate. Relay CF operated (1) removes battery to release relay FA (Figure 9) and (2) connects lead $B 1$ to the battery control circuit (Fifure 12). If the charging source should fail, relay CF will release and connect battery to operate relay FA which gives the alarm.
22. INDLCATOR CONTROL (Figure 4 "M" Option!
22.1 With keys IA and IB normal, the circuit operates as described in Parapraphs 8 and 17. If both keys IA and I? are operated, operation is provided using. allotter 1.

22.2 Key In Operatod and Key IB Normal

When a call is served a fround is applied to lead M and if both relays $S A$ a:c SAl are normal, relay SAi will operate f: out battery throuph resistor W, contacts of key IB winding and contacts of relay SAl to ground on lead M. Relay SAI will lock operated. relay SA does not operate because the battery through resistor V is by-passed through contacts of keys IA and IB to ground on lead M. This prevents allotter A from operating, while allotter B is connected over the normal contacts of relay SA. At the end of
the indicating period the indicator connector will release removing, the by-pass ground. Relay SA now operates from battery through resistor V, winding of relay $S A$, contacts of relay SA2 to pround which disconnects allotter B. Allotter A is connected but has no operational effect. On a following call, pround is reapplied to lead M and relay SA is shunted down releasing allotter A. Allotter B is reconnected over the normal contacts of relay SA thus leaving allotter A busied out.

22.3 Key IB Operated and Key In Normal

Relay SAl releases if previously locked up due to opening of the battery at the contacts of key IB. The release of relay SAl releases relay $S A$ by removing the locking pround. When a call is served, pround is applied to lead M to operate relay SA from battery through resistor V, windinf of relay $S \AA$ and contacts of relay SAl. Relay SAl cannot operate because the battery path is open by key IB operated. The operation of relay $S A$ while relay SAl is normal prevents allotter B from operating and connects allotter A over the operated contact of relay SA. When ground is removed from leads M and H at the release of the indicator connector, relay SA releases. This disconnects allotter A and closes the circuit for allotter B but has no operational effoct. On the followinfr call relay SA oprates and allotter B is busied out.

23. ALL TRUNKS BUSY

23.2. Fipures 21 and 22 with ${ }^{\text {nH }}$ Option
 (Manufacture Discontinued)

Relay ATB is normally operated from battery to ground on relays TO in each trunk circuit. As each trunk becomes busy ground is removed from the associated BY (Option H) lead. When all the trunks are busy relay ATB releases causing the all trunks busy lamp at the switchboard to light. As soon as any trunk becomes idle relay ATB operates to extinguish the ATB switchboard lamp.
23.2 Figures 22, 25 and 26 with "ZA" Option

When all trunks are held busy 48 -volt battery is supplied from the originating end over the composite ring conductor of the third trunk or the tip conductor of the spare cable pair which operates the ATB relay over leads $A B 1$ and $A B 2$ to a ground from the TO rolay. The operated ATB relay (1) lights the ATB lamp at the switchboard and (2) operates the AB messape register when Figure 20 is provided. When a TBR- relay releases at the originating end the ATB relay releases.

During a time out as explained in Section 18 the ATB relay is ineffective The TO relay opens the operating circuit for the ATB relay.
24. TEST LINE (Figure 23)

The test line furnished is an answering jack and lamp circuit which may be locally terminated in test leads equipped with clips that may connect to any line for test purposes or may be wired locally to a number of permanently assigned as a test number. In some type of switchboards the answering jack may have to be opened before the lamp in the test line will light.

25. REPAIRMANS TALKING TEMMINALS (Figure 2山)

Two lA test posts are provided which may be connected locally to an official line. The test posts facilitate using a hand test set when clearing trouble and talking to the originating end.

26. ALARM RCUTINE

As this circuit performs its functions, the following lamp signals indicate the progress of the call:
(1) The TO to T4 lamps indicate which trunk (1, 2, 3, or 4) has been
selected for use on the call.
(2) The IO to I4 lamos show which indicator (I1, I2, I3 or I4) has been allotted for use on the call.
(3) The lamp located at the switchboard indicates which customers' line is waiting tc be served.
(4) TO lamp indicates a time-out caused by trouble occurring either in the originating circuit or in this circuit.

27. TALKING EQUIPMENT OUT OF SERVICE

When it is necessary to chanye the relays listed below, the precautions indicated should be observed to prevent blocking the system.

CA relay Figure 14
(1) Operate EB key.
(2) Connect 5 T (TO) relay to 2 (PP) relay of controller A.
(3) Connect 2 B (TO) relay to 3 M (DC) relay of controller A.
(4) Connect 2 B (RCA) relay to 2 T (PC1) relay of controller A.

CB relay Figure 14
(1) Operate EA key.
(2) Connect direct ground to 7TF (CA) relay.

CBI relay Figure 14
(1) Operates EA key.

TO relay Figure 14
(1) Connect 1 (ine) ret. coil of trunk 1 to 5 T (心.) relay.
(2) Connect 1 (T2) ret. coil of trunk 2 to $2 T$ (CA) relay.
(3) Ground the $3 T$ of the ATB relay.

RC relay Figure 14
(1) None.

RCA relay Figure 14
(1) Connect direct ground to 6B (PC) relay of controller A.
(2) Connect 5B (CA) to 6B (TC2) relay of the first trunk.

Any relay in trunk circuit Figure 1
(1) Make the trunk busy by operating the associated TB1, TB2, TB3 or
TB4 key in the orifinating circuit.
Any relay in controller A or B Figure 3
(1) Make the controller busy by operating excrcise key EA or XB for
the other controller.
Any relay in indicator circuit Figure 6
(1) Operate the II, I2, I3, or I4 key to make the associated indicator busy.

Any relay in indicator allotter A or B Figure 5
(1) Make the indicator allotter busy by operating the IA or IB key.

BELL TELEPHONE LABORATORIES, INCORPORATED

DEPT. 2725-REW-HHA-BH
Attached: Figures 1-7

fig.i-frame layout

fig. 2 - seizure ano digit registration

			\downarrow ORG. END CHECKS FOR GROUND
			-cc-on ri lead (ist pulse) *PN
			* XN
\SAI		*PCI	- cc-removed from ri lead
		* AC	-PN
		* 11	* \times
		*CIIno 11	- octon ri lead (2no pulse)
		\times cbi	$*^{\text {PP }}$
			* YP
			$\begin{aligned} & \text {-cctremoved from ri lead } \\ & \text {-pp } \end{aligned}$
			$*^{4}$
			- cc-on ri lead (bro pulse)
			*PN
			*2N
			-cc-removed from ri lead
			-
			WHEN ORG END COMPLETES PULSING FIRST DIGIT BATTERY IS PLACED ON RI LEAD AND TI LEAD OF
			RILEAD AND titelend of selecteo
trunk selection			
* tc			* DC
χ TC2			* OCI
			E © ${ }_{\text {(}}$

fig. 6 allotter walking sequenct

CHANGES

D. DESCRIPTION OF CIRCUIT CHNNGES
D. 1 Cabling Flgure 53 and 54 are changed
to make the grounds in Figures 1, 3 and 14 agree with the schematic when Option "T\&F" is applied.
D. 2 In F1gure 1, the ground at resistor
D. 3 All the battery and grounds in this drawing are changed to agree with the W.E.Co. "T" drawings.
D. 4 Circuit Note 101 is revised to agree with the actual fusing per the
W.E.Co. "T" drawings.
D. 5 Eqpt. Note 202 is rated Mrr. Disc.

All other headings, no change.

BELL TELEPHONE LABORATORIES, INCORPORATED

DEPT. 2725-WVS-HHA-PM

Page 1
1 Page

[^0]: When the crosspoint of the indicator connector switch is closed by the operation of the E or F hold magnets, ground fiom the Indicator connector switch operates relay SAI of the indicator controller which in turn locks to ground on its own contacts. Relay SA does not operate at this time because it is shunted through its own normal contacts. With the SA relay normal and the SAl relay operated, the call will be served

