NO.I CROSSBAR SYSTEM

Condensed Description
A Crossbar to Crossbar Call

Developed by
The Plant Training Schools
For Training Purposes Only

PREFACE

published. It will be necessary for the instructor, therefore, to check subsequent issues of practices ${ }_{9}$
making corrections as necessary in this outline. When such corrections are necessary, they should be
made in all existing copies of the outline.
If after considerable experience in teaching the class from this outline the instructor
feels that changes should be made or if he wishes to introduce new ideas and materials, such changes
should be discussed with Plant School Supervision. Should the discussion result in a decision to
make such changes, appropriate steps will be taken to have this outline republished.

PREFACE

This text book has been prepared to describe briefly the general features of the Crossbar System, the No. 1 Crossbar System and a condensed description of a No. I Crossbar to Crossbar call. The information contained herein is to be ased for training purposes only.

Illinois Bell Telephone Company
Plant School - Chicago Area

Reissued April 1950

General

The two outstanding features of the crossbar systems are the "crossbar switch" which is used in all major switching operations, and the "marker" system of control which is used in the establishment of all connections throughout the crossbar office.

The crossbar system is essentially a relay system employing simple forms of relay and relay type structures for all switching operations. The apparatus consists almost wholly of crossbar switches, multicontact relays, U and I type relays and other relays similar to those generally employed in all telephone systems. The switching circuits are wired to the contacting springs of the switches and the connections thru the switches are made by pressing contacts together by means of simple electromagnetic structures instead of the moving brushes and associated fixed bank terminals of other dial systems.

The use of relay type apparatus with its small, pressure type contact surfaces ecdnomically permits the use of twin or double contacts with thin layers of precious metal for all contact points. These double precious metal contacts make for reliable operation, especially with low speech and signalling currents inherent to a telephone system.

The short mechanical movements and short operating time intervals of the relay like crossbar switch permit the use of common circuits or markers to control the operation of the switches. This has permitted the use of large assemblies of switches and associated relays on unit frames which can be wired and completely tested for operation in the factory before the units are shipped.

In the design of the switching frames and associated control circuits, one of the objectives realised has been the standardization of equipment units, thereby simplifying manufacturing. This also simplifies the engineering by the telephone companies in preparation of their specifications to meet particular traffic requirements of various control offices.

The marker system used for controlling the switching operations has many advantages. The marker unit is an equipment unit consisting almost entirely of relays, which completes its functional operations in the establishment of a call in a fraction of a second. This short operating time permits a few markers to handle the entire traffic in the largest office. The markers are connected momentarily by means of multi-contact relays to various switching units of the office to control the establishment of the calls through the crossbar switches.

An outstanding advantage of the marker sycten of cuntrol is the "second trial" feature, by means of which two or more attempts can be made to establish a call orer alternate switches and trunks when the normally used paths are all busy. The markers are arranged to detect short circuited, crossed, grounded and open circuit conditions at all vital points and before releasing from a connection they make circuit checks to insure that the connection has been properly established. When trouble conditions are detected, they make a second attempt to complete the connection, after sounding an alarm and recording the location and nature of the trouble encountered.

THE NO. 1 CROSSBAR SYSTEM

The No. 1 Crossbar System sets up its call on a marker basis, as explained under "The Crossbar System", which is a general statement applicable to all crossbar systems, such as Crossbar Tandem, No. 4 Toll Crossbar and the No. 5 Crossbar Systens.

The switching frames of the No. 1 Crossbar System are known as the line link, district link, office link and incoming link frames. Each of the crossbar frames consists of primary and secondary switches. The connections from the primary to the secondary awitches of the same frame are known as "links" and the connections between frames are known as "junctors". The line link frames are used for connecting subscribers to districts on originating calls and for connecting incoming trunks to subscribers' lines on terminating calls, thereby performing the functions of two frames. The junctors outgoing from each district and incoming frame are distributed evenly over all the office and line link frames respectfully. Similar primary and secondary switching arrangements are used in the sender link frame for connecting subscriber senders to the district junctors and in the terminating sender link frame for connectint the terminating sender to the incoming trunk.

The establishment of a call is taken up in four general steps (two in the originating and two in terminating equipment) and the termination of each step is nmarked" before any of the intervening paths are actually seized. In the first step of the originating equipnent, the subscriber sender to be used on a particular call is chosen before the line link, district junctor and the sender link are connected to the subscriber's line. In the second step, the outgoing trunk is chosen before the district link, office junctor and office link are tested. The third and fourth steps, in the terminating equipment, are connecting an idle terminating sender to the incoming trunk, locating the call subscriber's line on a particular line link frame and connecting this line to the incoming trunk.

The following condensed description of a crossbar to crossbar call and the sketch of the path of a call through crossbar frames is to be used with $\mathrm{XB}-8$ and $X B-8 \mathrm{~A}$.

CONDENSED DESCRIPTION OF A CROSSBAR TO CROSSBAR CALI
LINE LINK------When a subscriber originating a call lifts the receiver FUNCTIONS from the switchhook of the subscriber set, a circuit is completed to the central office operating a iine relay associated with the calling line and the line link frame primary switch vertical to which the line is connected. The operation of the line relay signals the line link controller circuit that a call is being originated. The controller circuit identifies the calling line by determining the horizontal group, vertical column, and vertical in which the line is located, and if more than one line is trying to originate a call at the same time, selects one of the lines to be served first.

SUB. SENDER----It also connects itself to one of five sender link LINK FUNCTIONS controller circuits on the sender link frames with which the line link frame is associated. The two controller DISTRICT-------circuits function together to select an idle district JUNCTOR junctor, making the selection from one of the groups of SELECTION ten district junctors which has an idle line link back to the calling line and an idle sender link to a sender subgroup which has an idle sender and prefereing those district junctor groups having at least two idle junctors. The district junctor selected, the line link primary and secondary select and hold magnets are operated closing crosspoints on the primary and secondary switches to complete the connection between the calling line and the selected district junctor and associated horizontal on the district link frame primary switch.

SUBS------------At the same time the sender link controller circuit is SENDER SEIECTION an idle sender link to the selected district junctor, selecting an idle sender from one of the subgroups having giving preference to those subgroups having two or more idle senders. With the selection of a sender, the controller circuit operates the sender link primary and secondary select and hold magnets, completing the path from the calling sub-
CLASS OF-m-m--scriber to the sender. The sender registers the class of SERVICE AND service of the subscriber's line and the number of the DISTRICT district frame involved over indicating leads ${ }_{\sigma}$
FRAME
INDICATION
DIAL TONE---TMe sender sends out dial tone, indicating that it is ready to receive dial pulses.

MARKER-_	With the channel selected, the marker now operates the
(CHANNEL	select and hold magnets on the distriet and office link
CLOSURE)	frames necessary to complete the path from the subscriber
	sender to a trunk to the called office. The marker now
	has completed its functions and releases.

CALLED LINE---This connects to the marker line test relays, the sleeve leads

TEST \& LOCATION of twenty line circuits which are cabled from the line link frames to the HLDF and crossconnected to the directory number sleeves which are cabled from the twenty block relays on the block relay frames to the VLDF.

LINE CHOICE--If idle, the marker will determine from crossconnections on SELECTION the block relay frame whether it is an individual or $\mathrm{P}_{0} \mathrm{~B}_{0} \mathrm{X}_{\mathrm{o}}$ line, whether tip or ring party ringing is required, in which line choice, on which one of the four line link frames of the choice and in which horizontal group of the line link frame, the called line is located.

MARKER CHANNEL-From this information and the incoming frame number indication TEST \& it has previously received, the marker will connect to the CLOSURE incoming link frame through the incoming link connector and through the line choice connector and line junctor connector to the line link frame and cut through to its channel test relays the sleeve leads of the incoming links, line junctors, and line links which form paths between the selected incoming trunk and the calied line. These channels are then tested. and an idle path is selected. The marker will then operate the primary and secondary select and hold magnets on the line link and incoming link frames necessary to close the path between the incoming trunk and the called subscriber.

RINGING------The marker also sets the incoming trunk to apply proper CONTROL ringing to the called line。 The marker and terminating sender now release。

LINE------Whe incoming trunk applies ringing current to the called line ${ }_{0}$ SUPERVISION and when the called party answors, stops the ringing and signals the district junctor that the called party has answered so that the correct charge may be made. The calling subscriber nay now talk to the called subscriber, the district junctor supplying talking battery to the calling subscriber and the incoming trunk to the called subscriber. At the ond of the conversation the two parties will hang up and all circuits will release.

$$
\text { P.T.S. } 901.4
$$

