CIRCUIT DESCRIPTION

$$
C D-69414-01
$$

ISSUE 3D

5

STATION SYSTEMS

4-WIRE SUBSCRIBER LINE CIRCUITS
ARRANGED FOR COMMON
BATMERY OPERATION

CHANGES

A. Changed and Added Functions

A. 1 Association with circuits providing a dc continuity checking feature.
B. Changes in Apparatus

B. $1 \frac{\text { SUPERSEDED }}{}$| $243 \mathrm{~B} \mathrm{KTU}, \mathrm{App}$ |
| :--- |
| |
| |
| |
| |
| Fig .6 |$\frac{\text { SUPERSEDED BY }}{243 \mathrm{CKTU}, \mathrm{Kpp}}$

D. Description of Changes
D. 1 Option A is designated, rated AT\&TCo Std,
and added to FS9.
D. 2 Option B is designated, rated AT\&TCo Sta, and added to FSl.
D. 3 In FS6 the designation of installer straps is added for clarity.
D. 4 App Fig. 6 is rated Mfr Disc, and is replaced by App Fig. 8 which is designated, rated AT\&TCo Std, and added to FS9.
D. 5 Circuit Note 102 is changed.
D. 6 Equipment Note 201 is added.
D. 7 Information Notes 302 and 303 are changed.
F. Changes in CD Sections
F. 1 Under SECTION II, change heading of 1.09 to read:
243B KTU (Mfr Disc.) or 243 CKTU
F. 2 Under SECTION II, change the first sentence of 1.10 to read:

In FS9, the shunt paths consist of (a) resistor $T K$, when A option is furnished, (b) the A capacitor and L, M, and T resistors in the shunt leg of the transmitting pad, and (c) the $S T$ sidetone $n \in t w o r k$ (7 option) or the ST and SR capacitors and resistors of the sidetone bridge (G option).

F. 3 Under SECTION II, add:

DC CONTINUITY CHECK (OPTION A OR B)
1.22 Resistors TK and RK provide a high resistance closure of the line when associated with a circuit having a continuity checking feature. The resistors provide a negligible shunt to the transmission path, while resistor $T K$ is removed during rotary dialing to prevent pulse distortion.
F. 5 Under SECTION III, 4, add:
(m) Private Service Systems - Switching
System No. 304, $4-$ Wire Station
Line Circuit - SD-1G165-01.
(n) PBX Systems - No. 758 C Prémption
and Continuity Test Circuit -
SD $67054-01$.

BELL TELEPHONE LABORATORIES, INCORPORATED

DEPT 5324-RHM-GAP

NOTICE

${ }^{\text {This }}$ cocument is either ATAT. Proprietant or wESTERN ELECTRIC - Proprietary
Pursuani to Judge Greanes Orcier of Augus 5 s, 1983 .
Beglning and the Bell symbol. with the exceptions as set forth in that Orfer. Pursuant thereto, any reference to BELL" andfor the BELL svmbol in this docurnent is heroby deleted and "expunged".

STATION SYSTEMS
4-WIRE SUBSCRIBER LINE CIRCUITS
ARRANGED FOR COMMON
BATTERY OPERATION

SECTION I - GENERAL DESCRIPTION

1. PURPOSE OF CIRCUIT

1.01 This circuit provides means for signaling a subscriber station on a 4-wire

 common battery line from a central office or PBX, for holding the line, and for indicating by visual signals whenever the line is held or busy. It provides pickup relays and the common circuits necessary for the proper functioning of lines for a key telephone system. It also provides a manual exclusion circuit for a 4 -wire line.
SECTION II - DETAILED DESCRIPTION

1. DESCRIPTION OF OPERATION

INCOMING CALL

A. Signaling

1.01 When ringing current is applied to the ring Rl of the receiving pair of the 4-wire line on an incoming call, the ac component flows through the secondary of relay R, thermistor R, capacitor R, and resistor R to the tip T of the receiving palr on onehalf of the cycle, and through diode R, thermistor R, and capacitor R to the tip T on the other half cycle. The 317A varistor Rl protects diode R and thermistor R from transient currents. Resistor R protects the R varistor from damage by surge currents. The thermistor has a cold resistance in the order of 50,000 ohms which prevents relay R from operating when ringing current is first applied, preventing false operation on disconnect or other transients. Power absorbed from the ringing current increases the temperature of the thermistor and reduces its resistance to the order of 3000 ohms in about $1 / 2$ second, permitting sufficient current to flow to operate the R relay on the half-wave rectified current due to diode R. Relay R locks operated on its primary winding under control of relay $A H$ and the LK lead. Operation of relay R connects ground to the $T O$ lead to start the time-out and lamp flashing functions in the Visual and Audible Signal Circuit, connects the signal lamp lead to the flashing circuit, and closes the CA or CAl lead to the common audible signal circuit and to the Auxiliary Service Transfer Circuit, if provided. When neither the common audible signal circuit nor the Auxiliary Service Transfer Circuit is provided, J wiring provides for directly controlling an audible signal.

B. Answering an Incoming Call

1.02 When an incoming call is answered,

 ground is placed on the A lead, operating the auxiliary pickup A-PU relay of FS4 associated with the line and the station. The A-PU pickup relay (a) places battery on the 4 -wire class FW lead toward the key and telephone circuit; (b) in FSI or FS9, closes the line side of repeating coil R; (c) connects the telephone receiver leads RT and RR to the station side of the repeating coil R; (d) connects the sidetone network between the transmitting pair and the receiving pair; (e) in FS4 connects ground to the A2 lead operating the A relay of the line circuit; (f) in .FS2, extends the P 4 lead to the $0 N$ relay for rotary dial systems (4 or 6 option) or for TOUCH-TONE dial systems, extends the SP lead to the Auxiliary Service Transfer Circuit (V option) (g) in FS3, extends the operating path of the exclusion A-EX relay (3 option) over the ET lead; (h) in FS7, extends a signal S lead to the D or E lead of the Auxillary Service Transfer Circuit, if provided; and (1) In FS8, extends a second S lead to the second D or E lead of the Auxiliary Service Transfer Circuit, if provided.1.03 In FS4, operation of the A relay in the line circuit performs the following functions:
(a) In FS5, operates the auxiliary hold AH relay.
(b) In FS6, transfers the lamp L lead from flashing battery to steady
battery.
(c) In FSl or FS9, opens the operating path of the hold H relay, preventing
it from operating falsely.
1.04 In FS5, operation of the AH relay (a) prepares a circuit from the LW lead to the L lead in FS6; (b) grounds the co lead to the Visual and Audible Signal Circuit (T option) or to the Auxiliary Service Transfer circuit (S option), if provided; and (c) in FSl or FS9 opens the locking path of the R relay, allowing it to release.

OUTGOING CALL
1.05 The relay sequence for an outgoing call is the same as for an incoming
call except that the R relay will be in a released condition. Dialing is accomplished over the transmitting pair.

C. TOUCH-TONE Dialing (242A KTU)

1.06 Dial frequencies generated in the key telephone set are transmitted to the line via the Tl and RI leads of FSl and the transmitting pad composed of resistors A, B, E, F, L, M, and T and capacitor A.
D. Rotary Dialing

243A KTU) (Mfr Disc.)
1.07 Dial pulses generated in the key telephone set are transmitted to the line via the T and R leads of FSI and through the A and E resistors in parallel, and the B and F resistors in parallel. During dialing, the of f normal ON relay of FS2 is operated from ground on the P 4 lead (4 option). The ON relay operated removes all shunt paths from he transmitting pair during pulsing.
1.08 In FSI, the shunt paths consist of the A capacitor and L, M, and T resistors in the shunt leg of the transmitting pad and the ST and SR capacitors and the ST and SR resistors of the sidetone bridge. After pulsing, the ON relay releases and restores all bridges to the line.

243B KTU

1.09 Dial pulses generated in the key telephone set are transmitted to the line via the T and R leads of FS9 and through the A and E resistors in parallel, and the B and F resistors in parallel. During dialing, the off normal ON relay of FS2 is operated from ground on the 44 lead (6 option). The ON relay operated removes all shunt paths from the transmitting pair during pulsing.
1.10 In FS9, the shunt paths consist of the A capacitor and L, M, and T resistors in the shunt leg of the transmitting pad and the ST sidetone network (7 option) or the ST and SR capacitors and the ST and SR resistors of the sidetone bridge (G option). After pulsing, the ON relay releases and reistores all bridges to the line.

HOLDING

1.11 An incoming or outgoing call can be
held by removing the ground from the A lead while retaining the station shunt on the T and R leads. Removing ground from the A lead releases the A-PU relay of FS4, in turn releasing the A relay which (a) in FSI or FS9, closes the operating path of the H relay, allowing it to operate on line current through the telephone set; (b) prepares a holding path for the slow-release relay AH in FSS; and (c) transfers the lamp lead L in FS6 from steady to winking over
the path previously prepared by operation of relay AH.
1.12 Operation of relay H (a) closes its M8 contact, connecting its winding across the line as the holding bridge; (b) in FS5, closes a holding path for the slow release $A H$ in time to prevent its release; and (c) in FS6, grounds the HA lead to the Visual and Audible Signal Circuit to start the interrupter for lamp winking.
1.13 The varistor H in FSl or FS9 is in: parallel with the winding of relay H to stabilize the sensitivity of the H relay when subjected to varying voltages.

E. Release of the Holding Bridge When the Call Is Again P1cked Up

1.14 When the line is reseized, ground on the A lead operates the A-PU relay in FS4, in turn operating the A relay, which opens the locking path of the H relay in FSl or FS9 and removes the holding bridge. This restores the circuit to the taiking condition.
F. Release of the Holding Bridge from the Central Office or PBX
1.15 A permanent signal, caused by the hold circuit's not being released by a station, can be released from the central office or PBX by opening the line momentarily and allowing relay H to release and restore the circuit to normal.

EXCLUSION

1. 16 When manual cutoff (exclusion) is furnished the control station connects ground from the ER lead to the ET lead, operating the A-EX relay in FS3, which performs the following functions:
(a) Opens the following leads between the line circuit and the A-PU relays assoclated with stations that can be cut off: RT and RR in FSi or FS9, SP or P4 in FS2. A2 in FS4, D or E in FS7, and FS8.
(b) Opens the T and R leads in FSl or FSO between the line circuit and the cutoff stations.
(c) Short circuits the $R T$ and $R R$ leads in FSI or FS9 toward the cutoff stations.

DISCONNECTION

1.17 When the station disconnects on either incoming or outgoing calls, ground is removed from the A lead in FS4, releasing the A-PU relay, which in turn releases the A relay, which releases the AH relay in FS5, and the circuit is restored to normal.

TRANSMISSION PADS

1.18 Transmission pads are provided in FSl or FS9 in both the transmitting circuit and the receiving circuit. Optional strapping permits a choice of four fixed amounts of loss in steps of approximately 2 db .

SIDETONE NETWORKS
G. Resistive Type (Options 4, G, and V)
1.19 The resistive network consists of resistors $S T$ and $S R$ and capacitors $S T$ and $S R$ in the line circuit. It provides a loss of approximately 20 db from the transmitting circuit to the receiving circuit for sidetone purposes, but also provides an echo return path from the receiving circuit to the transmitting circuit of equivalent loss. If two key telephone sets pick up the line, the sidetone and talkback levels may be inadequate for satisfactory communication between the two stations.
H. Active Type (Option 7)
1.20 The active network (256A KTU) contains a transistor which provides a uni-
directional sidetone path as well as improved sidetone level stability if more than one key telephone station picks up the line. Power for the operation of the transistor is derived from the transmitter current. Sidetone losses of 17 , 19, or 21 db are obtained by terminal strapping. The echo return loss through the network is at least 40 db from the receiving circuit to the transmitting circuit, which is desirable for long-haul circuits. It should be noted that proper line polarity is necessary on the Tl and RI leads in FSl or FS9 for the transistor network to function.

SPEAKERPHONE

1.21 Option F provides connections to 2and 4 -wire speakerphones which may be used in conjunction with one of the key telephone sets. Line circuit operation is the same for speakerphone use and telephone use.

SECTION III - REFERENCE DATA

1. WORKING LIMITS

1.01 Maximum external conductor loop resistance - 1,200 ohms.
1.02 Minimum insulation resistance 10,000 ohms.
2. FUNCTIONAL DESIGNATIONS Designation Meaning

A
AH

Auxiliary
Auxiliary Hold

Meaning
Exclusion
Hold
Off-Normal
Pickup
Ringup, Receive or Ring
Sidetone Ring
Sidetone or Sidetone T1p
Transmit or Tip

3. FUNCTIONS

3.01 On 4-wire common battery central office lines or 4-wire PBX lines, this
circuit provides for the following functions.
3.02 Flashing visual signals for incoming calls.
3.03 Common audible signals for incoming calls.
3.04 Steady visual signals while a station of the key telephone system makes a
line busy.
3.05 Holding lines.
3.06 Winking visual signals to indicate a held line.
3.07 Removing the hold when a station of the key telephone system again seizes the inne, or when the line is opened momentarlly at the central office or PBX.
3.08 Transmission pads to adjust the transmitting and receiving levels.
3.09 Stations which can cut off other stations and cannot be cut off.
3.10 Stations which cannot cut off other stations and can be cut off at any
time.
3.11 Sidetone from the transmitting path to the receiver.
3.12 Impedance matching of the receiver to the line.
3.13 Operation with 2- and 4-wire speakerphone.
4. CONNECTING CIRCUITS
4.01 When this circuit is listed on the keysheet, the connecting information thereon is to be followed.
(a) Crossbar Systems No. 5, Line Link and Marker Connector Control Circuit for
Use with 4-Wire Lines - SD-26036-01.
(b) Auxiliary Service Transfer circuit -SD-69422-01.
(c) Crossbar Systems No. 5, Auxiliary Line Un1t - SD-27517-01.
(d) PBX Systems - Auxiliary Line Circuit -SD-65864-01.
(e) Continuous Ringing Supply.
(f) Key Telephone Systems No. IA1 - Visual and Audible Signal Circuit -SD-69294-01.
(g) Key and Telephone Circuit Arranged for TOUCH-TONE Calling on 2- and 4-Wire Common. Battery Lines - SD-69423-01.
(h) Key and Telephone Circuit for 2- and 4-Wire Common Battery Dial Lines -SD-69425-01.
(1) Key and Telephone Circuit Arrenged for TOUCH-TONE Calling on 2- and 4-Wire Lines - 1616-Type Telephone Sets -SD-69454-01.
(j) Key and Telephone Circuit for 2- and 4-Wire Lines - 608- and 618-Type
Telephone Sets - SD-69455-01.
(k) Key and Telephone Circuits for 2- and 4-Wire Lines - Using Separately
Mounted Keys - SD-69485-01.
(ℓ) Speakerphone Control Circuit for 2and 4-Wire Lines - SD-69487-01.

SECTION IV - REASONS FOR REISSUE

A. Changed and Added Functions
A. 1 Operation with 2- and 4-wire speakerphone is added.
B. Changes in Apparatus
B. 1 ADDED

256A KTU, App Fig. 7
B.

243A KTU, App Fig. 4	243B KTU, App Fig. 6
201B KTU, App	$201 \mathrm{CKTU}, \mathrm{App} \mathrm{Fig}$.
R Resistor	R Resistor KS-13490,
KS-13490,	List 1, 68 ohms
L1st 1, 51 ohms	± 20 per cent, App
± 5 per cent,	Fig. 1, 4

D. Description of Changes
D. 1 FS9 is added.
D. 2 Options E, F, G, 6, and 7 are added.
D. 3 In FSI the strapping for M option is corrected.
D. 4 In FS1 the value of resistor R is corrected from 51 ohms to 68 ohms.
D. 5 In FS2, FS4, FS6, FS7, and FS8 the location of multiple straps is changed for clarity.
D. 6 App Fig. 4 is rated Mfr Disc. and replaced by App Fig. 6 which is added and rated AT\&TCo Std.
D. 7 In App Fig. 5 the 201B KTU, which has been rated Mfr Disc.; is replaced by the 201 CKTU .
D. 8 App Flg. 7 is added.
D. 9 Circuit Note 102 is changed.
D. 10 Circuit Note 107 is added.
D. 11 Information Note 302 is changed.
D. 12 Information Notes 303 and 304 are added.

BELL TELEPHONE LABORATORIES, INCORPORATED

DEPT 5324-WJM-GAP

